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We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems and find
that it can stabilize highly entangled steady states. For concreteness, we consider the Temperley-Lieb model,
which exhibits quantum HSF in an entangled basis, and investigate the Lindblad dynamics under two different
couplings. First, we couple the system to a dephasing bath that reduces quantum fragmentation to a classical
one with the resulting stationary state being separable. We observe that despite vanishing quantum correlations,
classical correlations develop due to fluctuations of the remaining conserved quantities, which we show can
be captured by a classical stochastic circuit evolution. Second, we use a coupling that preserves the quantum
fragmentation structure. We derive a general expression for the steady state, which has a strong coherent memory
of the initial state due to the extensive number of noncommuting conserved quantities. We then show that it is
highly entangled as quantified by logarithmic negativity.
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I. INTRODUCTION

Over the past decades, much effort has been devoted to un-
derstanding quantum thermalization in closed systems [1–4].
While generic isolated quantum many-body systems are ex-
pected to thermalize, a notable counterexample is provided
by many-body localization (MBL)—occurring in the pres-
ence of strong disorder [5–9]. Recently, several alternative
mechanisms have been proposed to avoid thermalization in
the absence of disorder. These include dynamical localization
in lattice gauge theories [10,11], quantum-many body scars
[12–15], and Hilbert space fragmentation (HSF) [16–18].

The defining property of HSF is the fragmentation of
the Hilbert space into exponentially many (in system size)
dynamically disconnected sectors, known as fragments or
Krylov subspaces. The nonergodicity in the case of strong
fragmentation, where the largest fragment contains only an
exponentially vanishing fraction of the relevant symmetry sec-
tor, can lead to infinitely long-lived autocorrelation functions
even at infinite temperatures. More generally, HSF provides
a rich playground and leads to distinct physical phenomena,
including statistically localized integrals of motion [19], in-
tegrable and nonintegrable fragments, quantum many-body
scars, Krylov-restricted thermalization [18,20–24], as well as
an effective “Casimir effect” [25,26] and universal subdiffu-
sive behavior [27–33]. The latter has been recently observed
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in experiments with ultracold atoms [34]. Moreover, HSF
can be used to explain the nonergodic behavior observed in
the experimentally realized tilted systems [35–37], related to
Wannier-Stark many-body localization [38,39]. Most exam-
ples of HSF discussed in the literature exhibit fragmentation
in a local product basis (see for example Refs. [16,17,19,
40–43]) referred to as classical fragmentation (CF). In such
cases, the fragmented structure can also be realized using
classical Markov generators [27–32,43–45]. First examples
of fragmentation in an entangled basis—which we denote
as quantum fragmentation (QF)—have been only recently
proposed [46]. Reference [46] put forward an algebraic
approach using the mathematical notion of bond and commu-
tant algebras to characterize the set of conserved quantities.
Nonetheless, while this work provided an algebraic way to
explore the differences among these two types of fragmenta-
tion, a dynamical signature capable to distinguish them is still
missing.

In fact, in realistic settings, quantum many-body systems
are never perfectly isolated from their surrounding envi-
ronment. This also raises the question to which extent the
phenomena related to HSF—in particular QF, which takes
place in an entangled basis—are affected by couplings to a
bath. Note that for MBL, localization is destroyed when the
system is locally coupled to a dissipative bath [47–50]. On the
other hand, a dissipative environment can be engineered and
exploited to create exotic nonequilibrium dynamics [51–56].
For example, Ref. [53] proposed to efficiently drive the sys-
tem to the desired pure state as the unique stationary state
by engineering dissipative couplings. Moreover, in Ref. [57],
Lindblad dynamics with special jump operators was shown
to exhibit CF in terms of weak symmetries and was studied
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by exploiting the resulting integrable structure. In this work,
we provide an understanding of the generic behavior that
quantum fragmented models can display in the presence of
a dissipative bath, as well as more fine-tuned couplings that
can lead to novel behavior. We focus on strong symmetries
[58,59] (also known as exact symmetries), i.e., symmetries
preserved by both the Hamiltonian and every jump operator,
building up on previous works on the stationary state structure
for Liouvillian evolution in the presence of (conventional)
conserved quantities [58–60] and combining the commutant
algebra formalism for fragmentation [46].

Here we investigate the Lindblad dynamics of the fam-
ily of Temperley-Lieb (TL) models introduced in Ref. [46],
which is of the few examples known to be quantum frag-
mented1 With the commutant algebras, we can analytically
derive the stationary states for general initial states and study
the corresponding correlations and entanglement properties.
First, we start with a dephasing coupling [61]. We find that
the local dephasing bath reduces QF to the underlying CF
structure of the model, and the system evolves to a classical
(separable) stationary state with zero quantum correlations.
Still, the system preserves a large amount of information of
the initial state even at infinite time due to the extensive
degeneracy of stationary states, evoking the behavior of a clas-
sical memory. Second, to understand the effect of QF under
dissipation, we study a fine-tuned coupling that preserves the
QF of the model. We find that the system evolves to a sta-
tionary state with large—consistent with faster-than-area-law
behavior—negativity and nonvanishing coherences, which are
generically expected to be fragile to dissipation. This provides
a surprising result, given the scarcity of examples showcasing
size-dependent negativity in the stationary state. We find that
the nonvanishing negativity results from the QF structure in
an entangled basis, while the stationary coherences result
from the noncommutativity of the conserved quantities (an
example of hybrid quantum memory [60]). We propose finite
negativity as a simple protocol to decide whether a system is
quantum, instead of classically, fragmented. Our analysis of
Lindblad dynamics using commutant algebras can be applied
to more general settings, including conventional symmetries
and fragmentation.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the commutant and bond alge-
bras formulation for isolated fragmented systems [46] and
generalize it to open quantum systems focusing on strong
symmetries. In Sec. III, we then introduce two related frag-
mented models, the pair-flip (PF) and the TL models, which
exhibit classical and quantum fragmentation, respectively. We
study the TL model under dephasing noise in Sec. IV, which
leads to a breakdown of quantum fragmentation to the classi-
cal fragmentation of the PF model. In Sec. V, we couple the
TL model to the structure-preserving noise, which preserves
the original quantum fragmentation of the TL model. We
analytically derive the stationary states of the dynamics under

1One reason for the scarcity of QF models is that unlike for CF, the
minimal requirements leading to QF in a locally interacting system,
either strong or weak as in, e.g., dipole-conserving systems, is still
an open question.

both couplings that we use to predict saturation values of two-
point correlators and two different entanglement measures, the
logarithmic negativity and the operator space entanglement,
and compare them with numerical simulations. We conclude
in Sec. VI by summarizing our main findings and discussing
open questions. Finally, we consign more technical aspects of
our work to the Appendices.

II. METHODS: COMMUTANT ALGEBRAS
AND LINDBLAD DYNAMICS

In this section, we introduce the methods used to investi-
gate the role of HSF in open quantum many-body systems.
First, we review the mathematical framework introduced in
Ref. [46] that characterizes HSF in closed systems in terms of
bond and commutant algebras. Second, we discuss the role of
symmetries in the context of Lindblad dynamics generalizing
the commutant algebra formulation.

A. Commutant and bond algebras

The phenomenon of HSF arises as a consequence of
certain constraints being imposed on the dynamics of many-
body systems. Given a family of Hamiltonians H =∑ j J jh j

parameterized by real coefficients {Jj}, fragmentation is a
property that is completely characterized by the local terms
{h j} and thus holds for any choice of coefficients. This dis-
tinguishes HSF from other symmetries that might appear for
certain choices of Jj , such as translation invariance with uni-
form Jj . Reference [46] formalized this observation using
the language of bond and commutant algebras for isolated
quantum systems, which we will review in the following. A
bond algebra A is the algebra generated by arbitrary linear
combinations of products of the local terms {h j}, together with
the identity operator 1. The corresponding commutant algebra
C is the set of conserved quantities, namely the centralizer of
A including all operators that commute with every local term

A := 〈{h j}〉, C := {O : [O, h j] = 0,∀ j}. (1)

We refer to the latter using the shorthand notation C = 〈{hj}〉′.
Both A and C are von Neumann algebras, i.e., they include
the identity operator and are closed under conjugation [62].
Importantly, every element in C commutes with every element
in A, i.e., they are the centralizers of each other. As such the
Hilbert space can be decomposed into irreducible representa-
tions of C × A [62,63],

H =
⊕

λ

(
H(C)

λ ⊗ H(A)
λ

)
, (2)

where H(C)
λ and H(A)

λ are the dλ and Dλ dimensional ir-
reducible representations of C and A, respectively. This
decomposition implies that the elements of the bond algebra
hA ∈ A generate independent dynamics within H(A)

λ while
acting trivially on H(C)

λ . Therefore, for fixed λ, there are dλ

degenerate Krylov subspaces or fragments with dimension
Dλ. We will denote the degenerate Krylov subspaces as Kλ

α ,
with α = 1, . . . , dλ, and omit λ if there is no degeneracy.

The formulation in terms of bond and commutant algebras
provides a unifying framework to describe the decomposition
of the Hilbert space, which applies to both conventional and
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unconventional symmetries like HSF [46,64]. The difference
appears in the scaling of the dimension of the commutant
dim(C) =∑λ d2

λ with system size: It scales exponentially for
fragmented systems while at most polynomially for conven-
tional symmetries. When the commutant C is Abelian, every
irreducible representation is one dimensional (dλ = 1) and,
hence, the Hilbert space reduces to a direct sum of nonde-
generate Krylov subspaces, H =⊕α Kα . Projectors �α =∑

β |ψαβ〉〈ψαβ | onto those subspaces span the commutant,
where {|ψαβ〉} is an orthonormal basis in Kα . On the other
hand, non-Abelian commutants include larger dimensional ir-
reducible representations dλ > 1, corresponding to degenerate
Krylov subspaces. In this case, the projectors �λ

α onto differ-
ent Krylov subspaces Kλ

α span a maximal Abelian subalgebra
of C, while the full C is generated by not only the projectors
but also the intertwine operators between degenerate ones,
�λ

αα′ =∑β |ψλ
αβ〉〈ψλ

α′β | [46]. For example, the commutant
algebra of SU(2)-symmetric systems is non-Abelian and con-
tains noncommuting conserved quantities such as Sx

tot, Sy
tot, and

Sz
tot. The total spin representation λ is given by the eigenval-

ues of (�Stot )2 as λ(λ + 1). There are dλ = 2λ + 1 degenerate
Krylov subspaces with the same λ, which are labeled by
different spin-z projections Sz

tot = −λ,−λ + 1, . . . , λ, leading
to the Hilbert space decomposition as in Eq. (2) [65].

Fragmentation can be classified as either classical or quan-
tum [46]. As there is currently not a unique and precise
definition in the literature, we propose the following: A sys-
tem is said to be classically fragmented if one can find a
common eigenbasis of product states for all elements in a
maximal Abelian subalgebra of the commutant. This means
that the Krylov subspaces can be spanned by a product state
basis. Otherwise a system is said to be quantum fragmented.
By this definition, we associate CF with the existence of a
basis of product states and QF with an entangled basis—
which is different from the commutant being Abelian or not.
Specifically, an entangled basis can also appear for Abelian
commutants. For example, for an SU(2)-symmetric system,
adding the term Sz

tot preserves the Hilbert space structure in
an entangled basis but breaks the degeneracy of the Krylov
subspaces, leading to the so-called dynamical SU(2) symme-
try and an Abelian commutant [64]. Note that the current
definition of QF is still not ideal since it leaves some room
for ambiguous or trivial examples.

B. Lindblad dynamics of fragmented systems

We study the dynamics of fragmented systems coupled to
a Markovian bath described by a Lindblad master equation,
dρ

dt = L(ρ) (see Fig. 1). Here L is a Liouvillian superoperator
with [61,66]

L(ρ) = −i[H, ρ] +
∑

j

γ j

(
LjρL†

j − 1

2
{L†

j L j, ρ}
)

, (3)

where the positive coefficients γ j correspond to the decay
rates, {Lj} are jump operators describing the coupling to a
bath, and we set h̄ = 1. Equivalently, the time evolution of an
operator in the Heisenberg picture is generated by the adjoint
of the Liouvillian superoperator, dO

dt = L†(O).

FIG. 1. Schematic representation of the setup. The Hilbert
spaces of both the PF and TL models fragment into exponentially
many Krylov subspaces (solid filled blue and green squares, re-
spectively). The degenerate Krylov subspaces of the TL model are
contained in the same gray squares. The dephasing noise Lj = Sz

j

connects some of the fragmented subspaces of the TL model (on-site
dissipative coupling in blue), such that the fragmentation reduces
to the classical one of the PF model. Nonetheless, the quantum
fragmentation is preserved when using specific two-site dissipative
couplings (green).

Of particular interest to us is the stationary state

ρss = lim
t→∞ etLρ0 (4)

as an eigenstate of L with zero eigenvalue, namely L(ρss) =
0. Generally, for a Liouvillian without symmetries, there is
a unique stationary state and it preserves no information of
the initial state. On the other hand, symmetries and conserved
quantities can lead to multiple stationary states and a memory
effect in the long-time limit [58–60,67,68]. A simple case
is the presence of a strong unitary symmetry S that is pre-
served by both the Hamiltonian and every jump operator, i.e.,
[S, H] = [S, Lj] = [S, L†

j ] = 0 for all j [58,59]. The space of
bounded operators B(H) decomposes into orthogonal sub-
spaces, Bαα′ = span{|ψα〉〈ψα′ |}, where |ψα〉 is an eigenstate
of S with eigenvalue sα . Each subspace labeled by different
quantum numbers of S evolves independently since LBαα′ ⊆
Bαα′ . Thus, the stationary state inherits the block diagonal
structure given by the symmetry, which leads to at least as
many distinct stationary states as the number of symmetry
sectors [58,59].

Let us now investigate the phenomenon of HSF in the
strong symmetry sense. In Lindblad systems, the dynamics
is generated by the Hamiltonian H =∑ j J jh j and the jump
operators {Lj}. Reference [69] considered the commutant
〈H, {Lj}, {L†

j }〉′ associated with the (total) Hamiltonian and
the jump operators, which was shown to give a complete set
of conserved projectors onto mutually orthogonal subspaces
with independent dynamics in B(H). Note, however, that the
analysis only applies when the conserved operators form an
algebra.2 In the language of Ref. [64], 〈H, {Lj}, {L†

j }〉 cor-
responds to a local algebra rather than to a bond algebra,

2See counterexamples of conversed operators not forming an alge-
bra in Ref. [69].
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since H is an extensive sum of local terms. To extend the
analysis of HSF in terms of bond and commutant algebras
to open quantum systems, we define the open bond algebra
AO = 〈{h j}, {Lj}〉, where we focus on Hermitian Lj , and the
corresponding open commutant CO = 〈{h j}, {Lj}〉′. Hence,
the conserved projectors {�λ

α} ∈ CO then satisfy [�λ
α, h j] =

[�λ
α, Lj] = 0 for all j, such that each subspace evolves

independently. Note that these �λ
α project onto minimal (ir-

reducible) subspaces of the dynamics generated by L, as they
span the maximal Abelian subalgebra of the open commutant
[69]. All together we find that the operator space B(H) de-
composes into orthogonal, invariant, minimal subspaces Bαα′

[69,70]. As stated above, the existence of nonunique station-
ary states is now guaranteed by these subspaces, where now
the degeneracy of the stationary state scales exponentially
with system size due to HSF.

III. MODEL AND SETUP

We study the dynamics of quantum fragmented systems
coupled to a dissipative environment by considering the fam-
ily of TL models as a concrete example.

First, we introduce the closely related spin-1 PF model,
which exhibits CF, i.e., it is fragmented in a product-state
basis. The Hamiltonian is given by

HPF =
N−1∑
j=1

∑
α,β∈{+,0,−}

[
gαβ

j, j+1(|αα〉〈ββ|) j, j+1 + H.c.
]

+
N∑

j=1

∑
α∈{+,0,−}

l jα (|α〉〈α|) j, (5)

where α, β denote different spin-z components {−, 0,+}
and gαβ

j, j+1 and l jα are arbitrary real coefficients. We
assume open boundary conditions and even number of
sites for convenience. The constrained dynamics of the
PF model can be visualized by mapping product states
in the computational basis to colored pairs and dots.
Specifically, we denote the spins with different colors as

. Using this represen-
tation, the pair-flip terms of HPF change neighboring spins
with the same color,

(6)

The PF model has two independent U(1) charges, which are
given by N+ =∑ j (−1) jN+

j and N− =∑ j (−1) jN−
j , with

Nα
j = (|α〉〈α|) j . These U(1) symmetry sectors further split

into smaller Krylov subspaces labeled by a nonlocal invariant
[71], which we will discuss in the following. Starting from a
product state, we first connect all the adjacent spins with the
same color from left to right. Next we remove the paired spins
and repeat the first step until there are only unpaired spins
with a different color from their nearest neighbors to the left.
The unpaired spins are then referred to as dots. We denote dot
patterns of size 2λ as Aλ. Let us for example consider a state
with the dot pattern ,

(7)

We observe that dot patterns, i.e., the color and sequence
of unpaired spins, are invariant under the action of a pair-
flip, providing nonlocal and mutually commuting conserved
quantities similarly to Ref. [19]. Thus, each Krylov subspace
can be labeled by a dot pattern. The number of different dot
patterns grows exponentially with system size and thus the
Hilbert space fragments into exponentially many Krylov sub-
spaces in the local z basis. Since the fragmentation occurs in
a basis of product states—common eigenbasis of all elements
of the Abelian commutant—the PF model exhibits CF. See
schematic representation appearing in Fig. 1.

Next we introduce the SU(3) symmetric spin-1 TL model
[72,73], which is a special case of the PF model where all
coupling strengths for different color pairs are the same. The
Hamiltonian is given by3

HTL =
∑

j

J je j, j+1, (8)

where e j, j+1 =∑α,β∈{+,0,−}(|αα〉〈ββ|) j, j+1 project onto the
dimer state | 〉 ≡ 1√

3
(| + +〉 + |00〉 + | − −〉). These local

terms {e j, j+1} generate the bond algebra ATL, which is the
so-called Temperley-Lieb algebra [72,73].

As a special case of the PF model, the TL model is at
least as (classically) fragmented as the PF model. In addition
to the SU(3) symmetry, the constrained dynamics conserves
extended dot patterns, including colored dot patterns of the
PF model, e.g.,

j,k
, and additional entangled dot patterns,

e.g.,
j,k

= 1√
2
(| + +〉 j,k − | − −〉 j,k ) [46]. Note that the

choice of the dot states is not unique due to the non-Abelian
nature of C. The following example shows that the dot pattern

| j,k is conserved:

(9)

The TL model is then block-diagonal in an entangled basis
given by the dimers and dots configurations (more examples
are shown in Appendix A 1). Thus the TL model exhibits
QF. Moreover, the resulting commutant algebra CTL is non-
Abelian and the dimension of the irreducible subspaces are
dλ � 1 [46,73]. Therefore, there are dλ degenerate Krylov
subspaces for fixed λ, which are labeled by different dot
patterns with the same 2λ length. Note that in the previous
discussion, we distinguished between CF and Abelian com-
mutant, as well as between QF and non-Abelian commutant.
For example, one can find systems with an Abelian commu-
tant which nonetheless require an entangled basis [64].

Following the distinction between strong and weak frag-
mentation as discussed in Ref. [16], we verify that both the
PF model and the TL model exhibit strong fragmentation with
respect to the full Hilbert space. The dimension of the largest
Krylov subspace scale as Dmax/3N ∼ exp(−aN ) with a < 1.
See Appendix A 2 for additional details.

To study the effect of fragmentation on the Lindblad
evolution, we discretize the dynamics and implement a

3Note that the TL model can be mapped to the purely bi-
quadratic model H=∑ j Jj (�Sj · �Sj+1)2 by a local unitary operator,
U =∏ j odd exp (iπSy

j ) [46].
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FIG. 2. Lindblad random circuits. A single time step for ran-
dom circuit evolution for (a) a closed system with two-site unitary
gates Uτ, j = e−iJ j h j, j+1 and (b) the Lindblad evolution with Liouvil-
lian gates Uτ, j = eL j, j+1 , where {Jj} are random coefficients extracted
from a uniform distribution Jj ∈ [0.8, 1.2]. Here the blue circles
represent the initial state or density matrix.

local random quantum circuit including both Hamiltonian and
Lindblad evolutions. This implementation breaks energy con-
servation and translation symmetry and only preserves those
quantities belonging to the commutant algebra. The setting of
random circuits is shown in Fig. 2. Every time step includes
two consecutive layers of nonoverlaping gates, such that after
t time steps the time evolution is given by U (t ; 0) =∏t

τ=1 Uτ

with

Uτ =
∏

j even

Uτ, j

∏
j odd

Uτ, j . (10)

The Liouvillian gates are superoperators given by Uτ, j =
eL j, j+1 [see Fig. 2(b)], with

L j, j+1(ρ) = −iJj[h j, j+1, ρ] + D j, j+1(ρ), (11)

where {Jj} are uniformly distributed random coefficients
for different sites j and time steps τ . The dissipa-
tion term is D j, j+1(ρ) = γ

∑
l= j, j+1(LlρL†

l − 1
2 {L†

l Ll , ρ}) for

one-site jump operators, and D j, j+1(ρ) = γ (Lj, j+1ρL†
j, j+1 −

1
2 {L†

j, j+1Lj, j+1, ρ}) for two-site jump operators. In the follow-
ing, we use the dimensionless hoppings Jj to be uniformly
distributed in the interval [0.8, 1.2]. Moreover, we choose
γ j = γ as this does not affect our results [70]. When γ = 0,
the Liouvillian gates become random unitaries with the overall
phase fluctuating around π . This implementation allows us to
compare our numerical results with the analytic prediction ob-
tained using the formalism introduced in the previous section.

IV. DEPHASING NOISE

We first consider a dephasing noise given by Lj = Sz
j . For

many-body localized systems, such coupling delocalizes the
system and drives it to an infinite-temperature state ρ ∝ 1
[47–50]. For the TL model, however, the dephasing noise
preserves the CF while breaking the QF. When considering
the whole Hilbert space, this turns into nonergodic behavior
and extensively degenerate stationary states.

The mechanism for the breakdown from the QF of the TL
model to the CF of the PF model is shown in Fig. 1. Intuitively,
the TL model is symmetric with respect to different color
pairs due to the SU(3) symmetry, while the dephasing noise
distinguishes different colors. However, this respects the CF,
as the jump operators are elements of the PF bond algebra,

Sz
j ∈ APF. Moreover, any element of this algebra can be writ-

ten as linear combinations of products of elements in the TL
bond algebra and the dephasing jump operators as explicitly
shown in Appendix B 1. Therefore, the corresponding bond
algebra is given by the PF one 〈{h j}, {Sz

j}〉 = APF with open
commutant CO = CPF. This implies that the symmetries of the
Liouvillian are those of the PF model. In this section, we study
the effect of the breakdown of quantum fragmentation, and
sketch the derivation of the stationary state for this case.

A. Stationary states with classical fragmentation

We now derive the stationary state of the TL model under
dephasing noise. As we just showed, both the Hamiltonian
and the jump operators preserve the CF of the PF model, with
[h j,�α] = [Lj,�α] = 0,∀ j. Therefore, the operator space
is decomposed into orthogonal subspaces with independent
dynamics,

L(�αρ�α′ ) = �αL(ρ)�α′ , (12)

or, equivalently, LBαα′ ⊆ Bαα′ , where we denote the diagonal
subspaces Bα ≡ Bαα . This is the natural extension of strong
symmetry for fragmented systems.

Next, we show that there is a unique stationary state
within each Bα . As all jump operators are Hermitian, the
infinite-temperature state ρ ∝ 1 is a stationary state in B(H).
Therefore, there exists a stationary state 1α/Dα ≡ �α1/Dα

within each Bα , with L(1α/Dα ) = 0. This is because the
dissipation induces full decoherence within each invariant
subspace. Moreover, the stationary state within each Bα is
unique [69,74], as Bα is a minimal subspace given by the open
commutant. Additional details can be found in Appendix B 2.

Combining the stationary state structure (i.e., a unique
stationary state within each minimal subspace) and the corre-
sponding conserved quantities {�α}, we find that the general
expression of the stationary state is given by

ρss =
⊕

α

cα

1α

Dα

, cα = Tr(�αρ0) (13)

The coefficients cα ∈ R are the weights of the initial state
within the diagonal subspaces Kα . The stationary state pre-
serves the weight cα , while all the off-diagonal (coherent)
information is lost. A more detailed derivation can be found
in Appendix B 2. Due to fragmentation, the number of dis-
tinct stationary states reached by different initial states scales
exponentially with the system size, signaling a strong (classi-
cal) memory effect. In the following, using the expression in
Eq. (13), we analyze the long-time behavior of the TL model
under dephasing noise.

Figure 3 shows an example of the evolution of the density
operator (written in the local z basis) by exact diagonalization
(ED). To compare with the case of quantum fragmentation,
we use the initial state

(14)

which has nonzero overlap only with three Krylov subspaces:
the fully paired subspace (with zero dots) and other two la-
beled by the dot patterns and . At long times, all
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FIG. 3. Time evolution of the density matrix under dephasing
noise. Time evolution of the density operator under dephasing noise
Lj = Sz

j using ED, with system size N = 4 and γ = 1. The initial
state is specified in Eq. (14), having nonzero overlap with three
different Krylov subspaces. The color intensity in the figures is the
magnitude of matrix elements |ρi j | in the product z basis, and the
solid blue lines separate different Krylov subspaces.

off-diagonal matrix elements vanish. The stationary state is
then the direct sum of projected identities within the diagonal
blocks, with the weight determined by the initial state.

B. Infinite-temperature autocorrelation function

In this section, we investigate the effect of fragmentation
on infinite-temperature autocorrelation functions

〈O(t )O(0)〉c ≡ 〈O(t )O(0)〉 − 〈O(t )〉〈O(0)〉, (15)

under Lindblad evolution, where 〈O〉 ≡ Tr(ρO). The evolu-
tion of an operator O is given by O(t ) = etL†

(O), which
reduces to O(t ) = eiHt Oe−iHt without dissipation. For the ob-
servables we consider in the following, the disconnected part
is always zero.

For closed systems, the infinite-time average of autocor-
relation functions is lower bounded by the Mazur bound
[75–77], which relates a finite saturation value with the pres-
ence of conserved quantities. For example, for the family of
PF models and considering the local observable O = Sz

j in a
closed system, this bound is given by [46]

MPF
(
Sz

j

) = 1

3N

∑
α

[
Tr
(
�αSz

j

)]2
Dα

, (16)

where Dα is the dimension of Krylov subspace Kα . Here
{�α} span a full set of conserved quantities for the Abelian
commutant CPF. Reference [46] numerically found that the
bound MPF scales as 1/N in the bulk, hence vanishing in the
thermodynamic limit. However, a recent study shows that the
PF autocorrelation function decays asymptotically as 1/

√
N

in the bulk [78], slower than the 1/N scaling expected for
generic interacting systems.4

In Fig. 4, we show the evolution of infinite-temperature
autocorrelation functions 〈Sz

N/2(t )Sz
N/2(0)〉 of the TL model

for both closed and open quantum dynamics under differ-
ent dissipative couplings. For closed systems (green solid

4We thank Oliver Hart [71] for sharing his recent results.

FIG. 4. Infinite-temperature autocorrelation functions. Time
evolution of bulk autocorrelation functions 〈Sz

N/2(t )Sz
N/2(0)〉 for uni-

tary and open quantum dynamics using different jump operators Lj .
We use a system size N = 12 and γ = 1. The unitary dynamics is
calculated using ED, while we use TEBD for the Lindblad dynamics
with bond dimension χ = 256. Under the noise Lj = e j, j+1 that
preserves the quantum fragmentation, the autocorrelation function
saturates to the same value as in the closed system for the TL
model HTL. Under the dephasing noise Lj = Sz

j , the autocorrelation
function saturates to a finite value, which is the Mazur bound of
the PF model (blue dotted-dashed line). The spin-flip noise Lj = Sx

j

further destroys the classical fragmentation, which leads to vanishing
autocorrelation functions.

line), we numerically evaluate the infinite-temperature cor-
relations by uniformly sampling initial Haar random states
as prescribed by quantum typicality [79,80], which saturates
to a finite value. For the open dynamics, we simulate the
Lindblad evolution using the time-evolving block decima-
tion (TEBD) algorithm [81–83], with the infinite-temperature
configuration as initial state ρ0 ∝ 1. Under dephasing noise
(down-triangles), we find that the autocorrelation function sat-
urates to a lower value than the TL model in closed systems,
indicating that the dephasing noise reduces the symmetries
of the TL model. The saturation value is exactly the Mazur
bound MPF in closed systems given by Eq. (16) (blue dot-
dashed line). In the inset of Fig. 4, we numerically show
the saturation values with 1/N scaling for small system sizes
as previously found in Ref. [46]. Appendix A 2 contains
additional results obtained via classical cellular automaton
simulations of the PF model for larger system sizes, which
are consistent with the 1/

√
N scaling found in Ref. [78].

This agreement between the saturation of autocorrelation
of the TL model under dephasing noise and the PF Mazur
bound can be explained using the same analysis as for the
stationary state ρss but now for the stationary value of an
operator O(∞) = limt→∞ etL†

O, which is given by

O(∞) =
⊕

α

Oα

1α

Dα

, Oα = Tr(�αO). (17)

Here Oα is a constant given by the overlap of the operator
O and the projector. Using O = Sz

j , we obtain the saturation
value of 〈Sz

j (∞)Sz
j (0)〉c as the inner product between Sz

j and its
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FIG. 5. Logarithmic negativity EN under dephasing noise.
Time evolution of the logarithmic negativity as given in Eq. (18) us-
ing ED, under dephasing noise Lj = Sz

j with γ = 0.1. EN increases
at short times t � 1/γ , when the dephasing noise kicks in destroying
quantum correlations.

stationary value Sz
j (∞) recovering Eq. (16). This explains why

the autocorrelation function under dephasing noise saturates
exactly to the Mazur bound for the PF model. We provide a
different proof to the same result in Appendix B 3 by general-
izing the Mazur bound to open systems for diagonalizable L
with strong symmetries.

C. Logarithmic negativity

We now investigate the spreading of quantum correlations
across the system using the logarithmic negativity [84], an
entanglement measure for mixed states defined as

EN = log ‖ρTB‖1. (18)

Here ‖A‖1 = Tr
√

A†A is the trace norm, and ρTB is the par-
tial transpose with respect to a subregion B, which is given
as 〈ψA, ψB|ρ|ψ ′

A, ψ ′
B〉 = 〈ψA, ψ ′

B|ρTB |ψ ′
A, ψB〉 for an arbitrary

orthonormal basis {|ψ〉} such that |ψ〉 = |ψA〉 ⊗ |ψB〉. The
logarithmic negativity is an entanglement monotone, which
means that it is nonincreasing under local quantum operations
and classical communication [84], and it is zero for all sepa-
rable states, i.e., states of the form ρ =∑i piρ

A
i ⊗ ρB

i .
We study the dynamics of EN starting from the initial state

|ψ0〉 = ⊗N
j=1|+〉, (19)

which lies in the largest Krylov subspace associated to CPF

with dimension ∼(2
√

2)N ≈ 30.95N [71]. This corresponds to
the fully paired, i.e., trivial dot pattern, subspace. Figure 5
shows the time evolution of the logarithmic negativity. At
short times tdeph � 1/γ , EN increases since the evolution is
dominated by the unitary part. However, for t � tdeph the de-
phasing noise dominates the dynamics, destroying quantum
correlations and leading to a vanishing EN . While our nu-
merical simulations suggest that in the presence of conserved
quantities EN has a slow decay, we leave a more detailed
analysis for future work.

In fact, the stationary state under dephasing noise, Eq. (13),
is a separable state for arbitrary initial states. It is the
sum of projectors onto product states in the local z basis

|ψαβ〉 = |ψA
αβ〉 ⊗ |ψB

αβ〉, appearing as a result of the classical
fragmentation and Hermitian jump operators. Hence, it can
be written as ρss =∑αβ pαρA

αβ ⊗ ρB
αβ , with pα = cα/Dα , and

ρ
A(B)
αβ = |ψA(B)

αβ 〉〈ψA(B)
αβ |. Therefore, the logarithmic negativity

for an arbitrary bipartition with an arbitrary initial state is
zero. This result generalizes to stationary states for systems
with Abelian commutants spanned by a local product basis
and Hermitian jump operators.

D. Operator space entanglement

While quantum correlations eventually vanish in the pres-
ence of dephasing noise, information continues its spreading
in the presence of conserved quantities due to CF. We
characterize this spreading using the operator space entan-
glement (OSE), which measures the von Neumann entropy
of the vectorized density operator ρ → |ψ (ρ)〉, using Choi’s
isomorphism |σi〉〈σ ′

i | → |σiσ
′
i 〉 [85]. With the Schmidt de-

composition of |ψ (ρ)〉, the OSE is given by

SOP = −
∑

a

λ2
a log λ2

a, (20)

where the Schmidt values λa are normalized to
∑

a λ2
a = 1. In

the presence of conserved quantities, the OSE can be split into
two types of entanglement: the number entanglement Snum and
the symmetry-resolved entanglement Sres [86,87],

SOP = Snum + Sres. (21)

Snum is the Shannon entropy associated with the fluctuations
of the conserved quantities in half of the system and Sres the
weighted von Neumann entanglement entropy within each
symmetry sector.

We study the evolution of OSE starting from the same
initial state |ψ0〉 = ⊗ j |+〉 j in Fig. 6. For small γ = 0.1, sim-
ilarly to the logarithmic negativity, the OSE grows for a time
t � 1/γ and is then suppressed by the dissipation. However,
the OSE saturates to size-dependent finite values [Fig. 6(a)].
For large γ = 10, the OSE is largely suppressed, which allows
for efficient TEBD simulation for larger system sizes. We
observe that the OSE grows even with the presence of dis-
sipation until saturation [Fig. 6(b)]. The saturation values can
be calculated from the expression for the stationary state ρss

in Eq. (13). Vectorizing the stationary density matrix ρss →
|ψss〉, one finds that the saturation value of the OSE is given
by the von Neumann entropy of the state |ψss〉, which was
analytically obtained in Ref. [71]. In particular, it was shown
that SOP(ρss) = Snum(|ψss〉) scales as O(

√
N ) with system size

N and that Sres(|ψss〉) = 0 [Fig. 6(c)].
A recent study argued that the OSE grows logarithmically

in the presence of a U(1) charge validating this expectation
for certain systems [87]. For the U(1)-conserving XXZ chain
considered in Ref. [87], the authors found that the strongly
dephased dynamics can be approximated by a symmetric
simple exclusion process of hardcore particles. There particle
fluctuations across the bipartition resulted in a logarithmic
growth of the number entropy, while the symmetry-resolved
entanglement vanished.

In the following, we extend this analysis to the presence
of the nonlocal conserved quantities that characterize the
fragmented structure of the stationary state, which helps to
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FIG. 6. Operator space entanglement and number entangle-
ment under dephasing noise. The initial state is |ψ0〉 = ⊗ j |+〉 j .
(a) Lindblad dynamics of the OSE under dephasing noise Lj = Sz

j

with γ = 0.1 using ED. For small γ , the OSE increases at short
times t � 1/γ when the dynamics is governed by the unitary term,
then decreases and saturates to a size-dependent value. (b) Lindblad
dynamics with large γ = 10 using TEBD. The OSE is largely sup-
pressed by the dissipation, which allows efficient TEBD simulation.
The data suggest a logarithmic growth with a rate increasing over
time (see main text). (c) The analytic results of the OSE for the
stationary state (black dots), the saturation values of SOP under Lind-
blad dynamics (up-triangles), and Snum under stochastic dynamics
(down-triangles) show quantitative agreement. The saturation val-
ues under Lindblad dynamics are obtained with the same TEBD
parameters as in (b). The OSE of the stationary state in Eq. (13)
scales as O(

√
N ) with system size. (d) Number entanglement of the

effective stochastic dynamics, which shows similar behavior as in the
Lindblad dynamics with large γ . Each curve is averaged over 10 000
random samples.

understand the OSE growth observed in Fig. 6(b). Unlike
Ref. [87], the number entropy of the systems we consider in
this work is related to the fluctuations of nonlocal conserved
quantities, the color-dot patterns. Analogously to the U(1)
charge Nc that admit the decomposition Nc = NL + NR, we
split the global dot pattern Ak into left and right patterns such
that we can keep track of their fluctuations. For example,
for the fully paired state , the left and right dot

patterns after a half-chain bipartition are given by Ak =
and Āk = , respectively. Similarly to the case of zero
total charge with NR = −NL, the right dot pattern is a re-
flection of the left dot pattern for the fully paired subspace.
As a result, the half-chain number entanglement entropy is

given by

Snum = −
∑
Ak

pAk log pAk , (22)

with pAk the probability of having the left dot pattern Ak .5

In the limit of strong dephasing, we can derive an effective
Lindblad evolution using degenerate perturbation theory for
open quantum systems [88]. We do so by splitting L = L0 +
L1 into the unperturbed contribution L0 and the perturbation
L1 in the limit |Jj |/γ → 0. Here

L0(ρ) = γ
∑

j

[
Sz

jρSz
j − 1

2

{(
Sz

j

)2
, ρ
}]

,

L1(ρ) = −i

[∑
j

J je j, j+1, ρ

]
. (23)

Since the initial state |ψ0〉 = ⊗ j |+〉 j lies in the fully paired
subspace of the PF model, the stationary states of L0 are given
by ρσ

0 = |σ〉〈σ|, where |σ〉 are all possible fully paired product
states. The perturbation L1 breaks this degeneracy inducing
transitions among different ρσ

0 . Performing the perturbation
theory to second order in |Jj |/γ we find the effective Liouvil-
lian [47,87–89],

Leff = −PL1(L0)−1L1P, (24)

where P is the projection onto the subspace spanned by ρσ
0 .

This effective dynamics reduces to a classical Markov evolu-
tion ∂tρ(t ) = −Weffρ(t ) for the diagonal components of ρ in
the fully paired product basis ρσ

0 with

Leff
(
ρσ

0

) = −
∑
σ ′

〈σ ′|Weff|σ〉ρσ ′
0 . (25)

Weff =∑ j gαβ
j (|αα〉〈ββ|) j, j+1 is the Markov generator given

by a PF model with coefficients gαβ
j obtained in Appendix C 1.

This implies that the effective dynamics indeed preserves the
commutant algebra associated to the PF model CPF.

For an XXZ model under dephasing noise in Ref. [87], the
corresponding effective stochastic evolution can be mapped
to a simple exclusion process, from where an analytical pre-
diction for the growth of Snum could be obtained. However,
we are not aware of any analysis of the evolution generated
by Weff. Hence, we numerically simulate it in a manner that
can be compared to the implementation for open quantum
dynamics. In the basis spanned by {ρσ

0 }, the probability vec-
tor with entries pσ (t ) at discrete time t is given by pσ (t ) =∑

σ ′ (Pt )σσ ′ pσ ′ (0) where P = e−Weff [47]. Transition probabil-
ities are given by the corresponding entry in the matrix P,
which is symmetric, and satisfies Pσσ ′ ∈ [0, 1] together with∑

σ Pσσ ′ = 1. Hence, detailed balance holds with respect to a
stationary state, which is the uniform distribution over all fully
paired states. This corresponds to the stationary state ρss of the
Lindblad dynamics. To efficiently implement this evolution,
we consider a brick-wall circuit structure where two-site local

5The finest block structure in the half-chain bipartition is labeled
by the left dot patterns, as it is the case in the full Hilbert space.
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gates Pj, j+1 randomly permute among two-site local spin con-
figurations in the z basis as, e.g., in Refs. [27–32,44]. Starting
from the initial product state ⊗ j |+〉 j , we then compute the
evolution of the number entropy Snum as given in Eq. (22) by
averaging over various circuit realizations. More details about
the numerical implementation can be found in Appendix C 2.

In Fig. 6, we compare the open quantum dynamics
[Fig. 6(b) with γ = 10] with the stochastic one in Fig. 6(d).
The latter allows us to simulate larger system sizes and longer
times than what is accessible by TEBD simulations. We ob-
serve a growth of the number entanglement of the stochastic
model in Fig. 6(b), which agrees with the numerical results
obtained in the quantum setup. However, we are unable to
provide an analytical prediction for the observed scaling of
growth as for the U(1)-symmetric systems. Assuming a loga-
rithmic growth of the OSE S(t ) = S0 + η log(t ), we find that
the growth rate η slightly increases over time. Note that a
similar effect is also observed in Fig. 2(a) of Ref. [87] for U(1)
symmetric systems, which is caused by finite-time effects.
Our numerical simulations reach a saturation value for the
Snum (red down-triangles) that agrees with the analytical result
(black dots) and the saturation of the OSE under the quantum
Lindblad dynamics (blue up-triangles) as shown in Fig. 6(c).

V. STRUCTURE-PRESERVING NOISE

In the previous section, we observed that the dephasing
noise reduced the QF of the TL model to the classical one.
This led to vanishing quantum correlations as measured by the
EN , while classical correlations (Snum) could still propagate
due to fluctuations of the remaining conserved quantities.
We now consider a dissipative bath preserving the QF and
investigate the effects of the system being fragmented in an
entangled basis. We choose Lj = e j, j+1 acting on two con-
secutive sites, which is an element of the bond algebra ATL.
Hence, the open commutant algebra agrees with that of the TL
model CO = 〈{hi}, {Lj}〉′ = CTL.

A. Stationary states with quantum fragmentation

When considering quantum structure-preserving noise, the
stationary state inherits the QF of the TL model leading to the
general expression

ρss =
∑

λ,α,α′
(Mλ)αα′

�λ
αα′1

Dλ

=
⊕

λ

(
Mλ ⊗ 1λ

Dλ

)
, (26)

where (Mλ)αα′ = Tr(�λ
α′αρ0) is the dλ × dλ matrix of overlaps

between the initial state ρ0 and �λ
αα′ with �λ

α ≡ �λ
αα . There

are two major differences which distinguishes this from the
stationary state discussed in the previous section. First, there
are stationary phase coherences, i.e., L(�λ

αα′1) = 0, captured
by the nonzero overlaps with the conserved intertwine opera-
tors �λ

αα′ . Recall that these appear as a consequence of CTL

being non-Abelian. As in the case of dephasing noise, the
conserved projectors give the stationary state �λ

α1/Dλ in the
diagonal subspaces. These projected identities indicate full
decoherence within the subspaces H(A)

λ induced by Lj ∈ A.
Nonetheless, intertwine operators acting on the off-diagonal
subspaces, guarantee nonvanishing coherences for generic ini-
tial states [69], indicating that the whole system does not

FIG. 7. Time evolution of the density matrix under structure-
preserving noise. Time evolution of the density operator under
structure-preserving noise Lj = e j, j+1 using ED, with system size
N = 4 and γ = 1. The color indicates the matrix elements |ρi j | in the
entangled basis. The stationary state consists of projected identities
in all diagonal blocks and degenerate off-diagonal blocks, while all
elements in nondegenerate blocks vanish.

fully decohere. Figure 7 shows an example of the Lindblad
evolution for the initial state in Eq. (14) displaying nonzero
overlap onto the nondegenerate fully dimerized subspace (λ =
0) and onto two degenerate Krylov subspaces (λ = 1) in the
entangled basis of the TL model. The system evolves to the
stationary state with projected identities both in the diagonal
and off-diagonal degenerate subspaces. Second, the projected
identity �αα′1 within each Krylov subspace is a mixture of
entangled basis states. This implies that the stationary state is
typically not separable unless for fine-tuned initial states. As
we find in the following, this is also signalled by the behavior
of the logarithmic negativity.

Moreover, the exponentially large (in system size) dimen-
sion of the commutant algebra as a consequence of HSF,
dim(C) =∑λ d2

λ ∼ eaN , turns into a strong—coherent in the
case of non-Abelian C—memory of the initial configuration.
Information about the initial state is stored by the weight
on the invariant subspaces H(C)

λ . When Lj ∈ A, H(C)
λ are

decoherence-free subspaces and noiseless subsystems im-
mune to dissipation, which are extensively studied in the
context of error correction and fault-tolerant quantum com-
putation [90–95].

B. Infinite-temperature autocorrelation function

Once again we can use a similar analysis to that of the
stationary state to derive the saturation value of the spin-spin
autocorrelation function 〈Sz

j (t )Sz
j (0)〉. One finds that a general

operator O relaxes to the stationary value

O(∞) =
⊕

λ

(
Oλ ⊗ 1λ

Dλ

)
, (27)

where (Oλ)αα′ = Tr(�λ
α′αO). Here Oλ is a dλ × dλ matrix

with elements given by the overlap of the operator and the
corresponding projector or intertwine operator.

Therefore, for a local operator Sz
j , the saturation value of

the autocorrelation is given by Tr(Sz
j (∞)Sz

j (0))/3N , which
is exactly the Mazur bound of the TL model for unitary
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FIG. 8. Logarithmic negativity under structure-preserving
noise. Time evolution of the logarithmic negativity using ED under
the structure-preserving noise Lj = e j, j+1, with γ = 0.1. The initial
state is |ψ0〉 = ⊗ j |+〉 j . The logarithmic negativity EN increases
at t � 1/γ and then saturates to a finite size-dependent value. In
the inset, we show the scaling of this saturation value as directly
computed from the stationary state in Eq. (26), also included in the
main panel (dashed green lines). While our numerical simulations are
limited to system sizes N � 10, the scaling with system size suggests
volume law.

evolution,

MTL
(
Sz

j

) = 1

3N

∑
λ,α,α′

∣∣Tr
(
�λ

αα′Sz
j

)∣∣2
Dλ

. (28)

This agrees with the numerical results shown in Fig. 4, where
the autocorrelation functions saturate to the same value for
the closed system (green solid line) and under the structure-
preserving noise (up-triangles). The finite-size scaling of the
saturation values suggests that it is not vanishing either in the
bulk or at the edge (see Appendix A 2).

C. Logarithmic negativity and operator space entanglement

A vanishing or nonvanishing bulk autocorrelation function
is not sufficient to distinguish classical from quantum frag-
mentation. For example, the bulk autocorrelation functions
decay to zero for the t − Jz chain but remain finite for certain
dipole-conserving models, both of which are classical frag-
mented [16,19].

However, a sharp contrast can be detected in the behavior
of the logarithmic negativity in the presence of different types
of baths. While we found a vanishing negativity for dephasing
noise when starting from the initial state ⊗ j |+〉 j , we find that
EN saturates to a size-dependent value at long times under the
structure-preserving noise, indicating that the system evolves
towards an entangled stationary state (see Fig. 8). Moreover,
the negativity can be directly computed from the stationary
state in Eq. (26). This is shown in the inset of Fig. 8, sug-
gesting that the stationary state satisfies a faster-than-area-law
scaling. The source of this nonvanishing value is the fact that
the system is fragmented in an entangled basis, hence pro-
viding a clear signature to distinguish quantum and classical

FIG. 9. OSE under structure-preserving noise. Time evolution
of the OSE under the structure-preserving noise Lj = e j, j+1 with the
initial state |ψ0〉 = ⊗ j |+〉 j . Data are obtained using ED for γ = 0.1
and TEBD for γ = 10 with maximal bond dimension χ = 1000.
(a) For γ = 0.1, the OSE increases at short times and then de-
creases and saturates to a finite value. The inset shows the OSE of
the stationary state obtained from Eq. (26) (circle), which matches
the saturation values obtained by ED (up-triangle). (b) For γ = 10,
the OSE saturates to the same values as for γ = 0.1.

fragmentation. Although we have considered a specific set-
ting, such ensuing size-dependent negativity prevails as long
as the open commutant algebra is unchanged. In particular,
it holds for any longer-range local Hamiltonian or (Hermi-
tian) dissipative terms with random coefficients that preserves
the same QF, as well as other initial states. For example,
a Hamiltonian H =∑ j J (1)

j e(1)
j + J (2)

j e(2)
j with e(1)

j = e j, j+1

and e(2)
j = e j, j+1e j+1, j+2 leaves the commutant algebra invari-

ant. Nonetheless, this is just one possible extension. While
Ref. [46] provided a first example of QF, we leave it for
future to identify the minimum requirements leading to QF
and provide more extensions.

Thus we propose the logarithmic negativity of stationary
states as a probe to distinguish quantum from classical frag-
mentation. Generally, identifying CF structure is an easier
task that can be achieved by iteratively applying local terms
of Hamiltonian to a root product state. However, there can
still be a finer structure within these Krylov subspaces due to
quantum fragmentation appearing in an unknown entangled
basis. To detect whether such a finer structure exists, one
could start from an initial state within a Krylov subspace,
and study the dynamics of the logarithmic negativity under a
dissipative bath, which should preserve all the symmetries of
the Hamiltonian. This means that the jump operators should
be elements of the bond algebra Lj ∈ A and Hermitian. While
systems showcasing only CF evolve towards a separable sta-
tionary state with zero negativity, systems that are quantum
fragmented can lead to nonzero logarithmic negativity.

Before concluding this section, we study the evolution of
the OSE and compare its saturation value to that obtained
from the stationary state. The results are shown in Fig. 9 for
γ = 0.1 [Fig. 9(a)] and γ = 10 [Fig. 9(b)]. In this case, the
dynamics of OSE cannot be efficiently studied even in the
regime γ � 1 for the following reasons. First, the stationary-
state subspace of the unperturbed contribution L0 is spanned
by entangled states. Obtaining an orthonormal set of these
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entangled states requires full diagonalization of L0. Second,
transition among entangled states cannot be modelled by local
updates on local configurations and hence cannot be mapped
to a classical stochastic circuit evolution. Moreover, while
under dephasing noise we could directly extract the number
entanglement by calculating the probabilities of the dot pat-
terns of the product states, this is not the case for entangled
states which involved entangled dot patterns. This raises the
general question whether one can capture quantum fragmen-
tation phenomena using classical stochastic dynamics.

VI. CONCLUSIONS AND OUTLOOK

The goal of our work was to examine how HSF impacts
open Lindblad dynamics, taking into account whether the
coupling to the bath maintains or disrupts fragmentation in an
entangled basis. By analyzing the symmetries of the Liouvil-
lian, we were able to analytically derive the stationary state
and characterize the dynamics of autocorrelation functions
and entanglement combining analytical and numerical meth-
ods. First, we found that for a dephasing noise—that reduces
the quantum fragmentation of the TL model to the classical
fragmentation of the PF—the stationary state is a separable
state with zero quantum correlations.

On the other hand, for a dissipative coupling preserving
the QF of the TL model, the system evolves to a highly
entangled stationary state with size-dependent logarithmic
negativity. This finite saturation value is a dynamical property
distinguishing classical from quantum fragmentation in open
quantum systems, while for unitary evolution both classical
and quantum fragmentation lead to volume-law entanglement
entropies. The observed nontrivial highly entangled states en-
hance our understanding of negativity in quantum many-body
systems in the presence of dissipative couplings, given the
scarcity of relevant results.

In addition, there exist stationary coherences in the off-
diagonal subspaces due to non-Abelian commutant algebras,
indicating that the system does not fully decohere. Although
the system shows distinct entanglement properties under the
two couplings, finite autocorrelation functions could per-
sist under both types of dissipation due to fragmentation.
Moreover, the extensive fragmentation of the Hilbert space
translates into exponentially many (in the volume of the
system) degenerate stationary states, signaling a strong de-
pendence on the initial state and a potential application to
quantum memory.

The preceding discussion has highlighted three critical
components: (1) the distinction between classical and quan-
tum fragmentation, which is synonymous with product and
entangled basis spanning the fragmented structure, respec-
tively. This translates into stationary identity matrices within
Krylov subspaces in terms of either product or entangled
states, respectively, where the latter leads to a finite negativity
at long times. (2) The distinction between Abelian and non-
Abelian commutants; a non-Abelian commutant results in the
presence of stationary coherences, which indicates a coherent
memory of the initial state [60,96]; and (3) the exponential di-
mension of the commutant as caused by HSF, which leads to a
large degeneracy of stationary states and a strong dependence
on the initial state.

For future work, it will be interesting to understand
whether similar entanglement dynamics as the one found for
quantum fragmented systems, appears for polynomially large
commutants. For example, conventional symmetries such as
SU(2) also lead to a decomposition of the Hilbert space into
symmetry sectors spanned by an entangled basis, which may
evolve to a stationary state with finite negativity for specific
initial states. However, with exponentially large subspaces
that scale as the size of the Hilbert space, the stationary state
is highly mixed, which can exhibit a different dependence of
entanglement with system size.

Furthermore, although the observed size-dependent nega-
tivity holds for other local Hamiltonian and dissipative terms
as long as the QF commutant algebra remains unchanged,
identifying the minimum requirements generically leading
to QF remains an open question. For example, charge and
dipole conservation are sufficient to show that strictly local
interacting systems are CF [16], regardless of the details of
Hamiltonian terms. Moreover, recent studies proposed frag-
mented systems due to one-form U(1) charges, which are
topologically stable and become prethermal in exponentially
long timescales even under long-range perturbations [97,98].
It would be interesting to explore a broader family of QF by
identifying a certain type of minimal conditions, which allow
long-lived highly entangled states under generic dissipation.

We also leave it open to explore classical and quantum
fragmentation in the presence of weak symmetries [58,60].
In fact, an example of classical (local) fragmentation in this
weak sense already appeared in Ref. [57]. A natural adaptation
of the commutant algebra formalism consists of considering
the vectorized form of the Liouvillian L → L̃ acting on the
Hilbert space H ⊗ H and define the commutant as the set of
(super)operators commuting with every local term of L̃. For
example, it would be interesting to understand whether there
are examples of quantum fragmentation and non-Abelian
commutants for weak symmetries, and if so, whether they lead
to similar phenomenology as the one found in this work.

While several recent studies [27–32,43–45] have employed
block (local) cellular automaton dynamics to investigate the
impact of classical fragmentation on infinite-temperature cor-
relations, our work raises the following question: Is it possible
to construct a blocked cellular automaton with finite-size gates
that simulates the dynamics and capture the entanglement
properties of quantum fragmentation? If it is not possible, then
the obstruction to find such cellular automaton could be used
as a definition of quantum fragmentation.

Finally, the experimental developments in dissipation en-
gineering [51,56] and measuring negativity [99] provide the
essential ingredients to realize the phenomena we investigated
in this work. It is particularly interesting to explore the ex-
perimental realization of quantum fragmented models, and its
potential application to the storage of quantum information.

Data analysis and simulation codes are available on Zen-
odo on reasonable request [101].
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APPENDIX A: FRAGMENTATION OF PF MODEL
AND TL MODEL

1. Entangled fragmentation basis of the TL model

The TL model exhibits QF (in an entangled basis) where
the Krylov subspaces are labeled by product or entangled
dot patterns. In addition, due to the non-Abelian commutant
algebra CTL, the Krylov subspaces with dot patterns of the
same length are degenerate.

We provide some simple examples of how to construct the
entangled basis of the TL model. We label the basis states
by |ψλ

αβ〉, where 2λ is the number of dots, α = 1, . . . , dλ

denotes different degenerate Krylov subspaces for fixed λ,
and β denotes different basis states in the same Krylov sub-
space. For a system with two sites N = 2, the fully dimerized
Krylov subspace with λ = 0 (zero dots) is one dimensional,
with |ψ0

1,1〉 = | 〉. For λ = 1 with two dots, the Krylov
subspaces are also one dimensional with |ψ1

α,1〉 = | • •〉,
such that e j, j+1| • •〉 = 0. The dot state can be a product
state, |σ1σ2〉 with σ1 �= σ2, or an entangled state such as

1√
2
(| + +〉 − | − −〉). The Krylov subspaces with N = 2 and

λ = 1 have a degeneracy of d1 = 8, i.e., there are in total eight
different dot patterns which consist of two dots. Note that the
choice of dot patterns is not unique, any linear superposition
of dot patterns works. For larger system sizes with Krylov sub-
spaces of dimension Dλ � 1, we apply e j, j+1 on a root state of
the subspace to generate other basis states. For example, for
N = 4 with λ = 1, the Krylov subspace is three dimensional
with basis states |ψ1

α1〉 = | • •〉, |ψ1
α2〉 = e1,2|ψ1

α1〉 =
| • •〉 and |ψ1

α3〉 = e2,3|ψ1
α2〉 = | • • 〉. The dot

pattern (• •) is conserved and labels this Krylov subspace.
A systematic way to construct the complete basis is given by
Ref. [73].

2. Finite-size scaling of the autocorrelation functions

Both the PF and TL models exhibit strong fragmentation
[16,46]. Figure 10(a) shows that the number of Krylov sub-
spaces for the PF and the TL models scales exponentially with
the system size [71,73]. Figure 10(b) shows that the ratio be-
tween the dimension of their largest Krylov subspace and the
total Hilbert space dimension scales as Dmax/D ∼ exp(−aN ).

FIG. 10. Strong fragmentation and saturation of autocorre-
lation functions. (a) Number of Krylov subspaces K =∑λ dλ for
PF and TL model, which scales exponentially with the system size.
(b) Ratio between the dimension of the largest Krylov subspace Dmax

and the dimension of the total Hilbert space D = 3N , which scales
as Dmax/D ∼ exp(−aN ) with a < 1. This indicates that both models
exhibit strong fragmentation. [(c) and (d)] Long-time average of the
autocorrelation functions at the boundary ( j = 0) and at the bulk
( j = N/2). Data are obtained by using classical cellular automaton
simulations for the PF model (solid line) and quantum random circuit
dynamics for both models (triangle). At the boundary, both the PF
and TL model show infinite coherence time in the thermodynamic
limit. For the PF model, the autocorrelation functions saturate to 1/6
(dashed line) given by the exact results of Ref. [78]. At the bulk, the
autocorrelation functions of both PF and TL model decay as 1/N for
small N (dashed line). However, the decay for the PF model becomes
slower for large N as shown by classical cellular automaton, which
approaches to 1/

√
N (dotted line) [78].

We study the nonergodic behavior due to strong fragmen-
tation with the long-time average of autocorrelation functions,
which is given by

Cz
j (∞) = lim

T →∞
1

T

∫ T

0
dt
〈
Sz

j (t )Sz
j (0)
〉
c. (A1)

We study Cz
j (∞) using classical cellular automaton [27] for

the PF model and random circuit dynamics for both models,
which is shown in Figs. 10(c) and 10(d). At the boundary,
Cz

0(∞) decays with the system size for both TL and PF model.
However, the autocorrelation functions of PF model saturates
to a finite value 1/6 in the thermodynamic limit as shown
in Ref. [78]. At the bulk, as discussed in the main text and
in Fig. 4, the autocorrelation functions Cz

N/2(∞) of the PF
and TL models coincide with the saturation values in open
systems under dephasing noise and the structure-preserving
noise, respectively. For both PF and TL models, the bulk auto-
correlation decays as 1/N for small system sizes. However, as
Ref. [78] pointed out and agreeing with our cellular automaton
simulations, autocorrelation functions of PF model decay as
1/

√
N in the thermodynamic limit.
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APPENDIX B: LONG-TIME BEHAVIORS UNDER
LINDBLAD DYNAMICS

1. The open commutant algebra under dephasing noise

Here we prove that the dynamics of the TL model under
dephasing noise characterized by CO

deph = 〈{ei,i+1}, {Sz
j}〉′ is

exactly CPF. First, ei,i+1 and Sz
j are elements of APF, therefore,

AO
deph ⊆ APF. Second, all elements of the PF algebra can be

generated by the local terms of the TL model and the dephas-
ing noise. For example, the local term (| + +〉〈+ + |) j, j+1 =
1
4 [Sz

j + (Sz
j )

2]e j, j+1[Sz
j + (Sz

j )
2]. The linear combinations of

such products of Sz
j and ei,i+1 produce all the local terms of

the PF model, which indicates that APF ⊆ AO
deph. Hence, we

have AO
deph = APF, which also means that they have the same

commutant, CO
deph = CPF. Altogether one finds that the frag-

mentation structure of the TL model under dephasing noise is
determined by CPF.

2. Derivation of nonequilibrium stationary states

With the analysis of the commutant algebra of the Lindblad
system, we obtained a full set of conserved projectors �α ,
which decompose the operator space into minimal subspaces
with independent dynamics.

Now we prove the uniqueness of the eigenstates with zero
eigenvalues (fixed points) of the Liouvillian within the mini-
mal subspaces. This can be explained as follows [69,70,74]:
Density matrices form a convex set S , where the boundary
∂S consists of all states with a lower rank [102]. Assume that
both ρ1

∞ and ρ0
∞ are stationary states in one diagonal minimal

block Bα . Due to the linearity of the Lindblad equation, ρλ
∞ =

λρ1
∞ + (1 − λ)ρ0

∞ forms a line of stationary states. Assume
that the line intersects with the boundary ∂S at ρ2

∞, which
has rank(ρ2

∞) smaller than the dimension of the subspace.
The range of ρ3

∞ is then a smaller subspace that contains a
stationary state. This indicates that we can further decompose
Bα , which is a contradiction with the fact that Bα is a minimal
subspace. Therefore, within each diagonal minimal block,
there is at most one stationary state. In our case, we have
proven that the unique stationary state within the subspace
is the projected identity, �α1/Dα ∈ Bα . Simple examples are
provided in Ref. [74].

In the off-diagonal subspaces, the existence of fixed points,
i.e., the stationary coherences, is guaranteed by the conserved
intertwined operators �λ

αα′ between two degenerate diagonal
subspaces for non-Abelian commutant algebras. This is given
in Theorem 18 of Ref. [69]. There is also a unique fixed
point in each off-diagonal subspace. Otherwise, the conserved
intertwine operator gives an extra fixed point in the diagonal
subspace, which is a contradiction.

To obtain the general expression of the stationary state in
the full operator space, we perform a spectral decomposition
of the Liouvillian superoperator. Due to the non-Hermiticity
of L, there is in general a different set of eigenstates for L and
L† given by [60,66]

L(ρn) = λnρn, L†(σn) = λ∗
nσn, (B1)

or, equivalently, (σ †
n )L = λnσ

†
n for the latter, i.e., different

left and right eigenstates of L. They satisfy the biorthonor-

mal relation 〈〈σm|ρn〉〉 ≡ Tr(σ †
mρn) = δmn. The left and right

eigenmatrices span a full basis, such that we can expand
the initial state as ρ0 =∑n cnρn, with cn = Tr(σ †

n ρ0). The
eigenspectrum of L consists of eigenvalues with Re(λ) � 0.
Consider systems without purely imaginary eigenvalues: in
the long-time limit, the dynamics is governed by eigenmatri-
ces with zero eigenvalues. Therefore, the full stationary state
is then given by [60]

ρss = lim
t→∞ etL(ρ0) =

∑
n

Tr(σ †
n ρ0)ρn, (B2)

with L†(σn) = 0 and L(ρn) = 0.
With the analysis of the Hilbert space structure, we have

identified the full set of eigenstates with zero eigenvalues of
L, which are the stationary states and stationary coherences
{�αα′1}, as well as their corresponding conserved quantities
{�αα′ }. With Eq. (B2), we obtain the general expression for
the stationary state of fragmented systems, specified in the
main text by Eq. (13) and Eq. (26) in the case of classical
and quantum fragmentation respectively.

3. Mazur bound in open system

The Mazur bound in closed systems relates the infinite-
time average value of autocorrelation functions (nonergodic-
ity) to the presence of conserved quantities [75–77]. In the
main text we derived the saturation value of autocorrelation
function 〈O(∞)O(0)〉 by the stationary value of the operator
O, which coincides with the Mazur bound of the closed sys-
tems. The same conclusion can be achieved by generalizing
the Mazur bound to open systems.

We consider a diagonalizable Liouvillian L [60] with
strong symmetries. The vectorized notation of the Liouvillian
is [66]

Lρ → L̃|ρ〉〉, Tr(A†B) → 〈〈A|B〉〉, (B3)

where the density operator is represented as a state and the Li-
ouvillian becomes an operator in the Fock-Liouvillian space.

For a finite system and a diagonalizable L, the left and
right eigenmatrices {l†

i } and {ri} form a complete set of
basis, i.e.,

∑
i |ri〉〉〈〈li| = 0 and satisfy the biorthonormal re-

lation. Thus we can expand arbitrary observable Y as |Y 〉〉 =∑
i |ri〉〉〈〈li|Y 〉〉 [66]. The autocorrelation function is

〈Y (t )Y (0)〉 = 1

D
〈〈Y |etL̃Y 〉〉,

= 1

D

∑
i j

〈〈Y |ri〉〉〈〈li|etL̃|r j〉〉〈〈l j |Y 〉〉,

= 1

D

∑
i j

eλ j t 〈〈Y |ri〉〉〈〈li|r j〉〉〈〈l j |Y 〉〉,

= 1

D

∑
j

eλ j t 〈〈Y |r j〉〉〈〈l j |Y 〉〉, (B4)

with D as the dimension of Hilbert space, and Y = Y †.
With strong symmetries, the set of conserved quantities

{Jμ} satisfy [H, Jμ] = [Lj, Jμ] = 0 for all Lj , indicating that
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L̃|Jμ〉〉 = 0. Therefore, the corresponding right eigenmatrices
are also given by Jμ.6

In the long-time average, all the oscillating (Imλ �= 0) and
decaying terms (Reλ < 0) vanish. Therefore, the contribu-
tions will be given by the {Jμ} which are associated with zero
eigenvalues,

〈Y (t )Y (0)〉 = 1

D

∑
μ

|〈〈Y |Jμ〉〉|2
〈〈Jμ|Jμ〉〉 , (B5)

where we define 〈Y (t )〉 ≡ limT →∞ 1
T

∫ T
0 Y (t )dt . This is the

Mazur bound in the open system, with a set of orthogonal
conserved quantities {Jμ}. In general, for conserved quantities
{Qμ} not orthogonal, the Mazur bound can be written as

MA :=
∑
μν

〈AQμ〉〈K−1〉μν〈Q†
νA〉, (B6)

where (K )μν ≡ 〈Q†
μQν〉 is the correlation matrix.

For open fragmented systems, with the choice of Lj ∈
A, all elements in C commute with the Hamiltonian and
jump operators. A full set of orthogonal conserved quanti-
ties in C are the projectors onto the Krylov subspaces {�α}
and the intertwine operators {�αα′ }. With jump operators
Sz

j and e j, j+1, the Mazur bound gives the same results de-
rived from the stationary states in Eq. (16) and Eq. (28),
respectively.

APPENDIX C: EFFECTIVE LINDBLAD DYNAMICS
UNDER DEPHASING NOISE

1. Perturbation theory of effective Lindblad dynamics

We used the generalized Schrieffer-Wolff transformation to
derive the effective Lindblad dynamics under large dephasing
noise [88]. The Liouvillian superoperator can be partitioned
into L = L0 + L1, with

L0(ρ) = γ
∑

j

[
Sz

jρSz
j − 1

2

{(
Sz

j

)2
, ρ
}]

,

L1(ρ) = −i

⎡
⎣∑

j

J je j, j+1, ρ

⎤
⎦. (C1)

In the |Jj |/γ → 0 limit, the (right) eigenspectrum of the
Liouvillian has a spectral gap between λ0 = 0 and {λi, i >

0, λi �= 0}. Let the projector P onto the stationary state
subspace spanned by eigenmatrices with λ0 = 0. To second
order in |Jj |/γ , perturbation theory gives Leff =
PL1(λ0 − L0)−1L1P [88].

For the initial state |ψ0〉 = ⊗ j |+〉 j , the stationary state
subspace is spanned by ρσ

0 = |σ〉〈σ|, with |σ〉 all the prod-
uct states in the fully paired (zero dots) subspace of the PF
model. The intermediate states are given by |σ〉〈σ ′|, with
|σ′〉 ≡ |σ, j, α, β〉 = (|ββ〉〈αα|) j, j+1|σ〉 and α �= β. The un-
perturbed Liouvillian L0 acting on the intermediate states
gives eigenvalues −4γ whenever αβ �= 0 or −γ when
αβ = 0. Therefore, the effective Liouvillian acting on the

6For general Liouvillian this is not necessarily the case [60].

stationary state subspace reduces to a classical stochastic
evolution,

Leff
(
ρσ

0

) = −
∑
σ ′

〈σ ′|Weff|σ〉ρσ ′
0 . (C2)

The effective Markov generator reads Weff =∑i
J2

i
γ

Mi,i+1,
with matrix representation

Mi,i+1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 −4 −1
0

0
0

−4 8 −4
0

0
0

−1 −4 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C3)

in the local z basis for two consecutive sites. The dynam-
ics given by the matrix Weff has the same block-diagonal
structure than the PF model in the local z basis, HPF =∑

i gαβ
i (|αα〉〈ββ|)i,i+1, with gαβ

i = J2
i
γ

〈αα|Mi,i+1|ββ〉. This
indicates that effective dynamics of the TL model under de-
phasing noise is given by the PF model.

2. Simulation of the stochastic dynamics

The effective dynamics of the TL model under dephasing
noise can be mapped to a classical Markov process, with the
stochastic matrix Weff in Eq. (C2). Here we provide more
details of our numerical simulation. In correspondence to the
random circuit setting for the quantum Lindblad dynamics, we
implement the dynamics by classical circuits, with two-site
gates Ut, j permuting among the classical configurations σ =
{s1, . . . , sN }, where si ∈ {+, 0,−}. These classical configura-
tions σ correspond to ρσ

0 with |σ〉 = |σ1, . . . , σN 〉. A two-site
gate Ut, j acting on the configuration σ = {. . . , s j, s j+1, . . . }
at time t gives a new configuration σ ′ = {. . . , s′

j, s′
j+1, . . . }

with a transition probability. A configuration with s j =
s j+1 can transform to a new configuration with s′

j = s′
j+1′ ,

with the transition probability given by the probability ma-

trix 〈s′
j s

′
j+1|Pj, j+1|s js j+1〉 with Pj, j+1 = exp(− J2

j

γ
Mi,i+1) [47].

This is a pair-flip action. For s j �= s j+1, the configuration is
unchanged. To compare with the Lindblad dynamics, we start
from the initial configuration with all si = +. Averaging over
random circuit realizations, we obtain the time evolution of
the probability of dot patterns pAk (t ), and thus the number
entanglement Snum(t ). The mapping of the effective dynamics
to the stochastic dynamics allows simulation for much larger
system sizes and longer times.

3. Saturation of OSE

For the initial state |ψ0〉 = ⊗ j |+〉 which lies within
in the fully paired subspace, the stationary state is
the corresponding projected identity ρss ∝ �Kpaired1 =∑

|σ〉∈Kpaired
|σ〉〈σ|, where |σ〉 are the product basis states

of the fully paired subspace, |σ〉 = |σ1, σ2, . . . 〉. By
vectorizing |σ1, σ2, . . . 〉〈σ1, σ2, . . . | → |σ1σ1, σ2σ2, . . . 〉〉,
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FIG. 11. Number entanglement and symmetry-resolved en-
tanglement. Time evolution of the number entanglement Snum

(square) and the symmetry-resolved entanglement Sres (circle) for
different system sizes N by ED. The Sres is small compared to Snum,
and saturates to zero.

we can map the stationary mixed state to a pure state |ψss〉 ∝∑
|σ〉∈Kpaired

|σ〉, which is an equal superposition of the fully
dimerized states. The bipartite OSE of the stationary state
equals to the bipartite entanglement entropy of the vectorized
state.

The half-chain entanglement of |ψss〉 was studied in
Ref. [71]. It was shown that the symmetry-resolved entan-
glement Sres =∑Ak

pAk Sres(Ak ) = 0, as after resolving the left
dot pattern Ak , all the configurations contribute equally (thus
the state can be written as a product state with Sres(Ak ) = 0
for all Ak . Hence, only the number entropy given by S =
−∑Ak

pAk log pAk , with Ak as the dot pattern of the left part of
the chain remains. For large system sizes N , the entanglement
scales as S ∼ O(

√
N ).

In Fig. 11, we show the Lindblad evolution of Snum and
Sres under dephasing noise for γ = 10. We show that the
symmetry-resolved entanglement is small compared to the
number entanglement during time evolution, and saturates to
zero for the stationary states.
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Stationary state degeneracy of open quantum systems with
non-abelian symmetries, J. Phys. A: Math. Theor. 53, 215304
(2020).

[60] V. V. Albert and L. Jiang, Symmetries and conserved quanti-
ties in Lindblad master equations, Phys. Rev. A 89, 022118
(2014).

[61] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).

[62] N. P. Landsman, Lecture notes on C*-algebras, Hilbert C*-
modules, and quantum mechanics, arXiv:math-ph/9807030.

[63] D. Harlow, The Ryu-Takayanagi formula from quantum error
correction, Commun. Math. Phys. 354, 865 (2017).

043239-16

http://arxiv.org/abs/arXiv:2209.03377
https://doi.org/10.1103/PhysRevX.9.021003
https://doi.org/10.1103/PhysRevResearch.4.013053
https://doi.org/10.1103/PhysRevLett.125.245303
https://doi.org/10.1103/PhysRevB.101.214205
https://doi.org/10.1103/PhysRevB.100.214301
https://doi.org/10.1103/PhysRevE.103.022142
https://doi.org/10.1103/PhysRevE.105.044103
https://doi.org/10.1103/PhysRevLett.127.235301
https://doi.org/10.1103/PhysRevResearch.2.033124
https://doi.org/10.1103/PhysRevX.10.011042
https://doi.org/10.1038/s41467-021-24726-0
https://doi.org/10.1103/PhysRevLett.130.010201
https://doi.org/10.1038/s41586-021-03988-0
https://doi.org/10.1103/PhysRevLett.122.040606
https://doi.org/10.1073/pnas.1819316116
https://doi.org/10.1103/PhysRevB.106.214426
https://doi.org/10.1103/PhysRevLett.129.090602
https://doi.org/10.21468/SciPostPhys.13.4.098
https://doi.org/10.1103/PhysRevB.107.045137
https://doi.org/10.21468/SciPostPhys.14.6.140
https://doi.org/10.1103/PhysRevB.106.L220301
https://doi.org/10.1103/PhysRevX.12.011050
https://doi.org/10.1103/PhysRevB.93.094205
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevB.102.064304
https://doi.org/10.1038/nphys1073
https://doi.org/10.1103/PhysRevA.78.042307
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1103/PhysRevResearch.5.L012003
http://arxiv.org/abs/arXiv:2304.13878
https://doi.org/10.1103/PhysRevE.102.062210
https://doi.org/10.1088/1367-2630/14/7/073007
https://doi.org/10.1088/1751-8121/ab88e3
https://doi.org/10.1103/PhysRevA.89.022118
http://arxiv.org/abs/arXiv:math-ph/9807030
https://doi.org/10.1007/s00220-017-2904-z


HILBERT SPACE FRAGMENTATION IN OPEN QUANTUM … PHYSICAL REVIEW RESEARCH 5, 043239 (2023)

[64] S. Moudgalya and O. I. Motrunich, From symmetries to com-
mutant algebras in standard Hamiltonians, Ann. Phys, 455,
169384 (2023).

[65] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Reference
frames, superselection rules, and quantum information, Rev.
Mod. Phys. 79, 555 (2007).

[66] D. Manzano, A short introduction to the Lindblad master
equation, AIP Adv. 10, 025106 (2020).

[67] V. V. Albert, B. Bradlyn, M. Fraas, and L. Jiang, Geometry and
response of Lindbladians, Phys. Rev. X 6, 041031 (2016).

[68] M. de Leeuw, C. Paletta, B. Pozsgay, and E. Vernier, Hidden
quasi-local charges and Gibbs ensemble in a Lindblad system,
arXiv:2305.01922.

[69] B. Baumgartner and H. Narnhofer, Analysis of quantum semi-
groups with GKS–Lindblad generators: II. General, J. Phys.
A: Math. Theor. 41, 395303 (2008).

[70] B. Baumgartner, H. Narnhofer, and W. Thirring, Analysis
of quantum semigroups with GKS–Lindblad generators: I.
simple generators, J. Phys. A: Math. Theor. 41, 065201
(2008).

[71] L. Caha and D. Nagaj, The pair-flip model: A very entangled-
translationally invariant spin chain, arXiv:1805.07168.

[72] M. T. Batchelor and M. N. Barber, Spin-s quantum chains
and Temperley-Lieb algebras, J. Phys. A: Math. Gen. 23, L15
(1990).

[73] B. Aufgebauer and A. Klümper, Quantum spin chains of
Temperley–Lieb type: Periodic boundary conditions, spectral
multiplicities and finite temperature, J. Stat. Mech. (2010)
P05018.

[74] H. Yoshida, Uniqueness of steady states of Gorini-
Kossakowski-Sudarshan-Lindblad equations: A simple proof,
arXiv:2309.00335 [quant-ph].

[75] P. Mazur, Non-ergodicity of phase functions in certain sys-
tems, Physica 43, 533 (1969).

[76] M. Suzuki, Ergodicity, constants of motion, and bounds for
susceptibilities, Physica 51, 277 (1971).

[77] A. Dhar, A. Kundu, and K. Saito, Revisiting the Mazur bound
and the Suzuki equality, Chaos Solitons Fract. 144, 110618
(2021).

[78] O. Hart, Exact mazur bounds in the pair-flip model and be-
yond, arXiv:2308.00738 [cond-mat.stat-mech].

[79] P. Reimann, Typicality for generalized microcanonical ensem-
bles, Phys. Rev. Lett. 99, 160404 (2007).

[80] R. Steinigeweg, J. Gemmer, and W. Brenig, Spin and energy
currents in integrable and nonintegrable spin- 1

2 chains: A typi-
cality approach to real-time autocorrelations, Phys. Rev. B 91,
104404 (2015).

[81] G. Vidal, Efficient classical simulation of slightly entan-
gled quantum computations, Phys. Rev. Lett. 91, 147902
(2003).

[82] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix product
density operators: Simulation of finite-temperature and dissi-
pative systems, Phys. Rev. Lett. 93, 207204 (2004).

[83] M. Zwolak and G. Vidal, Mixed-state dynamics in one-
dimensional quantum lattice systems: A time-dependent
superoperator renormalization algorithm, Phys. Rev. Lett. 93,
207205 (2004).

[84] M. B. Plenio, Logarithmic negativity: A full entanglement
monotone that is not convex, Phys. Rev. Lett. 95, 090503
(2005).

[85] M.-D. Choi, Completely positive linear maps on complex ma-
trices, Lin. Algebr. Appl. 10, 285 (1975).

[86] A. Lukin, M. Rispoli, R. Schittko, M. E. Tai, A. M. Kaufman,
S. Choi, V. Khemani, J. Léonard, and M. Greiner, Probing
entanglement in a many-body localized system, Science 364,
256 (2019).

[87] D. Wellnitz, G. Preisser, V. Alba, J. Dubail, and J.
Schachenmayer, Rise and fall, and slow rise again, of operator
entanglement under dephasing, Phys. Rev. Lett. 129, 170401
(2022).

[88] E. M. Kessler, Generalized Schrieffer-Wolff formalism for
dissipative systems, Phys. Rev. A 86, 012126 (2012).

[89] Z. Cai and T. Barthel, Algebraic versus exponential decoher-
ence in dissipative many-particle systems, Phys. Rev. Lett.
111, 150403 (2013).

[90] P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys.
Rev. Lett. 79, 3306 (1997).

[91] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-
free subspaces for quantum computation, Phys. Rev. Lett. 81,
2594 (1998).

[92] E. Knill, R. Laflamme, and L. Viola, Theory of quantum error
correction for general noise, Phys. Rev. Lett. 84, 2525 (2000).

[93] J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Theory
of decoherence-free fault-tolerant universal quantum compu-
tation, Phys. Rev. A 63, 042307 (2001).

[94] D. A. Lidar and K. Birgitta Whaley, Decoherence-Free Sub-
spaces and Subsystems, in Irreversible Quantum Dynamics,
edited by F. Benatti and R. Floreanini (Springer, Berlin, 2003),
pp. 83–120.

[95] M.-D. Choi and D. W. Kribs, Method to find quantum noise-
less subsystems, Phys. Rev. Lett. 96, 050501 (2006).

[96] G. Kuperberg, The capacity of hybrid quantum memory, IEEE
Trans. Inf. Theory 49, 1465 (2003).

[97] D. T. Stephen, O. Hart, and R. M. Nandkishore, Ergod-
icity breaking provably robust to arbitrary perturbations,
arXiv:2209.03966 [cond-mat.stat-mech].

[98] C. Stahl, R. Nandkishore, and O. Hart, Topologically stable
ergodicity breaking from emergent higher-form symmetries in
generalized quantum loop models, arXiv:2304.04792 [cond-
mat.stat-mech].

[99] T. Liu, S. Liu, H. Li, H. Li, K. Huang, Z. Xiang, X. Song,
K. Xu, D. Zheng, and H. Fan, Observation of entanglement
transition of pseudo-random mixed states, Nat. Commun. 14,
1971 (2023).

[100] J. Hauschild and F. Pollmann, Efficient numerical simula-
tions with tensor networks: Tensor Network Python (TeNPy),
SciPost Phys. Lect. Notes 5 (2018).

[101] Y. Li, P. Sala, and F. Pollmann, Hilbert space frag-
mentation in open quantum systems, Zenodo (2023),
doi:10.5281/zenodo.7884524, data analysis and simulation
codes on Zenodo.

[102] I. Bengtsson, S. Weis, and K. Życzkowski, Geometry of the set
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