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Systematic errors arising from polarization imperfections in measurements
of the electron’s electric dipole moment
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The electron’s electric dipole moment (eEDM) can be determined by polarizing the spin of an atom or a
molecule and then measuring the spin precession frequency in an applied electric field. Radiation is used to
polarize the spin and then analyze the precession angle, and the measurement is often sensitive to the polarization
of this radiation. We show how systematic errors can arise when both the polarization of the radiation and the
magnitude of the electric field are imperfectly controlled. We derive approximate analytical expressions for these
errors, confirm their accuracy numerically, and show how they can be corrected empirically. We consider spin
manipulation using single-photon pulses, Raman pulses, and stimulated Raman adiabatic passage (STIRAP),
and we show that STIRAP provides better immunity to these systematic errors. An experimental study of these
errors partly supports our findings but also reveals another potential error that is not captured by this analysis.
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I. INTRODUCTION

Despite its many successes, the standard model is thought
to be incomplete, in part because it cannot explain cosmolog-
ical observations such as dark matter, the matter-antimatter
asymmetry, and the accelerating expansion of the Uni-
verse. Measurements using atoms and molecules can detect
signatures of physics beyond the standard model [1]. In par-
ticular, experiments that measure the electron’s electric dipole
moment (eEDM) look for time-reversal-symmetry-violating
physics which can be important in resolving the open question
of how matter came to dominate the Universe [2]. Heavy
atoms such as Cs [3] and Tl [4] were used in earlier eEDM
experiments as the relativistic motion of the electron near the
heavy nucleus enhances the interaction such that the measured
atomic EDM can be 2 orders of magnitude larger than the
eEDM [5,6]. Heavy polar molecules can provide even greater
enhancement because they are more easily polarized in an
external electric field, resulting in effective electric fields of
10–100 GV/cm [6]. For over a decade, the most sensitive
eEDM measurements have all used molecules, starting with
YbF [7], then ThO [8,9] and HfF+ [10,11]. At present, the
most precise upper limit, |de| < 4.1 × 10−30 e cm, constrains
new physics at mass scales above 10 TeV [11]. Future ex-
periments aim to improve on this limit by using laser-cooled
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molecules such as YbF [12], BaF [13], and YbOH [14], new
species of molecular ions such as ThF+ [15], or a large num-
ber of molecules trapped in a rare-gas matrix [16].

A typical eEDM experiment can be described as an atomic
or molecular spin precession measurement. The spins of the
particles are prepared along an axis perpendicular to the ap-
plied electric field E = E ẑ and allowed to precess freely for
a time τ . The precession angle is measured and the eEDM
is proportional to that part of the angle that correlates with
the direction of E. Systematic effects in these measurements
can be conveniently divided into two classes. The first occur
during the free evolution time. An example is a magnetic field
which changes when E is reversed. Such effects can be man-
aged by careful control of the static fields in the experiment.
In the second class are effects that occur during the prepa-
ration and readout of the spin. These require control of light
fields which can be challenging due to the interaction of the
light with the materials of the apparatus such as the vacuum
windows or the electric field plates. It is usually necessary to
control the frequency, phase, amplitude, and polarization of
the light, and a failure to adequately control any one of these
can lead to errors. The polarization of the light is often used
to prepare and analyze the spin polarization, so the former is
critical but can also be the most difficult part of a light field
to control. This paper focuses on systematic errors in eEDM
measurements arising from polarization imperfections.

II. MODEL EXPERIMENT

We consider a simple diatomic molecule such as YbF or
BaF, though our analysis can be extended to other molecules
with different structures. We focus on hyperfine levels F = 0
and 1 within the rotational ground state, and we use the nota-
tions |0〉 ≡ |F = 0, mF = 0〉 and |±1〉 ≡ |F = 1, mF = ±1〉.
The state |F = 1, mF = 0〉 plays no role because it is Stark-
shifted away from |±1〉, whereas |±1〉 remain degenerate in
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FIG. 1. Schematic illustrating an idealized eEDM measurement using a YbF molecular beam, and the coordinate system used throughout
this paper. Molecules enter the experiment in the state |0〉 and are prepared in the state |x〉 by a pulse of rf radiation polarized along the x axis
(left blue-shaded region). The molecular spin then precesses in static electric and magnetic fields applied along the z direction for a time τ

(orange-shaded region). A second rf pulse (right blue-shaded region) converts the precession angle ϕ into a population asymmetry between the
F = 0 and F = 1 hyperfine levels, and this asymmetry is then measured in the detection region.

the electric field. We also define |x〉 ≡ i(|+1〉 − |−1〉)
√

2 and
|y〉 ≡ (|+1〉 + |−1〉)/

√
2. The transition frequency between

|0〉 and |±1〉 (in the presence of E) is ω0.
The ideal experiment using YbF molecules is illustrated in

Fig. 1. Molecules are initially prepared in state |0〉 and then
transferred to |x〉 (or |y〉) by light polarized along x̂ (or ŷ).
This can be done using a resonant single-photon (rf) process
or a resonant two-photon (optical) process. After a free evo-
lution time τ in the electric (E = E ẑ) and magnetic (B = Bẑ)
fields, the state |x〉 evolves into i(e−iϕ |+1〉 − eiϕ |−1〉)/

√
2 =

cos ϕ |x〉 + sin ϕ |y〉, where ϕ = (μB − deEeff )τ/h̄ is referred
to as the interferometer phase. Here, μ is the magnetic mo-
ment, de is the eEDM, and Eeff is the effective electric field. A
second interaction with light of the same polarization results
in the state cos ϕ |0〉 + sin ϕ |y〉. The populations in F = 0
and F = 1 are measured and are proportional to cos2 ϕ and
sin2 ϕ, respectively. Their difference divided by their sum
gives the quantity called the asymmetry, A, which in an
ideal experiment is A = cos 2ϕ. We write ϕ = φB + φ, where
φB = μBτ/h̄ = ωBτ is the magnetic part of the phase and φ

is a very small additional phase due to the eEDM or aris-
ing from imperfections in the experiment. To maximize the
sensitivity to φ, we typically set B such that φB = B̂π/4,
where B̂ = ±1 indicates the direction of B. In this case,
A = −2B̂φ.

One powerful way to diagnose and avoid potential system-
atic errors is to modulate the important parameters between
shots of the experiment. In our experiment, we reverse the
directions of E and B and step the amplitude and the frequency
of the light around their ideal values. We also introduce a
±π/2 phase shift between the two light fields so that any
Ramsey-type signal due to coherence between the residual
population in the F = 0 state and the population in F = 1 is
averaged to zero. Each switch X has two possible states which
we write as X̂ = ±1. The asymmetry values correlated with
each of these switches (or a combination of these switches),
which we call channels, provide valuable information about
the experiment. The asymmetry that correlates with the

product of X̂1, X̂2, . . . , X̂m is

{X1 · X2 · · · Xm} = 1

N

N∑
i=1

m∏
j=1

X̂ j,iAi, (1)

where the subscript i denotes the ith shot of the experiment,
and X̂ j,i is the state of the parameter Xj during shot i. For
example, the asymmetry that correlates with the frequency
step δ of the state preparation or readout field, {δ}, is pro-
portional to the value of the mean detuning from resonance
and can be used to minimize long-term drifts in the detuning.
Similarly, the asymmetry that correlates with the direction of
B, {B}, gives the background magnetic field and can be used
to ensure we operate at zero field. The asymmetry that corre-
lates with the directions of both E and B, {E · B}, gives the
interferometer phase correlated with the direction of E—the
eEDM-induced phase appears in this channel.

We investigate a systematic effect arising from two parts.
The first part, which is our main focus, arises when the light
field used for state preparation and readout has some ellip-
ticity. This effect leads to a nonzero {B · δ} value and so
has the signature of an interferometer phase that depends on
the detuning of the light field. The second part arises when
the magnitude of E changes upon reversal. This changes the
resonance frequency of the |0〉 → |x〉 transition due to the
Stark shift, leading to a nonzero {E · δ} value, which can
be interpreted as a detuning of the light correlated with the
direction of E. The combination of these two effects results
in an interferometer phase correlating with the direction of
E, which is the same signature as that of the eEDM. This
effect has been observed in an eEDM measurement using YbF
[7,17], which is the basis for this paper. Similar effects have
also been observed in the ThO eEDM experiments [8,9].

III. SINGLE-PHOTON RF PULSES

We first consider a single-photon process for state prepara-
tion and readout. Typically, this is done with two rf π pulses,
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FIG. 2. A sketch of the rf magnetic field in the x-y plane. The
parameters ε and θrf defining the experimental imperfections are
discussed in the text.

each polarized along x̂, which transfer population between |0〉
and |x〉. We introduce imperfections to the rf polarization with
two transformation matrices, P(ε) and R(θrf ), given by

P(ε) = 1√
1 + ε2

(
1 −iε
iε 1

)
,

R(θrf ) =
(

cos θrf − sin θrf

sin θrf cos θrf

)
. (2)

When acting on a linearly polarized field, P(ε) introduces
an ellipticity, with −1 � ε � 1 and where the limits corre-
spond to circular polarizations of opposite handedness. R(θrf )
rotates the axes of the ellipse about the z axis by the angle θrf .
Since P(ε) and R(θrf ) commute, the order in which they are
applied is unimportant.

The imperfect rf polarization in the experiment is ex-
pressed as Brf = Brf cos(ωt + α)ê, with ê = P(ε)R(θrf )x̂. We
plot the resulting polarization ellipse in Fig. 2. This rf field,
rather than coupling |0〉 to |x〉, couples |0〉 to |x′〉, which is

|x′〉 = 1√
1 + ε2

[(cos θrf − iε sin θrf ) |x〉

+ (iε cos θrf + sin θrf ) |y〉]

= i√
2(1 + ε2)

[
e−iθrf (1 + ε) |−1〉 + eiθrf (−1 + ε) |+1〉 ]

.

(3)

We associate ε with a population imbalance between the
|±1〉 states and the angle θrf with a relative phase between
them. The latter imperfection has the same effect as a back-
ground magnetic field, so we neglect this for now.

We allow different frequencies and ellipticities for the two
rf pulses and label these with an index of k = 1 and 2. In
the basis {|0〉 , eiωkt |−1〉 , eiωkt |+1〉}, and in the rotating-wave
approximation, the Hamiltonian describing the interaction of
the molecule with E, B, and Brf is

Hrf,k = h̄

⎛
⎜⎜⎜⎜⎝

0 �(1−εk )eiα

2
√

2
�(1+εk )eiα

2
√

2

�(1−εk )e−iα

2
√

2
−δk − ωB 0

�(1+εk )e−iα

2
√

2
0 −δk + ωB

⎞
⎟⎟⎟⎟⎠, (4)

where � = −〈±1| μ∓1 |0〉 Brf/h̄ is the Rabi frequency, μp are
the spherical components of the magnetic moment operator,

FIG. 3. Origin of the asymmetry correlated with the switches B̂
and δ̂2. Panels (a)–(d) show the relevant rf transitions (blue lines) in
the state detection step of the experiment for different switch values
of B̂ and δ̂2. The thicknesses of the lines are indicative of the strengths
of the rf transitions; here we illustrate the case where ε > 0. The
detuning of each transition is given, where δ± = |δ ± ωB|, δ is the
applied detuning of the rf pulse, and h̄ωB is the Zeeman shift.

δk = ωk − ω0 is the detuning, and h̄ωB = μB is the Zeeman
shift of the |±1〉 states. The Hamiltonian describing the evo-
lution in the static fields between the the two rf pulses, Hstatic,
is the same as Hrf,1 with � = 0.1

The final state of a molecule that starts in |0〉 is given by

|ψ f 〉 = Urf,2(τrf , π̂π/2)Ustatic(τ, 0)Urf,1(τrf , 0) |0〉 , (5)

where Um(t, α) = e−iHmt/h̄ is the propagator. The probability
of measuring the molecule in F = 0 is p0 = | 〈0|ψ f 〉 |2, and
the asymmetry is A = 2p0 − 1. We introduce four switches:
B̂, which reverses the direction of the B field; δ̂1 and δ̂2, which
change the sign of a small, intentional detuning of magnitude
δ applied to pulse k; and π̂ , which changes the phase of the
second rf pulse between ±π/2. This last switch removes the
effects of unwanted coherences between the |0〉 and |±1〉
states. For every combination of switch states (B̂, δ̂1, δ̂2, π̂ ),
we calculate 〈0|ψ f 〉 and expand it to lowest order in the small
quantities ε1, ε2, δ/�, and ωB/�. From this, we calculate the
asymmetry values and finally the channel values using Eq. (1).

A. Simple example — Only the second pulse is imperfect

As a simple example, we consider the situation where the
first pulse has no polarization imperfection or detuning step,

1Here, we have used the dressed-state basis defined for ω1.
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δ1 = 0 and ε1 = 0, while the second pulse has nonzero ellip-
ticity ε2 and detuning step δ. Figures 3(a)–3(d) illustrate the
energy levels and rf transitions for the four different combina-
tions of B̂ and δ̂2 in this simple experiment. There are equal
populations in the |±1〉 states immediately before the second
rf pulse. The population transferred to |0〉 depends on the Rabi
frequency and the magnitude of the detuning. In Fig. 3(a), the
σ+ transition has amplitude �(1 + ε) and the detuning δ− ≡
|δ − ωB|, whereas the σ− transition has amplitude �(1 − ε)
and the detuning δ+ ≡ |δ + ωB|. Here, the stronger (weaker)
transition has the smaller (larger) detuning. The situation is
not reversed symmetrically in Fig. 3(b), where the stronger
transition now has the larger detuning, and vice versa. This
leads to a difference in population transferred to |0〉 and a
change in asymmetry between Figs. 3(a) and 3(b). The cases
in Figs. 3(c) and 3(d) are the same as those in Figs. 3(b) and
3(a), respectively. With reference to these pictures, the value
of the B · δ2 channel is

{B · δ2} = 1
4 (A(a) − A(b) − A(c) + A(d) ),

which is nonzero when ε 	= 0 because of this difference in
population transfer from the |±1〉 states. When ε = 0, both
σ± transitions have the same amplitude, and the asymmetry is
the same in all four cases.

Following the procedure outlined in Sec. II to calculate the
channel values, we find

{B · δ2} = 4ε2ωBδ

�2
, (6)

which is to lowest order linear in all three small quantities ε2,
δ/�, and ωB/�. Using Eq. (1) together with A = −2B̂φ, we
can write

{B · δ2} = 1

N

N∑
i=1

−2δ̂2,iφi = −2φδ2 , (7)

showing that, despite its origin as an imbalance of population
transfer, {B · δ2} can be interpreted as a phase that correlates
with the detuning of the second rf pulse which we write as φδ2 .
This interpretation is useful because its value,

φδ2 = −2ε2ωBδ

�2
,

can easily be compared to other phases in the experiment (e.g.,
the one due to the eEDM).

Figure 4 shows a numerical calculation of the asymmetry
as a function of the magnetic field for this experiment, where
we have set ε2 = 0.1 and δ/(2π ) = ±5 kHz, which are real-
istic parameters for a molecular beam experiment. The insets
show the values of the asymmetry at the four switch states.
We see that, when there is ellipticity, changing the sign of
the rf detuning shifts the interference curve, mimicking an
interferometer phase shift.

This effect leads to a false eEDM when combined with an
E-correlated rf detuning, δE . This arises if the magnitude of E
changes when E reverses, since this changes the Stark shift of
the rf transition. We can include this in our model by adding
the E switch to the model and including the term ÊδE in the rf
detuning. This immediately leads to a phase which correlates

FIG. 4. Asymmetry plotted against the phase produced by the
B field, with ε1 = 0, ε2 = 0.1, and �/(2π ) = 0.1 MHz. The blue
(dashed) and red (dotted) curves have δ/(2π ) = ±5 kHz, respec-
tively. Black solid circles show the values of the switches (B̂, δ̂2).

with E :

φE = −2ε2ωBδE

�2
. (8)

Fortunately, δE also appears in the E · δ2 channel, which gives
the asymmetry correlated with Ê and δ̂2,

{E · δ2} = −2δEδ

�2
. (9)

It follows that the systematic error can be corrected using the
measured values of {B · δ2} and {E · δ2}. Using Eqs. (6)–(9),
we see that the required correction to the phase is

φE ,corr = − �2

4δ2
{B · δ2}{E · δ2}, (10)

where we only need to supply the known parameters � and
δ. While this correction removes the systematic error, it will
tend to increase the uncertainty of the measurement.

B. Full interferometer

Now, we extend the simple example by including the
ellipticity and frequency step of both rf pulses. The phases
correlated with the detuning of each rf pulse are found to be

φδ1 = −1

2
{B · δ1} = −ωBδ

�2
[2ε1 + (2π − 4)ε2],

φδ2 = −1

2
{B · δ2} = −ωBδ

�2
[2ε2 + (2π − 4)ε1]. (11)

We note that the phase correlating with the detuning of pulse
1 has two terms, one proportional to the ellipticity of pulse 1
and the other proportional to the ellipticity of pulse 2. The
two terms have similar coefficients, since 2π − 4 is quite
close to 2. The same holds for the phase correlating with
the detuning of pulse 2. In order to check these analyti-
cal first-order expressions, we compare to numerical results
obtained by integrating the time-dependent Schrödinger equa-
tion for molecules evolving through the interferometer, using
the Hamiltonian given by Eq. (4). The numerical results are
shown in Fig. 5, where we plot the dependence of φδi on δ, ωB,
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FIG. 5. Comparison of numerical and analytical predictions for
the phase correlated with the detunings δk of the rf pulses k = 1
(blue) and k = 2 (red). The numerical results are given as solid
circles and the analytical expressions, Eqs. (11), are plotted as
solid lines. The parameters, when not varied, are δ/(2π ) = 5 kHz,
ωB/(2π ) = 100 Hz, ε1 = 0.1, and �/(2π ) = 0.1 MHz.

ε1, and �, and we have set ε2 = 0. We see that the numerical
results agree well with Eq. (11).

As with the simple case considered earlier, the ellipticities
lead to a systematic error when combined with an imperfect
E-reversal, analogous to Eq. (8). Once again, this systematic
error can be corrected using other measured channels:

φE ,corr = − �2

4δ2
({B · δ1}{E · δ1} + {B · δ2}{E · δ2}). (12)

C. Parameter imperfections

There is another effect that causes an apparent rf-detuning-
correlated interferometer phase, φδi , which has nothing to do
with elliptical polarizations, but instead is caused by two im-
perfections. The first is a “background” interferometer phase,
φbg, that does not reverse with the switch B̂, which arises due
to a nonzero background magnetic field or a difference in the
polarization angle θrf between the two pulses. The second is
an rf detuning offset �i that does not reverse with δ̂i. These
two imperfections separately produce a signal in the channels
{B} and {δi}, and their combination also results in a signal in
{B · δi}. Expanding to lowest order in the small quantities φbg,
�i/�, and δi/�, we obtain

{B} = −2φbg,

{δi} = −2�iδ

�2
,

{B · δi} = −2φδi = 4φbg
�iδ

�2
= {B}{δi}. (13)

This leads to a potential systematic effect, in the same way as
an elliptically polarized rf field does. However, this effect can
be reduced to a negligible value by measuring the channels
{B} and {δi} and feeding back to the applied magnetic field
and rf frequencies to make them zero. Since all channels
are measured with comparable uncertainty, and the effect is

FIG. 6. A two-photon optical transition from |0〉 to |x〉. The op-
tical field connecting |0〉 and |e〉 (red arrow) is polarized along ẑ and
has Rabi frequency �0. A second optical field connects |e〉 to |x〉
(blue arrows) and has Rabi frequency �1. Nominally, the latter is
polarized along x̂ but some nonzero ellipticity ε might be present,
which changes the relative amplitudes of the transitions to |±1〉.

proportional to the product of two channels that are both
adjusted to zero, the uncertainty in the systematic error is
negligible.

IV. TWO-PHOTON OPTICAL PULSES

Another way to connect the states of interest is to use a two-
photon optical process via an intermediate state, |e〉, which
we take to be an mF = 0 state. One pulse at frequency ω0

couples |0〉 ↔ |e〉 and is polarized along ẑ, while the other at
frequency ω1 couples |±1〉 ↔ |e〉 and is nominally polarized
along x̂, but may have some ellipticity ε, defined in a way
similar to that of the rf pulses. The energy levels and optical
transitions are shown in Fig. 6, where we have defined �0 and
�1 as the Rabi frequencies of the two optical pulses, ωB as
the Zeeman shift due to a magnetic field, � as the one-photon
detuning, and δ as the two-photon detuning.

The Hamiltonian describing the system illustrated in Fig. 6
is

HRaman = h̄

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 �0
2

0 −δ − ωB 0 −�1(1+ε)
2
√

2

0 0 −δ + ωB
�1(1−ε)

2
√

2

�0
2 −�1(1+ε)

2
√

2
�1(1−ε)

2
√

2
−�

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(14)
where the rotating-frame basis used is {|0〉 , ei(ω0−ω1 )t |−1〉 ,

ei(ω0−ω1 )t |+1〉 , eiω0t |e〉}.
If |e〉 has a short lifetime, which it often does, it is desirable

to minimize the excited-state population to avoid spontaneous
emission. This can be done either by making � very large
compared to all other relevant frequencies or by using stimu-
lated Raman adiabatic passage (STIRAP).

A. Raman pulses

Provided we are interested in dynamics on a timescale
that is long compared to the excited-state lifetime, we can
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assume that the excited-state amplitude (ae) is damped to
equilibrium and adiabatically eliminate the excited state by
setting ȧe(t ) = 0 in the time-dependent Schrödinger equa-
tion for Hamiltonian (14). Calculating the steady state of ae

and then substituting back into the equations for the other
ground-state amplitudes, we reduce the dynamics to that of
a three-level system.

The effective Hamiltonian is

Heff = h̄

⎛
⎜⎜⎜⎝

−�R
2

�R (1+ε)
2
√

2
−�R (1−ε)

2
√

2

�R (1+ε)
2
√

2
−δ − ωB − �R (1+ε)2

4
�R (1−ε2 )

4

−�R (1−ε)
2
√

2
�R (1−ε2 )

4 −δ + ωB − �R (1−ε)2

4

⎞
⎟⎟⎟⎠, (15)

where we have set �0 = �1 = � and made the substitution
�R = �2/(2�), where �R is the effective Rabi frequency.
This can be compared to Eq. (4) for rf pulses except that
now the state energies have acquired ac Stark shifts and the
states |±1〉 are coupled together by a two-photon coupling
via |e〉, with strength �R(1 − ε2)/4. The ellipticity parameter
ε also has its sign reversed, because the σ+ component of
the light now addresses the |−1〉 state rather than the |+1〉
state.

As before, we analytically solve for the asymmetry in the
full interferometer using Eq. (5) but now substituting Heff for
Hrf . The two optical fields are applied simultaneously for a
time τR chosen such that �RτR = π , implementing Raman π

pulses. We carry out the same lowest-order series expansion
of the wave function in order to obtain an approximate expres-
sion for the phase correlated with the two-photon detuning δ.
We find

φδ1 = ωBδ

�2
R

[
2ε1 +

(
π2

4
− 1

)
ε2

]

= 4�2ωBδ

�4

[
2ε1 +

(
π2

4
− 1

)
ε2

]
,

φδ2 = ωBδ

�2
R

[
2ε2 +

(
π2

4
− 1

)
ε1

]

= 4�2ωBδ

�4

[
2ε2 +

(
π2

4
− 1

)
ε1

]
, (16)

which is similar to Eq. (11). The prefactor for ε2 in the ex-
pression for φδ1 is slightly smaller here in the two-photon case
compared to the one-photon case and instead of � we have
the effective Rabi frequency �R in the denominator.

We also carry out numerical simulations by solving the
time-dependent Schrödinger equation for this system. Fig-
ure 7 compares the results of these simulations to the
lowest-order expressions of Eq. (16). Unless otherwise stated,
we have used a Rabi frequency of � = 2π × 10 MHz and a
one-photon detuning of � = 2π × 1 GHz such that the ef-
fective Rabi frequency is �R = 2π × 50 kHz. We see good
agreement between numerical and analytical results, but with
some significant deviations when � is too small or � is too
large so that �R becomes comparable with δ. The plots can
be compared to those in Fig. 5 where the Rabi frequency
was � = 2π × 100 kHz, showing similar magnitudes of the
detuning-correlated phase induced by the imperfect polariza-
tion of the light fields.

B. Stimulated Raman adiabatic passage

Another way to transfer population between |0〉 and |x〉 is
to use STIRAP. When ωB = 0 and δ = 0, Hamiltonian (14)
has two degenerate dark eigenstates,

|d1〉 = (1 − ε)√
2

|−1〉 + (1 + ε)√
2

|+1〉 ,

|d2〉 = �1

�0
|0〉 + (1 + ε)√

2(1 + ε2)
|−1〉 − (1 − ε)√

2(1 + ε2)
|+1〉

= cos θ |0〉 + sin θ |x′′〉 , (17)

where

|x′′〉 = 1√
2(1 + ε2)

[(1 + ε) |−1〉 − (1 − ε) |+1〉]

and tan θ = �0/�1. We have not normalized these states. |d2〉
coincides with |0〉 in the limit where �0 → 0, and coincides

FIG. 7. Comparison of numerical (solid circles) and analytical
[lines, Eqs. (16)] predictions for φδk , where δk is the two-photon
detuning of the optical pulses used for state preparation (k = 1,
in blue) and detection (k = 2, in red). When not varied, the rel-
evant parameters used are � = 2π × 10 MHz, � = 2π × 1 GHz,
δ = 2π × 5 kHz, ωB = 2π × 100 Hz, ε1 = 0.1, and ε2 = 0.
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FIG. 8. STIRAP with two time-dependent optical fields.
(a) Pulse sequence showing amplitudes of the two optical
fields. (b) State population transfer from |0〉 to |x〉, with
�0 = �1 = 2π × 10 MHz.

with |x′′〉 [equivalent to |x′〉 in Eq. (3)] as �1 → 0. Adiabatic
evolution between these two limits sweeps θ from 0 to π/2,
transforming the state from |0〉 to |x′′〉 while remaining in the
dark state at all times. For the simulations presented here,
this adiabatic sweep is achieved using the Gaussian pulse
sequence shown in Fig. 8(a). An example of the population
transfer is shown in Fig. 8(b), where we have used a Rabi fre-
quency of � = 2π × 10 MHz and set � = δ = ωB = ε = 0.

We are interested in the outcome when there are imper-
fections. First we note that |d2〉 exists irrespective of ε and
adiabatic following of the dark state does not depend on ε—it
only influences the state that is reached at the end. Second,
we note that the dark states and the adiabatic evolution do
not depend on �, so we expect the experiment to be highly
insensitive to this parameter. Third, we find that when δ 	= 0,
|d1〉 remains a dark eigenstate (with eigenvalue −δ) but |d2〉 is
no longer an eigenstate of the system. As θ slowly increases,
the initial state evolves adiabatically towards |x′′〉 but even-
tually reaches an avoided crossing. If δ is small enough, this
avoided crossing is so small that it will be traversed diabati-
cally, and the target state |x′′〉 will be reached. As δ increases
the avoided crossing opens up and will eventually be traversed
adiabatically, returning the system to |0〉. The same happens
when � increases or when � decreases. Here, we consider
imperfections that are small enough for the traversal to be
strongly diabatic. In this regime, the probability of reaching
the final state is robust to the values of the parameters, and we
may expect the phases, φ� and φδ , that correlate with the one-
and two-photon detunings, � and δ, to be small. We have not
found analytical expressions for these phases, so we investi-
gate them by solving the Schrödinger equation numerically.
The sequence is similar to those studied above—an initial
STIRAP that transfers |0〉 to |x′′〉, a period of free evolution
with a phase φB close to ±π/4, and then a second STIRAP
that in the ideal case is the reverse of the first. Spontaneous
emission has little influence because the excited-state popula-
tion is so small, and so it is not included in the model.

Figure 9 shows results where only the first STIRAP has
ellipticity (ε2 = 0). The left column shows how φδi depends
on the experimental parameters, and the right column shows
the same for φ�i . For each plot, the data for k = 1 have been
magnified by a factor of 100. The first thing we notice is that
the phase imperfections from STIRAP are much smaller than
those found for the single-photon or Raman processes. The
phases correlating with the detunings of the first pulse, φδ1 and
φ�1 , are about 104 times smaller, while φδ2 and φ�2 are about

FIG. 9. Numerical simulation results for STIRAP, showing the
dependence of the phase on various parameters. The left (right)
column shows results for the phase associated with the two-photon
(one-photon) detuning δk (�k) of the optical fields used for state
preparation (k = 1, in blue) and detection (k = 2, in red). For all
plots, the points associated with pulse 1 (in blue) are magnified by
a factor of 100. The ellipticity of the second set of pulses has been
set to zero, ε2 = 0, and the other parameters (when not varied) are
δ = 2π × 5 kHz, � = 2π × 1 MHz, ωB = 2π × 100 Hz, ε1 = 0.1,
and � = 2π × 10 MHz.

102 times smaller. Since they dominate, we focus on the latter.
We find that φδ2 depends linearly on δ, ωB, and ε1. It does
not depend on � and has very little dependence on � over
the range explored here (�/2π between 10 and 100 MHz).
Similarly, φ�2 depends linearly on �, ωB, and ε1, but does not
depend on δ. It has a 1/�2 dependence on the Rabi frequency.

V. EXPERIMENTAL STUDY

To explore these polarization-dependent systematic effects
experimentally, we conducted experiments with single-photon
rf pulses using the apparatus illustrated in Fig. 1 and described
in more detail in Ref. [18]. Although we had no method to
control the ellipticities ε1 and ε2, we were able to measure
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FIG. 10. Experimental measurements of the interferometer phase
correlated with rf frequency. The left (right) column shows the vari-
ation of the phase correlated with rf pulse 1 (2) with parameters δ,
ωB, and 1/�2. When not varied, the parameter values are δ/(2π ) =
6.75 kHz, ωB/(2π ) = 156 Hz, and �/(2π ) = 50 kHz. The solid
lines are linear fits to the data, and the dashed lines and shading
indicate 2σ confidence bands.

their values. To do this, we applied static electric and magnetic
fields of E = 10 kV/cm and B = 26 μT along z so that the
σ± transitions were separated by several times the rf pulse
linewidth. We drove resonant Rabi oscillations by scanning
the rf power and thus determined the power required to drive a
π pulse on each of the two transitions. The ratio of the powers
gives the ellipticity. Fluctuations in the measured ellipticity
were significantly larger than the uncertainty of any individual
measurement. Accounting for these fluctuations, we estimate
ε1 = 0.04(2) and ε2 = −0.003(2). Next, with B reduced to
its normal (small) value, we collected eEDM data and de-
termined φδ1(2) from the {B · δ1(2)} channels as described in
Sec. II.

Figure 10 presents our measurements of φδ1,2 versus the
size of the rf step, δ; the applied magnetic field, expressed
as ωB = μB/h̄; and the Rabi frequency �. The magnetic field
values were chosen to satisfy ωBτ = nπ/4, with n being an
odd integer. The rf pulse length (τrf ) was varied together with
� to satisfy �τrf = π . We see from Fig. 10 that φδ1(2) depends
linearly on δ, ωB, and 1/�2, exactly as predicted in Eq. (11).
Table I gives the gradients of linear fits to these data and
compares them to the gradients expected from Eq. (11) and
our measurements of ε1 and ε2. The gradients with respect
to ωB agree with the expected values. However, the gradients
with respect to δ and 1/�2 are much larger than expected.
Furthermore, the y intercepts of the linear plots against ωB

in Fig. 10 are nonzero. These observations are all consistent
with the hypothesis of two separate contributions to φδ—the
one given by Eq. (11) plus a second effect that is proportional

TABLE I. Measured and calculated gradients of the phases φδi

with respect to δ, ωB, and 1/�2. The measured gradients, with
their 1σ uncertainties, are extracted from the linear fits in Fig. 10,
while the calculated gradients use the known parameter values and
measured rf ellipticities.

Measured Calculated, Eq. (11)

Gradient Units i = 1 i = 2 i = 1 i = 2

∂φδi
∂ (δ/2π ) μrad/kHz −19(6) −47(7) −5(3) −5(3)

∂φδi
∂ (ωB/2π ) μrad/Hz −0.27(3) −0.34(3) −0.20(11) −0.23(12)

∂φδi
∂ (2π/�)2 μrad MHz2 −0.27(4) −0.95(4) −0.08(4) −0.09(5)

to δ/�2 but independent of ωB. This second effect could
potentially be caused by the combination of an offset detuning
(�i) and an interferometer phase that does not reverse with B̂
(φbg), as can be seen from Eq. (13). However, this effect has
already been eliminated through measurement of the {B} and
{δi} channels, as described in Sec. III C. We have to conclude
that either our method of eliminating the effect described by
Eq. (13) is inaccurate or there is yet another contribution to φδ

that is not revealed by the analysis presented in this paper.

VI. CONCLUSIONS

Electron EDM measurements use radiation to prepare and
read out the spin state. We have studied how ellipticity in the
polarization of this radiation leads to an interferometer phase
that correlates with the detuning from resonance. An imper-
fect electric field reversal changes the detuning via the Stark
shift. Together, these two effects produce an E -correlated
phase that is a systematic error in the eEDM measurement.
This systematic error is linear in the ellipticity, the Zeeman
splitting, and the E -correlated detuning, and scales inversely
as the square of the Rabi frequency. The phase correlating
with detuning and the change in detuning correlating with E
are imperfections that are typically measured automatically
in an eEDM measurement. Those measurements can be used
to minimize the imperfections and to correct the residual
systematic error when imperfections remain. We have found
approximate analytical expressions for the systematic error
and its correction in the case where the state preparation and
readout use a coherent single-photon process or a Raman
process. Numerical simulations confirm the accuracy of these
expressions.

We have also studied this type of systematic error exper-
imentally, using rf pulses for state preparation and readout.
We find evidence for an interferometer phase that correlates
with rf detuning and is consistent with the ellipticity-induced
effect. However, there is a second effect that produces a
phase correlated with detuning—it is distinguishable from
the ellipticity effect since it does not depend on the Zeeman
splitting. We have not yet established the source of this second
effect.

When STIRAP is used for state preparation and readout,
the systematic error is found numerically to be about 2 orders
of magnitude smaller. Thus, STIRAP not only offers the ben-
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efits of a robust, all-optical approach to state manipulation,
but also provides relative immunity to an important class of
systematic error.
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