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Bounding first-order quantum phase transitions in adiabatic quantum computing
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In the context of adiabatic quantum computation (AQC), it has been argued that first-order quantum phase
transitions (QPTs) due to localization phenomena cause AQC to fail by exponentially decreasing the minimal
spectral gap of the Hamiltonian along the annealing path as a function of the qubit number. The vanishing of
the spectral gap is often linked to the localization of the ground state in a local minimum, requiring the system
to tunnel into the global minimum at a later stage of the annealing. Recent methods have been proposed to
avoid this phenomenon by carefully designing the involved Hamiltonians. However, it remains a challenge to
formulate a comprehensive theory of the effect of the various parameters and the conditions under which QPTs
make the AQC algorithm fail. Equipped with concepts from graph theory, in this work we link graph quantities
associated with the Hamiltonians along the annealing path with the occurrence of QPTs. These links allow us to
derive bounds on the location of the minimal spectral gap along the annealing path, augmenting the toolbox for
the analysis of strategies to improve the runtime of AQC algorithms.
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I. INTRODUCTION

One of the central goals of quantum computing is the
prospect of being able to efficiently solve classically hard
computational problems. Adiabatic quantum computation
(AQC), proposed by Farhi et al. [1], is a model of quantum
computation particularly well suited to tackle optimization
tasks that fall into this category. Roland et al. [2] showed that
a quadratic speedup of Grover’s search algorithm [3] can be
obtained not only through a gate-based quantum circuit but
also by AQC. This, together with the proofs of equivalence
between AQC and the gate-based model [4], indicate that a
universal AQC device would provide a quantum advantage.

In AQC, a quantum system is prepared in the ground state
of a relatively simple initial Hamiltonian, also called the driver
Hamiltonian. The Hamiltonian of the system is then slowly
interpolated to a target Hamiltonian whose ground state en-
codes the solution of the target problem. By slowly we mean
that the rate of change of the Hamiltonian adheres to the
adiabatic condition as stated by the adiabatic theorem [5]. As a
consequence, the runtime of the algorithm is inversely related
to the width of the spectral gap of the instantaneous Hamilto-
nian, and a rapidly closing spectral gap therefore dramatically
increases the runtime, making the algorithm infeasible. A ma-
jor cause of these exploding runtimes are first-order quantum
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phase transitions (QPTs) [6,7] due to Anderson localization,
which results in (avoided) level crossings that lead to an ex-
ponential closing of the spectral gap and, consequently, to an
exponential runtime in the number of qubits in the system.
Altshuler et al. [8] considered this to be a proof of failure
of AQC. However, this proposition has been contested, as
methods are known to avoid the exponential closing of the
gap [9–13], suggesting that there are specific conditions when
localization phenomena can be avoided by careful design of
the initial Hamiltonian.

In the context of AQC, first-order QPTs can occur when an
initially delocalized state transitions into a localized state that
is supported in a local minimum, while only having negligible
amplitudes in the global minimum. As a consequence, as the
annealing continues, the ground state transitions to the global
minimum, resulting in a rapidly closing spectral gap as well
as a discontinuity in the solution fidelity. The latter transition
from the local to the global minimum constitutes a first-order
QPT. In the spectrum of the interpolated Hamiltonians, the
first-order QPTs correspond to (avoided) level crossings of
the ground and first excited state. However, ideally these
transitions are avoided and the delocalized state transitions
directly into the global minimum, which results in a smoother
fidelity profile. The two scenarios are depicted in Fig. 1.
Such a qualitative difference raises the question of what the
distinguishing properties of the local minima are that make
the ground state localize there first. Amin and Choi linked
the occurrence of first-order QPTs to the presence of a large
number of low-energy states, which are connected by a small
number of bit flips [14]. This notion, however, is rather broad.

In this work, we push towards answering this question
from a graph-theoretical perspective. By applying degenerate
perturbation theory, we show how particular graph-theoretic
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FIG. 1. Ground-state localization with (red arrows and solid
graph profiles) and without (green arrow and dashed graph profiles)
tunneling to the global minimum; the inset shows the spectral gaps
and solution fidelities over the interpolation parameter, or annealing
schedule, s.

quantities obtained from the initial Hamiltonian can be re-
lated to the spectral gap along the annealing process. These
quantities are well understood in spectral graph theory, link-
ing them to the spectral gap of adjacency matrices [15–18].
Importantly, these links allow us to give conditions for the
occurrence or absence of first-order QPTs and derive bounds
on its location, shedding some light on this particular error
mechanism common in AQC algorithms with the prospect of
finding strategies to mitigate it. The use of graph theory has
proven to be a useful tool in the understanding of many-body
systems [19,20].

This work is structured as follows: first we review the
basics of the AQC model in Sec. II. In Sec. III we give the
necessary definitions and show how degenerate perturbation
theory allows for the introduction of certain graph-theoretical
concepts, specifically the conductance of a subset of nodes V
and the maximum degree of the respective induced subgraph
G(V ). Using these concepts, we derive bounds on the energy
of states localized in local minima of the energy landscape,
which further allows us to derive bounds on the location of
the minimal spectral gap along the annealing path. In Sec. IV,
in order to numerically investigate the validity of the derived
bounds, we then exactly solve artificially generated toy model
instances, as well as an instance of an NP-complete problem,
and we compare the observed location of the minimal spectral
gap with the predictions of our bounds. We conclude this work
by discussing the tightness and interpretation of the derived
bounds in Sec. V, as well as potential applications of our
results.

II. ADIABATIC QUANTUM COMPUTATION

AQC works by interpolating between a driver Hamiltonian
HD, also called the initial Hamiltonian, and the target Hamilto-
nian HT . The ground state of HD needs to be simple to prepare,
while HT has been carefully designed such that the ground
state encodes the solution of the problem at hand. In the case
of optimization problems, this is often done by formulating

the problem to a quadratic unconstrained binary optimization
(QUBO) [21].

The full Hamiltonian as a function of the interpolation
parameter s = s(t ) ∈ [0, 1], also called the schedule, is given
by

H (s) = (1 − s)HD + sHT . (1)

The instantaneous eigenstates of H (s) are denoted by |�n(s)〉
with respective eigenvalues En = En(s) for n = 0, . . . , N − 1
such that E0 � E1 � · · · � EN−1, with N = 2NQ the dimen-
sion of the Hilbert space and NQ the number of qubits. Let us
consider

|�(s)〉 =
∑

n

an(s)|�n(s)〉 (2)

an arbitrary state of the quantum system along the anneal path.
At s = 0, we prepare the system such that |a0(s = 0)|2 = 1.
To ensure |a0(s = 1)|2 ≈ 1, the rate of change has to obey the
adiabatic theorem [5]

|〈�1(s)| dH
ds |�0(s)〉|

g2
min

� ε (3)

for ε � 1, and where

gmin = min
s

(E1(s) − E0(s)) (4)

is the minimal spectral gap between the ground and first ex-
cited state. The matrix element in the numerator of Eq. (3)
can typically be assumed to be bounded by a polynomial of
the qubit number, however in this work we normalize the
Hamiltonians such that the matrix element is bounded by a
constant. This serves to simplify some of the expressions and
isolate the effect of the underlying graph structure of HD, as
discussed below. Given this normalization, the runtime of an
AQC algorithm is determined by the minimal gap gmin.

In this work, we will assume the target Hamiltonians HT to
be diagonal in the computational basis, i.e.,

HT = diag
(
ET

0 , ET
1 , . . . , ET

N−1

)
(5)

with eigenstates |z〉 for each eigenvalue ET
z . A common choice

for HD is

HD = −
NQ−1∑
i=0

σ x
i , (6)

where σ x
i is the Pauli-x operator applied on qubit i. Various

works [22,23] investigated the impact of HD on the spectral
gap and hence on the runtime. In this work, we investigate the
impact of HD on the runtime as well. However, we will focus
on the underlying graph of the Hamiltonian and its relation to
the occurrence of first-order QPTs.

III. GRAPH THEORY AND QPTs

A. Basic definitions

We consider driver Hamiltonians HD that can be associated
with a graph G in the Hilbert space. A graph G = (V, E ) is
defined by a set of nodes V , as well as a set of edges,

E := {(i, j) : i, j ∈ V connected in G}. (7)
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FIG. 2. An example of a 3-regular Graph G of the configuration
space spanned by the eigenvectors |z〉 of HT . The |z〉 are represented
by the nodes V , while the set of edges E correspond to the off-
diagonals given by the matrix elements of HD. The nodes in the
shaded area represent the degenerate subspace V of HT , inducing the
subgraph G(V ) (black nodes, solid black edges). All edges leaving V
(dashed black edges) constitute the edge boundary ∂V of V .

Figure 2 shows an example of a graph. For each graph G one
can define the adjacency matrix AG ∈ {0, 1}|V|×|V| with

(AG)i j =
{

1 if (i, j) ∈ E,

0 otherwise.
(8)

As is the case with the common driver Hamiltonian defined in
Eq. (6), we assume the elements of HD to be negative. Then
we can write more generally

HD = −1

d
AG (9)

with the adjacency matrix of a d-regular simple graph G =
(V, E ), where the nodes V are the computational basis states,
denoted by |z〉, and the edges E are the nonzero matrix ele-
ments of HD as depicted in Fig. 2.

For simplicity, we will limit the analysis to d-regular sim-
ple graphs, as many commonly used HD such as Eq. (6) fall
into this category. The scaling by 1

d is introduced to normalize
the ground-state energies of the investigated HD to −1. More-
over, we will make use of the following concepts:

Definition 1 (Induced subgraph). Let G = (V , E ) be a graph
and V ⊆ V . The induced subgraph G(V ) ⊆ G is defined as the
graph

G(V ) = (V, E ) (10)

with

E = {(i, j) ∈ E : i, j ∈ V }. (11)

Definition 2 (Edge boundary). Let G = (V , E) be a graph
and V ⊆ V . The edge boundary ∂V ⊆ E of V is defined as

∂V = {(i, j) ∈ E : i ∈ V, j ∈ V\V }. (12)

Definition 3 (Conductance). Let G = (V , E) be a graph and
V ⊆ V . The conductance φ(V ) of V is defined as

φ(V ) = |∂V |
|V | . (13)

In a slight abuse of notation, we will use the symbol V for
both the subset of nodes in G as well as the subspace of the
Hilbert space spanned by (nearly) degenerate eigenstates of
HT .

B. From degenerate perturbation theory to spectral graph
theory

We will make use of degenerate perturbation theory. To this
end, let us define the set V as the set of (nearly) degenerate
eigenstates of HT with ET

z ≈ ET
V , with ET

V being the energy
of the local minimum V . Considering sHT the unperturbed
Hamiltonian and (1 − s)HD the perturbation, we have to di-
agonalize H (s) on the subspace spanned by V . Given that HT

is (nearly) degenerate in this subspace, we have to solve the
eigenvalue equation

EV (s)|V 〉 = (1 − s)H ′
D|V 〉 + sET

V |V 〉, (14)

where H ′
D is the projection of HD onto the subspace V . Note

that |V 〉 by definition is an element of the subspace V , and
hence we consider it a state localized in V with energy EV (s).

From Eq. (14) it follows directly that |V 〉 has to be an
eigenvector of

H ′
D = −1

d
AG(V ) (15)

with G(V ) the subgraph of G induced by V , and AG(V ) its
adjacency matrix. The eigenvector with the minimal energy
is the principal eigenvector of G(V ), and its energy is given
by

EV (s) = −(1 − s)
1

d
λV + sET

V , (16)

where λV is the principal eigenvalue of G(V ). If the sub-
graph G(V ) is connected, the principal eigenvalue is unique
and the perturbation with the driver Hamiltonian HD lifts the
degeneracy of HT . However, our analysis remains valid for
disconnected G(V ) as well. If G(V ) is disconnected, one can
consider each connected component in G(V ) separately, as in
this case the set V of degenerate eigenstates of HT corresponds
to distinct local minima in G. The principal eigenvalue λV is
going to be the largest principal eigenvalue of the induced
subgraphs of the connected components. Equivalently, one
can consider as local minima only subsets V such that G(V )
is connected.

It can be shown for a d-regular graph G that

d − φ(V ) � λV � dmax(V ), (17)

where dmax(V ) is the maximal degree of G(V ) (see Ap-
pendix A). Note that while G is d-regular, G(V ) may be
irregular and dmax(V ) � d . Using these ingredients, we obtain
both a lower and an upper bound on EV (s),

EV (s) � −(1 − s)
dmax(V )

d
+ sET

V , (18a)

EV (s) � (1 − s)

(
φ(V )

d
− 1

)
+ sET

V . (18b)

The bounds Eq. (18) are the first key result of this work.
In the next section, we will use them to derive bounds on
the location of first-order quantum phase transitions along the
anneal.
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FIG. 3. Cartoon of approximate energies with level crossings be-
tween the localized states (red stars) and between localized states and
the delocalized state (green squares). The localized states correspond
to energy Eglobal (blue dashed line) and Elocal (orange dash-dotted
line), respectively, while the delocalized state has the energy Edeloc

(solid green line). (a) The crossing of the localized states occurs
at a time s when the system is still delocalized, hence the ground
state will transition to the global minimum directly and only the
delocalized-localized transition will be observed. (b) The system
transitions from the delocalized state first to the local minimum and
subsequently has to tunnel into the global minimum.

C. Bounding first-order quantum phase transitions

QPTs [24,25] are also called zero-temperature phase tran-
sitions, as they are driven by the competition between quan-
tum fluctuations and minimizing some potential. Classical
phase transitions are driven instead by entropic fluctuations.
At zero temperature, the entropic part of the potential goes
to zero, but quantum fluctuations persist. Level crossings of
the ground and first excited states in that case can be seen as
first-order phase transitions according to the Ehrenfest clas-
sification, since in thermal equilibrium at zero temperature
only the ground state is populated. Consequently, the ther-
modynamic free energy at zero temperature is equal to the
ground-state energy. The first derivative of the free energy
with respect to the annealing schedule s will be discontinuous
at the level crossing, since the ground state changes rapidly
and

d

ds
〈ψ0|H (s)|ψ0〉 = 〈ψ0| d

ds
H (s)|ψ0〉 = 〈ψ0|HT − HD|ψ0〉.

(19)

Therefore, level crossings can be considered a first-order QPT
[14,26].

Using the bounds Eq. (18), it is possible to estimate the
location of the crossing of two energy levels within first-order
perturbation theory. There are two conditions to be met for
a level crossing to occur. Let Elocal(s) and Eglobal(s) be the
energies of states localized in the potentially degenerate local
and global minima, respectively, as depicted in Fig. 3. First,

the energies are required to cross at some value of s∗ ∈ [0, 1],

Eglobal(s
∗) = Elocal(s

∗). (20)

However, this is not sufficient for the level crossing to lead
to a first-order QPT. Consider Edeloc(s) to be the energy of a
delocalized state. If at s∗ we find

Edeloc(s∗) < Elocal(s
∗) = Eglobal(s

∗), (21)

the instantaneous ground state would still be the delocalized
state, and the closing gap between the local and global mini-
mum would not lead to a ground-state transition. Hence, the
second condition is that the crossing between the global and
local minimum has to occur at a time s∗ when

Elocal(s
∗) = Eglobal(s

∗) < Edeloc(s∗). (22)

We will refer to the transition from the delocalized state to
either of the localized states as the delocalized-localized tran-
sition, while the transition from one localized state to another
is referred to as the localized-localized transition.

By our assumptions, all the HD in the class of Hamiltonians
Eq. (9) that we consider here have the unique ground state

|ψ0〉 = 1√
N

∑
z

|z〉 (23)

with eigenvalue E0 = −1. To obtain Edeloc(s), we reverse the
roles of the Hamiltonians and treat HD as the unperturbed and
HT as the perturbing Hamiltonian. Using first-order nonde-
generate perturbation theory, we find that

Edeloc(s) = −(1 − s) + s〈ψ0|HT |ψ0〉
= −(1 − s) + s〈ET 〉 (24)

with

〈ET 〉 = 1

N

∑
z

ET
z . (25)

At s = 0, Edeloc is the minimal energy, so the system will
be in state |ψ0〉. As s increases, Edeloc(s) will cross either
Eglobal(s) or Elocal(s) first. This crossing will demarcate a
delocalized-localized transition. If Edeloc(s) crosses Eglobal(s)
first, the ground state will transition directly from the delo-
calized state to the global minimum [compare Fig. 3(a)]. In
case Edeloc(s) first crosses Elocal(s), the ground state transitions
first from the delocalized state to the local minimum. At a
later time s∗ when Elocal(s) crosses Eglobal(s), there will be an
additional localized-localized transition from the local to the
global minimum, as depicted in Fig. 3(b).

The location of the localized-localized transition s∗ is
given by the crossing of Eglobal(s) and Elocal(s). Assuming
the ground state of HT to be nondegenerate, Eglobal(s) can be
computed with nondegenerate perturbation theory

Eglobal(s) = sET
0 . (26)

The nondegeneracy of the target ground state ET
0 is a simpli-

fying assumption, but our analysis can be easily extended to
degenerate target ground states by estimating Eglobal(s) using
the bounds Eq. (18) analogously to the estimate of Elocal(s), as
we will discuss now.
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If the degenerate first excited space of HT is V , we can
bound Elocal(s) using Eq. (18) with ET

V = ET
1 . By solving

Eq. (20), this results in the following bounds on s∗:

1 − φ(V )
d

1 − φ(V )
d + 	ET

� s∗ � dmax(V )

dmax(V ) + d	ET
(27)

with the spectral gap of HT ,

	ET = ET
1 − ET

0 . (28)

The lower bound depends on the conductance of V , while the
upper bound depends on the maximum degree. We will refer
to these bounds as the conductance and the degree bound,
respectively. The bounds Eq. (27) are the second key result
of this work.

To predict if there will be a phase transition, we also need
to know the location of the delocalized-localized transition to
the global minimum s′ by solving

Edeloc(s′) = Eglobal(s
′), (29)

which renders

s′ = 1

1 + 〈ET 〉 − ET
0

. (30)

This allows us to classify problem instances into three cate-
gories:

(i) The instance has no first-order QPT due to a localized-
localized transition [Fig. 3(a)] if

s′ � dmax(V )

dmax(V ) + d	ET
.

(ii) The instance has a first-order QPT due to a localized-
localized transition [Fig. 3(b)] if

s′ � 1 − φ(V )
d

1 − φ(V )
d + 	ET

.

(iii) If s′ is in between the bounds, no statement about first-
order QPTs can be made based on the bounds we derived here.
We will refer to these problem instances as undecidable.

Note that our first-order analysis allows us to estimate
the value s∗ where a level crossing occurs and provides a
qualitative understanding of the conditions leading to first-
order QPTs. However, it neglects higher-order interactions
of the energy levels that would lift the degeneracy at s∗ and
lead to an avoided level crossing instead. While these effects
are essential for tunneling to occur, they are not required to
analyze the conditions when tunneling becomes necessary in
the first place. As will be discussed in Sec. IV, our analysis
allows us to estimate the location of the minimal spectral gap
along the annealing path, while the size of the minimal gap
can be estimated using higher-order perturbation theory [14].

D. Correction of the degree bound using graph symmetries

We will discuss how graph symmetries of G(V ) can be
used to improve the degree bound on the principal eigenvalue
λV . A more detailed discussion of this approach can be found
in Appendix B.

If G(V ) is an undirected simple graph, then λV � dmax(V ),
as discussed above. The graph symmetries of G(V ) are repre-
sented by permutation matrices 
 [27].

Definition 4 (Permutation matrix). A permutation matrix
has in each row and each column one entry 1 and 0 in all
other entries. Together with the standard matrix product, the
permutation matrices form a group Sym(V ).

Permutation matrices are orthogonal and bijectively map
the set of nodes onto itself,


|z〉 = |z′〉. (31)

The permutation matrices that commute with the adjacency
matrix of a graph form the automorphism group of said graph.

Definition 5 (Automorphism group). Let G(V ) = (V, E ) be
a graph. The automorphism group of G(V ) is denoted by
SV ⊆ Sym(V ) and is defined as

SV = {
 ∈ Sym(V ) : [
, AG(V )] = 0}. (32)

Note that, by definition, the elements of the automorphism
group SV conserve the neighborhood relations of G(V ), as
for two nodes |z1〉, |z2〉 ∈ V and their images |z′

1〉 = 
|z1〉 and
|z′

2〉 = 
|z2〉 it holds that

(AG(V ) )z1z2
= (AG(V ) )z′

1z′
2
. (33)

Consider

|x〉 =
∑

z

az|z〉 (34)

an eigenvector of AG(V ) with eigenvalue λV . Since AG(V ) com-
mutes with every permutation matrix 
 ∈ SV , 
|x〉 must also
be an eigenvector of AG(V ) with eigenvalue λV . However, if
the eigenspace of λV is one-dimensional, 
|x〉 must be pro-
portional to |x〉, implying that


|x〉 = λ
|x〉 (35)

for some eigenvalue λ
 with |λ
| = 1, since all 
 ∈ Sym(V )
are orthogonal matrices. Hence, any nondegenerate eigenvec-
tor of AG(V ) must also be an eigenvector of all permutation
matrices that commute with AG(V ). To respect Eq. (35), the co-
efficients az in Eq. (34) of nodes connected by some symmetry
of the graph need to have the same amplitude and a fixed
phase relation. Assuming G(V ) is connected, the principal
eigenvalue λV is nondegenerate and the principal eigenvec-
tor can be chosen with all-positive coefficients, according to
the Perron-Frobenius theorem. This means that the principal
eigenvalue lies in the subspace spanned by

|ξ 〉 = 1√|ξ |
∑
z∈ξ

|z〉, (36)

where the ξ are the sets of nodes that are mapped onto each
other by some symmetry. As discussed in Appendix B, the ξ

are equivalence classes of nodes.
The adjacency matrix elements in this subspace have the

form

〈ξ |AG(V )|ξ ′〉 = 1√|ξ ||ξ ′|
∑

z∈ξ,z′∈ξ ′
(AG(V ) )z,z′ . (37)
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Applying Gershgorin’s circle theorem to this matrix, we find

λV � max
ξ

∑
ξ ′

|〈ξ |AG(V )|ξ ′〉|, (38)

which evaluates to

λV � max
ξ

∑
ξ ′

√
|ξ |
|ξ ′| |Eξξ ′ |, (39)

where |Eξξ ′ | is the number of nodes of equivalence class ξ ′ in
the neighborhood of a node of equivalence class ξ .

For comparison, in the computational basis |z〉, Gershgorin
renders the bound

λV � max
ξ

∑
ξ ′

|Eξξ ′ |. (40)

The right-hand side of Eq. (39) can be smaller than the right-
hand side of Eq. (40), thus symmetries of the graph can tighten
the bound.

It is, in fact, reasonable to expect symmetries to move
the bounds Eq. (17) closer to each other, as the conductance
bound is based on the uniform superposition of all nodes
in V as a variational ansatz (see Appendix A). The uniform
superposition naturally is invariant under all permutations of
nodes in V .

IV. NUMERICAL INVESTIGATION

A. Simple toy model

We will first analyze the developed bounds in an idealized
toy model. To this end, we generate random d-regular simple
graphs of size |V| = 256 and d = 8. We place the local and
global maxima as far apart on the graph as possible, where
the distance is measured in terms of traversed edges in the
graph, and iteratively grow the local minimum by randomly
selecting a node i ∈ N (V ) and add it to the set V ← {i} ∪ V .
Here, N (V ) denotes the neighborhood of V , i.e., any node in
V \ V that shares at least one edge with any node in V .

As the energy of the global minimum, we choose ET
0 =

−1, while the energy of the local minimum is chosen as
ET

V = −1 + 	ET with 	ET sampled uniformly between 0
and 1. For all but the initial node in the set V , the energies
are furthermore slightly increased by ε = 0.01. This is re-
quired to make nondegenerate perturbation theory applicable
for comparison, as discussed below. Following this procedure,
we generate energy landscapes on random regular graphs
with a narrow, nondegenerate global minimum and a wide,
arbitrarily shaped, and nearly degenerate local minimum far
away from the global minimum. The first-order QPTs can
be identified easily by looking at the solution fidelity F (s)
along the anneal, which is defined as the overlap between the
instantaneous ground state |�0(s)〉 and the target ground state
|0〉,

F (s) = |〈�0(s)|0〉|2. (41)

In Fig. 4 we show the ground-state energy E0(s), the solution
fidelity F (s), and the spectral gap between the instantaneous
ground and first excited state E1(s) − E0(s) over the annealing
of a toy model instance with [(a), (c), and (e)] and without

FIG. 4. (a) Instantaneous ground-state energy E0(s), (c) solution
fidelity F (s), and (e) instantaneous spectral gap E1(s) − E0(s) with a
first-order QPT. The true ground-state energy (black) follows closely
the predicted energies of the delocalized state (solid green line),
the local minimum (orange shaded area), and the global minimum
(dashed blue line). The energy of the local minimum is given as a
shaded area according to the bounds Eq. (18). The solution fidelity
is discontinuous within the predicted bounds Eq. (27) (red shaded
striped interval) coinciding with the minimal spectral gap. Parts (b),
(d), and (f) show the respective quantities for a problem instance
without a first-order QPT. Again, the true ground-state energy fol-
lows the predicted energies, the solution fidelity is smoother, while
the spectral gap is larger. All figures with d = 8 and |V| = 256.

[(b), (d), and (f)] first-order QPT according to the classifica-
tion based on the conductance and degree bounds [Eq. (27)].
Note that we are analyzing the spectral properties of the in-
stantaneous Hamiltonian H (s) as a function of s, rather than
concrete dynamics of a system.

We observe that the true ground-state energy follows
closely the respective minimum of the perturbed energies of
the delocalized state and local and global minima. As the
energy of the local minimum is bounded by Eq. (18), it is de-
picted as a shaded area (orange). The bounds on the transition
point between the local and global minimum from Eq. (27)
are shown as the shaded, striped interval (red) and bound the
location of the abrupt jump in F (s) as well as the location
of the minimal spectral gap as seen in Figs. 4(a), 4(c) and
4(e). In the case in which the bounds predict an absence of
a first-order QPT [Figs. 4(b), 4(d) and 4(f)], the true ground-
state energy is well described by the delocalized energy and
the perturbed global minimum. The solution fidelity is smooth
and the minimal spectral gap is significantly larger.

Following the procedure described above, we generate
several problem instances and predict the bounds on the
localized-localized transition. As first-order QPTs are typ-
ically associated with an exponentially closing gap, it is
reasonable to assume the location of the minimal spectral gap
smin to coincide with the location of the QPT s∗. Therefore,
we can test the theory by comparing the predictions of s∗ with
smin obtained from exact diagonalization of the instantaneous
Hamiltonian H (s).
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FIG. 5. Predicted location of the minimal spectral gap smin

according to Eq. (27) over the observed location from exact di-
agonalization for d = 8 and |V| = 256. The bounds for instances
with a first-order QPT (blue) reliably cross the diagonal (red dashed
line), indicating that the true smin is within the predicted bounds
Eq. (27). For instances without a QPT (red), the true value is outside
of the bounds, as these instances do not exhibit a localized-localized
transition. For comparison, the predictions of the location of the
QPT according to second-order nondegenerate perturbation theory
according to [14] are shown (green crosses). The predictions from
nondegenerate perturbation theory are further away from the ob-
served values, especially if the observed smin is further away from 1.

In Fig. 5, we show the predicted bounds over the observed
minimal spectral gap from exact diagonalization. The diag-
onal (red dashed line) denotes the equality of predicted and
observed smin. If a point is close to the diagonal, it means
that the predicted and the observed smin are close to each
other. The derived bounds Eq. (27) reliably cross the diagonal,
indicating that the true smin is within the predicted bounds. We
further classify the problem instances according the presence
(blue) or absence (red) of first-order QPTs, as well as the
undecidable instances (orange), as discussed in Sec. III B.
The problem instances with QPT are well described by the
bounds, as well as the ambiguous cases. For the instances
without QPT, smin is not predicted well. This can be explained
as we associate the minimum with the QPT, but the instances
do not display a level crossing between the local and global
minimum, as the localized-localized transition would happen
at a value of s < s′ when the ground state is still delocalized.
Interestingly, in particular for the problem instances with a
localized-localized transition, the lower bound on smin, i.e.,
the conductance bound, seems to be much closer to the true
observed smin than the degree bound.

The phenomenon of first-order QPTs has been investigated
in a previous work by Amin et al. [14], where they employ
second-order nondegenerate perturbation theory to calculate
the location of the level crossing between local and global
minimum. Nondegenerate perturbation theory diverges for
degenerate eigenstates, making the predictions less accurate
as the local minima become wide. As first-order QPTs are
associated with wide local minima [28], we would expect

degenerate perturbation theory to better describe the relevant
energy corrections. Furthermore, as we argue here, degenerate
perturbation theory leads to an interesting unification with
spectral graph theory.

For comparison, we apply their predictions to the same
problem instances as well. As described before, the first state
in the set V has its energy set to 1 + 	ET and the energies
of all other states in V are set to 1 + 	ET + ε. Here we use
ε = 0.01. Then we can take the first state in V as the local
minimum and compute its energy correction by coupling to
its neighbors using second-order nondegenerate perturbation
theory. Here it becomes apparent why the additional ε is
necessary, since for degenerate neighboring states, the second-
order nondegenerate energy corrections would diverge and not
render meaningful predictions.

The predictions from nondegenerate perturbation theory
are also shown in Fig. 5 (green crosses). Figure 5 shows that
the predictions based on nondegenerate perturbation theory
are further away from the diagonal, implying that the predic-
tions are less accurate. Qualitatively, first-order nondegenerate
perturbation theory does not predict level crossings for s ∈
(0, 1], as discussed in [14]. Our approach shows that the en-
ergy corrections leading to first-order QPTs can be described
by first-order degenerate perturbation theory, while nondegen-
erate perturbation theory requires second-order corrections,
i.e., the relevant energy corrections are a first-order rather than
a second-order effect.

B. Weighted minimum independent set

Lastly, we apply our analysis to a problem instance of
an NP-complete problem, namely the weighted maximum
independent set (WMIS) problem. As our analysis requires
extensive knowledge of the energy landscape and eigenstates
of HT in order to compute the relevant quantities, it is infeasi-
ble to apply it in a more automatized manner. For this reason,
as well as for direct comparison with the results of Amin et al.,
we use the same problem instance as in [14].

Consider a vertex-weighted graph GP = (VP, EP,w),
where w : i → w(i) is the weight of node i ∈ VP. This graph
defines a problem instance, and the nodes are identified with
qubits. This is a strictly distinct type of graph from the graphs
used in the theoretical analysis, where the nodes are individual
basis states. This distinction is highlighted by the subscript P.

The WMIS problem is to find the largest subset S ⊆ VP

such that no two nodes in S share an edge (i.e., it is indepen-
dent), while simultaneously maximizing the weight

w(S) =
∑
i∈S

w(i). (42)

This optimization problem can be cast into the target Ising
Hamiltonian

HT =
∑
i∈VP

hiσ
z
i +

∑
i, j∈EP

Ji jσ
z
i σ z

j (43)

with the fields and couplings being

hi =
∑

i, j∈EP

Ji j − 2w(i),

Ji j > min{w(i),w( j)}. (44)
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FIG. 6. Location of the minimal spectral gap along the annealing
path smin for a WMIS instance [14] obtained via exact numeri-
cal diagonalization (red triangles) by second-order nondegenerate
perturbation theory (blue stars) and by the graph theoretic method
introduced here (green error bars). The upper bound, i.e., the degree
bound, on smin is shown once without considering graph symmetries
of G(V ) (narrow caps) and once after applying the corrections using
graph symmetries (wide caps). Remarkably, the conductance bound
matches very well the exact result. The upper bound is fixed using
the bound improved by graph symmetries.

Amin et al. use two different weights on the nodes, w(i) =
wG = 1 for all nodes that partake in the optimal solution and
w(i) = wL < 2wG for all nodes outside the optimal solution.
The couplings are chosen as Ji j = 2. The parameter wL can be
altered to change the depth of the local minima. The problem
graph has Nq = 15 nodes, each represented by a single qubit.
The driver Hamiltonian is the transverse-field driver from
Eq. (6) and its associated graph is the Nq-dimensional hyper-
cube. HT has 27 shallow local minima. These local minima are
separated by two bit-flips, allowing for tunneling between the
local minima. Therefore, we can consider the 27 local minima
plus the shallow potential walls between them as one nearly
degenerate local minimum V . Given this knowledge of the
locations of the local minima, the relevant quantities for V
can be counted,

|V | = 135,

|∂V | = 1539,

dmax(V ) = 9,

	ET = 4(6wG − 3wL ). (45)

Note that HD and HT for the WMIS do not adhere to our
assumptions about the normalization of the ground-state ener-
gies. We adapt the expressions Eqs. (27) and (30) accordingly
by dropping the respective normalization factors in the deriva-
tion. For more details on the problem graph GP, we refer to the
original publication [14]. The adapted expressions allow us to
make predictions of the location of the minimal spectral gap
along the annealing path smin. In Fig. 6 we show the graph-
theoretic bounds as well as the predictions by second-order
nondegenerate perturbation theory by Amin et al. for various
depths of the local minimum wL, together with the exact
numerical diagonalization. From this comparison, we observe

FIG. 7. Induced subgraph G(V ) of the local minimum of the
WMIS instance from [14], black dots corresponding to states with
one qubit in the |0〉-state in each of the outer cliques defining the
local minimum, red squares representing states with one qubit in the
|0〉-state in two cliques and two qubits in the |0〉-state in the third, and
blue triangles corresponding to states with one qubit in the |0〉-state
in two cliques and no qubit in the |0〉-state in the third.

that the exact results are within the bounds that we define and
are very close to the lower one, i.e., the conductance bound,
as was the case in the toy model in the previous discussion.

The degree bound can be tightened by taking the graph
symmetries of G(V ) into account. We find that the local mini-
mum V of the WMIS instance has nodes of three equivalence
classes, as depicted by the black circles, red squares, and
blue triangles in Fig. 7. The black circles are the nodes
with the largest degree, hence the previous upper bound λV �
dmax = 9. There are 27 black circles, 27 blue triangles, and 81
red squares. As there are no connections within equivalence
classes in G(V ), 〈ξ |AG(V )|ξ 〉 = 0. Hence, in the basis of the
equivalence classes, the adjacency matrix reads

∑
ξ,ξ ′

〈ξ |AG(V )|ξ ′〉|ξ 〉〈ξ ′| =
⎛
⎝ 0 2

√
3 3

2
√

3 0 0
3 0 0

⎞
⎠. (46)

Applying Gershgorin’s circle theorem results in

λV � 2
√

3 + 3 = 6.46 . . . . (47)

Using this improved estimate of the principal eigenvalue of
G(V ), we get improved estimates of the location of the mini-
mal spectral gap, as shown in Fig. 6.

V. DISCUSSION

A. Tightness of the bounds and Cheeger inequalities

It is possible to obtain an intuition about the tightness of
the bounds on EV (s) and thus about the bounds on s∗.

As we find for the average degree 〈d (V )〉 of nodes in G(V )
(see Appendix A),

〈d (V )〉 = d − φ(V ), (48)

we can conclude for regular induced subgraphs G(V ) that the
bounds Eq. (17) turn into equalities

d − φ(V ) = dmax(V ) = λV . (49)
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As a consequence, the bounds Eq. (18) on EV (s) are equal and
therefore exact within first-order perturbation.

However, G(V ) does not exactly need to be regular for the
conductance bound Eq. (18b) to become tight. It can be shown
that the principal eigenvalue of large Erdös-Rényi graphs
G(n, p) is approximately np [29], i.e., the average degree 〈d〉.
Therefore, if G(V ) can be considered a large, sparse random
graph, the conductance bound is probably tight.

Employing further results from spectral graph theory, the
conductance φ admits an interesting connection to the spectral
gap of HD. Let us define a nontrivial lower bound to the
conductance of an undirected graph G = (V, E ),

φ0 = min
U⊂V
U �=∅

|U |�N/2

φ(U ). (50)

In other words, φ0 is the smallest conductance over all
nonempty subsets of V containing at most half of all nodes.
This quantity is called the Cheeger constant [30], also known
as the conductance of the graph G. The Cheeger constant can
be linked to the spectral gap of a d-regular graph’s adjacency
matrix AG via the Cheeger inequalities [30]. Since the HD

considered here are proportional to a d-regular graph’s AG,
the inequalities are easily adapted to give

1

2

φ2
0

d2
� 	ED � 2

φ0

d
(51)

with 	ED the spectral gap of HD.
Assuming that the low-energy subspaces of HT under per-

turbation with HD for some problem class fulfill the conditions
discussed above and the corrected energy eigenvalues are
close to the conductance bound, we can determine the location
of the localized-localized transition to be close to the conduc-
tance bound

s∗ ≈ 1 − φ(V )
d

1 − φ(V )
d + 	ET

. (52)

Under these conditions, s∗ increases monotonously as φ(V )
decreases, allowing us to claim

s∗ � 1 − φ0

d

1 − φ0

d + 	ET

. (53)

This gives a condition for the absence of first-order QPT under
the stated assumptions by using Eq. (30) and setting s∗ < s′ to
get

ET
1 − 〈ET 〉

ET
0 − 〈ET 〉 <

φ0

d
. (54)

Using the Cheeger inequalities Eq. (51), the condition Eq. (54)
can be stated in terms of the spectral gap of HD,

ET
1 − 〈ET 〉

ET
0 − 〈ET 〉 <

	ED

2
. (55)

Given assumption Eq. (52), this will render a sufficient condi-
tion for the absence of first-order QPTs for any distribution of
the energies ET

z over the nodes of G, i.e., the target eigenstates
|z〉, that is consistent with the above assumption.

The condition Eq. (55) implies that the energy landscape
of the problem encoded in HT needs to be sufficiently flat,

except for a pronounced ground-state energy. As an example,
consider an HT with ET

0 = ET
1 − 	ET = −1 and 〈ET 〉 = 0.

Then Eq. (55) can be rearranged to read

1 − 	ED

2
< 	ET . (56)

For a fixed spectral gap 	ED, this implies a lower bound on
the spectral gap of HT , and since by assumption we restricted
ET

0 = −1 and 〈ET 〉 = 0, the spectrum of HT has to concen-
trate close to 0.

B. Interpretation of the bounds

Let us now present a more physical interpretation of the
derived bounds. dmax(V ) provides a notion of the maximum
number of degrees of freedom involved in the local mini-
mum, e.g., in the case of a transverse field HD as in Eq. (6),
dmax(V ) describes the number of floppy qubits involved in the
minimum. Floppy qubits are qubits that do not significantly
impact the energy of the total system, whether they are in the
|0〉- or |1〉-state. Therefore, they cause wide local minima and
are known to contribute to perturbative anticrossings [12,28].
However, the notion of width of a local minimum in higher
dimensions becomes an increasingly poorly defined concept.
Our lower bound using the conductance provides a notion of
width, as the conductance can be thought of as some version
of the surface-to-volume ratio of the local minimum, where
the volume corresponds to the number of nodes in the local
minimum while the surface corresponds to the edges leaving
the local minimum.

In general, calculating φ(V ) and dmax(V ) of a given prob-
lem instance is not going to be scalable, as it requires
knowledge of the set of nodes V that constitute a local mini-
mum. Therefore, it is unlikely that the bounds will find direct
application in an algorithm to overcome the limitations of
AQC. However, we believe that our analysis provides a valu-
able framework to understand the conditions that lead to the
occurrence of QPTs, which in turn can aid the development
of tools in their mitigation. Furthermore, there are potential
applications of our results in the complexity analysis for AQC.

VI. CONCLUSION

First-order QPTs are known to lead to exponential runtime
in AQC algorithms, hampering the chances of getting any
quantum advantage in the adiabatic computation. Understand-
ing the causation of such phenomena is therefore key in the
design of potential strategies to allow for its mitigation. In this
work, we examine the conditions linked to the occurrence of
first-order QPTs caused by localization in AQC. We explicitly
show how the use of degenerate perturbation theory enables
the application of tools from graph theory in order to analyze
this phenomenon in depth. Crucially, this formalism allows
us to derive bounds and conditions for the occurrence of
QPTs as well as its position along the annealing path. We
show how such inequalities are linked to two properties of
the subgraph containing the local minimum: its maximum
degree dmax(V ) and its conductance φ(V ). We numerically
test the accuracy of these bounds with a toy-model problem as
well as a real optimization problem (WMIS) and find that the
lower bound seems to be closer to the exact solution obtained
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through direct diagonalization of the Hamiltonian. Based on
this observation, we provide two scenarios for when we can
expect the conductance bound to be exact up to first-order
perturbation theory: namely, when the subgraph induced by
the degenerate subspace V , G(V ), is regular, or when it can be
assumed to be a large, sparse Erdös-Rényi graph.

Additionally, we show how knowledge of the symmetries
of the induced subgraph G(V ) can be used to improve the
upper bound on the principal eigenvalue, and further work is
required to understand whether this contributes to a tighter
conductance bound. After establishing the basis for this for-
malism, future work will be focused on its application to
the study of catalysts in the Hamiltonian as a strategy to
enlarge the minimum energy gap and thus improve the per-
formance of AQC algorithms [23,31–33]. Furthermore, our
results may open the door to the construction of gap oracles,
which can be used to obtain quadratic speedup in adiabatic
quantum optimization [18]. We believe that the use of our
graph-based approach is not only convenient in the study
of QPTs in the context of AQC, but also of a wide range
of many-body phenomena present in analog-based quantum
computation.
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APPENDIX A: DERIVATION OF GRAPH BOUNDS

For simple undirected graphs the upper bound follows di-
rectly from Gershgorin circle theorem, which we will state
here for completeness.

Theorem 1 (Gershgorin circle theorem [34]). Let M be a
complex square matrix with elements mi j . All eigenvalues λ

of M lie in the union of the disks D(mii, Ri ) centered at mii

and with radii

Ri =
∑
j �=i

|mi j |.

From this it follows directly that

|λ| � max
i

∑
j

|mi j |. (A1)

Applying Eq. (A1) to the adjacency matrix AG of a simple
graph G, we find for all eigenvalues λ of AG,

λ � dmax (A2)

since the AG of simple graphs have all zeros everywhere ex-
cept for (AG)i j = 1 in the off-diagonal entries corresponding
to connected nodes.

The lower bound is usually stated in terms of the average
degree, and it can be shown using the Rayleigh quotient for a
Hermitian matrix M with maximal eigenvalue λ,

R(M, x) := xT Mx

xT x
� λ. (A3)

Choosing M = AG and x = [1, 1, . . . ]T shows the lower
bound, and hence we find

〈d〉 � λ � dmax, (A4)

where 〈d〉 is the average degree of all nodes, and dmax is the
maximum degree in V . These bounds are a standard result
from spectral graph theory.

As discussed in the main text, we have to solve the eigen-
value problem on the (nearly) degenerate subspace V , which is
to say we have to find the principal eigenvalue of the induced
subgraph G(V ). The maximum degree of all nodes in G(V )
is dmax(V ), hence the upper bound follows directly. A little
more care needs to be taken to link the average degree to the
conductance.

Lemma 2. Let G = (V, E ) be a d-regular simple graph. Let
G(V ) = (V, E ) ⊆ G be the subgraph induced by V ⊆ V with
adjacency matrix AG(V ) ∈ {0, 1}|V |×|V | and principal eigen-
value λV . Let φ(V ) be the conductance of V . Then

d − φ(V ) � λV .

Proof. Consider the Rayleigh quotient of AG(V ),

R(AG(V ), x) = xT AG(V )x

xT x
� λV , (A5)

for any x ∈ R|V |. Choosing x = [1, 1, . . . ]T ∈ R|V | we find

R(AG(V ), x) = 1

|V |
∑
i, j

(AG(V ) )i j = 2
|E |
|V | (A6)

since G simple implies G(V ) simple. Since G is d-regular, the
number of edges |E | of G(V ) can be counted using the edge
boundary (12),

2|E | = d|V | − |∂V |. (A7)

Combining (A5), (A6), and (A7) with the definition of the
conductance (13) proves the statement. �

APPENDIX B: DETAILED DERIVATION OF CORRECTION
OF THE DEGREE BOUNDS USING GRAPH SYMMETRIES

To put the correction of the degree bound in Sec. III D of
the main text onto a solid footing, we provide here a more
detailed explanation. Note that while here we discuss the
impact of graph symmetries of the induced subgraph G(V ),
our analysis is valid for general simple graphs G and their
automorphism groups.

In addition to Definitions 4 and 5, we will make use of
the concept of equivalence classes of nodes to formalize the
notion of two nodes z, z′ ∈ V being connected by a graph
symmetry 
 ∈ SV .

Definition 6 (Relation ∼). Let V be the set of nodes of a
graph G(V ). The relation ∼ between two nodes z, z′ ∈ V is
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defined as

z ∼ z′ ⇐⇒ ∃
 ∈ SV : 
|z〉 = |z′〉. (B1)

It can be easily verified that ∼ is an equivalence relation,
i.e., that it is reflexive, symmetric, and transitive, since SV has
a group structure. We find the following:

(i) 1 ∈ SV ⇒ ∼ reflexive.
(ii) 
−1 ∈ SV for all 
 ∈ SV ⇒ ∼ symmetric.
(iii) 
1
2 ∈ SV for all 
1,
2 ∈ SV ⇒ ∼ transitive.
As ∼ is an equivalence relation, the set of nodes V can be

divided into equivalence classes.
Definition 7 (Equivalence class). Given a graph G(V ) and

the equivalence relation ∼, the nodes z ∈ V are divided into
equivalence classes [ξ ] defined as

[ξ ] := {z ∈ V : z ∼ ξ ∈ V }, (B2)

where ξ ∈ V is a representative of the equivalence class [ξ ].
In the following, we will omit the square brackets for

clarity and denote the equivalence classes by the Greek letter
ξ only.

While the vanishing commutator Eq. (32) implies that
AG(V ) and any 
 ∈ SV have a common eigenbasis, for
AG(V ) with degenerate eigenvalues this property is not
transitive, i.e., for 
1,
2 ∈ SV we find [
1, AG(V )] = 0
and [
2, AG(V )] = 0, but that does not necessarily imply
[
1,
2] = 0.

However, any eigenvector of AG(V ) corresponding to a
nondegenerate eigenvalue must also be an eigenvector for all

 ∈ SV , as mentioned in the main text. We can use this to
estimate the principal eigenvalue if G(V ) is connected, since
then the principal eigenvalue is nondegenerate, according to
the Perron-Frobenius theorem.

The permutation matrices are orthogonal and, as such, all
their eigenvalues are on the complex unit circle


|x〉 = λ
|x〉 with |λ
| = 1 (B3)

for an eigenvector |x〉 = ∑
z az|z〉. Recall that the permutation

matrices bijectively map the set of node onto itself such that


|z〉 = |z′〉. (B4)

This gives a condition for the coefficients of |x〉, since


|x〉 =
∑

z

az|z′〉 =
∑

z

λ
az|z〉, (B5)

where the last equality follows from Eq. (B3). As 
 is a bi-
jection, the sums in Eq. (B5) both run over all z. Elementwise,
the equality in Eq. (B5) requires that the coefficients of the
eigenstate |x〉 have identical moduli and fixed phase relations
as λ
 is on the complex unit circle, i.e.,

|az′ | = |az|,
arg(az )− arg(az′ ) ≡ arg(λ
) mod 2π. (B6)

This is true for all 
 ∈ SV , hence if |x〉 is a mutual eigenvector
of all 
 ∈ SV , all az of nodes within the same equivalence
class ξ have the same modulus and fixed phases, up to a global
phase factor.

Each permutation defines one or more orbits by concate-
nating the application of the permutation matrix, and each

orbit has a period p [35]. The period p implies for each z on
that orbit that


p|z〉 = |z〉. (B7)

Note that, by definition of ∼, all nodes on the same orbit are
in the same equivalence class ξ .

The arg(az ) of nodes on the same orbit are distributed
equidistantly between 0 and 2π [35], unless the eigenvalue
λ
 = 1. It is therefore impossible to write an eigenvector of

 with real, positive coefficients az up to a global phase factor
if λ
 �= 1. But since the principal eigenvector of a connected
G(V ) can be given with real, positive coefficients (up to a
global phase), the principal eigenvector must be an eigenvec-
tor of all 
 ∈ SV with eigenvalue λ
 = 1. This implies that
the principal eigenvector |x〉 of G(V ) is of the form

|x〉 =
∑

ξ

xξ |ξ 〉 (B8)

with

|ξ 〉 = 1√|ξ |
∑
z∈ξ

|z〉. (B9)

Evaluating the matrix elements

〈ξ |AG(V )|ξ ′〉 = 1√|ξ ||ξ ′|
∑

z∈ξ,z′∈ξ ′
(AG(V ) )z,z′ (B10)

transforms the graph into a smaller weighted graph, po-
tentially with loops. As graph automorphisms by definition
maintain neighborhood relations between nodes, each node of
equivalence class ξ has in its neighborhood the same number
of nodes of equivalence class ξ ′. Therefore, fixing a z ∈ ξ and
counting its neighbors in the support of |ξ ′〉 results in∑

z′∈ξ ′
(AG(V ) )z,z′ = |Eξ,ξ ′ |, (B11)

where |Eξξ ′ | is the number of nodes of equivalence class ξ ′
in the neighborhood of a node of equivalence class ξ . This
evaluates the first sum in Eq. (B10). Evaluating the second
sum renders

〈ξ |AG(V )|ξ ′〉 =
√

|ξ |
|ξ ′| |Eξξ ′ | =

√
|ξ ′|
|ξ | |Eξ ′ξ |, (B12)

where the last equality follows, since either summation in
Eq. (B10) can be evaluated first.

Applying Gershgorin’s circle theorem Eq. (A1) to this ma-
trix, we find

λV � max
ξ

∑
ξ ′

|〈ξ |AG(V )|ξ ′〉|, (B13)

which gives

λV � max
ξ

∑
ξ ′

√
|ξ |
|ξ ′| |Eξξ ′ | (B14)

as discussed in the main text. For comparison, in the compu-
tational basis the Gershgorin bound Eq. (A1) gives

λV � max
z

∑
z′

(AG(V ) )zz′ , (B15)
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where the sum over z′ counts the number of nodes of each
equivalence class ξ ′ in the neighborhood of z. Since all nodes
z ∈ ξ have the same number of nodes in their neighborhood,
the maximum over z can be replaced by a maximum over ξ ,
while the sum over z′ can be replaced by a sum over adjacent

equivalence classes, in which case

λV � max
ξ

∑
ξ ′

|Eξξ ′ |, (B16)

as stated in the main text.
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