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Enhanced photon routing beyond the blockade limit via linear optics
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Directing indistinguishable photons from one input port into separate output ports is a fundamental operation
in quantum information processing. The simplest scheme for achieving routing beyond random chance uses the
photon blockade effect of a two-level emitter. But this approach is limited by a time-energy uncertainty relation.
We show that a linear optical unitary transformation applied after the atom enables splitting efficiencies that
exceed this time-energy limit. We show that the linear optical unitary improves the splitting efficiency from 67%
to 82% for unentangled photon inputs, and from 77% to 90% for entangled photon inputs. We then optimize the
temporal mode profile of the entangled photon wave function to attain the optimal splitting efficiency of 92%,
a significant improvement over previous limits derived using a two-level atom alone. These results provide a
path towards optimizing single photon nonlinearities and engineering programmable and robust photon-photon
interactions for practical, high-fidelity quantum operations.
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I. INTRODUCTION

Photonics provides a promising approach to realize scal-
able quantum technology [1–5]. Photons interact weakly with
their environment, which makes them ideal carriers of quan-
tum information [6–9]. At the same time, the lack of strong
interactions poses a significant challenge to realize quantum
operations between photons, which are essential for many
quantum information processing applications.

Single photon interactions require a strong optical nonlin-
earity. Bulk optical nonlinearities are an attractive option due
to their potential for room temperature operation, but at this
stage are still too weak [10–12]. Alternatively, one can achieve
nonlinearities at the single photon level by using a two-level
emitter coupled to a cavity or a waveguide [13–15]. The
nonlinear response of two-level emitters has been well studied
[16–18] and has been realized experimentally using quantum
dots [19,20], atoms [21,22], ions [23], and superconducting
circuitry [24]. But the interactions mediated by a two-level
emitter suffer from a time-bandwidth trade-off which limits
the fidelity of operations such as the CPHASE gate [25], photon
sorting [26,27], and photon routing [28].

One particular application of interest is photon routing,
where a two-level emitter splits two indistinguishable pho-
tons incident from only one input channel into distinct output
channels [28–31]. These output channels can be encoded as
distinguishable polarization, frequency, or spatial modes, all
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of which are equivalent and can be interconverted using lin-
ear optical elements. In this paper, we consider splitting two
indistinguishable photons into distinguishable spatial modes.
Linear optical unitaries [32–34] alone have been shown to
reach peak splitting efficiencies of only 50% [35,36]. This
is unlike the Hong-Ou-Mandel system [37,38], where an in-
put encoded in a superposition of two optical paths can be
separated perfectly using linear optical elements. A two-level
emitter exceeds the 50% splitting efficiency limit of linear
optics but cannot achieve perfect routing due to the time-
bandwidth trade-off. An extensive analysis for the routing
of two-photons has been performed by Rosenblum et al.
[28], where peak splitting efficiencies of 64% and 68% were
attained for pulses with Lorentzian and Gaussian spectral pro-
files, respectively. Engineering the time-energy relations by
adding entanglement between the input photons further im-
proves this efficiency to 77% for entangled pulses generated
by a three-level atomic cascade emission [28].

We show that the blockade limited splitting efficiency can
be exceeded with the use of a linear optical unitary transfor-
mation after the atom. We optimize the unitary to achieve
the best splitting efficiency for an uncorrelated two-photon
input and show that it can exceed 82% for a Gaussian pulse
shape. We subsequently show that time-energy entangled in-
puts can achieve splitting efficiencies exceeding 90%. Finally,
we optimize the entangled photon wave function to achieve
an optimal splitting efficiency of 92%. This efficiency is sig-
nificantly larger than the limit set by a two-level emitter alone
with no unitary. In all cases, the unitary transformation fun-
damentally changes the time-bandwidth trade-off, resulting in
optimal performance at a reduced bandwidth of the input pulse
compared to the bare two-level emitter.

This paper is organized as follows: In Sec. II, we derive
the most general time-domain solutions for the probabilities
of scattering event for two-photon wave packets incident on
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FIG. 1. Schematic representation of the photon splitting setup.
(a) Schematic of two-level emitter coupled to a waveguide, indicat-
ing the directions of the input and output modes. (b) Alternative
implementation using an atom coupled to a double-sided cavity.
(c) Schematic for the photon splitting setup, where the output modes
of the two-level emitter, coupled to a waveguide or cavity, are in-
jected into a Mach-Zehnder interferometer.

the two-level emitter and Mach-Zehnder interferometer sys-
tem. In Sec. III, we find the optimal unitaries that maximize
the splitting efficiency for both entangled and unentangled
photons. In Sec. IV, we additionally optimize the temporal
wave function of the entangled photon input to achieve a
more optimal splitting efficiency than would be possible by
standard exponential or Gaussian temporal modes. Finally,
Sec. V concludes the paper with a further discussion of the
scope and impact of our paper.

II. SYSTEM MODEL AND METHOD

Figure 1(a) shows the standard approach to single photon
routing using a two-level emitter. The system is composed
of a two-level emitter coupled to a waveguide. The modes
âin and b̂in are inputs to the emitter and âout and b̂out are the
output modes. In the photon routing scenario, two photons are
injected from mode âin and scatter into the two output modes.
Mode b̂in is assumed to be in the vacuum state, i.e., there is
no input into the system through port b̂in. Figure 1(b) shows
another way to implement this system, where a two-level
emitter is coupled to a double-sided cavity. These two systems
are equivalent in the bad cavity limit (γ � κ), where γ rep-
resents the two-level emitter’s spontaneous emission rate and
κ denotes the cavity decay rate. In this limit, the cavity atom
system can be replaced by a one-dimensional atom model with
a modified spontaneous emission rate given by � = 4g2/κ

[39], where g is the atom-cavity coupling strength.
Due to photon blockade, the two input photons may be

routed to spatially distinguishable output modes âout and b̂out,
an effect which we refer to as photon splitting. We define the
photon splitting efficiency as the probability that two photons
in the same input port exit at different output ports. Rosen-
blum et al. [28]. extensively analyzed the splitting efficiency
of a single atom and showed it was limited to 77% due to a
time-bandwidth trade-off [28].

To improve the splitting efficiency, we consider the system
in Fig. 1(c). We place a Mach-Zehnder interferometer after
the atom which applies a general linear optical unitary trans-
formation given by[

ĉout

d̂out

]
=

[
eiφ sin(θ/2) cos(θ/2)

eiφ cos(θ/2) − sin(θ/2)

][
âout

b̂out

]
. (1)

In the above equations, ĉout and d̂out are the output modes
of the unitary, which are directly related to the input modes
via a scattering matrix. The scattering matrix has two tunable
parameters, θ and φ, which represent applied phase shifts
as shown in the figure. By tuning these two parameters, we
can implement any desired two-mode unitary transformation.
We will use these two parameters to optimize the splitting
efficiency into the output modes.

To calculate the splitting efficiency after the interferome-
ter, we first define the time-ordered second order correlation
functions,

�pq(τ1, τ2) = 〈ψo| p̂†
out (τ1)q̂†

out (τ2)q̂out (τ2) p̂out (τ1) |ψo〉 , (2)

where { p̂, q̂} ∈ {ĉ, d̂}. These correlations represent the prob-
ability densities that a photon is detected at time τ1, and
a second photon is detected at time τ2. The wave function
|ψ0〉 represents the initial state of the system, which is as-
sumed to be in the subspace where both photons are in mode
âin and the atom is in the ground state. Because these are
time-ordered correlations, it is implicit that τ2 � τ1 in all
calculations. Because we are restricting our attention only
to a two-photon input, the correlations can be written as
�pq(τ1, τ2) = |ψpq(τ1, τ2)|2, where ψpq(τ1, τ2) is the correla-
tion amplitude given by

ψpq(τ1, τ2) = 〈0| q̂out (τ2) p̂out (τ1) |ψ0〉 . (3)

From these correlations, we can directly calculate the split-
ting efficiency PS as

PS =
∫

dτ1

∫
dτ2[�cd(τ1, τ2) + �dc(τ1, τ2)]. (4)

To calculate the splitting efficiency, we apply the unitary to
derive a relation between the correlation ψcd and ψdc in terms
of the correlation amplitudes of the outputs of the atom given
by

ψlm = 〈0| m̂out (τ2)l̂out (τ1) |ψ0〉 , (5)

where in the above {l̂, m̂} ∈ {â, b̂}. The above amplitudes are
related to the output amplitudes of the interferometer via the
relations

ψcd = e−2iφ sin

(
θ

2

)
cos

(
θ

2

)
ψaa − e−iφ sin2

(
θ

2

)
ψab

+ e−iφ cos2

(
θ

2

)
ψba − sin

(
θ

2

)
cos

(
θ

2

)
ψbb, (6a)

ψdc = e−2iφ sin

(
θ

2

)
cos

(
θ

2

)
ψaa + e−iφ cos2

(
θ

2

)
ψab

− e−iφ sin2

(
θ

2

)
ψba − sin

(
θ

2

)
cos

(
θ

2

)
ψbb. (6b)
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The above expressions enable us to directly calculate the
output correlations of the interferometer from the correlation
amplitudes of the atomic output modes.

To calculate the correlation amplitudes of the atomic output
modes, we use the standard Hamiltonian for the interaction
of an atom with a waveguide given by Ĥ = Ĥ0 + Ĥint, where
[16,40]

Ĥ0 =
∫ ∞

−∞
dω ω(â†

ωâω + b̂†
ωb̂ω ) (7)

and

Ĥint = −i

√
γ

π

∫ ∞

−∞
dω [σ̂ †(âω + b̂ω ) − σ̂ (â†

ω + b̂†
ω )]. (8)

In the above equations, σ̂ is the atomic lowering operator
and âω and b̂ω are the bosonic reservoir mode opera-
tors for the waveguide. Using input-output formalism, these
bosonic mode operators at initial time t0 of the system
are related to the input operators by the relation âin(t ) =
1/

√
2π ∫ dω âω(t0)e−iω(t−t0 ). The input and output modes are

also directly related to each other by the input-output relations
âout = âin − √

2γ σ̂ and b̂out = b̂in − √
2γ σ̂ [16].

In a practical setting, the atomic system would typically in-
teract with environmental bath operators as well. To model the
interaction with the environmental bath operators, the system
requires an added bath Hamiltonian given by

∫ +∞
−∞ dω ω(l̂†

ω l̂ω ),
where l̂†

ω/l̂ω are the creation and annihilation operators asso-
ciated with the bath modes at frequency ω. The bath modes

satisfy the commutation relation [l̂ω, l̂†
ω̃] = δ(ω − ω̃). These

modes are assumed to interact with the atomic system with a
frequency-independent coupling rate γL. This additional cou-
pling results in an added term to the interaction Hamiltonian in
Eq. (8) given by −i

√
γL/2π

∫ +∞
−∞ dω (σ̂ † l̂ω + σ̂ l̂†

ω ). The input-
output relations of these bath modes can similarly be derived,
resulting in l̂out = l̂in − √

γLσ̂ .
As we feed the input pulse through âin, b̂in and l̂in is only

a vacuum noise input. Since we are calculating normally or-
dered moments of output operators, vacuum noise inputs from
both input ports can be ignored and we can rewrite b̂out =
−√

2γ σ̂ . Similarly, the vacuum noise input of the external
reservoir can be ignored and the input-output relation for the
bath modes becomes l̂out = −√

γLσ̂ . The initial state of the
two photons in the input channel ain can be written as

|ψ0〉 =
∫ ∞

−∞
dt1

∫ ∞

t1

dt2 ξ (t1, t2)â†
in(t1)â†

in(t2) |0〉 |g〉 . (9)

In Appendix A, we derive the output correlation amplitudes
after interacting with the atom. We note that the coupling
to environmental bath modes contributes to decay of these
correlation amplitudes. This can be understood as leakage of
the photons out of the routing channels (waveguide modes
âout and b̂out) into the environment. Naturally, such a leakage
out of the channels of interest results in reduced splitting
efficiency. Here we are interested in probing the fundamental
upper bound of splitting efficiency obtainable with a two-level
atom and therefore operate in the lossless limit (γL = 0). The
output correlation amplitudes in the lossless limit are given by

ψbb(τ1, τ2) = 4γ 2e−2γ (τ1+τ2 )

(∫ τ2

τ1

dt2

∫ τ1

−∞
dt1 e2γ (t1+t2 )ξ (t1, t2)

)
, (10a)

ψba(τ1, τ2) = −2γ e−2γ τ1

(∫ τ1

−∞
dt1 e2γ t1ξ (t1, τ2)

)
+ ψbb(τ1, τ2), (10b)

ψab(τ1, τ2) = −2γ e−2γ τ2

(∫ τ1

−∞
dt1 e2γ t1ξ (t1, τ1) +

∫ τ2

τ1

dt2 e2γ t2ξ (τ1, t2)

)
+ ψbb(τ1, τ2), (10c)

ψaa = ξ (τ1, τ2) + ψab(τ1, τ2) + ψba(τ1, τ2) − ψbb(τ1, τ2). (10d)

With these expressions for the two-photon correlation am-
plitudes in the output modes of the emitter, we can directly
calculate the photon splitting efficiency in Eqs. (6) and (4).
These expressions agree with the time-domain solutions for
few-photon transport obtained in Refs. [41–44].

In the case when γL is nonzero, the bath operator l̂out can be
treated as an output channel similar to âout and b̂out. The input-
output formalism described above allows us to handle systems
coupled to multiple channels, making it useful for modeling
experimental results.

III. RESULTS

A. Splitting unentangled photons

We first analyze the splitting efficiency for an input of
two unentangled photons. In this case, we can write the
wave function as ξ (t1, t2) = √

2 ξ (t1)ξ (t2). Here ξ (t ) is a
normalized single photon wave packet and the factor of

√
2

ensures that the input state is normalized under time-ordering
t2 � t1 [11]. We analyze two pulse profiles for the single-
photon input wave packets. The first is an exponential pulse
profile such that ξ (t ) = √

2κe−κt , and the second is a Gaus-
sian pulse profile given by ξ (t ) = (

√
2
π
κ )

1
2 e−κ2t2

. In both
cases, κ parametrizes the bandwidth of the pulse.

We calculate the splitting efficiency using the results of
the previous section. In Appendix C, we perform the full
calculation for the exponential wave packet, which leads to an
analytical solution. For the Gaussian pulse, it is not possible
to attain an analytical expression, so we numerically calculate
the splitting efficiency. Figures 2(a) and 2(b) plot the resulting
splitting efficiency as a function κ and θ for uncorrelated
inputs with Gaussian and exponential pulse profiles, respec-
tively. Since the splitting efficiency has a periodicity in θ of
π , we analyze and plot only one period. For each point on
the plot, we optimize the value of the interferometer input
phase φ (see Fig. 1) to obtain the maximum splitting efficiency
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(c) (d)

(a) (b)

FIG. 2. Splitting efficiency for unentangled input photons.
(a) Splitting efficiency (indicated in color) for a two-photon input
with unentangled Gaussian pulses as a function of the photon band-
width κ and the crossing angles θ . The maximum splitting efficiency
is indicated in red (82.5%), with the orange contours correspond-
ing to the blockade limited splitting efficiency (67%). (b) Splitting
efficiency for unentangled exponential input pulses, with the same
labels as (a). The maximum efficiency and blockade limited effi-
ciency are 75% and 64%. (c) Splitting efficiency for unentangled
Gaussian pulses plotted as a function of photon bandwidth κ with
and without enhancement by the unitary, plotted in green and blue,
respectively. The peaks of these curves correspond to the maximum
splitting efficiency and the blockade limited efficiency seen in (a).
(d) Splitting efficiency for unentangled exponential pulses, with the
same labels as (b). The peaks of these curves also correspond to
the maximum splitting efficiency and blockade limited efficiency
seen in (b).

for the values of θ and κ corresponding to that point. We
find that φ = 0 optimizes the splitting efficiency for all points
with θ � π/2 and φ = π optimizes the splitting efficiency
for θ > π/2. This is true for both exponential and Gaussian
pulses. Furthermore, the splitting efficiency optimized for φ is
mirrored across the line θ = π/2, such that the value at θ is
the same as the value at π − θ , where θ < π/2.

The red dot denotes the maximum splitting efficiency in
both plots, which is obtained at (θ, φ) values of (0.206π, 0)
for the Gaussian wave packet and (0.192π, 0) for the expo-
nential wave packet. As noted in the last paragraph, there are
values of θ > π/2 which result in the same optima when
the phase difference φ between the two input arms of the
interferometer is set to π. The orange contours represent the
bare atom splitting efficiency calculated in Ref. [28] for an
Gaussian wave packet (67%) and exponential wave packet
(64%). One can see that the red dot in both cases is within
these orange contours and therefore achieves a higher splitting
efficiency.

We next compare the optimal splitting efficiency obtained
with the Mach-Zehnder interferometer to that of the bare
atom. We can extract the bare atom splitting efficiency from
the θ = 0 cross section of the plots in Figs. 2(a) and 2(b). In
this case, the unitary implements the identity transformation
and we therefore recover the bare atom response. Figures 2(c)
and 2(d) plot the splitting efficiency as a function of the input
pulse bandwidth for these two unitary transformations. The
blue curves correspond to having no unitary on the outputs of
the atom and give the blockade limited efficiency. The green
curves correspond to the unitary transformation that optimizes
the splitting efficiency. For the exponential pulse, the blockade
limited efficiency is 65% and occurs at κ = 1.44γ . In contrast,
the optimal splitting efficiency with the unitary is 75%. The
bandwidth κ which achieves this global maximum is 1.09γ ,
which is therefore smaller than the optimal bandwidth which
achieves the blockade limited efficiency. For the Gaussian
pulse, the optimal bandwidth κ is 1.57γ , which achieves an
optimal splitting efficiency of 82%. This efficiency is larger
than the blockade limited efficiency of 67%. We achieve this
optimum at a smaller bandwidth than that realized by the
bare atom, which is 2.24γ for a Gaussian input pulse. There-
fore, the unitary transformation fundamentally changes the
time-bandwidth trade-off required to achieve optimal splitting
efficiency.

B. Splitting time-energy entangled photons

We now analyze the response of our system for in-
puts which are time-energy entangled. These inputs have
time-energy uncertainty relations which are fundamentally
different from the uncorrelated inputs. Therefore, their inter-
action with the two-level atom is also different. One way to
write an time-energy entangled photon state is as follows:

|ψ〉 =
∫

dω0 G(ω0)
∫

dω F (ω) |ω,ω0 − ω〉 , (11)

where G(ω0) and F (ω) are general wave functions con-
strained only by the requirement for the overall normalization
of the state. The above wave function can be expressed in the
time domain as

|ψ〉 =
∫

dt1 g(t1)
∫

dt2 f (t2 − t1)a†(t1)a†(t2) |0〉 , (12)

where g(t1) and f (t2 − t1) are Fourier transforms G(ω0) and
F (ω). In the limit where G(ω0) = δ(ω0), we then have g(t1) =

1
2π

, which achieves a perfect temporally correlated entangled
state which depends only on the time difference t2 − t1. We
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refer to such states as stationary because the correlations only
depend on the arrival time difference and do not depend on
the values of the individual time variables. A more general
entangled state can introduce nonstationary behavior where
correlations are time dependent, with the dependence quanti-
fied by the function g(t1).

We first consider the specific case where g(t1) = √
2κe−κt1

and f (t2 − t1) = √
2δe−δ(t2−t1 ). Here the two wave functions

are exponential, where κ and δ represent the bandwidths of the
respective distributions. We attain the stationary limit when
κ → 0. From this state, we obtain the following normalized
input wave function:

ξ (t1, t2) = 2
√

κδ e−κt1 e−δ(t2−t1 ), (13)

where ξ (t1, t2) is defined in Eq. (9). We begin with the above
input wave function because it leads to an analytical solu-
tion. We give this full analytical solution in Appendix C. We
are only interested in the stationary limit, which we obtain
by taking κ → ∞. In this limit, the expression for splitting
efficiency is identical to the one obtained for maximally entan-
gled states generated with a three-level atomic cascade [28].
Maximizing this expression with respect to the bandwidth δ

with and without the linear optical unitary yields splitting
efficiencies of 90% and 77%, respectively.

Our analysis for the input state given by Eq. (13) suggests
that a stationary time-energy correlated input ξs(|t2 − t1|) can
significantly improve the splitting efficiency over uncorrelated
inputs. Stationary inputs with different pulse profiles could
yield further improvements. In the previous section, uncor-
related inputs with a Gaussian pulse profile yielded a bigger
maximum for splitting efficiency than exponential pulses. We
therefore consider the following input state:

|�in〉 =
∫ L

−L
dt1

∫ ∞

t1

dt2

√
δ

πL
e− δ

2 (t2−t1 )2
â†

in(t1)â†
in(t2) |0〉 .

(14)
Note that this state corresponds to substituting a Gaussian

F (ω1) = e−2ω2
1/δ

2
in Eq. (12). Here, δ � 0 gives the band-

width of the Gaussian and, hence, of the input pulse. We note
that in this case the stationary limit corresponds to L → ∞.

For this input state, the splitting efficiency is calculated via
numerical integration.

Figures 3(a) and 3(b) plot the resulting splitting efficiency
as a function δ and θ for stationary entangled inputs with
Gaussian and exponential pulse profiles, respectively. Since
the splitting efficiency is periodic in θ , we plot only one
period. Each point on these plots corresponds to optimizing
the splitting efficiency with respect to φ. We obtain the same
dependence on φ as for the uncorrelated inputs, such that
the splitting efficiency optimized for φ is mirrored across
θ = π/2. The red dots correspond to the splitting efficien-
cies obtained by optimizing the linear optical unitary, which
are 91.5% and 90% for entangled Gaussian and exponential
pulses, respectively. These lie within the orange contours that
represent the blockade limited splitting efficiencies. We note
that the blockade limited splitting efficiency of 77% corre-
sponds to the value obtained in Ref. [28] for input photons
generated by a three-level atomic cascade.

We now compare the splitting efficiency with that obtained
with the bare atom and the optimal linear optical unitary for

(c) (d)

(a) (b)

FIG. 3. Splitting efficiency for entangled input photons. (a) Split-
ting efficiency (indicated in color) for a two-photon input with
entangled Gaussian pulses as a function of the photon bandwidth
κ and the crossing angles θ . The maximum splitting efficiency
is indicated in red (91.5%), with the orange-colored contours
corresponding to the blockade limited splitting efficiency (79%).
(b) Splitting efficiency for entangled exponential input pulses, with
the same labels as (a). The maximum efficiency and blockade limited
efficiency are 90% and 77%. (c) Splitting efficiency for entangled
Gaussian pulses plotted as a function of photon bandwidth κ with
and without enhancement by the unitary, plotted in green and blue,
respectively. The peaks of these curves correspond to the maximum
splitting efficiency and the blockade limited efficiency seen in (a).
(d) Splitting efficiency for entangled exponential pulses, with the
same labels as (b). The peaks of these curves also correspond to the
maximum splitting efficiency and blockade limited efficiency seen in
(b).

both exponential and Gaussian entangled pulses. To make
this comparison, we plot these two cases for Gaussian and
exponential pulses in Figs. 3(c) and 3(d), respectively. The
blue curves correspond to having no unitary on the outputs
of the atom and give the blockade limited efficiency. The
green curves correspond to the unitary transformations which
optimize the splitting efficiency. For the entangled exponen-
tial, the blockade limited efficiency of 77% occurs at the
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bandwidth δ = 2.73γ . The bandwidth δ needs to be reduced
to 1.88γ to obtain the maximum splitting efficiency with the
optimized linear optical unitary. For the Gaussian pulse, we
also observe a reduction in the optimal bandwidth of the
input pulse in going from the bare atom to adding the opti-
mized linear optical unitary transformation after the atom. The
optimal bandwidths in the two cases are 2.76γ and 1.98γ , re-
spectively. Therefore, for entangled exponential and Gaussian
inputs, the linear optical unitary changes the time-bandwidth
trade-off required to optimize the splitting efficiency. This is
in line with our findings for uncorrelated inputs in the previous
section.

IV. OPTIMAL SPLITTING VIA TEMPORALLY
SHAPED PHOTONS

In the previous section, we assumed that the stationary
entangled photon wave function takes on the specific form
of a Gaussian or exponential. In this section, we employ
optimization to obtain an optimal pulse shape that achieves the
globally optimum splitting efficiency. This optimal waveform
represents a strong upper limit for the splitting efficiency.

To optimize the entangled photon pulse shape, we expand
the stationary wave function ξs(|t2 − t1|) in a complete expan-
sion basis. Typically, such pulse shaping can be achieved by
modifying a finite number of Fourier components of pulses
[45]. Instead of the Fourier basis, we choose to expand the
pulse profile in the Gauss-Hermite basis, given by

ξs(τ ) =
N/2∑
n=0

αnH2n(τ ) for even N , (15)

where Hn(x) are the normalized Gauss-Hermite polynomials
such that

∑N/2
n=0 |αn|2 = 1 and N/2 gives the number of terms

in the basis expansion. The terms αn are the coefficients of the
respective polynomials, ensuring that the function ξs(τ ) is nor-
malized. We chose the Gauss-Hermite basis of polynomials
because the first term in this set is purely Gaussian, which has
been shown to give us a high-splitting efficiency of 91.5%. We
therefore expect that higher order terms will add only small
corrections and we will only need to keep a few of them to
come close to the global limit. Note that we keep only even
terms in the sum in Eq. (15), which corresponds to expanding
ξs(τ ) over only the even Hermite-Gauss functions. We can
ignore the odd Hermite-Gauss functions without any loss of
generality because τ � 0, so we can express any function on
the positive time axis using only even functions of time, up to
L2 convergence.

Since the scattering amplitudes ψpq and ψlm from Eqs. (3)
and (5) are linear in the input pulse, the output two-photon
wave function for an arbitrary input pulse ξ (τ ′) denoted by
ψpq(ξ ) can be written as

ψpq(ξ ) =
N/2∑
n=0

αnψpq(H2n). (16)

The splitting efficiency is obtained by integrating |ψcd|2 +
|ψdc|2 over the output photon creation times τ1 and τ2. For

example, �cd(ξ ) = |ψcd(ξ )|2 is given by

�cd(ξ ) =
N/2∑
m=0

N/2∑
n=0

α∗
mαnψcd(H2m)ψdc(H2n), (17)

where we use the fact that the scattering amplitudes for real
valued input states are real [see Eqs. (10)]. This can be rewrit-
ten as

�cd(ξ ) = �α†ρcd(H2n)�α, (18)

where �α is a column vector with entries α1 through αN/2

and ρcd(H2n) is the probability density matrix where the
entries are determined by the choice of basis, i.e., (H2n)
from Eq. (17). We note that ρcd is a symmetric matrix
because ψcd(H2m)ψdc(H2n) is commutative as can be seen
from Eq. (17). A similar argument can be made for ρdc and
therefore the probability density ρs(ξ ) = �cd(ξ ) + �dc(ξ ) of
splitting the photons to output ports c and d takes a similar
form:

ρs(ξ ) = �α†ρs(H2n)�α. (19)

Integrating ρs(ξ ) over τ1 and τ2 is equivalent to integrating
Eq. (19) elementwise over τ1 and τ2, which yields another
symmetric matrix that we denote as R. Note that the diago-
nal entries of R are simply the splitting efficiencies for the
different basis elements. Therefore, the splitting efficiency for
the input state ξ (τ ) can be written as

PS(�α) = �α†R�α. (20)

Note that R is a symmetric positive semidefinite matrix
because PS(�α) � 0 by definition.

We claim that the maximum PS(�α) is obtained for �αmax,
which is the eigenvector of R corresponding to its maximum
eigenvalue. To see this, we first digonalize R = UTDU using
the spectral theorem for symmetric matrices. Since, R is pos-
itive semidefinite, all entries of the the diagonal matrix D are
positive. The splitting efficiency can be rewritten as

PS(�β ) = �β†D�β, (21)

where �β = U �α and the normalization constraint �α† �α is equiv-
alent to the constraint �β† �β. Therefore, PS(�β ) is clearly
maximum when the vector �βmax has zero valued entries ev-
erywhere except the position corresponding to the maximum
diagonal entry of D, which is the maximum eigenvalue of R.
Therefore, the vector �αmax = U �βmax is the eigenvector of R
with the maximum eigenvalue.

To find the maximum splitting efficiency, we construct the
matrix R for different number of terms in the basis expansion.
The maximum eigenvalue of R then gives the maximum split-
ting efficiency. Using the corresponding eigenvector �αmax of
R in [Eq. (15)] gives the optimal pulse shape in each case.

Figures 4(a) and 4(b) show the dependence of the max-
imum splitting efficiency on the number of Gauss-Hermite
polynomial in the basis expansion of the input wave function.
Figure 4(a) plots this for the case where the bare two-level
atom is used to split the input photons. The maximum splitting
efficiency increases monotonically from 78.5% and saturates
at ∼81%. Figure 4(b) shows the case where the optimal linear
optical unitary enhances the maximum splitting efficiency
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(c) (d)

(a) (b)

FIG. 4. Optimal splitting efficiency with temporally shaped input
pulses. (a) Splitting efficiency of the bare two-level emitter as a
function of the number of Gauss-Hermite polynomials contributing
to the optimal pulse profile. (b) Splitting efficiency of the of the
emitter enhanced by the interferometer as a function of the number of
Gauss-Hermite polynomials contributing to the optimal pulse profile.
(c) Contributions of each element to the optimal pulse profile to
maximize the splitting efficiency of the bare two-level emitter. The
absolute value squared of the coefficients αn is plotted in the bar
plot, with the first polynomial (Gaussian component) contributing
the maximum amount. The inset shows the optimal pulse profile.
(d) Contributions of each element to the optimal pulse profile to
maximize the splitting efficiency of the emitter enhanced by the
interferometer. The labels are the same as in (c), where the first poly-
nomial (Gaussian component) contributes the maximum amount.
The inset shows the optimal pulse profile.

from 91.5% to ∼92%. In both cases, when the input pulse
is Gaussian (i.e., when n = 0), the splitting efficiency is very
close to the value it ultimately saturates to as we add more
terms to the basis expansion of the input wave function. This
suggests that the Gaussian pulse shape is very close to the
optimal pulse shape of the input wave function.

Figures 4(c) and 4(d) illustrate the contributions of each
basis element to the optimal pulse profile. Figure 4(c) plots
the index of the polynomial against its corresponding weight
squared (|αn|2) for splitting with the bare two-level emitter.
Figure 4(d) plots the same parameters for the case when the
splitting is enhanced by the Mach-Zehnder interferometer.
The insets in each of these figures plots the optimal pulse with
a total of 40 basis elements contributing to its profile. We see
that the first polynomial (n = 0, which is purely Gaussian)

contributes the largest weight to the optimal pulse in both
cases, indicating that the Gaussian comes very close to the
optimal pulse profile. In the case of the bare emitter, |α0|2 ∼
0.958, and in the case of splitting enhanced by the interferom-
eter, |α0|2 ∼ 0.992. We truncate the number of basis elements
to 40 because we find that the weights of the higher order
basis elements drops significantly and does not contribute to
the profile of the optimal pulse. This is also indicated by the
plateauing of the splitting efficiencies in Figs. 4(a) and 4(b).

In this section, our calculations were based expanding the
pulse profile in the Gauss-Hermite basis. This is motivated
by our results from Sec. III, where the first element of the
basis (a pure Gaussian) attained a high splitting efficiency. In
general, the choice of basis can be arbitrary as long as it is
complete over stationary wavefunctions and is orthonormal.
In an alternate basis, the splitting efficiency matrix R′ will
be determined by the elements of that basis. R′ is still a
symmetric positive semidefinite matrix in the new basis. A
change of basis implies that R′ can be related to R through
a unitary transformation. The same procedure of finding the
maximum eigenvalue presented above can be followed in the
new basis as well. We expect that any complete basis would
converge to the same solution presented here.

V. DISCUSSION AND CONCLUSION

In conclusion, we have presented an extensive theoretical
analysis of the splitting of two indistinguishable photons to
spatially distinct output channels using a two-level emitter
followed by a Mach-Zehnder interferometer. Through op-
timization of the input pulse shape and the phases of the
interferometer, we obtain a splitting efficiency of 92%. This is
a substantial improvement over the optimal splitting efficiency
with just the two-level emitter, which is close to 81%. Our
results exceed the maximum splitting efficiency of 77% with
a two-level emitter calculated in Ref. [28]. Our results also
suggest that Gaussian pulse profiles extract close to optimal
nonlinear response from the two level atom. This supports
our intuition because Gaussian pulses have the minimal time-
bandwidth product.

One limitation of our analysis is that it was performed in
the weak coupling regime of cavity quantum electrodynam-
ics, where the cavity modes could be adiabtically eliminated.
However, in the strong coupling regime, the cavity modes
cannot be adiabatically eliminated and the level structure of
the atom-cavity system is given by the Jaynes-Cummings
ladder. Nevertheless, we expect to obtain the same optimal
splitting efficiencies in the strong coupling regime as obtained
in our current paper. This hypothesis is supported by the
simulations performed in Ref. [28]. There the authors showed
that the optimal splitting efficiency in the strong coupling
regime occurs when the coupling rate g between the atom
and the cavity is sufficiently large such that the interaction
between the incoming photons and the atom-cavity system is
dictated by the ground state and the first excited state of the
Jaynes-Cummings ladder. Therefore, we expect to recover the
same results as in our current analysis, but with the atomic
bandwidth γ replaced by bandwidth of the first excited state
of the Jaynes-Cummings ladder, i.e., κ + γ , where κ is the
bandwidth of the cavity.
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This paper has proved that the use of optimal interfer-
ence schemes can scale past the limit on splitting efficiency
imposed by the photon blockade. From a hardware stand-
point, the proposed model utilizes only a single two-level
emitter, weakly coupled to a waveguide and a Mach-Zehnder
interferomter, which are both passive and can be fabricated
easily with well-established lithography techniques. While the
nonlinear effect of the emitter and interferometer is still not
perfect, near term improvements in control schemes, such as
dynamic coupling [11,46] and dispersion engineering [47],
would enable high-fidelity quantum operations. Alternatively,
active control schemes such as introducing a time-varying
linear optical unitary or non-Markovian coupling to waveg-
uide or environment modes may also expected to increase the
splitting efficiency.

Networks of linear optical unitaries with nonlinear inter-
actions have been a growing area of interest due to their
versatility. In particular, cascading multiple two-level emit-
ters [27] has been shown to realize perfect photon sorting.
Such networks combined with beam-splitter meshes have
also been studied with idealized single-mode Kerr interac-
tions instead of a two-level atom as the nonlinearity [48,49]
for state generation, quantum repeater nodes, and bell-state
analysis. Optimization of such networks may improve the
fidelities of operations besides the photon-photon splitting
that we considered here. Our results highlight the potential to
generate improved quantum optical interactions by combin-
ing single-photon nonlinearities with linear optical systems,
with potential applications in photonic quantum information
processing and quantum simulation.

All requests for code and data should be made to H.S. [50].
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APPENDIX A: DERIVATION OF SCATTERING
AMPLITUDES

1. Theoretical foundations to calculate the scattering amplitudes

We begin by introducing the formalism and formulas re-
quired to derive the scattering amplitudes. To do so, we note

ψpq(τ1, τ2) = 〈0| p̂out (τ2)q̂out (τ1) |ψ0〉

=
∫ ∞

−∞
dt1

∫ ∞

t1

dt2 ξ (t1, t2)Gpq(τ1, τ2; t1, t2),

(A1)

where { p̂, q̂} ∈ {ĉ, d̂} are the output modes of the bare two-
level emitter, as defined in the main text, and Gpq(τ1, τ2; t1, t2)
is defined by

Gpq(τ1, τ2; t1, t2) = 〈0| p̂out (τ2)q̂out (τ1)â†
in(t1)â†

in(t2) |0〉 .

(A2)

Therefore, to calculate the desired scattering amplitudes
ψpq, we first calculate Gpq and then use Eq. (A1). To calculate
Gpq, we first recall the result from Ref. [17] that will be used
repeatedly in this section. Throughout this Appendix, the time
orderings t2 � t1 and τ2 � τ1 are assumed:

〈0| σ̂ (τ1)σ̂ †(t1) |0〉 = 〈0| σ̃ (τ1)σ̃ †(t1) |0〉 , (A3a)

〈0| σ̂ (τ1)σ̂ (τ2)σ̂ †(t2)σ̂ †(t1) |0〉
= 〈0| σ̃ (τ1)σ̃ (τ2)σ̃ †(t2)σ̃ †(t1) |0〉 ,

(A3b)

with

σ̃ (t ) = eiĤeff t σ̂e−iĤeff t , (A4)

where

Ĥeff = −2i
(
γ + γL

2

)
σ̂ †σ̂ . (A5)

Using Eqs. (A4) and (A5) and the properties of the opera-
tors σ̂ and σ̂ †, we can calculate the amplitudes corresponding
to Eqs. (A3). In Eq. (A3a), τ1 � t1 is the only possible time
ordering because the atom must be raised to the excited state
before it is lowered to the ground state. In Eq. (A3a), τ2 �
t2 � τ1 � t1 is the only possible ordering because, before
being raised by σ̂ †(t2), the atom must be lowered. Therefore,
we have

〈0| σ̂ (τ1)σ̂ †(t1) |0〉 = e−2(γ+ γL
2 )(τ1−t1 )�(τ1 − t1) (A6a)

and

〈0| σ̂ (τ1)σ̂ (τ2)σ̂ †(t2)σ̂ †(t1) |0〉
= e−2(γ+ γL

2 )(τ2−t2 )e−2(γ+ γL
2 )(τ1−t1 )

× �(τ2 − t2)�(τ2 − t1)�(τ1 − t1), (A6b)

where � is the Heaviside step function and ensures the time
ordering. Before we proceed to the calculations of Gpq, we
also recall the quantum causality conditions:

[σ̂ (t ), Î (τ )] = [σ̂ †(t ), Î (τ )] = 0, for t � τ, (A7a)

[σ̂ (t ), Ô(τ )] = [σ̂ †(t ), Ô(τ )] = 0, for t � τ, (A7b)

where Î stands for input annihilation or raising operators and
Ô stands for output annihilation or raising operators.

2. Exact solutions for the scattering amplitudes

In this section, we derive the exact analytical form of the
scattering amplitudes presented in the main text in Eqs. (10).
We first calculate the scattering amplitudes for two reflection
events Gbb, which gives

〈0| b̂out (τ2)b̂out (τ1)â†
in(t1)â†

in(t2) |0〉
= 2γ 〈0| σ̂ (τ2)σ̂ (τ1)â†

in(t1)â†
in(t2) |0〉 . (A8)

We first note here that the only time ordering which gives
a nonzero result is τ2 � t2 � τ1 � t1. This is because other
possible time orderings of Eq. (A8) result in 0. Therefore, we
have

Gbb = 2γ 〈0| σ̂ (t2)â†
in(τ2)σ̂ (t1)â†

in(τ1) |0〉
= 4γ 2 〈0| σ̂ (t2)σ̂ †(τ2)σ̂ (t1)σ̂ †(τ1) |0〉 (A9)
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⇒ Gbb = 4γ 2e−2(γ+ γL
2 )(t2−τ2 )e−2(γ+ γL

2 )(t1−τ2 )

× �(t2 − τ2)�(τ2 − t1)�(t1 − τ1), (A10)

where the first step follows from applying the causality con-
dition Eq. (A7a) on the result of Eq. (A8). The second step
follows from using the input-output relation â†

in(t ) = â†
out (t ) −√

2γ σ̂ †(t ) and the causality condition Eq. (A7b) and the last
step follows from Eq. (A6b). Using the result for Gbb in
Eq. (A1), we obtain

ψbb(τ1, τ2) = 4γ 2e−2(γ+ γL
2 )(τ1+τ2 )

×
∫ τ2

τ1

dτ2

∫ τ1

−∞
dt1e2γ (t1+t2 )ξ (t1, t2). (A11)

Now, we move onto calculating Gba. To do so, we begin by
observing that

Gba = 〈0| âout (τ2)b̂out (τ1)â†
in(t1)â†

in(t2) |0〉
= −

√
2γ 〈0| âin(t2)σ̂ (t1)â†

in(τ1)â†
in(τ2) |0〉

+ 2γ 〈0| σ̂ (t2)σ̂ (t1)â†
in(τ1)â†

in(τ2) |0〉 , (A12)

where the equality follows from the input-output relations.
We note that the second term on the right hand side of the
equality is Gbb. Therefore, we only need to calculate the first
term. Using the causality conditions Eqs. (A7) and the relation
â†

in(t ) = â†
out (t ) − √

2γ σ̂ †(t ), we get

〈0| âin(t2)σ̂ (t1)â†
in(τ1)â†

in(τ2) |0〉
= e−2(γ+ γL

2 )(t1−τ1 )�(t1 − τ1)δ(t2 − τ2). (A13)

Substituting this result into Eq. (A14), we obtain Gba as

⇒ Gba = − 2γ e−2(γ+ γL
2 )(t1−τ1 )�(t1 − τ1)δ(t2 − τ2)

+ Gbb(τ1, τ2). (A14)

As done above using the input-output relations and the
causality conditions, the scattering amplitude ψba is given by

ψba(τ1, τ2) = − 2γ e−2(γ+ γL
2 )τ1

∫ τ1

−∞
dt1 e2γ t1ξ (t1, t2)

+ ψbb(τ1, τ2). (A15)

Now we calculate Gab, which corresponds to the first pho-
ton getting transmitted to the output port âout, and the second
photon getting reflected by the atom to b̂out:

Gab = 〈0| b̂out (τ2)âout (τ1)â†
in(t1)â†

in(t2) |0〉
= −

√
2γ 〈0| σ̂ (τ2)âin(τ1)â†

in(t1)â†
in(t2) |0〉

+ 2γ 〈0| σ̂ (τ2)σ̂ (τ1)â†
in(t1)â†

in(t2) |0〉 . (A16)

Using input-output relations and the commutation relation
[âin(τ ), â†

in(t )] = δ(t − τ ), this can be simplified to

Gab = −
√

2γ 〈0| σ̂ (τ2)â†
in(t2) |0〉 δ(t1 − τ1)

× �(t2 − t1)�(τ2 − τ1) −
√

2γ 〈0| σ̂ (τ2)â†
in(t1) |0〉

× δ(t2 − τ1)�(t2 − t1)�(τ2 − τ1) + Gbb. (A17)

This can be simplified using the input-output rela-
tion â†

in(t ) = â†
out (t ) − √

2γ σ̂ †(t ) and the quantum causality

condition Eq. (A7b) to obtain

⇒ Gab

= −2γ e−2(γ+ γL
2 )(τ2−t2 )�(τ2 − t2)�(t2 − τ1)δ(t1 − τ1)

− 2γ e−2(γ+ γL
2 )(τ2−t1 )�(τ1 − t1)δ(t2 − τ1) + Gbb.

(A18)

Again, using the input-output relations and the causal-
ity conditions, the following scattering amplitude can be
obtained:

ψab(τ1, τ2) = − 2γ e−2(γ+ γL
2 )τ2

∫ τ1

−∞
dt1 e2γ t1ξ (t1, t2)

− 2γ e−2(γ+ γL
2 )τ2

∫ τ2

τ1

dt2 e2γ t2ξ (t1, t2)

+ ψbb(τ1, τ2). (A19)

The only remaining possibility is the transmission of both
incident photons to the output port âout. This corresponds to
Gaa, given by

Gaa = 〈0| âout (τ2)âout (τ1)â†
in(t1)â†

in(t2) |0〉
= 〈0| âin(τ2)âin(τ1)â†

in(t1)â†
in(t2) |0〉

−
√

2γ 〈0| âin(τ2)σ̂ (τ1)â†
in(t1)â†

in(t2) |0〉
−

√
2γ 〈0| σ̂ (τ2)âin(τ1)â†

in(t1)â†
in(t2) |0〉

+ 2γ 〈0| σ̂ (τ2)σ̂ (τ1)â†
in(t1)â†

in(t2) |0〉 . (A20)

Using Eqs. (A10), (A14), and (A18), Gaa can be expressed
in terms of Gab, Gba, and Gbb:

⇒ Gaa = δ(τ2 − t2)δ(τ1 − t1) + Gab + Gba − Gbb. (A21)

Similarly, as done above, we have the scattering amplitude:

ψaa = ξ (τ1, τ2) + ψab(τ1, τ2) + ψba(τ1, τ2) − ψbb(τ1, τ2).
(A22)

Equations (A11), (A15), (A19), and (A22) provide the gen-
eral form of the scattering amplitudes. In a practical setting,
the two-level system will couple to environmental bath modes
with a coupling constant γL. The above solutions show us that
this coupling results in an exponential decay of the scattered
amplitude. This decay corresponds to leakage of the photons
out of the channels of interest (waveguide modes âout and
b̂out), therefore reducing the splitting efficiency. This paper
aims to obtain the fundamental upper limit of the splitting
efficiency that can be obtained with a two-level nonlinearity.
Hence, the solutions presented in the main text are for the
lossless limit where γL = 0.

As mentioned in the main text, bath operators can be
treated another output channel, similar to âout and b̂out.
The two-photon correlation amplitudes of these channels
(ψll, ψal, ψla, ψbl, ψlb) can also be calculated using the
method shown above.

APPENDIX B: DERIVATION OF SPLITTING EFFICIENCY

The splitting efficiency can be calculated from the scatter-
ing amplitudes derived in the previous section. To do this,
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we first calculate the scattering amplitudes at the output of the Mach-Zehnder interferometer at ports ĉout and d̂out. We provide
analytical solutions for these scattering amplitudes ψcc, ψcd, ψdc, ψdd below. The probability density of splitting is then given by
ρs = |ψcd|2 + |ψdc|2.

To calculate the scattering amplitudes at the output of the interferometer, we use the input-output relations of the Mach-
Zehnder interferometer from Eq. (1) to express them in terms of the scattering amplitudes at the output of the two-level emitter.
We illustrate this procedure by showing the steps for calculating ψcd explicitly,

ψcd = 〈0| d̂out (τ2)ĉout (τ1) |0〉

= 〈0|
(

eiφ cos

(
θ

2

)
âout (τ2) − sin

(
θ

2

)
b̂out (τ2)

)(
eiφ sin

(
θ

2

)
âout (τ1) + cos

(
θ

2

)
b̂out (τ1)

)
|0〉

= − sin

(
θ

2

)
cos

(
θ

2

)
ψbb + eiφ cos2

(
θ

2

)
ψba − eiφ sin2

(
θ

2

)
ψab + e2iφ sin

(
θ

2

)
cos

(
θ

2

)
ψaa, (B1)

where the first step follows from the definition of ψcd. The second step follows from the input-output relations of the
interferometer [see Eq. (1)]. The third step uses the definition of the scattering amplitudes at the output of the two-level emitter.
Using the above procedure, we get

ψdc = − sin

(
θ

2

)
cos

(
θ

2

)
ψbb − eiφ sin2

(
θ

2

)
ψba + eiφ cos2

(
θ

2

)
ψab + e2iφ sin

(
θ

2

)
cos

(
θ

2

)
ψaa, (B2)

ψcc = cos2

(
θ

2

)
ψbb + eiφ sin

(
θ

2

)
cos

(
θ

2

)
ψba + eiφ sin

(
θ

2

)
cos

(
θ

2

)
ψab + e2iφ sin2

(
θ

2

)
ψaa, (B3)

ψdd = sin2

(
θ

2

)
ψbb − eiφ sin

(
θ

2

)
cos

(
θ

2

)
ψba − eiφ sin

(
θ

2

)
cos

(
θ

2

)
ψab + e2iφ cos2

(
θ

2

)
ψaa. (B4)

We note that |ψcc|2 + |ψcd|2 + |ψdc|2 + |ψdd|2 = |ψbb|2 + |ψba|2 + |ψab|2 + |ψaa|2. Since the right-hand side of this equation in-
tegrates to 1 over the output times τ1 and τ2, so does the left-hand side, ensuring proper normalization of the output photon wave
function. This preservation of probabilities is ensured by the unitarity of the MZI transformation of Eq. (1).

We obtain the probability density of the two input photons being split to different output modes of the MZI as ρs = |ψcd|2 +
|ψdc|2, which gives

ρs = 1
4 (2ψbb

(− sin(2θ ) cos(φ)(ψba + ψab) − 8 sin2(θ/2) cos2(θ/2) cos(2φ)ψaa
) + 2 sin2(θ )ψ2

bb + 2ψba((cos(2θ ) − 1)ψab

+ sin(2θ ) cos(φ)ψaa ) + (cos(2θ ) + 3)ψ2
ba + 2 sin(2θ ) cos(φ)ψabψaa + (cos(2θ ) + 3)ψ2

ab + 2 sin2(θ/2)ψ2
aa ). (B5)

The routing efficiency is given by the integral of ρs over t and τ.

APPENDIX C: ANALYTICAL SOLUTIONS FOR SPLITTING EFFICIENCY

In the main text, we presented results for the splitting efficiencies of Gaussian and exponential pulse profiles. In the case of
Gaussian pulses, the calculation of splitting efficiency has to be performed numerically. However, for exponential profiles, the
splitting efficiency can be calculated analytically. In this Appendix, we present the analytical results for the splitting efficiency
in the case of uncorrelated and entangled exponential inputs.

The input state of two uncorrelated photons with an exponential pulse profile is given by ξ (t1, t2) = √
2ξ (t1)ξ (t2), with

ξ (t ) = √
2κe−κt . Plugging this input state into Eqs. (10) yields the following expressions for the two photon wave functions at

the outputs aout and bout of the two-level atom:

ψbb(τ1, τ2) = −8
√

2γ 2κ (e2γ τ1 − eκτ1 )e−2τ1(γ+κ )−τ2(2γ+κ )(e2γ τ1+κτ2 − eκτ1+2γ τ2 )

(κ − 2γ )2
, (C1a)

ψba(τ1, τ2) = −4
√

2γ κ (e2γ τ1 − eκτ1 )e−2τ1(γ+κ )−τ2(2γ+κ )(2γ e2γ τ1+κτ2 − κeκτ1+2γ τ2 )

(κ − 2γ )2
, (C1b)

ψab(τ1, τ2) = 4
√

2γ κe−2τ1(γ+κ )−τ2(4γ+κ )(−2γ e2κτ1+4γ τ2 − 2γ e4γ τ1+2γ τ2+κτ2 + (4γ − κ )e(2γ+κ )(τ1+τ2 ) + κe2γ τ1+κτ1+4γ τ2 )

(κ − 2γ )2
,

(C1c)

ψaa = ξ (τ1, τ2) + ψab(τ1, τ2) + ψba(τ1, τ2) − ψbb(τ1, τ2). (C1d)
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Using these expressions in Eq. (B5), we can calculate probability density that the two input photons are routed to different
output ports cout and dout of the interferometer. Integrating the resulting expression over τ1 and τ2 gives the following splitting
efficiency:

PS = (κ (κ (10 − 3κ ) + 20) − 8) cos(2θ ) + 16κ sin2(θ ) cos(2φ) + 32κ sin(2θ ) cos(φ) + κ (κ (3κ + 38) + 44) + 8

4(κ + 2)2(3κ + 2)
. (C2)

Here, we set the atomic bandwidth γ = 1. Note that this corresponds to expressing the pulse bandwidth κ in the units of the
atomic bandwidth γ .

The input state of two entangled photons with an exponential pulse profile is given by ξ (t1, t2) = 2
√

κδ e−κt1 e−δ(t2−t1 ). We
follow the same steps as in the previous section to obtain the two-photon wave function at the output of the two level atom. The
resulting splitting efficiency in the stationary limit is given by

PS = −(δ((δ − 10)δ − 12) + 8) cos(2θ ) + 16δ sin2(θ ) cos(2φ) + 32δ sin(2θ ) cos(φ) + δ(δ(δ + 22) + 20) + 8

4(δ + 2)3
, (C3)

where the stationary limit corresponds to taking the limit κ → 0. Also note that we have set the atomic bandwidth γ = 1, which
merely corresponds to expressing the pulse bandwidth δ in terms of the atomic bandwidth.
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