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The Mandelstam-Tamm and Margolus-Levitin quantum speed limits are two well-known evolution time
estimates for isolated quantum systems. These bounds are usually formulated for fully distinguishable initial
and final states, but both have tight extensions to systems that evolve between states with an arbitrary fidelity.
However, the foundations of these extensions differ in some essential respects. The extended Mandelstam-Tamm
quantum speed limit has been proven analytically and has a clear geometric interpretation. Furthermore, which
systems saturate the limit is known. The derivation of the extended Margolus-Levitin quantum speed limit,
on the other hand, is based on numerical estimates. Moreover, the limit lacks a geometric interpretation,
and no complete characterization of the systems reaching it exists. In this paper, we derive the extended
Margolus-Levitin quantum speed limit analytically and describe the systems that saturate the limit in detail.
We also provide the limit with a symplectic-geometric interpretation, which indicates that it is of a different
character than most existing quantum speed limits. At the end of the paper, we analyze the maximum of
the extended Mandelstam-Tamm and Margolus-Levitin quantum speed limits and derive a dual version of
the extended Margolus-Levitin quantum speed limit. The maximum limit is tight regardless of the fidelity
of the initial and final states. However, the conditions under which the maximum limit is saturated differ
depending on whether or not the initial state and the final state are fully distinguishable. The dual limit is also tight
and follows from a time reversal argument. We describe the systems that saturate the dual quantum speed limit.
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I. INTRODUCTION

A quantum speed limit (QSL) is a lower bound on the time
it takes to transform a quantum system in some predetermined
way. QSLs exist for all sorts of transformations of both open
and closed systems. Many involve statistical quantities such
as energy, entropy, fidelity, and purity [1–5].

A prominent QSL is attributed to Mandelstam and Tamm
[6]. The Mandelstam-Tamm QSL states that the time it takes
for an isolated quantum system to evolve between two fully
distinguishable states is at least π/2 divided by the energy
uncertainty,1,2,3

τ � τMT(0), τMT(0) = π

2�H
. (1)

Mandelstam and Tamm actually showed a more general result:
If the fidelity between the initial and final states is δ, the
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1In this paper, “state” refers to a pure quantum state unless other-
wise is explicitly stated.

2Two states are fully distinguishable if their fidelity is zero.
3All quantities are expressed in units such that h̄ = 1.

evolution time is bounded according to

τ � τMT(δ), τMT(δ) = arccos
√

δ

�H
. (2)

For δ = 0, estimate (2) agrees with estimate (1).
Anandan and Aharonov [7] provided the Mandelstam-

Tamm QSL with an elegant geometric interpretation when
they showed that the Fubini-Study distance between two states
with fidelity δ is arccos

√
δ and that the Fubini-Study evolu-

tion speed equals the energy uncertainty. Inequality (2) is thus
saturated for isolated systems where the state evolves along
a shortest Fubini-Study geodesic. Anandan and Aharonov’s
work inspired the writing of Ref. [8], which extends the
Mandelstam-Tamm QSL to systems in mixed states in several
different ways.

Margolus and Levitin [9] derived another QSL that is of-
ten mentioned together with Mandelstam and Tamm’s. The
Margolus-Levitin QSL states that the time it takes for an
isolated quantum system to evolve between two fully distin-
guishable states is at least π/2 divided by the expected energy
shifted by the smallest energy,

τ � τML(0), τML(0) = π

2〈H − ε0〉 . (3)

Giovannetti et al. [10] extended Margolus and Levitin’s
QSL to an arbitrary fidelity. More precisely, they showed that
the evolution time of an isolated system is bounded from
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below according to

τ � τML(δ), τML(δ) = α(δ)

〈H − ε0〉 , (4)

where α is a function that depends only on the fidelity δ

between the initial and final states; see Sec. II. Giovannetti
et al. also showed that (4), like (2), is tight, which means
that for each δ there is a system for which the inequality
in (4) is an equality. However, apart from that, the situation
is different from the case of the Mandelstam-Tamm QSL:
A closed formula for α does not exist, the derivation of (4)
rests on numerical estimates, there is no classification of the
systems saturating (4), and a geometric interpretation like that
of (2) is lacking [1,2,11,12].

In this paper, we derive the extended Margolus-Levitin
QSL analytically and characterize the systems that saturate
this estimate (Sec. II). Furthermore, we show that the extended
Margolus-Levitin QSL has a symplectic-geometric interpre-
tation and is connected to the Aharonov-Anandan geometric
phase [13] (Sec. III). The Margolus-Levitin QSL thus differs
fundamentally from most existing QSLs. That the estimates in
(3) and (4) are either invalid or correct but not tight unless we
shift the expected energy with the smallest energy suggests
that a ground state will play a central role in the derivation
of the extended Margolus-Levitin QSL and in its geometric
interpretation.

The maximum of the Mandelstam-Tamm and the extended
Margolus-Levitin QSL is also a QSL. The characteristics of
the maximum QSL differ depending on whether or not the
initial state and the final state are fully distinguishable. We
explain why this is so, and we provide several QSLs that are
related to but less sharp than the extended Margolus-Levitin
QSL. We also derive a dual version of the extended Margolus-
Levitin QSL involving the largest rather than the smallest
energy (Sec. IV). The paper concludes with a summary and a
comment on the difficulty of extending the Margolus-Levitin
quantum speed limit to driven systems (Sec. V). For a more
detailed discussion of this difficulty, see Ref. [14].

II. THE EXTENDED MARGOLUS-LEVITIN
QUANTUM SPEED LIMIT

The function α in Giovannetti et al.’s estimate (4) is4

α(δ) = min
z2�δ

{
1 + z

2
arccos

(
2δ − 1 − z2

1 − z2

)}
. (5)

For each δ, the minimum on the right-hand side is assumed
for a unique z. Figure 1 shows the graph of α. Note that α

depends only on the fidelity δ between the initial and final
states. The fidelity, or overlap, between two pure states ρa and
ρb is tr(ρaρb).

Although the Margolus-Levitin QSL (3) is quite surprising,
its proof is relatively simple [9]. Giovannetti et al.’s estimate
(4) reduces to the Margolus-Levitin QSL for δ = 0, but the
derivation in Ref. [10] for a general δ is rather complicated.
Moreover, it is partly based on numerical calculations. In this

4The α in Ref. [10] equals the α in (5) multiplied by 2/π .

FIG. 1. The graph of α as a function of the fidelity δ between
the initial and final states. If δ = 0, the initial and final states are
fully distinguishable, and α(δ) = π/2. In this case we recover the
Margolus-Levitin QSL (3). If δ = 1, the initial and final states are
the same, and α(δ) = 0. This is reasonable since it takes no time to
remain in the initial state.

section, we derive (4) analytically. We also characterize the
systems, that is, the states and Hamiltonians that saturate (4).

For simplicity, we write 〈H〉 for the expected energy of a
system without reference to its state. Furthermore, we write
〈H − ε0〉 for the difference between 〈H〉 and the smallest
eigenvalue ε0 of H . We call this quantity the normalized
expected energy. In this paper we only consider isolated sys-
tems, that is, systems where a time-independent Hamiltonian
governs the dynamics. For such systems, the expected energy
and normalized expected energy are conserved quantities. The
expected energy and normalized expected energy thus depend
on the initial state but do not change as the state evolves.

A. The extended Margolus-Levitin quantum speed
limit for a two-dimensional system

In this section we show that Giovannetti et al.’s estimate
(4) is valid and tight for qubit systems. Derivations of the
statements in this section can be found in Appendix A.

Consider a qubit system with Hamiltonian

H = ε0|0〉〈0| + ε1|1〉〈1|, ε0 < ε1, (6)

the vectors |0〉 and |1〉 being orthonormal. We identify each
qubit state ρ with a unit length vector r = (x, y, z) called the
Bloch vector of ρ by defining

x = 〈1|ρ|0〉 + 〈0|ρ|1〉, (7)

y = i(〈1|ρ|0〉 − 〈0|ρ|1〉), (8)

z = 1 − 2〈0|ρ|0〉. (9)

The dynamics induced by H causes the Bloch vectors to rotate
about the z axis with a constant inclination and an azimuthal
angular speed ε1 − ε0. Furthermore, a state’s expected energy
is determined by, and determines, the z coordinate of its Bloch
vector:

z = 2〈H〉 − ε1 − ε0

ε1 − ε0
= 2

〈H − ε0〉
ε1 − ε0

− 1. (10)
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Two states thus have the same expected energy if and only if
their Bloch vectors have the same z coordinate.

Let ra and rb be the Bloch vectors of two states with a
common z coordinate z and fidelity δ, and suppose that H
causes ra to rotate to rb in time τ . Using (7)–(9) one can show
that the inner product between ra and rb relates to the fidelity
δ as

ra · rb = 2δ − 1. (11)

To determine the distance traveled by the rotating Bloch vec-
tor consider the orthogonal projections r̄a and r̄b of ra and rb

on the xy plane. During the evolution, r̄a rotates to r̄b along
the peripheral arc of a circular sector in the xy plane of ra-
dius |r̄a| = (1 − z2)1/2 and apex angle arccos(r̄a · r̄b/|r̄a|2) =
arccos[(2δ − 1 − z2)/(1 − z2)]. The distance traveled by the
rotating Bloch vector equals the length of the peripheral arc
and is, thus, √

1 − z2 arccos

(
2δ − 1 − z2

1 − z2

)
. (12)

The speed of the rotating Bloch vector is (ε1 − ε0)(1 − z2)1/2,
and hence, by (12), the evolution time is

τ = 1

ε1 − ε0
arccos

(
2δ − 1 − z2

1 − z2

)
. (13)

Combined with (10), this gives that

τ 〈H − ε0〉 = 1 + z

2
arccos

(
2δ − 1 − z2

1 − z2

)
. (14)

The relation (11) implies that the z coordinate squared of
the Bloch vectors of two states with the same expected energy
is less than the fidelity between the states:

2δ − 1 = ra · rb � 2z2 − ra · ra = 2z2 − 1. (15)

Conversely, each expected energy level corresponding to a z
such that z2 � δ contains Bloch vectors of states with fidelity
δ. We conclude that τ � τML(δ) for a qubit. Equality holds if
and only if the z coordinate of the Bloch vector of the initial
state minimizes the right side of (14) over the interval −√

δ �
z �

√
δ and thus is such that

1 + z

2
arccos

(
2δ − 1 − z2

1 − z2

)
= α(δ). (16)

B. The extended Margolus-Levitin quantum speed limit
for systems of arbitrary dimension

Section II A shows that Giovannetti et al.’s estimate (4)
is valid and tight for qubit systems. Section II A also shows
that for an arbitrary isolated system with Hamiltonian H there
is a state that evolves into one with fidelity δ in such a way
that (4) is an identity: Let |0〉 and |1〉 be eigenvectors of H
with eigenvalues ε0 and ε1, with ε1 > ε0. Choose a ρ with
support in the span of |0〉 and |1〉 and such that z defined by
(9) satisfies (16). Then ρ will evolve to a state with fidelity δ

in time τ = τML(δ). Conversely, for any system in a state ρ, a
Hamiltonian exists that transforms ρ into a state with fidelity
δ in such a way that (4) is saturated: Take an H whose sum
of two eigenspaces, one of which corresponds to its smallest
eigenvalue ε0, contains the support of ρ. Adjust H’s spectrum

so that z defined by (9) satisfies (16). Then ρ will evolve to a
state with fidelity δ in time τ = τML(δ).

An effective qubit for H is a state with support in the sum
of two eigenspaces of H . It behaves like a genuine qubit
in that its support evolves in the linear span of two energy
eigenvectors, one from each eigenspace covering the initial
support. The above discussion shows that (4) holds for and
can always be saturated by an effective qubit. We say that a
state is partly grounded if the eigenspace corresponding to ε0

is not contained in the kernel of the state or, equivalently, if the
eigenspace of ε0 is not orthogonal to the support of the state.
In Appendix B we show the first main result of this paper: If
τ 〈H − ε0〉 assumes its smallest possible value when evaluated
for all Hamiltonians H , states ρ, and τ � 0 such that H trans-
forms ρ into a state with fidelity δ in time τ , then ρ is a partly
grounded effective qubit for H and τ 〈H − ε0〉 = α(δ). The
extended Margolus-Levitin QSL (4) thus holds generally and
is a tight estimate saturable in all dimensions. We interpret (4)
geometrically in Sec. III. There we see, among other things,
that one can interpret α(δ) as an extremal dynamical phase.
Notice the contrast with the Mandelstam-Tamm QSL, where
the numerator is a geodesic distance.

Remark 1. If we select a subset of the spectrum of H and
consider only initial states with support in the sum of the
eigenspaces of the eigenvalues in the subset, then the support
of the evolved state will remain in that sum. The proof in
Appendix B shows that the evolution time of each such state
satisfies the inequality

τ � α(δ)

〈H − ε′
0〉

, (17)

with ε′
0 being the smallest eigenvalue in the subset.5 Further-

more, by Sec. II A, inequality (17) can be saturated with an
effective qubit that evolves in the sum of the eigenspaces
corresponding to two eigenvalues in the subset, one of which
is ε′

0. As a special case, we have that the evolution time is
bounded according to

τ � α(δ)

〈H − ε′′
0 〉 , (18)

where ε′′
0 is the smallest occupied energy, that is, the smallest

eigenvalue of H whose corresponding eigenspace is not anni-
hilated by ρ. Often, the Margolus-Levitin QSL is formulated
with the expected energy shifted by the smallest occupied
energy rather than the smallest energy. Mathematically, how-
ever, there is no difference because we can always reduce the
Hilbert space to an effective Hilbert space and consider the
smallest occupied energy as the smallest energy. (However,
see Remark 2.)

Remark 2. The state must evolve in the span of two eigen-
vectors of H to saturate (4), one of which has eigenvalue ε0.
No requirements are placed on the eigenvalue ε1 of the second
eigenvector except that it must differ from ε0. However, if we
want the evolution time to be as short as possible, ε1 must
be the largest eigenvalue of H . This follows from (10) since

5To avoid having to treat trivial cases separately, we assume that
the subset contains at least two different eigenvalues.
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FIG. 2. An oriented surface in the Bloch sphere bounded by the
evolution curve ρt and the shortest geodesics connecting the initial
and final states ρ0 and ρτ to the ground state |0〉〈0|. The orientation of
the surface is such that its symplectic area is negative. The negative of
the symplectic area is minimal if and only if the extended Margolus-
Levitin QSL is saturated.

saturation of (4) implies that the quotient 〈H − ε0〉/(ε1 − ε0)
is independent of ε1. Thus, the maximum value of 〈H − ε0〉,
and consequently the minimum value of τ , is obtained for
the ε1 maximizing the difference ε1 − ε0. The observation
that the state that saturates (4) with the shortest possible
evolution time is an effective qubit with support in the sum
of the eigenspaces belonging to the largest and the smallest
eigenvalue generalizes the main result in Ref. [15] to arbitrary
fidelity; see also Ref. [16]. A corresponding statement holds
if we restrict the Hilbert space as in Remark 1.

In contrast with the energy uncertainty, we cannot con-
sider the normalized expected energy 〈H − ε0〉 as a measure
of a state’s rate of change. Since for each state there exist
Hamiltonians H1 and H2, with smallest eigenvalues ε1

0 and ε2
0 ,

that identically evolve the state but for which 〈H1 − ε1
0〉 and

〈H2 − ε2
0〉 are different. Thus, unlike most QSLs, the extended

Margolus-Levitin QSL is not a quotient of a distance and a
speed [1,2,11,12].

III. GEOMETRY OF THE EXTENDED
MARGOLUS-LEVITIN QUANTUM SPEED LIMIT

Equations (7)–(9) describe a diffeomorphism between the
projective Hilbert space of qubit states and the Bloch sphere.
(Thus, we can identify qubit states with their corresponding
Bloch vectors.) We push forward the Fubini-Study Rieman-
nian metric and symplectic form using this diffeomorphism.6

The expression in (14) is then the negative of the symplectic
area of a surface with a triangular boundary in the Bloch
sphere. The path traced out by the evolving state and the
shortest geodesics connecting the initial and final state to the

6The Fubini-Study distance is equal to half of the standard distance
function on the unit sphere, and the Fubini-Study symplectic form is
equal to half the standard area form on the unit sphere.

lowest energy state |0〉〈0| form the boundary of the surface;
see Fig. 2. Notice that we have oriented the boundary so
that the surface has the reverse orientation compared with the
standard orientation of the Bloch sphere. In Sec. III B, we
show that τ 〈H − ε0〉 is equal to the negative of the symplectic
area of such a triangular surface also in the general case.

The expected energy level to which the initial qubit state
ρ belongs is a geodesic sphere centered at |0〉〈0|, that is, a
sphere made up of all states at a fixed distance from |0〉〈0|.
The radius of the geodesic sphere is

r = arccos
√

〈0|ρ|0〉 = arccos
√

(1 − z)/2. (19)

Therefore, z = − cos(2r). If we substitute z for − cos(2r) on
the right-hand side of (5) we get

α(δ) = min
r

{
sin2 r arccos

(
1 − 2(1 − δ)

sin2 (2r)

)}
, (20)

where r ranges from 1
2 arccos

√
δ to 1

2 arccos(−√
δ). Sec-

tion III C shows that the expression minimized on the
right-hand side is an extremal dynamical phase in a gauge
specified by a stationary state with eigenvalue ε0. First, in
Sec. III A, we interpret τ 〈H − ε0〉 as a dynamical phase.

A. Evolution time times normalized expected energy
as a dynamical phase

Consider a quantum system modeled on a finite-
dimensional Hilbert space H. Let S be the unit sphere in
H and P be the projective Hilbert space of orthogonal pro-
jection operators of rank 1 on H.7 The Hopf bundle is the
U (1)-principal bundle η that sends each |ψ〉 in S to the cor-
responding state |ψ〉〈ψ | in P . The Berry connection on the
Hopf bundle is defined as

A|ψ̇〉 = i〈ψ |ψ̇〉 (21)

on tangent vectors |ψ̇〉 at |ψ〉.
Assume the system has a Hamiltonian H . Choose an

eigenstate σ of H with eigenvalue ε. Let �(σ ) be the open
neighborhood of σ consisting of all states that are not fully
distinguishable from σ . Hypersurfaces Y|φ〉 in S , one for each
vector |φ〉 in the fiber over σ , foliate the pre-image of �(σ )
under η; see Fig. 3 and Ref. [17]. The hypersurface Y|φ〉
consists of all vectors |ψ〉 in S that are in phase with |φ〉,
that is, are such that 〈φ|ψ〉 > 0. The gauge group permutes
the hypersurfaces, and η maps each hypersurface diffeomor-
phically onto �(σ ). We can thus define a gauge potential Aσ

on �(σ ) by pushing down the restriction of A to an arbitrary
hypersurface Y|φ〉. The potential depends on σ but not on the
choice of |φ〉 in the fiber over σ .

The second main result in the paper reads: If ρ is a state in
�(σ ), and ρt , where 0 � t � τ , is the evolution curve starting
from ρ, then ρt is contained in �(σ ) and

τ 〈H − ε〉 =
∫

ρt

Aσ . (22)

7Such operators represent pure states.
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FIG. 3. The pre-image under the Hopf projection η of the set
�(σ ) of states having nonzero fidelity with σ is foliated by hy-
persurfaces Y|φ〉; one for each |φ〉 in S being projected to σ . The
hypersurface Y|φ〉 consists of all the |ψ〉 in S that are in phase with
|φ〉. The gauge group permutes the hypersurfaces, and η maps each
hypersurface diffeomorphically onto �(σ ). We define a potential
Aσ on �(σ ) by pushing down the restriction of A to one of the
hypersurfaces. The potential depends on σ but not on the choice of
hypersurface.

In other words, τ 〈H − ε〉 is the dynamical phase of ρt in a
gauge associated with σ .8 To prove (22) select a |φ〉 in the
fiber over σ , let |ψ〉 be the vector over ρ in phase with |φ〉, and
let |ψt 〉 be the curve that extends from |ψ〉 and has the velocity
field |ψ̇t 〉 = −i(H − ε)|ψt 〉. The curve |ψt 〉 is in phase with
|φ〉 and projects to ρt :

〈φ|ψt 〉 = 〈φ|e−it (H−ε)|ψ〉 = 〈φ|ψ〉 > 0, (23)

|ψt 〉〈ψt | = e−it (H−ε)|ψ〉〈ψ |eit (H−ε) = ρt . (24)

Hence, ∫
ρt

Aσ =
∫

|ψt 〉
A = τ 〈H − ε〉. (25)

Notice that ε = ε0 if σ is a ground state.

B. Evolution time times normalized expected energy
as the negative of a symplectic area

We equip the projective Hilbert space P with the Fubini-
Study Riemannian metric g and symplectic form ω. For
tangent vectors ρ̇a and ρ̇b at ρ,9

g(ρ̇a, ρ̇b) = 1
2 tr (ρ̇aρ̇b), (26)

ω(ρ̇a, ρ̇b) = −i tr ([ρ̇a, ρ̇b]ρ). (27)

The geodesic distance function associated with the Fubini-
Study metric is

dist (ρa, ρb) = arccos
√

tr (ρaρb). (28)

Suppose the system is in a state ρ and a Hamiltonian
H governs its dynamics. Let ρt , 0 � t � τ , represent the
evolving state. Since H is time-independent, the distances
between ρt and the eigenstates of H are preserved. Let σ be

8Some authors call the negative of the right-hand side of (22) the
dynamical phase of ρt .

9We normalize g and ω asymmetrically because this gives rise to
cleaner formulas.

FIG. 4. On the left, the σ closure ρσ
t made up of the shortest

geodesic γ 1
t from σ to the initial state ρ0, the evolution curve ρt , and

the shortest geodesic γ 2
t from the final state ρτ to σ . On the right, a

Seifert surface � for ρσ
t . The circular arrow indicates the orientation

of � compatible with that of ρσ
t .

an eigenstate with eigenvalue ε located at a distance r < π/2
from ρ. Furthermore, let γ 1

t and γ 2
t be the shortest unit speed

geodesics from σ to ρ0 and from ρτ to σ , respectively. The σ

closure of ρt is the concatenation ρσ
t = γ 1

t ∗ ρt ∗ γ 2
t defined

as

ρσ
t =

⎧⎪⎨
⎪⎩

γ 1
t for 0 � t � r

ρt−r for r � t � τ + r
γ 2

t−τ−r for τ + r � t � τ + 2r.
(29)

The left part of Fig. 4 illustrates the σ closure. Below we
show the third main result of the paper:

τ 〈H − ε〉 = −
∫∫

�

ω, (30)

where � is any Seifert surface for ρσ
t that is homologous to

a Seifert surface for ρσ
t in �(σ ). A Seifert surface for ρσ

t is
an oriented surface � in P whose boundary is parametrized
by ρσ

t as illustrated in the right part of Fig. 4. For example,
the ruled surface obtained by connecting σ and each ρt with
the shortest arclength-parametrized geodesic is such a Seifert
surface. In Appendix C we provide formulas for the geodesics
γ 1

t and γ 2
t and explicitly construct a ruled Seifert surface

for ρσ
t .

The pull-back of ω to S by the Hopf projection is exact and
equals the negative of the Berry curvature, η∗ω = −dA [17].
We construct a lift |ψσ

t 〉 of ρσ
t to S as follows: Let |φ〉 be any

vector in the fiber over σ , let |ψt 〉 be the lift of ρt which is in
phase with |φ〉, and for 0 � t � r define |φ1

t 〉 and |φ2
t 〉 as∣∣φ1

t

〉 = cos t |φ〉 + sin t

sin r
(|ψ0〉 − cos r|φ〉), (31)

∣∣φ2
t

〉 = cos (r − t )|φ〉 + sin (r − t )

sin r
(|ψτ 〉 − cos r|φ〉). (32)

The curves |φ1
t 〉 and |φ2

t 〉 are lifts of γ 1
t and γ 2

t connecting
|φ〉 to |ψ0〉 and |ψτ 〉 to |φ〉, respectively; see Appendix C. We
define |ψσ

t 〉 as the concatenation |φ1
t 〉 ∗ |ψt 〉 ∗ |φ2

t 〉. The curve
|ψσ

t 〉 is a lift of ρσ
t that is in phase with |φ〉.

Suppose that � is homologous to a Seifert surface �′ in
�(σ ). The Hopf bundle restricts to a diffeomorphism from
the hypersurface Y|φ〉 of vectors in S that are in phase with |φ〉
onto �(σ ) [17]. Lift �′ to a Seifert surface for |ψσ

t 〉 in Y|φ〉.
By Stoke’s theorem,∫∫

�

ω =
∫∫

�′
ω = −

∫∫
�′

dA = −
∮

|ψσ
t 〉
A. (33)
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The first identity is a consequence of � − �′ being a homo-
logical boundary and that ω is closed; cf. Remark 3 below.
The second identity results from η being a diffeomorphism
from Y|φ〉 onto �(σ ) and −dA being the pull-back of ω. The
third identity follows from |ψσ

t 〉 parametrizing the boundary
of the lift of �′.

A direct calculation shows that the Berry connection anni-
hilates the velocity fields of |φ1

t 〉 and |φ2
t 〉:

A|φ̇ j
t 〉 = i〈φ j

t |φ̇ j
t 〉 = 0, j = 1, 2. (34)

Thus we have that ∮
|ψσ

t 〉
A =

∫
|ψt 〉

A. (35)

Equations (25), (33), and (35) yield the third main result (30).
Note that the calculations rely on ρ not being fully distin-
guishable from σ , cf. Remark 1.

Remark 3. The homology class of the projectivization of
any two-dimensional subspace of H, that is, a Bloch sphere,
generates the second singular homology group of P with
integer coefficients [18]. We choose such a Bloch sphere that
we orient so that its symplectic area is positive. The area is
2π , and ω/2π is thus of integral class.

The difference between two Seifert surfaces for ρσ
t is a

2-cycle. The homology class of such a difference is an integer
multiple of the homology class for the Bloch sphere. It follows
that the difference of the symplectic areas of two Seifert
surfaces for ρσ

t is an integer multiple of the symplectic area
of the Bloch sphere. Hence, for an arbitrary Seifert surface �

for ρσ
t ,

τ 〈H − ε〉 = −
∫∫

�

ω mod 2π. (36)

We can equivalently express this as τ 〈H − ε〉 being equal to
the Aharonov-Anandan geometric phase [13] of the σ closure
of ρt modulo 2π . This connection to the Aharonov-Anandan
phase is utilized in Ref. [19] where QSLs for cyclic systems
are derived.

C. α(δ) as an extremal dynamical phase

Let σ be any state and S(σ, r) be the geodesic sphere of ra-
dius r centered at σ . The geodesic sphere consists of all states
at distance r from σ . Fix a fidelity δ and choose r such that
arccos

√
δ � 2r � arccos(−√

δ). The geodesic sphere S(σ, r)
is then contained in �(σ ) and includes states between which
the fidelity is δ.

Write �(σ, r, δ) for the space of smooth curves in S(σ, r)
that extend between two states with fidelity δ. Define J σ

r,δ to
be the functional that assigns the dynamical phase to each ρt

in �(σ, r, δ) in the gauge specified by σ ,

J σ
r,δ[ρt ] =

∫
ρt

Aσ . (37)

In Appendix D we show that ρt is an extremal for J σ
r,δ if and

only if for every |φ〉 in the fiber over σ , the lift |ψt 〉 of ρt

which is in phase with |φ〉 splits orthogonally as

|ψt 〉 = cos r |φ〉 + sin r ei�t |w〉 (38)

for some function �t that vanishes for t = 0. The correspond-
ing extreme value is

J σ
r,δ[ρt ] = sin2 r �τ . (39)

The constraint on �t arising from the assumption that ρt

extends between two states with fidelity δ reads

cos �τ = 1 − 2(1 − δ)

sin2 2r
. (40)

Thus,

J σ
r,δ[ρt ] = ± sin2 r arccos

(
1 − 2(1 − δ)

sin2 2r

)
mod 2π. (41)

According to (20), α(δ) is equal to the smallest positive ex-
treme value of J σ

r,δ minimized over the interval 1
2 arccos

√
δ �

r � 1
2 arccos(−√

δ). This observation is the fourth main result
of the paper.

Remark 4. If ρt is an extremal curve for J σ
r,δ , then so is

ρτ−t , and J σ
r,δ[ρτ−t ] = −J σ

r,δ[ρt ]. Hence the ± in (41). This
observation is related to the dual QSL derived and discussed
in Sec. IV B.

IV. RELATED QUANTUM SPEED LIMITS

The maximum of the Mandelstam-Tamm and the extended
Margolus-Levitin QSLs is a new QSL. Interestingly, the
maximum QSL behaves differently for fully and not fully
distinguishable initial and final states. We describe this differ-
ence in Sec. IV A. In Sec. IV B we derive a QSL that extends
the dual Margolus-Levitin QSL studied in Ref. [20], and in
Sec. IV C we provide three QSLs that are less sharp but easier
to calculate than the extended Margolus-Levitin QSL. These
three QSLs are not new but can be found in the cited papers.

A. The maximum quantum speed limit

According to Anandan and Aharonov [7], the QSL of Man-
delstam and Tamm (2) is saturated if and only if the evolving
state follows a shortest Fubini-Study geodesic. Furthermore,
by Brody [21], such a state is an effective qubit that fol-
lows the equator of the Bloch sphere associated with the two
eigenvectors that have nonzero fidelity with the initial state;
cf. Sec. II A.10 Levitin and Toffoli [16] showed that if we
require the initial and final states to be fully distinguishable,
the same holds for the Margolus-Levitin QSL (3). However, in
that case, one of the eigenvectors must belong to the smallest
eigenvalue (or ε0 be replaced by the smallest occupied energy,
cf. Remark 1). Thus, if (3) is saturated, so is (1), and the
reverse holds if the support of the initial state is not perpen-
dicular to the eigenspace belonging to the smallest eigenvalue.
These observations led Levitin and Toffoli to conclude that
the maximum of τMT(0) and τML(0) is a tight lower bound
for the evolution time only reachable for states such that
〈H − ε0〉 = �H . We can draw the same conclusion from the
discussion in Sec. II.

10None of the eigenvectors need to be associated with the smallest
eigenvalue of the Hamiltonian.
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FIG. 5. The graphs of α(δ) and arccos
√

δ. The two functions
agree only for δ = 0 and δ = 1. For all other fidelities, arccos

√
δ

is strictly greater than α(δ).

Interestingly, the situation is almost the reverse for
a nonzero fidelity δ between initial and final states;
the Mandelstam–Tamm and the extended Margolus–Levitin
QSLs can never saturate simultaneously: If the state follows
a geodesic, then (4) is not saturated by Sec. II A, and if (4)
is an identity, the state does not follow a geodesic. However,
the maximum QSL max{τMT(δ), τML(δ)} can be reached: If the
state follows a geodesic, τ = τMT(δ) > τML(δ), and if condi-
tion (16) is satisfied, τ = τML(δ) > τMT(δ). In the latter case,
〈H − ε0〉 must differ from �H since α(δ) is strictly less than
arccos

√
δ for 0 < δ < 1; see Fig. 5.

Remark 5. The state does not follow a geodesic in a sys-
tem that saturates the extended Margolus-Levitin QSL for a
nonzero fidelity. However, the state follows a sub-Riemannian
geodesic in a geodesic sphere centered at a ground state. See
Appendix C for details.

Remark 6. In quite a few papers it is claimed that
arccos

√
δ/〈H − ε0〉 is a QSL for isolated systems. Figure 5

and the fact that the extended Margolus-Levitin QSL is tight
show that this is not true in general.

B. The dual extended Margolus-Levitin quantum speed limit

Let ρa and ρb be states with fidelity δ, and suppose that
H evolves ρa to ρb in time τ . Then −H evolves ρb to ρa in
time τ . The smallest eigenvalue of −H is −εmax, where εmax

is the largest eigenvalue of H and, according to the extended
Margolus-Levitin QSL,

τ � τ ∗
ML(δ), τ ∗

ML(δ) = α(δ)

〈εmax − H〉 . (42)

This estimate generalizes the main result in Ref. [20] to an
arbitrary fidelity between initial and final states. We adhere to
the terminology in Ref. [20] and call τ ∗

ML(δ) the dual extended
Margolus-Levitin QSL. Note that for some states, τ ∗

ML(δ) is
greater than τML(δ) and τMT(δ).

Since the estimate in (42) is a consequence of applying
the extended Margolus-Levitin QSL to evolution generated by
−H , it follows from Appendix B that (42) can be saturated in
all dimensions and that, when so, the state is an effective qubit
for −H whose support is not orthogonal to the eigenspace

FIG. 6. A Seifert surface in the Bloch sphere for the |1〉〈1| clo-
sure of an evolving qubit. The symplectic area of the surface is
positive and equal to τ 〈εmax − H〉. Note that the surface is, in a
sense, dual to the Seifert surface in Fig. 2. If the dual extended
Margolus-Levitin QSL is saturated, the surface assumes its smallest
possible symplectic area. For not fully distinguishable initial and
final states, the evolving state then has a strictly positive z coordinate.
This is in contrast to the case when the extended Margolus-Levitin
QSL is saturated, in which case the z coordinate is strictly negative.
For fully distinguishable initial and final states, both QSLs can be
saturated simultaneously. The magnitudes of the symplectic areas of
the corresponding Seifert surfaces are then equal.

corresponding to −εmax. But then the state is also an effective
qubit for H whose support is not orthogonal to the eigenspace
corresponding to εmax. We call such an effective qubit partly
maximally excited. To summarize, if τ 〈εmax − H〉 assumes its
smallest possible value when evaluated for all Hamiltonians
H , states ρ, and τ � 0 such that H transforms ρ into a state
with fidelity δ in time τ , then ρ is a partly maximally excited
effective qubit for H and τ 〈εmax − H〉 = α(δ).

Remark 7. If we restrict the set of states as in Remark 1,
εmax can be replaced by the largest occupied energy.

The discussion in Sec. III, where we deliberately did not
specify the eigenvalue ε, tells us that

τ 〈εmax − H〉 = −
∫

ρt

Aσ =
∫∫

�

ω, (43)

where σ is an eigenstate of H with eigenvalue εmax that
has nonzero fidelity with the initial state. The surface � is
an arbitrary Seifert surface for the σ closure ρσ

t in �(σ ).
In Fig. 6 we have illustrated such a Seifert surface in the
Bloch sphere for the same evolution as in Fig. 2. In this
case, a concatenation of the evolution curve with the shortest
geodesic connecting the initial and final states to the excited
state |1〉〈1| parametrizes the boundary of the Seifert surface.
Furthermore, the orientation of the boundary is such that the
Seifert surface has a positive symplectic area, which is consis-
tent with equation (43). The z coordinate of a qubit state that
saturates the dual extended Margolus-Levitin QSL satisfies
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the equation

1 − z

2
arccos

(
2δ − 1 − z2

1 − z2

)
= α(δ). (44)

For δ �= 0, the z coordinate of a saturating evolution is
strictly positive in contrast to an evolution that saturates the
“original” extended Margolus-Levitin QSL, in which case
the z coordinate is strictly negative, as in Fig. 2. This ob-
servation lets us conclude that for not fully distinguishable
initial and final states, the extended Margolus-Levitin QSL
and its dual can never saturate simultaneously. Because if
that were the case, the state would be an effective qubit
with support in the span of a ground state and a highest-
energy state. In the projectivization of the span of these
eigenstates, the z coordinate of the Bloch vector of the sys-
tem’s state would be strictly positive and strictly negative,
which is contradictory. For δ = 0, however, the QSLs can
saturate simultaneously. The evolving state then follows a
geodesic and

〈εmax − H〉 = �H = 〈H − ε0〉. (45)

C. Approximations of the extended Margolus-Levitin
quantum speed limit

Consider a quantum system in a state ρ with Hamiltonian
H . Suppose the system evolves into a state with fidelity δ

relative to ρ in time τ . Then

τ � τ1(δ), τ1(δ) = 1 − √
δ

β〈H − ε0〉 , (46)

where the requirement that y = 1 − βx is a tangent line to
cos x specifies β (β ≈ 0.724). Also,

τ � τ2(δ), τ2(δ) = 4 arccos2
√

δ

βπ2〈H − ε0〉 , (47)

τ � τ3(δ), τ3(δ) = 2 arccos2
√

δ

π〈H − ε0〉 . (48)

Derivations of (46) and (47) are found in Refs. [22,23], and
(48) is mentioned in Ref. [10]. Where this latter QSL comes
from is still unclear to the authors.

Figure 7 displays the graphs of the extended Margolus-
Levitin QSL τML(δ) as well as the QSLs τ1(δ), τ2(δ), and τ3(δ)
multiplied by 〈H − ε0〉. Apparently, τ1(δ), τ2(δ), and τ3(δ)
are weaker than τML(δ), and τ2(δ) is weaker than τ1(δ) and
τ3(δ). However, which of τ1(δ) and τ3(δ) is the stronger QSL
depends on the fidelity δ, with τ1(δ) being greater than τ3(δ)
for large values of δ and τ3(δ) being greater than τ1(δ) for
small values of δ.

V. SUMMARY AND OUTLOOK

Giovannetti et al. [10] showed, partly numerically, that if
an isolated system evolves between two states with fidelity
δ, then the evolution time is bounded from below by the
extended Margolus-Levitin QSL (4). Giovannetti et al. also
showed that this QSL is tight in all dimensions.

In this paper, we have derived the extended Margolus-
Levitin QSL analytically and characterized the systems for
which this QSL is saturated. Furthermore, we have interpreted

FIG. 7. The graphs of τML(δ), τ1(δ), τ2(δ), and τ3(δ) multiplied
by the normalized expected energy 〈H − ε0〉. The graph belonging
to τML(δ) lies above the other graphs. Thus τML(δ) is the strongest
bound. The weakest bound is τ2(δ). Since the graphs of τ1(δ) and
τ3(δ) intersect, their mutual strength depends on the fidelity.

the extended Margolus-Levitin QSL geometrically as an ex-
tremal dynamical phase in a gauge specified by the system’s
ground state. We have also shown that the maximum of the
Mandelstam-Tamm and the extended Margolus-Levitin QSLs
is a tight QSL that behaves differently depending on whether
or not the initial state and the final state are fully distinguish-
able. In addition, we have derived a tight dual version of
the extended Margolus-Levitin QSL using a straightforward
time-reversal argument. The dual QSL has similar properties
as the extended Margolus-Levitin QSL and saturates under
similar circumstances but involves the largest rather than the
smallest occupied energy. We showed that the two QSLs can
only be saturated simultaneously if the start and end states are
fully distinguishable. We concluded the paper by reproducing
three QSLs related to, but slightly weaker than, the extended
Margolus-Levitin QSL.

A recent paper on evolution time estimates for closed
systems [14] suggests that the Margolus-Levitin QSL
does not straightforwardly extend to systems whose dy-
namics are governed by time-dependent Hamiltonians, at
least not without limitations on the width of the energy
spectrum.

The geometric analysis performed here shows that ex-
tended Margolus-Levitin QSL is closely related to the
Aharonov-Anandan geometric phase [13]. This observation
is further elaborated in Ref. [19] where QSLs for cyclically
evolving systems are derived.

Mixed state QSLs resembling the Margolus-Levitin QSL
exist [22–24], and Giovannetti et al. [10] showed that also
the extended Margolus-Levitin QSL can be generalized to a
QSL for systems in mixed states, with δ being the Uhlmann
fidelity between the initial and final states [25]. Whether
this generalization has a symplectic-geometric interpretation
similar to the one presented here is an open question. So
is the question whether the generalized extended Margolus-
Levitin QSL connects to a geometric phase for mixed
states [23,26–29]. The authors intend to investigate these
questions in a forthcoming presentation.
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APPENDIX A: THE EXTENDED MARGOLUS-LEVITIN
QUANTUM SPEED LIMIT FOR QUBIT SYSTEMS

Let H be the Hamiltonian in (6) and ρ be a qubit
state whose Bloch vector r = (x, y, z) is defined by (7)–(9).
Then,

〈0|ρ|0〉 = 1
2 (1 − z), 〈1|ρ|1〉 = 1

2 (1 + z),

〈0|ρ|1〉 = 1
2 (x + iy), 〈1|ρ|0〉 = 1

2 (x − iy). (A1)

Equation (10) follows from

2〈H〉 = 2〈0|Hρ|0〉 + 2〈1|Hρ|1〉
= 2ε0〈0|ρ|0〉 + 2ε1〈1|ρ|1〉
= ε0(1 − z) + ε1(1 + z)

= ε1 + ε0 + (ε1 − ε0)z. (A2)

To prove equation (11) consider two qubit states ρa and
ρb with Bloch vectors ra = (xa, ya, za) and rb = (xb, yb, zb),
respectively. Let δ be the fidelity between ρa and ρb. Then

δ = 〈0|ρaρb|0〉 + 〈1|ρaρb|1〉
= 〈0|ρa|0〉〈0|ρb|0〉 + 〈0|ρa|1〉〈1|ρb|0〉

+ 〈1|ρa|0〉〈0|ρb|1〉 + 〈1|ρa|1〉〈1|ρb|1〉
= 1

4 [(1 − za)(1 − zb) + (xa + iya)(xb − iyb)

+ (xa − iya)(xb + iyb) + (1 + za)(1 + zb)]

= 1
2 (1 + xaxb + yayb + zazb)

= 1
2 (1 + ra · rb). (A3)

This proves Eq. (11).
The dynamics caused by H can be described as a rigid

rotation of the Bloch sphere about the z axis. To prove (12)
assume za = zb = z and that ra rotates to rb during the evolu-
tion. Since the z coordinate remains fixed, ra follows a path of
the same length as the orthogonal projection r̄a of ra on the xy
plane. The projection r̄a rotates to the projection r̄b of rb along
a circular arc in the xy plane. The radius of the corresponding
circle sector is

√
r̄a · r̄a =

√
ra · ra − z2 =

√
1 − z2. (A4)

Furthermore, according to (11), the circle sector has apex
angle

arccos

(
r̄a · r̄b

r̄a · r̄a

)
= arccos

(
ra · rb − z2

ra · ra − z2

)

= arccos

(
2δ − 1 − z2

1 − z2

)
. (A5)

Thus, the length of the circular arc is

√
1 − z2 arccos

(
2δ − 1 − z2

1 − z2

)
. (A6)

Finally, to prove (13) we first determine the speed of the ro-
tating Bloch vector. Write xt , yt , and zt = z for the coordinates

of the rotating Bloch vector. We have

ẋt + iẏt = 2〈0|ρ̇t |1〉
= −2i〈0|[H, ρt ]|1〉
= −i(ε0 − ε1)(xt + iyt ). (A7)

Hence, ẋt = (ε0 − ε1)yt and ẏt = (ε1 − ε0)xt . The rotating
Bloch vector thus has the speed√

ẋ2
t + ẏ2

t = (ε1 − ε0)
√

x2
t + y2

t = (ε1 − ε0)
√

1 − z2. (A8)

This equation also says that H causes the Bloch sphere to
rotate with the angular speed ε1 − ε0 about the z axis. The
evolution time equals the distance traveled by the Bloch vector
divided by the speed of the Bloch vector,

τ =
√

1 − z2 arccos
(

2δ−1−z2

1−z2

)
(ε1 − ε0)

√
1 − z2

= 1

ε1 − ε0
arccos

(
2δ − 1 − z2

1 − z2

)
. (A9)

This is the statement in equation (13).

APPENDIX B: CHARACTERIZATION
OF TIME-OPTIMAL SYSTEMS

Consider a quantum system of dimension n � 2. Let 0 �
δ < 1 and set

α(n, δ) = inf
(H,ρ,τ )

τ 〈H − ε0〉, (B1)

where the infimum is over all triples consisting of a Hamilto-
nian H , a state ρ, and a time τ � 0 such that

tr(ρe−iτHρeiτH ) = δ. (B2)

As before, ε0 is the smallest eigenvalue of H . In this
Appendix we show that some triple (H, ρ, τ ) realizes the
infimum α(n, δ) and that for any such triple, ρ is a partly
grounded effective qubit for H . Furthermore, we show that
α(n, δ) is the same for all n and thus equals α(δ) defined in
Eq. (5). Note that condition (B2) says that if H controls the
dynamics of the system, then ρ will evolve to a state with
fidelity δ in time τ .

1. Reduction to admissible pairs

We begin by establishing that

α(n, δ) = inf
(H,ρ)

〈H〉, (B3)

where the infimum is over all pairs consisting of a Hamilto-
nian H with spectrum in [0, 2π ] and a state ρ such that

tr(ρe−iHρeiH ) = δ. (B4)

We call such a pair admissible.
Take an arbitrary triple (H, ρ, τ ) that satisfies condi-

tion (B2). Let ρ ′ = e−iτHρeiτH and set H1 = H − ε0. The
Hamiltonian H1 is positive, has the minimum eigenvalue 0,
and gives rise to dynamics identical to that caused by H .
Hence, (H1, ρ, τ ) satisfies condition (B2). Since H1 and H
have the same eigenspaces and, in particular, they have the
same eigenspace for their smallest eigenvalues, ρ is a partly
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grounded effective qubit for H1 if and only if ρ is a partly
grounded effective qubit for H .

Next, we normalize the evolution time by setting H2 =
τH1. The Hamiltonian H2 is positive, has the minimum eigen-
value 0, and evolves ρ to ρ ′ along the same path as H1 but in
time 1. Thus (H2, ρ, 1) satisfies condition (B2). Since H2 and
H1 have the same eigenspaces, especially for the eigenvalue 0,
ρ is a partly grounded effective qubit for H2 if and only if ρ is
a partly grounded effective qubit for H1.

Lastly, we define H3 as the Hamiltonian obtained from H2

by replacing each eigenvalue ε of H2 with the ε′ in [0, 2π ]
satisfying ε′ = ε mod 2π . The Hamiltonian H3 is positive, has
the smallest eigenvalue 0, and evolves ρ to ρ ′ in time 1. The
expectation value of H3 is not greater than that of H2. We thus
have that

〈H3〉 � 〈H2〉 = τ 〈H1〉 = τ 〈H − ε0〉. (B5)

This shows that inf (H,ρ)〈H〉 � α(n, δ), where the infimum is
over all admissible pairs. The reverse inequality is automati-
cally satisfied. Since the space of admissible pairs is compact,
α(n, δ) is attained for an admissible pair.

Now, suppose that ρ is a partly grounded effective qubit
for H and thus for H2. Then ρ is also a partly grounded
effective qubit for H3. For eigenspaces of H2 can merge when
forming H3, but not in such a way that the support of ρ is
covered by the eigenspace of H3 that belongs to the eigenvalue
0. The reverse, however, is not necessarily true. If ρ is a
partly grounded effective qubit for H3, ρ need not be a partly
grounded effective qubit for H2. But in that case, the inequality
in (B5) is strict, and the original triple (H, ρ, τ ) does not
saturate (B1).

Remark 8. One can choose the state arbitrarily and further
restrict the infimum to Hamiltonians that form an admissible
pair with the selected state. For if (H, ρ, τ ) satisfies (B2),
ρ ′ is an arbitrary state, U is a unitary such that UρU † = ρ ′,
and H ′ = UHU †, then also (H ′, ρ ′, τ ) satisfies (B2). Further-
more, H ′ and H have the same spectrum, the expectation value
of H ′ when the state is ρ ′ is the same as the expectation value
of H when the state is ρ, and ρ ′ is a partly grounded effective
qubit for H ′ if and only if ρ is a partly grounded effective qubit
for H .

2. Not fully distinguishable initial and final states

Assume that δ > 0. (For the sake of completeness, we
treat the case δ = 0 in Appendix B 3, although this case
has been dealt with earlier [15,16].) Let (p, ε) denote a
point (p1, . . . , pn, ε1, . . . , εn) in the compact rectangular
block [0, 1]n × [0, 2π ]n. Define the functions f , g, and h on
[0, 1]n × [0, 2π ]n as

f (p, ε) =
n∑

j=1

p jε j, (B6)

g(p, ε) =
⎛
⎝ n∑

j=1

p j cos ε j

⎞
⎠

2

+
⎛
⎝ n∑

j=1

p j sin ε j

⎞
⎠

2

, (B7)

h(p, ε) =
n∑

j=1

p j . (B8)

Furthermore, let M be the subset of [0, 1]n × [0, 2π ]n defined
by the constraints g(p, ε) = δ and h(p, ε) = 1. Since M is
compact and f is continuous, the restriction of f to M, de-
noted f |M , assumes a minimum value. This minimum value is
α(n, δ). To see this suppose that (H, ρ) is an admissible pair
such that 〈H〉 = α(n, δ). Let ε1, ε2, . . . , εn be the eigenvalues
of H , with corresponding eigenvectors |1〉, . . . , |n〉, and set
pj = 〈 j|ρ| j〉. The point (p, ε) = (p1, . . . , pn, ε1, . . . , εn) be-
longs to M, since g (p, ε) = tr(ρe−iHρeiH ) = δ and h(p, ε) =
tr(ρ) = 1, and f (p, ε) = 〈H〉 = α(n, δ). Thus, f |M assumes
the value α(n, δ). To see that α(n, δ) is the smallest value
of f |M let (p, ε) is an arbitrary point in M. Then, let
|1〉, . . . , |n〉 be an arbitrary orthonormal basis for the Hilbert
space of the system and define H = ∑

j ε j | j〉〈 j| and ρ =∑
i, j

√
pi p j |i〉〈 j|. The pair (H, ρ) is admissible and f (p, ε) =

〈H〉. Hence, f (p, ε) � α(n, δ).
Let (p, ε) be a point in M at which f |M assumes its mini-

mum value and let J be the set of indices j for which p j �= 0.
The minimum point (p, ε) has the following properties:

(i) There are indices j1 and j2 in J such that ε j1 �= 0 and
ε j2 = 0.

(ii) For all indices j1 and j2 in J such that ε j1 �= 0 and
ε j2 �= 0 we have that ε j1 = ε j2 .

Before showing that (p, ε) has these properties let us
discuss their implications for the extended Margolus-Levitin
QSL.

Assume that (H, ρ) is an admissible pair such that 〈H〉 =
α(n, δ). Let ε1, ε2, . . . , εn be the spectrum of H and let p j

be the probability of obtaining ε j when measuring H in the
state ρ divided by the degeneracy of ε j . The point (p, ε) =
(p1, . . . , pn, ε1, . . . , εn) belongs to M since g(p, ε) = δ ac-
cording to the normed evolution time condition (B4) and
h(p, ε) = 1 according to the law of total probability. Fur-
thermore, f |M assumes its minimum value at (p, ε) since
f (p, ε) = 〈H〉. Property (i) says that ρ is partly grounded; that
is, its support is not orthogonal to the eigenspace belonging to
the smallest eigenvalue of H , which in this case is 0. Property
(ii) says that ρ is an effective qubit because the support of
ρ is only non-orthogonal to one eigenspace other than that
belonging to 0.

Let us now prove properties (i) and (ii). For clar-
ity let (p, ε) = (p1, . . . , pn, ε1, . . . , εn) denote an arbitrary,
unspecified point in [0, 1]n × [0, 2π ]n and let (p∗, ε∗) =
(p∗

1, . . . , p∗
n, ε

∗
1 , . . . , ε∗

n ) be a point in M at which f |M as-
sumes its minimum value. Let k be the number of nonzero
p∗

js. Since the values of f , g, and h are invariant un-
der rearrangements of the form (p1, . . . , pn, ε1, . . . , εn) →
(pκ (1), . . . , pκ (n), εκ (1), . . . , εκ (n) ), where κ is a permutation of
the set {1, 2, . . . , n}, we can assume that the k nonzero p∗

js are
placed first in the sequence p∗, so that p∗ = (p∗

1, . . . , p∗
k, 0̄∗),

where 0̄∗ is the vector consisting of n − k zeros, and that
the corresponding ε∗

j s are arranged in descending order of
magnitude. We assume that the number of nonzero ε∗

j s
among the first k is l . These constitute the first l elements
of ε∗. We denote the remaining n − l ε∗

j s by ε̄∗, so that
ε∗ = (ε∗

1 , . . . , ε∗
l , ε̄∗). The minimum point has the following

properties:
(a) ε∗

1 , . . . , ε∗
l are strictly less than 2π . For suppose that

some ε∗
j = 2π . If we change the value of this ε∗

j to 0, g and
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h will not change their values, and hence we are still in M.
However, since p j �= 0, such a change lowers the value of
f . This contradicts that f |M assumes its minimum value at
(p∗, ε∗).

(b) There exists a j such that p∗
j �= 0 and ε∗

j = 0, and
thus k > l . For suppose that k = l . The functions g and h
assume the same values at (p∗, ε∗) and (p∗, ε∗

1 − ε∗
k , . . . , ε∗

k −
ε∗

k , 0, . . . , 0), so both points belong to M. However, since
p∗

k �= 0, f has a lower value at the latter point. This contradicts
that f |M assumes its minimum value in (p∗, ε∗). Since not all
the ε∗

j s can be zero, statement (i) follows.
It remains to prove statement (ii), that is, that all the

nonzero ε∗
1 , . . . , ε∗

l have the same value. Since we have as-
sumed that δ > 0, there exists a unique function θ on M with
values in the interval (−π, π ] such that

√
δ cos θ (p, ε) =

n∑
j=1

p j cos ε j, (B9)

√
δ sin θ (p, ε) =

n∑
j=1

p j sin ε j . (B10)

This follows immediately from the observation that g (p, ε) =
δ if and only if

∑
j p jeiε j = √

δeiθ (p,ε) for a unique θ (p, ε)
in (−π, π ]. Now, consider the restrictions of f , g, and h to
F = [0, 1]k × {0̄∗} × [0, 2π ]l × {ε̄∗}:

f |F (p, ε) =
l∑

j=1

p jε j, (B11)

g|F (p, ε) =
⎛
⎝ l∑

j=1

p j cos ε j +
k∑

j=l+1

p j

⎞
⎠

2

+
⎛
⎝ l∑

j=1

p j sin ε j

⎞
⎠

2

, (B12)

h|F (p, ε) =
k∑

j=1

p j . (B13)

The point (p∗, ε∗) lies in the intersection of M and the interior
of F . Let θ∗ = θ (p∗, ε∗). The gradient vectors of f |F , g|F , and
h|F at (p∗, ε∗) are

∇ f |F (p∗, ε∗) =
l∑

j=1

ε∗
j

∂

∂ p j
+

l∑
j=1

p∗
j

∂

∂ε j
, (B14)

∇g|F (p∗, ε∗) = 2
√

δ

(
l∑

j=1

cos(θ∗−ε∗
j )

∂

∂ p j
+

k∑
j=l+1

cos θ∗ ∂

∂ p j

+
l∑

j=1

p∗
j sin(θ∗ − ε∗

j )
∂

∂ε j

)
, (B15)

∇h|F (p∗, ε∗) =
k∑

j=1

∂

∂ p j
. (B16)

None of these are zero. According to the method of La-
grange multipliers, there are real and nonzero constants λ and

μ such that ∇ f |F (p∗, ε∗) = λ∇g|F (p∗, ε∗) + μ∇h|F (p∗, ε∗).
We thus have that

ε∗
j = 2

√
δλ cos(θ∗ − ε∗

j ) + μ, (B17)

1 = 2
√

δλ sin(θ∗ − ε∗
j ), (B18)

0 = 2
√

δλ cos θ∗ + μ. (B19)

Equations (B17) and (B18) hold for j = 1, 2, . . . , l . These
equations imply that all the ε∗

j s are solutions to the quadratic
equation (x − μ)2 = 4δλ2 − 1. For if we move μ to the left
side in (B17), square both (B17) and (B18), and then add
them, we obtain the equation (ε∗

j − μ)2 = 4δλ2 − 1. Thus, the
ε∗

j s can assume at most two values,

ε̄1 = μ +
√

4δλ2 − 1, (B20)

ε̄2 = μ −
√

4δλ2 − 1. (B21)

We assume that both of these are present among the ε∗
j s.

(Otherwise, we are done.) According to (B20) and (B21), μ

is the arithmetic mean of ε̄1 and ε̄2. Furthermore, (B17) and
(B18) imply that

2 cos

(
θ∗ − ε̄1 + ε̄1

2

)
cos

(
ε̄2 − ε̄1

2

)

= cos (θ∗ − ε̄1) + cos (θ∗ − ε̄2) = 0, (B22)

2 cos

(
θ∗ − ε̄1 + ε̄1

2

)
sin

(
ε̄2 − ε̄1

2

)

= sin (θ∗ − ε̄1) − sin (θ∗ − ε̄2) = 0. (B23)

Thus,

θ∗ = ε̄1 + ε̄2

2
+ n

π

2
(B24)

for an odd integer n. Consequently,

sin (θ∗ − ε̄1) = (−1)
n−1

2 cos

(
ε̄1 − ε̄2

2

)
, (B25)

cos (θ∗ − ε̄1) = (−1)
n−1

2 sin

(
ε̄1 − ε̄2

2

)
. (B26)

Together with (B17) and (B18), these equations imply

ε̄1 − ε̄2

2
= 2

√
δλ cos (θ∗ − ε̄1)

2
√

δλ sin (θ∗ − ε̄1)
= tan

(
ε̄1 − ε̄2

2

)
. (B27)

Since −π � (ε̄1 − ε̄2)/2 � π and x = tan x has the unique
solution x = 0 in this interval, we can conclude that ε̄1 = ε̄2.

3. Fully distinguishable initial and final states

If δ = 0 we must modify the previous section’s arguments
slightly. We start by replacing g with the two functions

g1(p, ε) =
n∑

j=1

p j cos ε j, (B28)

g2(p, ε) =
n∑

j=1

p j sin ε j, (B29)

and define M as the subset of [0, 1]n × [0, 2π ]n given by the
constraints g1(p, ε) = 0, g2(p, ε) = 0, and h(p, ε) = 1. We
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again let (p∗, ε∗) = (p∗
1, . . . , p∗

n, ε
∗
1 , . . . , ε∗

n ) be a point in M
at which f |M assumes its minimum value, which in this case
is α(n, 0) = π/2. We arrange the coordinates in (p∗, ε∗) as in
Appendix B 2. Properties (a) and (b) of (p∗, ε∗) also apply in
this case. We consider the restrictions of f , g1, g2, and h to
F = [0, 1]k × {0̄∗} × [0, 2π ]l × {ε̄∗}:

f |F (p, ε) =
l∑

j=1

p jε j, (B30)

g1|F (p, ε) =
l∑

j=1

p j cos ε j +
k∑

j=l+1

p j, (B31)

g2|F (p, ε) =
l∑

j=1

p j sin ε j, (B32)

h|F (p, ε) =
k∑

j=1

p j . (B33)

The point (p∗, ε∗) lies in the intersection of M and the interior
of F , and the gradient vectors of the restrictions of f , g, and h
to F at (p∗, ε∗) are

∇ f |F (p∗, ε∗) =
l∑

j=1

ε∗
j

∂

∂ p j
+

l∑
j=1

p∗
j

∂

∂ε j
, (B34)

∇g1|F (p∗, ε∗) =
l∑

j=1

cos ε∗
j

∂

∂ p j
+

k∑
j=l+1

∂

∂ p j

−
l∑

j=1

p∗
j sin ε∗

j

∂

∂ε j
, (B35)

∇g2|F (p∗, ε∗) =
l∑

j=1

sin ε∗
j

∂

∂ p j
+

l∑
j=1

p∗
j cos ε∗

j

∂

∂ε j
, (B36)

∇h|F (p∗, ε∗) =
k∑

j=1

∂

∂ p j
. (B37)

None of these are zero. According to the method of
Lagrange multipliers there exist real nonzero constants
λ1, λ2, and μ such that ∇ f |F (p∗, ε∗) = λ1∇g1|F (p∗, ε∗) +
λ2∇g2|F (p∗, ε∗) + μ∇h|F (p∗, ε∗). We thus have that

ε∗
j = λ1 cos ε∗

j + λ2 sin ε∗
j + μ, (B38)

1 = λ2 cos ε∗
j − λ1 sin ε∗

j , (B39)

0 = λ1 + μ. (B40)

Equations (B38) and (B39) hold for j = 1, 2, . . . , l . If we
move μ to the left side in (B38), square both (B38) and (B39),
and then add them, we get the equation (ε∗

j − μ)2 = λ2
1 + λ2

2.
Thus there are only two possibilities for the ε∗

j s,

ε̄1 = μ +
√

λ2
1 + λ2

2, (B41)

ε̄2 = μ −
√

λ2
1 + λ2

2. (B42)

We assume both are present among the ε∗
j s and, therefore,

are strictly positive. The multiplier μ, and hence −λ1, is the

arithmetic mean of ε̄1 and ε̄2. It follows that

λ2
2 = (ε̄1 − μ)2 − λ2

1

=
(

ε̄1 − ε̄2

2

)2

−
(

ε̄1 + ε̄2

2

)2

= −ε̄1ε̄2. (B43)

This equation cannot be satisfied for positive ε̄1 and ε̄2. Thus,
we have reached a contradiction. The conclusion is that only
one of ε̄1 and ε̄2 is present among the ε∗

j s and, therefore, all
the ε∗

j s have the same value.

4. Conclusion

Appendices B 2 and B 3 show that if τ 〈H − ε0〉 assumes
its smallest possible value under the requirement that the
state evolves between two states with fidelity δ, then the
state is a partly grounded effective qubit. Consequently, the
case reduces to that treated in Sec. II A, regardless of the
dimension of the system. We conclude that α(n, δ) = α(δ)
and thus that the extended Margolus-Levitin QSL (4) is valid
in all dimensions.

APPENDIX C: GEODESICS AND RULED
SEIFERT SURFACES

A curve ρt in P is a geodesic if its acceleration
vanishes, ∇ρ̇t ρ̇t = 0. For the Fubini-Study metric,
∇ρ̇t ρ̇t = [[ρ̈t , ρt ], ρt ]; see, e.g., Ref. [8]. Let σ and ρ be two
states at a distance r < π/2 apart. There is a unique shortest
unit speed geodesic from σ to ρ: Choose a unit vector |φ〉 over
σ and let |ψ〉 be the unit vector over ρ that is in phase with
|φ〉. Then 〈φ|ψ〉 = cos r. Define |w〉 by the condition |ψ〉 =
cos r|φ〉 + sin r|w〉, and let |φt 〉 = cos t |φ〉 + sin t |w〉. The
curve

γt = |φt 〉〈φt | = cos2 t |φ〉〈φ| + cos t sin t (|φ〉〈w| + |w〉〈φ|)
+ sin2 t |w〉〈w|, 0 � t � r (C1)

is the shortest unit speed geodesic that extends
from σ to ρ; straightforward calculations show that
[[γ̈t , γt ], γt ] = 0, that g(γ̇t , γ̇t ) = 1, and that γt has the
length r = dist(σ, ρ).

1. Optimal evolution curves are sub-Riemannian geodesics

If the extended Margolus-Levitin QSL is saturated, the
state is a partly grounded effective qubit:

ρ = cos2 r|0〉〈0| + cos r sin r(|0〉〈1| + |1〉〈0|) + sin2 r|1〉〈1|.
(C2)

Here |0〉 and |1〉 are eigenvectors of the Hamiltonian with
eigenvalues ε0 and ε1, respectively. This state evolves on
the geodesic sphere S(σ, r) around σ = |0〉〈0| with radius
r = dist(σ, ρ). The evolution curve is

ρt = cos2 r|0〉〈0| + cos r sin r(eit (ε1−ε0 )|0〉〈1|
+ e−it (ε1−ε0 )|1〉〈0|) + sin2 r|1〉〈1|. (C3)
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This curve has the acceleration

∇ρ̇t ρ̇t = (ε1 − ε0)2

4
sin (4r) [sin (2r)(|0〉〈0| − |1〉〈1|)

− cos (2r)(eit (ε1−ε0 )|0〉〈1| + e−it (ε1−ε0 )|1〉〈0|)].
(C4)

The acceleration vanishes identically if and only if r = π/4.
In this case, the state moves along the equator in the projec-
tivization of the span of |0〉 and |1〉. Otherwise, the evolution
curve is not a geodesic in P . However, since the acceleration
is everywhere perpendicular to S(σ, r), the evolution curve
is a sub-Riemannian geodesic in S(σ, r), that is, a geodesic
when considered a curve in S(σ, r) with the sub-Riemannian
geometry. To see this, fix a t and let γs, 0 � s � r, be the
shortest, arclength-parametrized geodesic from σ to ρt . Ac-
cording to Gauss’s lemma [30], its velocity vector at s = r is
perpendicular to S(σ, r). Explicitly, we have that

γ̇r = sin (2r)(|1〉〈1| − |0〉〈0|) + cos (2r)(eit (ε1−ε0 )|0〉〈1|
+ e−it (ε1−ε0 )|1〉〈0|). (C5)

By equations (C4) and (C5), ∇ρ̇t ρ̇t = − 1
4 (ε1 − ε0)2 sin(4r)γ̇r ,

which implies that ∇ρ̇t ρ̇t is perpendicular to S(σ, r) at ρt .
Consequently, ρt is a sub-Riemannian geodesic.

2. Ruled Seifert surfaces

Let ρt , 0 � t � τ , be a curve in P which for each t is
at the distance r < π/2 from σ . We can construct a Seifert
surface for its σ closure in the following way: Let |φ〉 be a
lift of σ , let |ψt 〉 be the lift of ρt that is in phase with |φ〉,
define |wt 〉 by the condition |ψt 〉 = cos r|φ〉 + sin r|wt 〉, and
set |ψs,t 〉 = cos s|φ〉 + sin s|wt 〉 for 0 � s � r and 0 � t � τ .
Then �(s, t ) = |ψs,t 〉〈ψs,t | is a Seifert surface for ρσ

t consist-
ing of geodesics starting from σ and ending at points on ρt .

APPENDIX D: EXTREME VALUES OF J σ
r,δ

Let σ be an arbitrary state and �(σ, r, δ) be the set of
smooth curves in S(σ, r) that stretches between two states
with fidelity δ. Consider the functional J σ

r,δ on �(σ, r, δ)
defined as

J σ
r,δ[ρt ] =

∫
ρt

Aσ . (D1)

We calculate the extreme values of J σ
r,δ .

Fix an arbitrary lift |φ〉 of σ and recall that Y|φ〉 is the hyper-
surface in S consisting of all vectors in phase with |φ〉. Let |φ〉
be the first vector in an orthonormal basis |φ〉, |1〉, . . . , |n − 1〉
for H. Every lift |ψt 〉 of a curve in S(σ, r) to Y|φ〉 has a

decomposition of the form |ψt 〉 = cos r|φ〉 + sin r|wt 〉, where

|wt 〉 =
n−1∑
j=1

(u j;t + iv j;t )| j〉 (D2)

for some real-valued functions u j;t and v j;t satisfying

n−1∑
j=1

(
u2

j;t + v2
j;t

) = 1. (D3)

Conversely, any such curve in Y|φ〉 projects to a curve in
S(σ, r). Let ρt = |ψt 〉〈ψt | and assume that 0 � t � τ . Then

J σ
r,δ[ρt ] =

n−1∑
j=1

∫ τ

0
dt (u j;t v̇ j;t − u̇ j;tv j;t ). (D4)

Suppose that the fidelity between ρ0 and ρτ is δ and that ρt

is extremal for J σ
r,δ . The u j;t s and v j;t s then satisfy the Euler-

Lagrange equations for the augmented Lagrangian

L(u j, u̇ j, v j, v̇ j, λ) =
n−1∑
j=1

(u j v̇ j − u̇ jv j )

− λ

⎛
⎝n−1∑

j=1

(
u2

j + v2
j

) − 1

⎞
⎠. (D5)

The Euler-Lagrange equations read

u̇ j = −λv j, (D6)

v̇ j = λu j, (D7)

n−1∑
j=1

(
u2

j + v2
j

) = 1. (D8)

These equations imply that u j;t + iv j;t = ei�t (u j;0 + iv j;0 ),
with �t being the integral of the Lagrange multiplier,

�t =
∫ t

0
ds λs. (D9)

Thus, |ψt 〉 = cos r |φ〉 + sin r ei�t |w0〉. That the fidelity
between ρ0 and ρτ is δ translates to

δ = 1 + 1

2
sin2 2r(cos �τ − 1). (D10)

We conclude that

�τ = ± arccos

(
1 − 2(1 − δ)

sin2 2r

)
mod 2π (D11)

and, hence, that

J σ
r,δ[ρt ] = ± sin2 r arccos

(
1 − 2(1 − δ)

sin2 2r

)
mod 2π.

(D12)
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