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Correlation functions of the Bjorken flow in the holographic Schwinger-Keldysh approach
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One of the outstanding problems in the holographic approach to many-body physics is the explicit computation
of correlation functions in nonequilibrium states. We provide a new and simple proof that the horizon cap
prescription of Crossley-Glorioso-Liu for implementing the thermal Schwinger-Keldysh contour in the bulk
is consistent with the Kubo-Martin-Schwinger periodicity and the ingoing boundary condition for the retarded
propagator at any arbitrary frequency and momentum. The generalization to the hydrodynamic Bjorken flow is
achieved by a Weyl rescaling in which the dual black hole’s event horizon attains a constant surface gravity
and area at late time although the directions longitudinal and transverse to the flow expand and contract,
respectively. The dual state’s temperature and entropy density thus become constants (instead of the perfect
fluid expansion) although no time-translation symmetry emerges at late time. Undoing the Weyl rescaling, the
correlation functions can be computed systematically in a large proper time expansion in inverse powers of the
average of the two reparametrized proper time arguments. The horizon cap has to be pinned to the nonequilibrium
event horizon so that regularity and consistency conditions are satisfied. Consequently, in the limit of perfect fluid
expansion, the Schwinger-Keldysh correlation functions with space-time reparametrized arguments are simply
thermal at an appropriate temperature. A generalized bilocal thermal structure holds to all orders. We argue
that the Stokes data (which are functions rather than constants) for the hydrodynamic correlation functions can
decode the quantum fluctuations behind the horizon cap pinned to the evolving event horizon, and thus the initial
data.

DOI: 10.1103/PhysRevResearch.5.043230

I. INTRODUCTION

A. Motivation and aims

One of the outstanding issues in the holographic duality,
which maps strongly interacting quantum systems to semi-
classical gravity in one higher dimension, is to understand
the dictionary in real time. The applications of the holo-
graphic approach to many-body physics are especially limited
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without explicit and implementable prescriptions for com-
puting out-of-equilibrium correlation functions. Even in the
weak-coupling limit, these correlation functions are funda-
mental tools for studying decoherence and thermalization,
e.g., to understand how the commutator and the anticom-
mutator evolve to satisfy the fluctuation-dissipation relation
leading to the emergence of the Kubo-Martin-Schwinger
(KMS) periodicity at an appropriate temperature, and how
the occupation numbers of quasiparticles equilibrate or evolve
to new fixed points [1–4]. These correlation functions are
actually indispensable for understanding dynamics far from
equilibrium in the strong-coupling limit where the system
cannot be described by quasiparticles. Although one can com-
pute the one-point functions such as the energy-momentum
tensor in real time using the correspondence between time-
dependent geometries with regular horizons and states in the
dual theory, with the remarkable fluid-gravity correspondence
[5–8] providing a primary example and numerical relativity
[9] providing a powerful tool, an explicit computation of a
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generating functional for hydrodynamic Schwinger-Keldysh
(SK) correlation functions has not been achieved yet.1

The object of interest is the generating functional,

exp(iW [J1, J2])

= Tr

(
ρ̂0Tc exp

(
−i
∮

dt
∫

dd−1xJ (t, x)Ô(t, x)

))
, (1)

in the dual field theory, where ρ̂0 denotes the initial density
matrix,

∮
the closed time Schwinger-Keldysh contour com-

posed of the forward and backward arms—
∮ = ∫∞

−∞ + ∫ −∞
∞ ,

where the source J (t, x) is specified such that it is J1(t, x)
and J2(t, x) on the forward and backward arms of the contour,
respectively, and Tc denotes contour ordering. Formally, we
can rewrite the density matrix as

ρ̂0 =
∫

[Dφ1][Dφ2]ρ0(φ1, φ2)|φ1〉〈φ2| (2)

in terms of a basis |φ〉 of field configurations and construct the
kernel

K (φ1, φ2; J1, J2)

= 〈φ2|Tc exp(−i
∮

dt
∫

dd−1xJ (t, x)Ô(t, x))|φ1〉. (3)

Then the functional W [J1, J1] can be obtained from

exp(iW [J1, J2])

=
∫

[Dφ1][Dφ2]ρ0(φ1, φ2)K (φ1, φ2; J1, J2). (4)

When ρ̂0 is the thermal density matrix, this computation sim-
plifies drastically. One needs to just add an appendage of
length T −1 at the end of the closed real-time contour parallel
to the negative imaginary axis and impose periodic boundary
conditions on the full contour implementing Kubo-Martin-
Schwinger (KMS) periodicity [12].

One can also expect a similar simplification for the Bjorken
flow which provides the simplest example of the evolution of
an expanding system on the forward light cone (see Sec. III A
for details). The state is assumed to have boost invariance
and also translational and rotational invariance along the
transverse plane so that the energy-momentum tensor can be
expressed only in terms of the energy density Tττ = ε(τ ) via
Ward identities, where τ = (t2 − z2)1/2 is the proper time of
an observer comoving with the flow and z being the longitu-
dinal coordinate along which the expansion happens. (Here
we use units where c = 1.) At late time, ε(τ ) is described by

1A limited number of observables can still be computed analyt-
ically or numerically. The equal-time two-point functions can be
computed via the geodesic approximation when the operator has
a large scaling dimension, even out of equilibrium. The out-of-
equilibrium retarded correlation function can also be computed by
implementing linear causal response appropriately—see Ref. [10] for
a general prescription. Furthermore, equal-time Green’s function can
be computed for operators with large anomalous scaling dimensions
in the geodesic approximation and has been used to understand
thermalization [11].

hydrodynamics and thus it reaches a perfect fluid expansion,
so that

ε(τ ) ≈ ε0

(τ0

τ

) d
d−1

. (5)

In the hydrodynamic regime, it can be described by a single
constant parameter, namely

μ := ε0τ
d

d−1
0 . (6)

The full hydrodynamic series for ε(τ ) in powers of τ− d−2
d−1

(essentially a derivative expansion) is given in terms of μ

(which is determined by initial conditions) and the transport
coefficients which are determined by the fundamental micro-
scopic theory. In this case, it is natural to ask whether there can
be a simpler computation of the Schwinger-Keldysh partition
function of W [J1, J2] in the hydrodynamic limit, since just like
the thermal case, the state can be essentially captured by a
single parameter.

More generally, we would expect that general methods for
computing W [J1, J2] would exist in the hydrodynamic regime
where the energy-momentum tensor and conserved currents
are described only by the hydrodynamic variables, namely, the
four-velocity uμ(t, x), the energy density ε(t, x) [or equiva-
lently the temperature T (t, x)], etc., and we would not require
the knowledge of the detailed (off-diagonal) matrix elements
ρ(φ1, φ2) of the state or the kernel K (φ1, φ2; J1, J2) explic-
itly. In fact, W [J1, J2] is related to the generalization of the
thermodynamic free energy to hydrodynamics via Legendre
transform, and the latter especially in the context of macro-
scopic space-time configurations of conserved currents is also
known as the large deviation functional [13] which can be
computed in many models studied in classical nonequilibrium
statistical mechanics.2

The primary aim of this work is to show how the explicit
computation of W [J1, J2] can be achieved by holographic
methods in the hydrodynamic limit of the Bjorken flow. We
also present concrete steps for understanding how to go be-
yond the hydrodynamic limit and recover the initial state.

B. A brief historical review

The first major advance in understanding thermal real-time
correlation functions in holography was the Son-Starinets
prescription for computing the retarded correlation function,
according to which the ingoing boundary condition at the
horizon implements the causal linear response in the classical
gravity (large N and infinite strong coupling) approximation
[15]. Using the Chesler and Yaffe method for causal time evo-
lution in the bulk [9], this approach was suitably generalized

2The large deviation functional gives the probability for a macro-
scopic space-time profile of a conserved charge or current density
which does not necessarily satisfy the hydrodynamic equations. In
a quantum system, the off-diagonal matrix elements in the basis of
macroscopic field configurations for the conserved charges and cur-
rents eventually decohere, but the decoherence would be of interest.
See Ref. [14] for a recent discussion on the possibility of a quantum
generalization of large-deviation functional methods.
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to compute the out-of-equilibrium retarded correlation func-
tion in holography [10]. The first concrete implementation of
the Schwinger-Keldysh contour in holography is due to Son
and Herzog utilizing the eternal black hole geometry [16].
The two boundaries of the eternal black hole were shown to
provide the forward and backward arms of the Schwinger-
Keldysh closed time contour with the backward arm displaced
by −iβ/2 (note β = T −1) along the imaginary axis.

The most concrete prescription for real-time gauge-gravity
duality for general initial states is due to Skenderis and van
Rees [17,18]. This, however, requires detailed understanding
of the state in terms of semiclassical field configurations of
dual gravity and is best defined for states which can be con-
structed using Euclidean path integrals. In this prescription,
one explicitly constructs the bulk geometry corresponding
to the boundary Schwinger-Keldysh contour with specified
sources and extends data on the field theory contour into
the bulk in an appropriate manner. It is, however, not easy
to apply this approach to realistic computations for generic
initial states. Furthermore, as mentioned above, we would
expect a simpler approach in the hydrodynamic regime. We
will compare this approach with ours in Sec VI.

Our method is based on generalizing the recently proposed
horizon cap prescription due to Crossley, Glorioso, and Liu
(CGL) [19] for the static black brane dual to the thermal state.
Here the Schwinger-Keldysh contour is realized by a horizon
cap, in which the ingoing Eddington-Finkelstein radial coor-
dinate goes around the horizon in the complex plane in a little
circle of radius ε (not to be confused with the energy density)
before going back to the real axis and reaching the second
boundary. Thus the two arms of the Schwinger-Keldysh con-
tour at the two boundaries are connected continuously in the
bulk through the bulk radial contour. The horizon cap imple-
ments the appropriate analytic continuation of bulk fields from
one arm of the bulk geometry to the other with the sources J1

and J2 specified independently at the two boundaries.

C. Summary of the results

Our first result is the demonstration that the CGL horizon
cap prescription reproduces both the KMS periodicity and the
ingoing boundary-condition prescription of Son and Starinets
(needed to obtain the retarded correlation function from causal
response) in thermal equilibrium. Earlier in Ref. [19], both of
these were demonstrated only up to quadratic orders in the
frequency. Our proof relies on a simple matrix factorization
of thermal correlation functions which is reproduced by the
holographic method for extracting the correlation function of
a scalar operator in the field theory via the on-shell action of
the dual bulk scalar field whose mass is determined by the
scaling dimension of the operator.3

Our primary tool for extending the CGL prescription into
the (conformal) hydrodynamic Bjorken regime is Weyl rescal-

3The most important ingredient for realization of the matrix factor-
ization is that only the terms which are obtained from the product
of an ingoing mode with an outgoing mode can contribute to the
quadratic on-shell action of the free bulk scalar field minimally
coupled to gravity.

ing that maps the asymptotic perfect fluid expansion to a
flow in which the temperature and entropy density become
constant at late time in a nontrivial background metric without
any timelike Killing vector. This Weyl transformation can be
lifted to a bulk diffeomorphism [20,21] in which the dual
black hole’s event and apparent horizon coincide at a fixed
radial location at a very late proper time. The area and surface
gravity of the horizons, and therefore the entropy density and
the temperature of the dual fluid, remain constant at late time,
but the horizons shrink in the directions transverse to the
flow and expand in the longitudinal direction. In the absence
of any timelike Killing vector, the late-time behavior of the
Weyl transformed Bjorken flow is not thermal although the
temperature and energy density become constant.

The requirement that the dual geometry has a regular future
black-hole horizon necessitates viscous corrections to the per-
fect fluid Bjorken flow, which implies the same for the Weyl
transformed version mentioned above since the bulk dual of
the latter is obtained simply via bulk diffeomorphism. Fur-
thermore, bulk regularity determines the precise values of all
transport coefficients of the holographic theory order by order
in the derivative expansion (equivalent to the large proper time
expansion) with the Bjorken flow giving a special case of
the fluid-gravity correspondence [6]. The large proper time
expansion of the holographic Bjorken flow has been worked
out to very high orders [22]. We discuss the bulk dual of the
Bjorken flow and its Weyl transformed version in Sec. III in
detail.

We want to emphasize that the Weyl rescaling (and hence
the dual bulk diffeomorphism) is determined purely by the late
perfect fluid flow regime that is mapped to that of a constant
temperature in a nontrivial background metric in the field
theory (which is also the boundary metric of the dual black
brane geometry after the bulk diffeomorphism) as mentioned
above. The Weyl transformation and consequently the Weyl
rescaled background metric of the field theory do not receive
any correction at first and higher orders in the derivative (i.e.,
large proper time) expansion.

As a result of the bulk diffeomorphism which implements
the Weyl transformation of the dual Bjorken flow, the Klein-
Gordon equation for a bulk scalar field with arbitrary mass can
be mapped to that of a static black brane at late proper time. In
this map, the frequency needs to be appropriately scaled, and
the momenta in the static black brane geometry are identified
with comoving longitudinal and transverse momenta.4 For
vanishing momenta, this reproduces the result of Janik and
Peschanski [23].

The utility of this map to the static black brane is to es-
tablish the horizon cap prescription in the asymptotic perfect
fluid limit. It follows that the Schwinger-Keldysh correlation
functions of the operator dual to the bulk scalar field can be
mapped to thermal correlation functions after suitable space-
time reparametrizations in the asymptotic perfect fluid limit

4Note that the map to the static black brane holds only at the leading
order in the large proper time expansion. The comoving momenta,
however, are also defined at the leading order itself via the Weyl
transformed background metric of the field theory (boundary metric
of the bulk geometry).
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of the Bjorken flow (i.e., when both the proper time argu-
ments of the two-point correlation functions are sufficiently
large). The nonthermal nature of the Schwinger-Keldysh
correlation functions can thus be absorbed into these space-
time reparametrizations up to overall (proper time-dependent)
Weyl factors.

We also show that the horizon cap prescription extends to
all orders in the late proper time expansion. First, at first and
higher orders, the Klein-Gordon equation of the bulk scalar
takes the same form as at the leading order but with source
terms, and can be systematically solved at each order in the
large proper time expansion such that the leading behavior of
the ingoing and outgoing modes are exactly the same as at
the zeroth order (that can be mapped to the static black brane)
implying that the standard analytic continuation at the horizon
cap can be performed at each order. Remarkably, this is pos-
sible only if the horizon cap is pinned to the time-dependent
event horizon (and not the apparent or other dynamical hori-
zons which do not coincide with the event horizon beyond the
zeroth order).

Second, the requirement of the near-horizon behavior of
the ingoing and outgoing modes at the time-dependent event
horizon does not completely determine all the order-by-order
corrections. The undetermined coefficients are those that give
the leading behavior of the ingoing modes at the horizon at
first and higher orders in the proper time expansion. How-
ever, when the on-shell action of the scalar field is used to
extract the Schwinger-Keldysh correlation functions, we find
that they are consistent with all field theory identities provided
one of these identities which hold for arbitrary nonequilibrium
states provided one of these identities is used to determine
the unfixed coefficients that give the leading near-horizon
behavior of the ingoing modes.

Therefore, we establish the horizon cap prescription can
be unambiguously extended to determine the Schwinger-
Keldysh correlation functions of the entire hydrodynamic
tail of the Bjorken flow at any arbitrary order in the large
proper time expansion. Aside from satisfying all field theory
identities, we find that the retarded propagator given by the
ingoing modes reproduces the normalizable bulk solutions at
complex frequencies (which map to quasinormal modes of the
static black brane [23]) with vanishing sources to all orders
although the relevant phase factors at first and higher orders
are determined as functions of the frequency via the near-
horizon behavior of the outgoing modes at real frequencies.
The latter implies nontrivially that one can obtain the normal-
izable bulk solutions dual to the transients (nonequilibrium
generalization of the collective excitations of the system) to
all orders in the large proper time expansion from the retarded
correlation function generalizing how quasinormal modes are
obtained from the poles of the retarded propagator in thermal
equilibrium. To all orders, the Schwinger-Keldysh correlation
functions satisfy a matrix factorized form implying a bilocal
thermal structure.

Let us briefly provide some explicit expressions. The d-
dimensional Bjorken flow in the field theory is conveniently
expressed in the Milne coordinates, τ = (t2 − z2)1/2 (the
proper time with z being the longitudinal Minkowski co-
ordinate), the rapidity ζ = arctanh(z/t ), and the transverse
coordinates �x⊥.

It is convenient to define

σ = τ
d−2
d−1 τ

1
d−1

0 , ζ̂ = ζ τ0, (7)

with τ0 being an arbitrarily chosen fixed proper time. Further-
more, for the arguments (σ1, ζ1, �x⊥1) and (σ2, ζ2, �x⊥2) of the
two-point correlation function let us define

σ = 1

2
(σ1 + σ2), σr = σ1 − σ2, ζ̃r = (ζ̂1 − ζ̂2)

σ

τ0
,

x̃⊥r = |�x⊥1 − �x⊥2|
(

τ0

σ

) 1
d−2

. (8)

As discussed above, at late proper time, the Schwinger-
Keldysh correlation functions G(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|)
of the Bjorken flow can be mapped to thermal correlation
functions Gβ at a specific temperature T = β−1 as follows:

G(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|)

→
(τ0

σ

) 2	O
d−2

Gβ

(
d − 1

d − 2
σr,

√
ζ̃ 2

r + x̃⊥2
r

)
. (9)

This limit implies that both σ1 and σ2 are large. Above 	O

is the scaling dimension of the operator (which is determined
by the mass of the dual bulk scalar field). Also both G and
Gβ are 2 × 2 matrices with indices determining whether the
arguments (σ1, ζ1, �x⊥1) and (σ2, ζ2, �x⊥2) are in the forward
or backward legs of the Schwinger-Keldysh time-contour. Fi-
nally, the temperature T of the thermal is determined by the
(only free) parameter ε0 of the Bjorken flow [see Eq. (5)] as
follows:

β = T −1 = 4πε
1/d
0

d
, ε0 = 16πGN

d − 1
ε0, (10)

where the (d + 1)-dimensional gravitational constant GN is
given by the rank of the gauge group of the dual theory
[such as, for instance, inN = 4 super Yang-Mills theory with
SU(N ) gauge group in 4 dimensions, G−1

N = 2N2/π ].5 Re-
markably, the map to the thermal form involving space-time
reparametrization implies the emergence of SO(d − 1) rota-
tional symmetry, and also time translation symmetry although
these are absent in the original coordinates τ and ζ .

As mentioned above, we can systematically include vis-
cous and higher-order corrections to the correlation functions
and obtain

G(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|)

=
(τ0

σ

) 2	O
d−2

∞∑
n=0

1

σ nε
n/d
0

Gn(T0σr, T0ζ̃r, T0x̃⊥r ), (11)

where G0 coincides with the thermal correlation function Gβ

given by (9).
We also note that our result that the horizon cap for the

holographic hydrodynamic Bjorken flow should be pinned to
the nonequilibrium event horizon captures the causal nature

5Apparently, the thermal form on the right-hand side of Eq. (10)
depends on the choice of τ0. However, a shift in τ0 also changes the
parameter ε0 appropriately so that the thermal form in Eq. (10) is
unambiguous. This is explained in Sec. V C explicitly.
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of the Schwinger-Dyson equations for the real-time (out-of-
equilibrium) correlation functions in the dual field theory.6

The series in Eq. (11) is not expected to be convergent, and
therefore requires a trans-series completion with appropriate
Stokes data (distinct from the Stokes data for the expectation
value of the energy density which defines the bulk geometry)
which should be actually functions of σr , ζ̃r , and x̃⊥r . We
discuss their physical role in deciphering the information of
the initial state which is lost in hydrodynamization, and also
how they can be used to decode the interior of the event
horizon.

D. Plan

The paper is organized as follows: In Sec. II, we introduce
the Crossley-Glorioiso-Liu (CGL) horizon cap prescription
for the thermal Schwinger-Keldysh correlation functions in
holography. We prove that the prescription indeed reproduces
the KMS periodicity so that they are given just in terms of
the retarded correlation function, and that the latter is ex-
actly what we obtain from the Son-Starinets prescription. As
mentioned, we use a different matrix factorization of thermal
correlation functions. In Sec. III, we review the Bjorken flow
and its holographic dual. We also introduce the Weyl rescaling
of the Bjorken flow along with the dual bulk diffeomorphism
such that the final state has a fixed temperature and entropy
density. As mentioned, although the event horizon has a con-
stant surface gravity and area at late time, it stretches and
expands in the directions longitudinal and transverse to the
flow respectively. Additionally, we discuss the proper residual
gauge transformation corresponding to radial reparametriza-
tion.

In Sec. IV, we study the probe bulk scalar field in the
gravitational background dual to the hydrodynamic Bjorken
flow and show how we can preserve the analytic structure of
the horizon cap to all orders in the proper time expansion.
Crucially, we find that it requires the horizon cap to be pinned
to the nonequilibrium event horizon. In Sec. V, we use these
results to extract the real-time correlation functions of the
hydrodynamic Bjorken flow. After presenting the result for
the perfect fluid limit in terms of a thermal propagator with
space-time reparametrizations, we show how we systemati-
cally obtain the corrections in a proper time expansion. We
also discuss many nontrivial consistency checks of our results.
In Sec. VI, we present a discussion on how a trans-series
completion of this expansion can lead to seeing the quantum
fluctuations behind the nonequilibrium event horizon, and
matching with initial data lost during hydrodynamization.

Finally, we conclude in Sec. VII with an outlook.

II. THE CROSSLEY-GLORIOISO-LIU HORIZON CAP
OF THE THERMAL BLACK BRANE

The Crossley-Glorioso-Liu (CGL) horizon cap prescrip-
tion is a simple proposal for the holographic realization of
the Schwinger-Keldysh contour at thermal equilibrium [19].

6The latter is manifest when written in terms of the coupled evolu-
tion of the statistical and spectral functions [1].

The thermal nature of the correlation functions obtained from
this prescription, including their consistency with the Kubo-
Martin-Schwinger (KMS) periodicity, has been explicitly
verified up to quadratic order in the small frequency expansion
in Ref. [19]. In Ref. [19], it has also been verified that the
retarded correlation function is implied by the ingoing bound-
ary condition, as demanded by the Son-Starinets prescription
[15] up to the quadratic order in frequency. These were suf-
ficient to obtain a rudimentary effective theory of diffusion
and dissipative hydrodynamics from holography [19,24–34].
Here, we present an elegant proof that the CGL horizon cap
indeed gives thermal correlation functions satisfying KMS
periodicity, and that it also implies the Son-Starinets prescrip-
tion for the retarded correlation function, at any arbitrary
frequency and momenta.7 For other approaches, see Ref. [33].

The generating functional for the thermal Schwinger-
Keldysh correlation functions in a quantum field theory is8

eW [J1,J2] = Tr[ρ̂βTcei
∫

dt
∫

dd−1x[Ô1(x,t )J1(x,t )−Ô2(x,t )J2(x,t )]], (12)

with ρβ denoting the thermal density matrix, 1 and 2 denoting
the forward and backward arms of the contour, and Tc denot-
ing (time) contour ordering. The contour ordering implies that
[with 〈·〉 ≡ Tr(ρ̂β ·)]

G11(t − t ′, x − x′) = δ2W

δJ1(t, x)δJ1(t ′, x′)

= −i〈T (Ô(t, x)Ô(t ′, x′))〉,

−G12(t − t ′, x − x′) = δ2W

δJ1(t, x)δJ2(t ′, x′)

= i〈Ô(t ′, x′)Ô(t, x)〉,

−G21(t − t ′, x − x′) = δ2W

δJ2(t, x)δJ1(t ′, x′)

= i〈Ô(t, x)Ô(t ′, x′)〉,

G22(t − t ′, x − x′) = δ2W

δJ2(t, x)δJ2(t ′, x′)

= −i〈T (Ô(t, x)Ô(t ′, x′))〉. (13)

Succinctly we can write the above as

Gi j (x1, x2) = δ2W

δJi(x1)δJj (x2)
(−)i+ j, (14)

with (i, j) = (1, 2). The above holds even out of equilibrium
with ρβ in (12) replaced by an arbitrary initial state ρ0.

7The real-time prescription [17,18] of van Rees and Skenderis leads
to the ingoing boundary condition as shown in Ref. [35] in thermal
equilibrium. Our methods discussed here discuss a natural gener-
alization away from equilibrium for out of equilibrium, especially
hydrodynamic states.

8Unless specified, we always put the backward arm of the
Schwinger-Keldysh time contour infinitesimally below the real axis.
Also, we often omit explicit mention of the appendage of the contour
along the imaginary axis, which creates the thermal state in the
infinite past.
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FIG. 1. (left) The general Schwinger-Keldysh contour for an
arbitrary initial density matrix ρ̂0. Field configurations need to be
specified at the two ends of the closed time contour which are
represented in bold. (right) In thermal equilibrium this simplifies.
One needs an appendage to the contour extending along the nega-
tive imaginary axis by β = T −1 and then impose periodic boundary
conditions for the full contour.

It can readily be shown that the KMS periodicity [arising
from the Tr in (12) after extending the contour along the
negative imaginary axis by β as shown in Fig. 1] implies that
the thermal correlation functions in Fourier space (with i and
j standing for the 1 (forward) or 2 (backward) arms of the
contour) defined as

Gi j (ω, k) =
∫

dtdd−1xeiω(t−t ′ )e−ik·(x−x′ )Gi j (t − t ′, x − x′)

(15)
assume the form

Gi j =
(

GR(ω, k)[1 + n(ω)] − GA(ω, k)n(ω) −GR(ω, k) − GA(ω, k)n(ω)

−GR(ω, k) − GA(ω, k)[1 + n(ω)] GR(ω, k)n(ω) − GA(ω, k)[1 + n(ω)]

)
, (16)

where

GR(t − t ′, x − x′) = −iθ (t − t ′)〈[Ô(t, x), Ô(t ′, x′)]〉 (17)

is the retarded propagator,

GA(t − t ′, x − x′) = −iθ (t ′ − t )〈[Ô(t ′, x′), Ô(t, x)]〉 (18)

is the advanced propagator, and n(ω) = 1/(eβω − 1) is the Bose-Einstein distribution function. It is easy to see from these
definitions that

G∗
A(ω, k) = GR(ω, k). (19)

The crucial element of the proof of why the CGL prescription works is a simple and general factorization property of
thermal correlation functions in field theory (irrespective of whether the theory is holographic). The Schwinger-Keldysh thermal
correlation functions (16) obtained by differentiating the real-time partition function at a temperature T = β−1 can be factorized
as shown below:

Gi j (ω, k) = σ3 ·
(

A(ω, k) B(ω, k)

A(ω, k) B(ω, k)eβω

)
·
(

a(ω, k) b(ω, k)

a(ω, k) b(ω, k)eβω

)−1

, (20)

in which σ3 = diag(1,−1) is the third Pauli matrix, and

GR(ω, k) = A(ω, k)

a(ω, k)
= B∗(ω, k)

b∗(ω, k)
= G∗

A(ω, k). (21)

Clearly A → λA, B → λ̃B, a → λa, and b → λ̃b gives the
same thermal matrix, so the factorization is unique up to the
multiplicative complex functions λ(ω, k) and λ̃(ω, k).

The CGL horizon cap glues two copies of the black
brane geometry, whose boundaries represent the forward and
backward arms of the Schwinger-Keldysh time contour re-
spectively, at the horizon as shown in Fig. 2. For reasons to
become clear later, this prescription is easily implemented
in the ingoing Eddington-Finkelstein (EF) coordinates. The
ingoing EF radial coordinates of the two geometries, repre-
senting the forward (1) and backward (2) arms of the time
contour, respectively, are displaced along the imaginary axis
by ∓ε (i.e., r1 → r1 − iε and r2 → r2 + iε). The smooth glu-
ing is achieved by the encircling of the complexified radial
coordinate around the horizon r = rh clockwise along a circle
of radius O(ε) as it is analytically continued from the (first)
copy dual to the forward contour to the (second) copy dual
to the backward contour. The direction of time in the sec-
ond copy has to be reversed so that full complexified bulk

geometry has a single orientation. Therefore, the analytic con-
tinuation of the radial coordinate automatically necessitates
the closed Schwinger-Keldysh time contour.

Explicitly, the AdSd+1 static black brane geometry in the
ingoing Eddington-Finkelstein coordinates is

ds2 = − 2

r2
drdt − 1

r2
(1 − rdε0)dt2

+ 1

r2

(
dx2

1 + · · · + dx2
d−1

)
. (22)

where r is the bulk radial coordinate, t is the Eddington-
Finkelstein time, and the horizon is at r = rh = ε

−1/d
0 . The

on-shell action for bulk fields in this geometry is identified
with the generating functional of connected real-time correla-
tion functions of the dual operators at the boundary. A bulk
scalar field configuration can be written in the form

�(r, t, x) =
∫

dω

2π

dd−1k

(2π )d−1 e−iωt eik·x�(r, ω, k). (23)

On-shell, �(r, ω, k) is a sum of two linearly independent
solutions φin(r, ω, k) and φout (r, ω, k) which are ingoing and
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FIG. 2. (top) The radial contour in the complexified two-sheeted
black brane geometry on a constant time hypersurface. The ra-
dial coordinate goes around the horizon r = rh in the complex
plane forming the horizon cap, and connects the two arms of the
Schwinger-Keldysh contour at the two boundaries at a constant
Lorentzian time. The analytic continuation along the horizon cap
gives a well-defined Dirichlet value problem for the bulk fields in
terms of their sources specified at the two boundaries. (bottom)
Shows the time evolution of the radial contour (shown in blue lines)
in the full complexified space-time ending at the two Lorentzian
arms at the two boundaries. The reversal of the direction of time in
the second copy implies that the full complexified space-time has a
single orientation after the two copies are smoothly glued with the
horizon cap.

outgoing at the horizon respectively. Therefore,

�(r, ω, k) = φin(r, ω, k)p(ω, k) + φout (r, ω, k)q(ω, k)

(24)

generally with p(ω, k) and q(ω, k) representing the arbitrary
Fourier coefficients of the solutions which are ingoing and
outgoing at the horizon, respectively. The latter thus provide
a basis of solutions for given ω and k, and can be uniquely
defined via the following conditions:

φin(rh, ω, k) = 1, lim
r→rh

φout (r, ω, k)(rh − r)−
iβω

2π = 1,

(25)
where

β = T −1 = 4πrh

d
(26)

is the inverse Hawking temperature of the black brane, and
rh = ε

−1/d
0 is the radial location of the horizon. Indeed, near

the horizon (r ≈ rh),

�(r, ω, k) ≈ p(ω, k) + (rh − r)
iβω

2π q(ω, k), (27)

as should follow from the universal validity of the geometrical
optics approximation at the horizon. The CGL horizon cap

prescription for the analytic continuation of the radial coor-
dinate from one copy of the bulk space-time to another then
implies that the Fourier coefficients of the on-shell solutions
in the two copies are related by

p2(ω, k) = p1(ω, k), q2(ω, k) = eβωq1(ω, k), (28)

with 1 and 2 denoting the copies ending on the forward
and backward arms of the time contour respectively at their
boundaries. The on-shell solution in the full geometry can
therefore be written in the following matrix form:(

�1(r, t, x)

�2(r, t, x)

)
=
∫

dω

2π

dd−1k

(2π )d−1 e−iωt eik·xM(r, ω, k)

·
(

p(ω, k)

q(ω, k)

)
, (29)

with the matrix

M(r, ω, k) =
(

φin(r, ω, k) φout (r, ω, k)

φin(r, ω, k) eβωφout (r, ω, k)

)
(30)

providing a basis of solutions for the entire complexified
space-time comprising of the two copies smoothly glued at
the horizon. The sources J1(ω, k) and J2(ω, k) specified at the
two boundaries (see below) implement the Dirichlet boundary
conditions that determine p(ω, k) and q(ω, k) uniquely for
real frequencies and momenta, and thus yielding a unique bulk
field configuration in the full complexified space-time.

According to the holographic dictionary, the generating
functional for the connected correlation functions is identified
with the on-shell action for the scalar field dual to the operator
Ô, on the full complexified space-time, i.e.,

W [J1, J2] = iSon-shell. (31)

Assuming minimal coupling to gravity, the on-shell quadratic
action for the bulk scalar field � dual to a scalar operator takes
the form

Son-shell = Sin-in + Sin-out + Sout-out. (32)

The first piece Sin-in is quadratic in the ingoing mode. Since
the ingoing mode is analytic at the horizon, the contributions
from the two arms cancel each other out (as the solutions are
the same on the two arms) while the circle around the horizon
does not contribute as well. Therefore, Sin-in = 0. Note if we
keep the ingoing mode alone, then J1 = J2. In the field theory,
W [J1 = J2] = 0 because the partition function eW with the
same unitary evolution forward and backward in time, equals
unity. Therefore, Sin-in = 0 is consistent with field theory.

The second piece Sin-out, which is the sum of cross terms
between the in and outgoing modes, has a branch point at the
horizon. Integrating over the two arms amounts to integrating
around a branch cut, and results in the two boundary terms
on-shell, i.e.,

Sin-out = Sbdy1 + Sbdy2. (33)

The third piece Sout-out has a possibility of a pole at the
horizon, i.e., (rh − r)−1 terms in the Lagrangian density aris-
ing from the radial derivative acting on the nonanalytic piece
(rh − r)

iβω

2π , which we denote collectively as Sε . Essentially Sε
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gets contributions from the following two terms:

Sε ∝
∫

dω

∫
dd k

∮
ε

dr
√−G[Grr∂rφ

∗
out∂rφout

+ Grt (∂rφ
∗
out∂tφout + ∂rφout∂tφ

∗
out )]. (34)

Remarkably, the poles originating from these two terms cancel
each other out [note that β is given by (26)] resulting in
Sε = 0. The remaining terms quadratic in the outgoing mode
are analytic, so that Sout-out is also the sum of two boundary
terms. These two boundary terms cancel each other out as in
the ingoing case. On the gravitational side, the easy way to
see this is by first writing the contributions from the forward
and backward arms of the contour separately. The boundary
contributions from one arm in the integrand would be propor-
tional to

φb(−ω, k)(∂rφ)b(ω, k) + · · · ,

with φb and (∂rφ)b denoting the boundary values of φ and its
radial derivative, respectively, and · · · include counter terms,
too. The contributions from the forward and backward parts
of the contour come with opposite signs. If we consider the
terms quadratic in the outgoing mode, then φb(ω, k) picks up
a factor of eβω while φb(−ω, k) picks up a factor of e−βω

via analytic continuation through the horizon cap, and the
product of these factors is unity. Therefore, the contributions
from the forward and backward contours cancel out leading to
Sout-out = 0.

It is useful to see this also from the field-theory perspec-
tive. If we keep the outgoing modes only, then J2(ω, k) =
J1(ω, k)eβω. In any field theory [29],

W [J1(t, x), J2(t, x)] = WT [J2(t − iβ, x), J1(t, x)],

i.e., W [J1(t, x), J2(t + iβ, x)] = WT [J2(t, x), J1(t, x)],

where WT stands for the time-reversed process in which we
specify with the same density matrix in the future instead
of the initial time.9 For J1(t, x) = J2(t, x) = J (ω, k), this
amounts to

WT [J (ω, k), J (ω, k)] = W [J (ω, k), J (ω, k)eβω].

The left-hand side (LHS) of the above equation vanishes be-
cause once again the forward and backward evolution with the
same source are inverses of each other (there is no operator
insertion in the past now although the state is specified in
the future). Therefore, the right-hand side (RHS) of the above
equation should vanish too, implying that

W [J2(ω, k) = J1(ω, k)eβω] = 0. (35)

Thus, Sout-out = 0 is consistent with field theory. See also foot-
note 12 for a more straightforward verification that the thermal
correlators in the dual theory originate from Sin-out alone.

The upshot is that we obtain only two boundary contribu-
tions from the cross term between the ingoing and outgoing

9Succinctly, W [J1, J2] = Tr(ρ0Ũ [J2]U [J1]), where U [J1] is for-
ward evolution with source J1 and Ũ [J2] is backward evolu-
tion with source J2. Similarly, WT [J1, J2] = Tr(Ũ [J2]ρ0U [J1]) =
Tr(ρ0U [J1]Ũ [J2]).

modes, so that

Son-shell ≡ Sin-out = Sbdy1 + Sbdy2, (36)

where Sbdy1 and Sbdy2 are the contributions from the two
boundaries after taking into account counter-terms necessary
for holographic renormalization [36]. This implies that

Son-shell[J1, J2] =
∫

dt
∫

dd−1x[〈O1(t, x)〉J1(t, x)

− 〈O2(t, x)〉J2(t, x)], (37)

with (
J1(ω, k)

J2(ω, k)

)
= S(ω, k) ·

(
p(ω, k)

q(ω, k)

)
,(〈O1(ω, k)〉

〈O2(ω, k)〉
)

= R(ω, k) ·
(

p(ω, k)

q(ω, k)

)
= (R · S−1

)
(ω, k) ·

(
J1(ω, k)

J2(ω, k)

)
. (38)

The matrices R and S are defined as follows: Let the asymp-
totic (r ≈ 0) expansions of the ingoing and outgoing modes
be10

φin(r, ω, k) = rd−	[a0(ω, k) + · · · ] + r	[A0(ω, k) + · · · ],

φout (r, ω, k) = rd−	[b0(ω, k) + · · · ] + r	[B0(ω, k) + · · · ].

(39)

Then,

S(ω, k)=
(

a0(ω, k) b0(ω, k)

a0(ω, k) eβωb0(ω, k)

)
= lim

r→0
r	−dM(r, ω, k),

(40)

and11

R(ω, k) = (2	 − d )

(
A0(ω, k) B0(ω, k)

A0(ω, k) eβωB0(ω, k)

)
+ · · · .

(41)
The · · · above stands for (state-independent) contact terms
which we ignore. Denoting

Ĝ(ω, k) = (σ3 · R · S−1)(ω, k) (42)

[with σ3 = diag(1,−1)], we find from (37), (38), and (40)–
(42) that12

Son-shell[J1, J2] =
∫

dω

2π

dd−1k

(2π )d−1 [J1(−ω,−k)〈O1(ω, k)〉

−J2(−ω,−k)〈O2(ω, k)〉]

=
∫

dω

2π

dd−1k

(2π )d−1 [J1(−ω,−k)J2(−ω,−k)]

· Ĝ(ω, k) ·
(

J1(ω, k)
J2(ω, k)

)
. (43)

10The scaling dimension 	 is related to the mass via 	 = d
2 +

( d2

4 + m2L2)1/2 with L being the anti–de Sitter (AdS) radius.
11Note that, asymptotically, M(r, ω, k) = rd−	[S(ω, k) + · · · ] +

r	[R(ω, k) + · · · ].
12Ji(ω, k) = ∫ dt dd−1xeiωt e−ik·xJi(t, x).
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Therefore, the identification (31) together with (13) implies
that13

Gi j (ω, k) = ∂2Son-shell

∂Ji(−ω,−k)∂Jj (ω, k)
(2π )d = Ĝ(ω, k). (44)

From the matrix factorization of thermal correlation func-
tions given by (20), we readily find from (40)–(42) that the
correlation functions obtained by differentiating the on-shell
gravitational action are thermal, i.e., assume the form (16),
provided14

GR(ω, k) = (2	 − d )
A0(ω, k)

a0(ω, k)
,

GA(ω, k) = (2	 − d )
B0(ω, k)

b0(ω, k)
. (45)

Remarkably, the above are exactly the Son-Starinets pre-
scriptions [15] for the retarded and advanced propagators
according to which they are obtained from the ingoing and
outgoing boundary conditions at the horizon, respectively.
Furthermore, since the outgoing mode is time reverse of
the ingoing mode (which is not manifest in the Eddington-
Finkelstein gauge but can be evident from transforming to
Schwarzschild-like coordinates),15 we should have

B∗
0(ω, k)

b∗
0(ω, k)

= A0(ω, k)

a0(ω, k)
, i.e., G∗

A(ω, k) = GR(ω, k), (46)

holds.
We therefore conclude that the CGL horizon cap pre-

scription reproduces the Son-Starinets prescription for the
retarded propagator together with KMS periodicity and the
thermal structure of the correlation functions at any frequency
and momentum. A similar approach was adopted earlier by
Son and Herzog by identifying the two sides of the eter-
nal black hole with the forward and backward arms of the
Schwinger-Keldysh contour [37]. However, in this case, the
backward part of the time contour needs to be shifted by
β/2 along the negative imaginary axis. The main advantage
of the CGL prescription is that we do not need an eternal
black-hole geometry for its implementation, suggesting that
its nonequilibrium generalization would be generically more
feasible. Furthermore, it is also not clear if out-of-equilibrium
correlation functions can be analytically continued in their
time arguments as required by the Son and Herzog imple-
mentation of the Schwinger-Keldysh contour. Also, it should

13The reader can check that substituting p(ω, k) + q(ω, k) =
J1(ω, k) and p(ω, k) + q(ω, k)eβω = J2(ω, k) in the on-shell action
(43), and using the thermal form of the propagators below, that
indeed only cross terms between p and q, i.e., the in and outgoing
modes appear. There are no contributions from terms quadratic in p
or in q, implying that Sin-in = Sout-out = 0 as claimed above, and also
Son-shell = Sin-out.

14It is obvious that, to map to the factorization in (20), we have to
set A = (2	 − d )A0, B = (2	 − d )B0, a = a0, and b = b0.

15Note that the notion of in- and outgoing modes are gauge invari-
ant up to overall multiplicative factors, but these cancel out in the
ratio of the normalizable to the non-normalizable modes. This is why
the Son-Starinets prescription is also gauge invariant.

FIG. 3. The schematic diagram of the Bjorken flow illustrates the
evolution of an expanding system on the forward light cone. Here z
is the longitudinal direction along which the system expands. The
transverse directions have been suppressed. Initial data are specified
on a constant τ hyperboloid.

be possible to define integration over bulk vertices and bulk
quantum loops in the CGL prescription as well via the analytic
structure of the complexified space-time with the horizon cap.
However, this is outside the scope of the present work, and
therefore we do not further discuss this issue. Finally, we note
that the arguments presented here are simpler compared with
Ref. [19] since we do not employ an expansion about ω = 0
which obscures the analytic continuation at the horizon cap by
producing (ln ω)n terms.

III. BJORKEN FLOW, WEYL RESCALING,
AND THE HOLOGRAPHIC DUAL

A. Bjorken flow and its Weyl rescaling

Bjorken flow [38] is a simple model describing the expand-
ing plasma produced by heavy ion collisions. This model is
based on the assumptions of boost invariance, and transla-
tional and rotational symmetries in the transverse directions of
an expanding system. The evolution occurs inside a forward
light cone, as shown in Fig. 3. It is convenient to describe
the Bjorken flow in the Milne proper time τ and the rapidity
ζ which are related to the Minkowski (lab frame) time t
and the longitudinal coordinate z (along which the system is
expanding) as

t = τ cosh ζ and z = τ sinh ζ .

The transverse coordinates x⊥ are the same in both Milne and
Minkowski coordinate systems. In the Milne coordinates, the
Minkowski metric takes the form

ds2 = −dτ 2 + τ 2dζ 2 + ds2
⊥, (47)

where ds⊥ is the line element in the transverse plane.
The symmetries of the Bjorken flow imply that the ex-

pectation value of any operator depends only on the proper
time τ . Thus an ansatz for the expectation value of the
energy-momentum tensor in a d-dimensional theory, which is
also consistent with the transverse translational and rotational
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symmetries of the Bjorken flow, can take the form

〈Tμν〉 = diag

⎛⎜⎝ε(τ ), τ 2 pL(τ ), pT (τ ), . . . , pT (τ )︸ ︷︷ ︸
(d−2) times

⎞⎟⎠ (48)

in the Milne coordinates for d > 2. Clearly, ε, pL, and pT de-
note the energy density, longitudinal and transverse pressures,
respectively. The local conservation of energy and momentum
∇μT μν = 0 implies that

pL(τ ) = −ε(τ ) − τ∂τ ε(τ ), (49)

and the conformal Ward identity T μ
μ = 0 imposes

pT (τ ) = 2

d − 2

[
ε(τ ) + 1

2
τ∂τ ε(τ )

]
. (50)

Consequently, the evolution of the energy-momentum tensor
is determined by ε(τ ) in a conformal field theory.

At large proper time τ , the Bjorken flow admits a
hydrodynamic description [39]. To explicitly map the energy-
momentum tensor (48) to that of a fluid, we need to set the
flow velocity as

uμ = (1, �0),

i.e., dτ is comoving with the flow in the Milne coordinates. In
a conformal system, the large proper time expansion of ε(τ )
is given by a single parameter, namely

μ := ε0τ
d

d−1
0 , (51)

which is determined by the initial conditions —ε0 is a constant
energy density, and τ0 can be chosen to be the value of τ where
we initialize. The large proper time expansion of ε(τ ) takes
the form

T τ
τ = −ε(τ ) = −μτ− d

d−1

(
1 +

∞∑
n=1

λnμ
− n

d τ−n d−2
d−1

)
, (52)

where λn are (state-independent) constants that are deter-
mined by the transport coefficients of the microscopic theory.
For instance, λ1 is related to the shear viscosity η as

λ1 = −η(ε)

ε
d−1

d

, (53)

which should indeed be a constant in a conformal theory. The
leading term of the expansion ∝τ−d/(d−1) gives an exact solu-
tion of the Euler equations and thus represents the expansion
of a conformal perfect fluid.

In what follows, we will need a Weyl transformation of
the Bjorken flow. In a conformal theory, the hydrodynamic
equations are Weyl covariant [8]. We are ignoring the Weyl
anomaly for the moment, but we explicitly mention it later.
Under a Weyl transformation which transforms the metric and
the energy-momentum tensor as

ds2 → d̃s
2 = �(x)2ds2, Tμν → T̃μν = �(x)−d+2Tμν,

(54)
the new solutions of the hydrodynamic equations are given by

uμ → ũμ = �(x)−1uμ, ε → ε̃ = �(x)−dε, (55)

in any conformal theory. Consider the combined operation of
the time reparametrization

σ = τ
d−2
d−1 τ

1
d−1

0 (56)

and the Weyl scaling with

�(σ ) =
(τ0

σ

) 1
d−2

, (57)

under which the Milne metric (47) transforms to (with ζ̂ =
ζ τ0)

d̃s
2 = − (d − 1)2

(d − 2)2
dσ 2 + σ 2

τ 2
0

d ζ̂ 2 +
(

σ

τ0

)− 2
d−2

ds2
⊥, (58)

and the energy-momentum tensor given by (48)–(50) trans-
forms to

T̃σσ = �−d+2τ ′(σ )2ε(τ (σ )) = (d − 1)2

(d − 2)2

(
σ

τ0

) d
d−2

ε(τ (σ ))

= (d − 1)2

(d − 2)2
ε̃(σ )

[
note ε̃(σ ) :=

(
σ

τ0

) d
d−2

ε(τ (σ ))

]
,

T̃ζ̂ ζ̂ = �−d+2

(
τ (σ )

τ0

)2

pL(τ (σ ))

= −
(

σ

τ0

) 3d−4
d−2

[ε(τ (σ )) + τ (σ )ε′(τ (σ ))]

=
(

σ

τ0

)2 1

d − 1
[̃ε(σ ) − (d − 2)σ ε̃′(σ )],

T̃ii = �−d+2PT (τ (σ ))

= 2

d − 2

σ

τ0

[
ε(τ (σ )) + 1

2
τ (σ )ε′(τ (σ ))

]

=
(

σ

τ0

)− 2
d−2 1

d − 1
[̃ε(σ ) + σ ε̃′(σ )], (59)

with T̃ii denoting the diagonal transverse components and ′
denoting the derivative with respect to the argument of the
corresponding function. It follows that in the hydrodynamic
limit that the Bjorken expansion (52) takes the resultant form

T̃ σ
σ ≡ −̃ε(σ ) = −

(
σ

τ0

) d
d−2

ε(τ (σ ))

= −ε0

(
1 +

∞∑
n=1

λnε
− n

d
0 σ−n

)
. (60)

The Weyl scaled metric (58) has the property that√
−g̃ = d − 1

d − 2
(61)

is a constant, and the spatial volume factor is unity, same
as in the Minkowski coordinates. However, the longitudinal
volume expands, while the transverse volume contracts with
the evolution. Also note that, for the Weyl scaled Bjorken flow
(60), we have

lim
σ→∞ ε̃(σ ) = ε0. (62)
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Therefore, instead of a perfect fluid expansion, the flow at-
tains a constant temperature, energy and entropy densities at
late time although no timelike Killing vector exists in the
background metric. The latter feature leads to viscous and
higher-order corrections. The large (reparametrized) proper
time expansion is determined by ε0, the final thermal value
of the energy density, while τ0 appears in the Weyl scaling
factor � as explicit in Eq. (57).

The Weyl scaling depends explicitly on τ0. However,
note that, for τ0 → ξτ0, we obtain from (56) that σ →
ξ 1/(d−1)σ . Thus the Weyl factor given by (57) scales as

� → ξ 1/(d−1)�, implying that d̃s
2 → ξ 2/(d−1)d̃s

2
and ε0 →

ξ−1/(d−1)ε0. Therefore, the dimensionless variables ε
−1/d
0 σ−1

(which provides the proper time expansion parameter) and
σ nT̃ σ

σ are invariant under τ0 → ξτ0 and are thus independent
of τ0.

We also note that the Weyl transformation studied here is
itself not corrected at first and higher orders in the large and
proper time expansion.

B. Gravitational setup

The gravitational dual of the Bjorken flow [22,40–44] has
been extensively studied in the literature with the late time
evolution providing a primary example of the fluid/gravity
correspondence [5–8] where large order resummation of the
hydrodynamic series [22] has been explicitly carried out re-
vealing the hydrodynamization [45] of a far-from-equilibrium
state. When a state hydrodynamizes, the energy-momentum
tensor can be described as an optimally truncated (divergent
and asymptotic) hydrodynamic series even when it is far from
equilibrium [22,45]. In the context of the Bjorken flow, the
evolution of the energy density approaches a hydrodynamic
attractor [22,45]. This is a generic property of a many-body
relativistic system irrespective of whether its degrees of free-
dom interact weakly or strongly (see Ref. [46] for a recent
review).

Here we review the gravitational dual of the Bjorken flow
in the hydrodynamic limit and then describe its Weyl transfor-
mation in detail. This Weyl transformation is what has been
described in the previous section. In the bulk it is imple-
mented by an appropriate diffeomorphism. As a result of this
transformation, the state reaches a constant temperature and
entropy density at late proper time instead of attaining perfect
fluid expansion. The dual black hole also attains a horizon
with constant surface gravity and area. However, even at late
proper time there is no timelike Killing vector—the directions
longitudinal and transverse to the flow expand and contract
respectively such that the horizon area remains constant at
late proper time. Along with the Weyl transformation of the
metric and the energy-momentum tensor described in the pre-
vious section, the holographic dual also produces the Weyl
anomaly. The Weyl transformation will be an important tool in
implementing the horizon cap prescription out of equilibrium.

Additionally, we focus on the residual gauge freedom
which allows us to fix the nonequilibrium event or apparent
horizon at a fixed radial location. We will see that it is crucial
to pin the horizon cap at the nonequilibrium event horizon
for regularity, and therefore this gauge freedom will play an
important role. We explicitly show that this gauge freedom

does not affect the dual metric or the dual energy-momentum
tensor (and is thus a proper gauge transformation).

The holographic dual of the Bjorken flow in a d-
dimensional conformal theory is a (d + 1)-dimensional ge-
ometry which satisfies the Einstein’s equations with a negative
cosmological constant:

RMN − 1

2
RGMN − d (d − 1)

2L2
GMN = 0. (63)

In what follows, we will set L = 1 for convenience. In addi-
tion to the field theory coordinates, we need an extra radial
coordinate to describe the dual geometry. The state of the
conformal theory dual to a specific solution of (63), lives at
the boundary (ρ = 0) in the boundary metric, which is defined
as

gb
μν = lim

ρ→0
ρ2Gμν, (64)

where a and b stand for the field-theory indices. Since we are
considering the Bjorken flow in the Milne metric (47), gb

μν

should coincide with it. Similarly, if we consider the Weyl
scaled version of the Bjorken flow, the boundary metric should
coincide with (58).

Before considering the Bjorken flow, it is useful to first
understand the vacuum solution, which is pure (maximally
symmetric) AdSd+1 space-time with the desired boundary
metric. In the ingoing Eddington-Finkelstein gauge, the vac-
uum state in the Milne metric (47) is thus dual to

ds2 = − 2

r2
drdτ − 1

r2
dτ 2 +

(
1 + τ

r

)2
dζ 2 + 1

r2
ds2

⊥, (65)

where r is the radial coordinate. Similarly, the vacuum in Weyl
scaled metric (58) is dual to

ds2 = − 2

v2

d − 1

d − 2
dvdσ − 1

v2

(
(d − 1)2

(d − 2)2
+ 2(d − 1)v

(d − 2)2σ

)
dσ 2

+ 1

τ 2
0

(
1 + σ

v

)2
d ζ̂ 2 + 1

v2

(
σ

τ0

)− 2
d−2

ds2
⊥, (66)

where v is the radial coordinate. These bulk metrics (65) and
(66) are related by the diffeomorphism

τ = τ
− 1

d−2
0 σ

d−1
d−2 , r = v

(
σ

τ0

) 1
d−2

. (67)

For both cases, (65) and (66), we obtain the boundary metrics
(47) and (58) from (64), after replacing ρ with r and v,
respectively. Any Weyl transformation at the boundary is dual
to a bulk diffeomorphism. Since the boundary metrics (47)
and (58) are related by a Weyl transformation, (67) is sim-
ply a specific instance of this general feature of holographic
duality. Note that τ and σ are related exactly by the time
reparametrization (56) at the boundary.16

16Diffeomorphisms such as (67) which implement global transfor-
mations on the dual state are called improper diffeomorphisms which
are always part of residual gauge freedom after gauge fixing in the
bulk. The latter can also have additional proper diffeomorphisms
which do not affect the dual physical quantities
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Holographic renormalization [20,21,36,47] provides the
framework for extracting the 〈Tμν〉 corresponding to the state
in the field theory dual to a specific asymptotically AdSd+1

bulk geometry. The procedure essentially amounts to co-
variantly regularizing the Brown-York tensor on a cutoff
hypersurface with local counterterms built out of the induced
metric, and then taking this surface to the boundary. For the
bulk geometry (65), 〈Tμν〉 = 0 in the dual vacuum state living
in the flat Milne metric (47) at the boundary. On the other
hand, for the vacuum state living on the Weyl transformed
Milne metric (58) which is dual to the bulk geometry (66),
〈Tμν〉 = 0 only if d is odd. For even d , holographic renormal-
ization reproduces the Weyl anomaly of the dual field theory.
In the case of d = 4, we obtain (using minimal subtraction
scheme)

〈T̃μν〉 = 1

8πGN
Aμν, (68)

with

Aμν = 1

16

[
4

3
R̃μν R̃ − 2R̃μρ R̃ρ

ν − g̃μν

(
1

2
R̃2 − R̃ρσ R̃ρσ

)]
= diag

(
− 1

32σ 4
,− 11

648σ 2τ 2
0

,
25τ0

648σ 5
,

25τ0

648σ 5

)
, (69)

where g̃ denotes the Weyl rescaled background metric (58),
R̃μν is the Ricci tensor built out of it, etc. It is easy to verify
that

∇̃μT̃ μ
ν = 0, (70)

i.e., energy and momentum are conserved in the Weyl rescaled
background metric (58) (with ∇̃ being the covariant derivative
built out of it), and

T̃ μ
μ = − 1

8πGN

(
1

24
R̃2 − 1

8
R̃ρσ R̃ρσ

)
= 1

8πGN

2

27σ 4
. (71)

Using

1

GN
= 2N2

π
, (72)

we can readily find that (71) reproduces the Weyl anomaly of
SU(N ) N = 4 supersymmetric Yang-Mills theory [20,47].

An asymptotically AdSd+1 metric dual to a Bjorken flow
on the flat Milne metric (47) at the boundary, is a solution to
the vacuum Einstein’s equations (63) which takes the form

ds2 = − 2

r2
drdτ − A(r, τ )

r2
dτ 2 +

(
1 + τ

r

)2
eL(r,τ )dζ 2

+ eK (r,τ )

r2
ds2

⊥, (73)

with the following Dirichlet asymptotic boundary
conditions:

A(r, τ ) → 1, K (r, τ ) → 0, and L(r, τ ) → 0 as r → 0.

(74)
These boundary conditions ensure that the boundary metric
(64) (with r being the radial coordinate in place of the generic
ρ) coincides with the Milne metric (47).

The Einstein equations (63) can be readily solved
in the late-time expansion, as functions of the scaling

variable

s = r
(τ0

τ

) 1
d−1

, (75)

and with the expansion parameter being(
μ̃1/dτ

d−2
d−1
)−1

, (76)

where μ̃ := ε0τ
d/(d−1)
0 is a constant which will be related to

the single parameter μ of the Bjorken flow defined in (51) (or
equivalently to ε0) below. Explicitly,

A(r, τ ) = 1 − ε0sd +
∞∑

i=1

(
μ̃1/dτ

d−2
d−1
)−i

a(i)
(
ε

1
d
0 s
)
,

L(r, τ ) =
∞∑

i=1

(
μ̃1/dτ

d−2
d−1
)−i

l(i)
(
ε

1
d
0 s
)
,

K (r, τ ) =
∞∑

i=1

(
μ̃1/dτ

d−2
d−1
)−i

k(i)
(
ε

1
d
0 s
)
. (77)

The functions a(i), l(i), and k(i) satisfy ordinary differential
equations with source terms at each order. We require that
these functions do not blow up at the perturbative horizon
which is at sh = ε

−1/d
0 , i.e., at

rh = ε
− 1

d
0

(
τ

τ0

) 1
d−1

. (78)

Together with the Dirichlet boundary conditions (74), these
finiteness conditions ensure that we obtain solutions which
are free of naked singularities in the perturbative expansion
and which are unique up to terms which are determined by a
single coefficient [22]. This coefficient captures the residual
gauge freedom of the ingoing Eddington-Finkelstein coordi-
nates which is the reparametrization of the radial coordinate
r (without spoiling the manifest translational and rotational
symmetries along the transverse directions). Usually, this
residual gauge freedom is fixed by setting the radial location
of the apparent or event horizon at (78) to all orders in the
late proper time expansion [9]. However, in what follows,
we will show that the residual gauge freedom should ac-
tually be fixed by the regularity of the horizon cap. Note
that, although the requirement that the horizon cap should be
pinned to the evolving event horizon for regularity is a gauge-
invariant statement, the residual gauge freedom will be crucial
to implement the prescription in the Eddington-Finkelstein
coordinates. We therefore keep this gauge freedom unfixed
here and later show how it is fixed by the regularity of the
horizon cap such that the latter is pinned to the evolving event
horizon (which lies at a fixed radial location after the residual
gauge fixing).

It is also crucial to emphasize that the residual gauge free-
dom involving the reparametrization of the radial coordinate
is a proper diffeomorphism, i.e., it leaves both the boundary
metric [which is the flat Milne background (47)] and also the
〈Tμν〉 of the dual Bjorken flow extracted from holographic
renormalization is invariant. It is useful to see this explicitly.
For illustration, let us consider the AdS5 case. The asymptotic
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expansions take the form:

A(r, τ ) = 1 + ra1(τ ) + r2

(
a1(τ )2

4
− a′

1(τ )

)
+ r4a4(τ )

+ · · · ,

K (r, τ ) = ra1(τ ) − r2 a1(τ )2

4
+ r3 a1(τ )3

12
+ r4k4(τ ) + · · · ,

L(r, τ ) = ra1(τ ) − r2

(
a1(τ )2

4
+ a1(τ )

τ

)
+ r3

(
a1(τ )3

12
+ a1(τ )2

2τ
+ a1(τ )

τ 2

)
+ r4l4(τ )

+ · · · . (79)

Above, the function a1(τ ) is related to the residual gauge
freedom and can be chosen arbitrarily. Furthermore, the con-
straints of Einstein’s equations (63) impose

a′
4(τ ) = −a1(τ )4

12τ
− 4

3τ
a4(τ ) − 8

3τ
k4(τ ),

l4(τ ) + 2k4(τ ) = −a1(τ )

τ 3
− 3

4

a1(τ )2

τ 2
− 1

4

a1(τ )3

τ

− 3

32
a1(τ )4. (80)

Using these constraints, one can find via holographic renor-
malization that

〈Tμν〉 = 3

16πGN

⎛⎜⎜⎜⎜⎝
−a4(τ ) 0 0 0

0 τ 2(a4(τ ) + τa′
4(τ )) 0 0

0 0 −a4(τ ) − 1
2τa′

4(τ ) 0

0 0 0 −a4(τ ) − 1
2τa′

4(τ )

⎞⎟⎟⎟⎟⎠. (81)

First, the above result is exact to all orders in the late proper
time expansion. Second, we readily find that 〈Tμν (τ )〉 is de-
termined by a4(τ ) alone and is independent of the arbitrary
function a1(τ ) capturing the residual gauge freedom in the
asymptotic expansion after utilizing the constraints (80) in
the renormalized Brown-York stress tensor. Thus 〈Tμν (τ )〉 is
invariant under the residual gauge transformation. Further-
more, comparing (81) with (48)–(50) (for d = 4) we find
that 〈Tμν (τ )〉 takes the general form of the energy-momentum
tensor of Bjorken flow with the identification

ε(τ ) = − 3

16πGN
a4(τ ). (82)

One can repeat the same exercise in arbitrary dimensions
(d > 2) and show that 〈Tμν (τ )〉 obtained from holographic
renormalization takes the general form given by (48)–(50)
with the identification

ε(τ ) = − d − 1

16πGN
ad (τ ), (83)

where ad (τ ) is the coefficient of rd in the asymptotic expan-
sions of A(r, τ ).

Furthermore, extracting ad (τ ) from (77) we obtain that at
the leading order in the late proper time expansion,

ε(τ ) ≈ d − 1

16πGN
ε0

(τ0

τ

) d
d−1 = d − 1

16πGN
rh(τ )−d

= d − 1

16πGN

(
4πT (τ )

d

)d

, (84)

where we have used (78), and also (26) to define an instanta-
neous Hawking temperature T (τ ) given by

T (τ ) = d

4π
ε

1
d
0

(τ0

τ

) 1
d−1

. (85)

Once again comparing with the general (hydrodynamic) late
proper time expansion (52), we find that

ε0 = d − 1

16πGN
ε0. (86)

For the case of AdS5, the identification (72) implies that at late
proper time

T (τ ) ≈ 1

π
ε

1/4
0

(τ0

τ

) 1
3
,

ε(τ ) ≈ 3

8
π2N2T (τ )4 = 3

8π2
N2ε0

(τ0

τ

) 4
3
. (87)

For any d , ε(τ ) is given by a perfect fluid expansion given by
(84) at late time with

pL(τ ) ≈ pT (τ ) ≈ 1

d − 1
ε(τ ) ≈ 1

16πGN
rh(τ )−d . (88)

Thus, at late proper time, the energy density ε(τ ) and the pres-
sures pL(τ ) and pT (τ ) are given by the thermal equation of
state obtained from a static black brane geometry, but with
a time-dependent temperature (85) which satisfies the Euler
equations.

To construct a regular horizon cap, it is useful to change
coordinates from r and τ to v and σ following (67), as in
the case of the space-time dual to the vacuum state. Note,
it follows from (75) that v and s are the same. In these new
coordinates, the metric (73) takes the form

ds2 = − 2

v2

d − 1

d − 2
dvdσ

− 1

v2

(
(d − 1)2

(d − 2)2
A(v, σ ) + 2(d − 1)v

(d − 2)2σ

)
dσ 2

+ 1

τ 2
0

(
1 + σ

v

)2
eL(v,σ )d ζ̂ 2 + 1

v2

(
σ

τ0

)− 2
d−2

eK (v,σ )ds2
⊥,

(89)
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and is dual to the Bjorken flow on the Weyl rescaled back-
ground metric (58) at the boundary. We want to emphasize
that, just like the Weyl transformation, the dual bulk diffeo-
morphism which achieves the above form of the metric is
given by (67) exactly and is therefore not corrected at first
and higher orders in the large proper time expansion.

Holographic renormalization and the constraints of the
Einstein’s equations (63) imply that the energy-momentum
tensor of the dual Bjorken flow takes the form

〈T̃μν〉 = T W
μν + 1

8πGN
Aμν, (90)

where T W
μν takes the general Bjorken form with nonvanishing

components given by (59) in which

ε̃(σ ) = − d − 1

16πGN

(d − 1)2

(d − 2)2
ad (σ ), (91)

and Aμν is the Weyl anomaly appearing for even d .
Comparing with (83), we indeed verify that the bulk diffeo-
morphism (67) implements the Weyl transformation and time
reparametrization in the dual theory [with the Weyl factor
given by (57)] and also reproduces its Weyl anomaly. Partic-
ularly, for d = 4, we recall that Aμν is simply given by (69).
The anomalous term is state-independent (and is always the
same as in the Weyl transformed vacuum state). We again note
that 〈T̃μν〉 is invariant under the residual gauge symmetry since
it is independent of a1(τ ) after we implement the gravitational
constraints following the previous discussion.

Obviously, the late proper time expansion (77) takes the
form

A(v, σ ) = 1 − ε0v
d +

∞∑
i=1

(
ε

1/d
0 σ

)−i
a(i)
(
ε

1/d
0 v

)
,

L(v, σ ) =
∞∑

i=1

(
ε

1/d
0 σ

)−i
l(i)
(
ε

1/d
0 v

)
,

K (v, σ ) =
∞∑

i=1

(
ε

1/d
0 σ

)−i
k(i)
(
ε

1/d
0 v

)
. (92)

Explicitly, for d = 4,

a(1)(x) = α1
x(1 + x4)

3
+ 2x4(1 + x)

3
,

k(1)(x) = α1
x

3
+ 1

2
g(x),

l(1)(x) = α1
x

3
− g(x), (93)

where

g(x) = 4
3 x − 1

3 ln(x2 + 1) − 2
3 ln(x + 1) − 2

3 arctan x. (94)

Above, α1 is the dimensionless parameter associated with the
residual gauge freedom. At any order in the late proper time
expansion, the terms multiplying α1 in (93) remain the same,
however, we should replace α1 by αn at the nth order. It is
also easy to see that g(x) is finite at x = 1 implying that the
metric is regular (with no naked singularity) at the perturbative
horizon

vh = ε
−1/d
0 + O(σ−1). (95)

At late proper time the dual black brane has a constant surface
gravity and area although the directions longitudinal to the
flow keep expanding and those transverse to the flow keep
contracting.

The above metric reproduces the late proper time expan-
sion of ε̃(σ ) which takes the form (60) with ε0 given by (83)
and λn taking specific values for a given d . Particularly, for
any d , we obtain

λ1 = − 1

(d − 1)
d−1

d (16πGN )1/d
. (96)

It is easy to verify from (53) and the equation of state [see
(84)]

T = β−1 = d

4π
ε

1/d
0 , ε = d − 1

16πGN
ε0 = d − 1

16πGN

(
4πT

d

)d

(97)

that (96) implies via (53) that

η

s
= 1

4π
, (98)

for any d > 2. More details of the perturbative expansion are
in Appendix A.

IV. THE BULK SCALAR FIELD AND THE HORIZON CAP
OF THE BJORKEN FLOW

The key to obtaining the real-time correlation functions is
solving the dynamics of the scalar field in the gravitational
background dual to the Bjorken flow. The starting point, how-
ever, is to construct the analog of the bulk Schwinger-Keldysh
contour with the horizon cap for the gravitational background
itself. This is straightforward. The metric dual to the Weyl
scaled Bjorken flow [given by Eqs. (89) and (92)] reaches a
constant horizon temperature at late time although the bound-
ary metric has time-dependent spatial components. Since we
would be working perturbatively in the late proper time expan-
sion, we will fix the horizon cap at the constant late-time value
v = ε

−1/d
0 to all orders in the perturbative late proper time

expansion while keeping the residual gauge freedom of radial
reparametrization unfixed, as mentioned above. The metric is
analytic to all orders at the horizon cap. Therefore, there is no
modification to the metric on the other arm of the bulk space-
time as it is reached via the complexified v contour encircling
the horizon, as shown in Fig. 2 (as emphasized earlier, there is
no analytic continuation in σ and other coordinates). Exactly
the same gravitational background is valid on both arms of
the complex v contour. It is also easy to see that the on-shell
Einstein-Hilbert action on the two arms cancel each other out
implying that the dual (non-)equilibrium partition function in
the absence of additional sources (and with the same boundary
metric on the two arms) is exactly zero, as should be the
case.17

There is a crucial subtlety to this rather simple construc-
tion. We should worry about the residual gauge symmetries

17In the field theory, this is equivalent to the statement that W [J1 =
J2 = 0] = 0.
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at first and higher orders in the late proper time expansion.
In what follows, we show that the analytic behavior of the
sourced scalar field retains its equilibrium nature to all orders
in the late proper time expansion at the horizon cap, provided
the residual gauge symmetry is fixed in a unique way at each
order. This addresses an issue which would have arisen if we
had fixed the residual gauge symmetries to keep the apparent
or the event horizon at v = ε

−1/d
0 to all orders in the late

proper time expansion. However, the location of these two
horizons differ at second and higher orders in the proper time
expansion. We find that the gauge fixing which implements
the regularity of the horizon cap is exactly the same which
fixes the event (but not the apparent) horizon at vh = ε

1/d
0 up

to third order in the proper time expansion in the case of AdS4

and AdS5. Although we do not have an analytic proof that
this feature will continue to hold at higher orders, we expect
it to be the case as we explicitly find that the gauge fixing
is independent of the mass of the bulk scalar field, and it
should also hold for fermion, vector and higher rank tensor
fields.

At the outset, we repeat our emphasis that the Weyl rescal-
ing (and hence the dual bulk diffeomorphism) is determined
purely by the late proper time perfect flow regime that is

mapped to that of a constant temperature in a nontrivial back-
ground metric in the field theory (which is also the boundary
metric of the dual black brane geometry after the bulk diffeo-
morphism). This should be evident from our construction of
the bulk dual of the Weyl-transformed Bjorken flow (in the v

and σ coordinates) in the previous section. Both these Weyl
transformation and the background metric of the field theory
do not receive any correction at first and higher orders in the
derivative (i.e., large proper time) expansion. Nevertheless,
with such a Weyl transformation (bulk diffeomorphism) we
will be able to ensure that the Klein-Gordon equation of
the bulk scalar takes the same form at first and higher or-
ders as that at the leading order but with source terms, and
that the leading near-horizon behavior is exactly the same
as that in the static black brane geometry (in the v and σ

coordinates) to all orders in the large proper time expan-
sion when the horizon cap is pinned to the evolving event
horizon. This will be instrumental in establishing the hori-
zon cap prescription in the hydrodynamic tail of the Bjorken
flow.

To see the main advantage of working in the v and σ

coordinates, note that the explicit form of the leading order
metric [as evident from Eqs. (89) and (92)] is

ds2 = − 2

v2

d − 1

d − 2
dvdσ − 1

v2

(
(d − 1)2

(d − 2)2
[1 − vdε0 + O(σ−1)] + 2(d − 1)v

(d − 2)2σ

)
dσ 2

+ 1

τ 2
0

(
1 + σ

v

)2
[1 + O(σ−1)]d ζ̂ 2 + 1

v2

(
σ

τ0

)− 2
d−2

[1 + O(σ−1)]ds2
⊥. (99)

It is useful to define the comoving momenta which depend
on σ :

κL = kL
τ0

σ
, �κT = �kT

(τ0

σ

)− 1
d−2

, (100)

such that it takes care of the longitudinal expansion and trans-
verse contraction of the boundary metric. A natural ansatz
for the scalar field consistent with boost invariance of the
background geometry is

�(v, σ, ζ̂ , �x⊥) ≈ ei(− d−1
d−2 ωσ+kL ζ̂+�kT ·�x⊥ ) f (v, ω, κL, �κT ), (101)

where remarkably there is no explicit σ dependence in f
(only implicitly through κL and �κT ), while in the phase we
have the usual fixed conjugate momenta kL and �kT . This is
exact at leading order and can be further corrected to obtain
a systematic expansion of the equations of motion in powers
of σ−1, as shown below. Particularly, the Klein-Gordon equa-
tion (�− m2)� = 0 for the bulk scalar field at the leading
order σ 0 is then18

D f = O(σ−1), (102)

18To obtain this we should substitute kL and �kT in (101) by the re-
defined momenta (100) and remember to differentiate f with respect
to σ as the redefined momenta (100) depend on σ .

where

D = v2(1 − vdε0)∂2
v − v(d − 1 − 2ivω + vdε0)∂v

−{m2 + v[v(κ2
L + κ2

T ) + i(d − 1)ω]}. (103)

Remarkably, the left-hand side of (102) is just the Klein-
Gordon equation for the massive bulk scalar in the AdSd+1

static black brane geometry (22) at temperature β−1 given by
(97), with v substituting for r, and ω, κL, and �κT identified
with the canonical frequency and momenta. The implication is
that f will have exactly the same solutions at the leading order
as in the static black brane geometry and therefore the same
analytic structure at the horizon cap at the leading order. For
the homogeneous (kL = �kT = 0) and massless case, this result
reduces to the observation made by Janik and Peschanski [23]
in the context of the transients of the Bjorken flow.

Note that the dependence of f in Eq. (101) on the co-
moving momenta implies that we do not have separation of
variables, but this should not be expected as the background
at late time corresponds to an expanding boost-invariant per-
fect fluid, which has no timelike Killing vector. Nevertheless,
the map to the Laplacian of a static black hole geometry is
possible at leading order because the boost invariant perfect
fluid is given only by a time-dependent temperature.

The ansatz (101) can be corrected to incorporate the vis-
cous and all higher-order corrections to the gravitational
Bjorken flow background systematically while ensuring the
regularity of the horizon cap after fixing the residual gauge
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freedom perturbatively in late proper time expansion. This
modified ansatz involves an expansion in σ−1 with coef-
ficients which are functions of v, ω, and the comoving
momenta, such that the equations of motion can be solved
systematically in σ−1 expansion as well. Obviously, this im-
plies that we also take into account the implicit dependence of
the comoving momenta on σ while obtaining the equations of
motion order by order in σ−1.

Explicitly, the ansatz for the bulk scalar field in the full
complexified space-time with 1 and 2 labeling the sheets
of the bulk space-time ending at the forward and backward
arms of the Schwinger-Keldysh contour, respectively, at their
boundaries is(

�1(v, σ, ζ̂ , �x⊥)

�2(v, σ, ζ̂ , �x⊥)

)
=
∫

dωdkLdd−2kT ei(kL ζ̂+�kT ·�x⊥)e−i d−1
d−2 ωσ

×
(

σ

τ0

)iγ0(ω/ε
1/d
0 ) ∞∑

n=0

(
ε

1/d
0 σ

)−n

×Mn(v, ω, κL, �κT ) ·
(

p(ω, kL, kT )

q(ω, kL, kT )

)
,

(104)

where

Mn(v, ω, κL, �κT )

=
(

φn,in(v, ω, κL, �κT ) φn,out(v, ω, κL, �κT )

φn,in(v, ω, κL, �κT ) eβωφn,out(v, ω, κL, �κT )

)
.

(105)

Above, in (104), a nonanalytic term proportional to σ iγ0 has
been introduced with γ0 being a new dimensionless function
of only ω/ε

1/d
0 . This nonanalytic factor is crucial to have a

regular horizon cap as shown below. However, it does not
affect the zeroth-order equation of motion which takes the
form of the Laplacian on a static black brane, as discussed
above. For any ω, (104) has the appearance of a trans-series
in σ−1 with ω characterizing the continuous instanton ex-
ponent. Note p and q are functions of ω, kL, and kT (and
not the redefined momenta κL and �κT ), since we are inte-
grating over ω, kL, and kT , and utilizing the superposition
principle to obtain the general solution with right behavior
at the horizon cap. However Mn depend on κL and �κT , and
therefore they have nontrivial derivatives with respect to σ .
The coefficients p and q, which are functions of the ordinary
momenta (kL and �kT ), and coefficients of the ingoing and
outgoing modes respectively (see more below), are deter-
mined by imposing Dirichlet boundary conditions at the two
boundaries.

The structure of Mn in (105) is determined as follows:
Note that at the zeroth order, i.e., at n = 0, we obtain ex-
actly the solutions of the static black brane as noted above.
We can choose the basis of solutions which are ingoing and
outgoing at the horizon, and satisfying the normalization
conditions given by (25). Explicitly, near the perturbative
horizon v = ε

1/d
0 where the horizon cap is located, they take

the forms19

φ0,in = 1 +
∞∑

k=1

p0,k
(
ε

−1/d
0 − v

)k
,

φ0,out = (ε−1/d
0 − v

)i 2ω

dε
1/d
0

[
1 +

∞∑
k=1

q0,k
(
ε

−1/d
0 − v

)k]
,

(106)

respectively. Note we have used (97) to set βω/(2π ) =
2ω/(dε

1/d
0 ). For n � 1, φn,in and φn,out represent corrections

to these zeroth-order solutions, as discussed below. In (105),
we have assumed that φn,in and φn,out have the same behavior
at the horizon cap v = vh = ε

−1/d
0 for n � 1 as in the case

of the equilibrium (or equivalently at the zeroth order). This
indeed turns out to be the case with appropriate residual gauge
fixing as mentioned before and explicitly shown below.20

At higher orders, the equations determining φn,in and φn,out

can be obtained from expanding (�− m2)� = 0 in the late
proper time expansion after substituting kL and �kT in (104) by
the redefined momenta (100), and isolating the σ−n term. We
obtain that φn,in and φn,out satisfies the linear inhomogeneous
ordinary differential equations

Dφn,in = Sn,in, Dφn,out = Sn,out, (107)

with D being the same operator (103), which is simply that
corresponding to the Klein-Gordon equation for the static
black brane at temperature β−1 given by (97), at all orders.
The sources Sn,in and Sn,out are functions of v, ω, κL, and
�κT , and depend on φm,in and φm,out respectively for m < n.
Both of these sources also depend on the functions a(i), k(i),
and l(i), which appear in the late proper time expansion (92)
of the background metric, with i � n. Note that the source is
linear in the bulk field �, and therefore splits into Sn,in and
Sn,out at each order in the σ−1 expansion for n � 1. Since
φn,in for n � 1 corrects φ0,in, we include the particular solution
with only φm,in (and m < n) appearing in the source term
Sn,in in it. The particular solutions sourced by φm,out with
0 � m < n which appear in Sn,out are added by definition to
φn,out similarly.

The regularity of the horizon cap implies that, at first and
higher orders in the proper time expansion, we should have

lim
v→ε

−1/d
0

(
ε

−1/d
0 − v

)−i 2ω

dε
1/d
0 φn,out(v, ω, κL, �κT )

= −iγn,out(ω, κL, �κT ),

lim
v→ε

−1/d
0

φn,in(v, ω, κL, �κT ) = −iγn,in(ω, κL, �κT ), (108)

19φ0,in → 1 and

(ε−1/d
0 − v)

−i 2ω

dε
1/d
0 φ0,out → 1

as v → ε
−1/d
0 are just normalizations.

20In the following section, we show that preserving the near-
horizon behavior to all orders is required for satisfying many
consistency conditions, such as ensuring that the retarded correlation
function is given by causal response.
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with γn,out and γn,in as new functions of ω, κL, and �κT for
n � 1. This will ensure that the analytical dependence of the
field on v at the horizon cap v = vh = ε

−1/d
0 is the same to all

orders in the proper time expansion. Note that at the zeroth
order, the analogous conditions for φ0,in and φ0,out are simply
given by 1 on the RHS in both cases by choice [see (106)]. We
will show that the γn,out and γn,in can be determined uniquely
for n � 1 via horizon cap regularity and field theory identities.

First, note that (108) implies that φn,in and φn,out can be
written in the form

φn,in = φn(p),in − iγn,inφ0,in,

φn,out = φn(p),out − iγn,outφ0,out (109)

for n � 1 such that φn(p),in and φn(p),out are the particular
solutions of the inhomogeneous ordinary differential equa-
tions (107). Both φn(p),in and φn(p),out are determined by the
sources Sn,in and Sn,out and are proportional to the coefficients
p and q, respectively (i.e., they vanish when p = q = 0). Near
the horizon cap v ≈ ε

1/d
0 , we explicitly find that φn(p),in and

φn(p),out behave as

lim
v→ε

−1/d
0

(
ε

−1/d
0 − v

)−i 2ω

dε
1/d
0 φn(p),out = O

(
ε

−1/d
0 − v

)
,

lim
v→ε

−1/d
0

φn(p),in = O
(
ε

−1/d
0 − v

)
,

(110)

respectively. Equivalently,

φn(p),out = (ε−1/d
0 − v

)i 2ω

dε
1/d
0

∞∑
k=1

qn,k
(
ε

−1/d
0 − v

)k
,

(111)

φn(p),in =
∞∑

k=1

pn,k
(
ε

−1/d
0 − v

)k
,

where the coefficients should be determined by the equa-
tions of motion. For the outgoing solution, we find that this
behavior is possible only when the residual gauge parameter
αn appearing in the background metric and γn,out are chosen
appropriately to cancel double and single poles appearing in
the equation of motion (107) at the horizon cap for each
n � 1. Furthermore, αn are simply numerical constants (as

they are defined to be), and γn,out are linear functions of ω/ε
1/d
0

only. Thus the outgoing solutions appearing in Mn in our
ansatz (104) are determined uniquely. As discussed before
and explicitly shown again in the next section, this completely
determines the advanced propagator of the Bjorken flow. The
nonequilibrium retarded propagator then is also determined
uniquely, since even out of equilibrium, the advanced and
retarded propagators are related by the exchange of the spatial
and temporal arguments. Utilizing this, we can determine
γn,in uniquely as well for n � 1 as will be shown in the
next section. In this section, we will focus mainly on the
outgoing mode.

It is easy to see that (110) [equivalently (111)] implies that
γn,in and γn,out are simply the coefficients of the homogeneous
solutions of the equations of motion (107) for n � 1. There-
fore, γn,in and γn,out appear in Sm,in and Sm,out, respectively,
for m > n. We will illustrate by example how requiring the
regularity condition (110) [equivalently (111)] at the nth order
determines γn−1,out along with the gauge parameter αn (which
is a constant) recursively.

Unlike the case of the outgoing mode, the ingoing mode is
always analytic at the horizon cap. Therefore, we need to use
consistency conditions for the Schwinger-Keldysh correlation
functions to determine γn,in for n � 1. However, γ0 in the
ansatz (104) appears in both the ingoing and outgoing modes.
Our construction passes a significant consistency test that the
same function γ0(ω/ε

1/d
0 ) determines the homogeneous tran-

sients (sourceless solutions which are ingoing at the horizon)
with the argument ω/ε

1/d
0 taking values corresponding to the

appropriately rescaled quasinormal mode frequencies of the
static black hole, as will be discussed in Sec. V E. This is
remarkable as we determine the function γ0 analytically by
imposing the regularity condition (111) on the outgoing mode
at the horizon cap.

In what follows, we illustrate how we determine the out-
going mode and the residual gauge fixing uniquely in the
case of AdS5. Let us first see how we determine γ0 and α1

at the first order in the proper time expansion. This requires
the first-order correction to the background metric given by
(93) and (94). We find that the equation of motion (107) for
φ1,out explicitly takes the following form near the horizon cap
v ≈ ε

1/4
0 up to overall proportionality factors:

1(
ε

1/4
0 v − 1

)2 ω

4ε
1/4
0

(α1 + 3)
(
ωε

−1/4
0 + 2i

)+ 1(
ε

1/4
0 v − 1

) iω

ε
1/4
0

×
(

2κ2
L + 2κ2

T − m2 − 3ω2 + 240ωε
1/4
0

24ε
1/2
0

(α1 + 3) + (16 + 5α1)ω2 − 4γ0ωε
1/4
0

ε
1/2
0

)
+ · · · , (112)

with · · · denoting terms which are regular at v = ε
1/4
0 if φ1,out

is of the form (111). See Appendix C for more details. We
readily see that in order to have a solution of the desired form
(110) we must impose

α1 = −3, γ0 = ω

4ε
1/4
0

(113)

so that the double- and single-pole terms of the equation of
motion appearing at the horizon cap vanish. The double-
pole term determines α1 and the single pole term determines
γ0. As claimed before, we find that γ0 is indeed a sim-
ple linear function of ω/ε

1/4
0 (rather just proportional to it)

while the gauge parameter α1 is a numerical constant as it
should be.
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At the second order in the proper time expansion, similarly
α2 and γ1 are determined by the vanishing of the double
and single pole terms in the equation of motion for φ2,out,
respectively. Here we have to utilize the explicit second-order
correction to the background metric given in Appendix A.
Explicitly,

α2 = 1

72
(20 + 9π − 12 ln 2),

γ1 = 1

16

(
4i − 9π + 4 − 24 ln 2

9

ω

ε
1/4
0

)
. (114)

We find once again α2 is just a numerical constant as it should
be and γ1 is a linear function of ω/ε

1/4
0 .

It is indeed crucial that the γn,out for n � 0 are functions of
ω only and are independent of κL and �κT which depend on σ .
Otherwise, the central assumption (108) [and thus (111)] are
not valid for the outgoing mode at the horizon cap, and should
be corrected by log terms. The latter would have implied that
the behavior near the horizon cap at first and higher orders is
different from the zeroth order which is the same as in thermal
equilibrium. Note that the ansatz for the ingoing mode in (111)
remains valid to all orders even if γn,in depend on κL and �κT .
The coefficients pn,k in (111) also involve derivatives of γm,in

with respect to κL and �κT with m < n. See Appendix C for
more details.

Finally, we have explicitly verified that the values of the
residual gauge parameters α1 and α2 are such that the event
horizon is pinned to the horizon cap v = vh = ε

−1/d
0 at the

first and second orders, respectively, for both AdS4 and AdS5.
Note that the apparent horizon differs from the event horizon
from second order onwards, so the evolving apparent horizon
is behind the horizon cap. See Appendix B for details. We
expect that this feature persists to all orders so that although
the interior of the event horizon is excised, the full double-
sheeted geometry with the horizon cap still covers the entire
bulk regions which can send signals to the boundary.21 This
feature mirrors the causal nature [1] of the Schwinger-Dyson
equations for the correlation functions in the field theory.
We will discuss more about the consistency of this result in
Sec. V E.

The quadratic on-shell action for the bulk scalar field is
the sum of three pieces, namely, Sin-in and Sout-out which are
quadratic in the ingoing and outgoing modes respectively, and
the cross term Sin-out. As in the thermal case discussed in
Sec. II, Sin-in = 0. The ingoing mode is analytic at the horizon
and the contributions from the forward and backward arms
of the radial contour cancel out. Once again this is required
for consistency, as if we keep only the ingoing mode by
setting q = 0 in (104), then J1 = J2 and W [J1 = J2] = 0 for
an arbitrary initial (nonthermal) state. (Recall W is identified
with iSon-shell.) The cross term Sin-out has a branch point at the
horizon cap and the integration over the radial contour results

21Although we do not have a rigorous proof to all orders, we believe
that this follows from the general result that the event horizon is
generated by null geodesics which also determine the singularities
arising in the equation of motion at the horizon cap.

in the two boundary terms like in the thermal case discussed
in Sec. II. Sout-out potentially has a single pole (vh − v)−1

divergence which we denote as Sε . Explicitly,

Sε ∝
∫

dω

∫
dkL

∫
dd−2kT

∮
ε

dv
√−G(Gvv∂vφ

∗
n,out∂vφn,out

+ Gvσ (∂vφ
∗
n,out∂σφn,out + ∂vφn,out∂σφ∗

n,out) + · · · )

(115)

at the nth order in the late proper time expansion. We have
verified that Sε = 0 for the solution with the regular behavior
at the horizon cap given by (108), obtained for the appropriate
choices of αn and γn−1,out as discussed above. One can also
check that terms like φ∗

k,outφl,out with k + l � 2n also do not
contribute to Sε . However, our arguments for Sout-out = 0 for
the thermal case in Sec. II do not go through here since
they rely on the KMS boundary condition. Nevertheless, since
the pole at the horizon vanishes, Sout-out is the sum of two
boundary terms as well.

Since we preserve the horizon cap regularity at each order,
the analytic continuation of the outgoing mode across the
horizon cap at each order works exactly in the same way as in
the case of thermal equilibrium, i.e., φn,out(ω, v, κL, κT ) picks
up a factor of eβω, as evident from (109) and (111). Repeating
the argument in Sec. II, each boundary term in Sout-out involves
one φb(ω, κL, κT ) and another φb(−ω, κL, κT ) (with b stand-
ing for the boundary value) or the corresponding boundary
values of the radial derivatives. Also, the contribution from
the forward and backward arms come with opposite signs.
While φb(ω, κL, κT ) picks up a eβω factor via analytic contin-
uation across the horizon cap, φb(−ω, κL, κT ) picks up a e−βω

factor, and these multiply to unity. Therefore, the boundary
term contributions from the two arms cancel out resulting in
Sout-out = 0.

Finally, as in the thermal case, the on-shell action is simply
the sum of two boundary terms (including the counter-terms
for holographic renormalization) obtained from Sin-out. We can
then readily differentiate this on-shell action to obtain the
Schwinger-Keldysh correlation functions of the Bjorken flow.

As shown in the following section, the boundary corre-
lation functions obtained solely from Sin-out ensure that the
(nonequilibrium) retarded correlation function is given always
by the linear causal response. Furthermore, a major consis-
tency check is that we reproduce the homogeneous transients
as poles of the retarded Green’s function in complexified ω

not only at the leading order as computed in Ref. [23], but
also at the subleading orders as shown in Appendix E and
discussed further below. We will discuss more consistency
tests in Sec. V E.

V. THE REAL-TIME OUT-OF-EQUILIBRIUM
CORRELATION FUNCTIONS

In the previous section, we have shown that via the bulk
diffeomorphism dual to the Weyl transformation we can ob-
tain the solution of the bulk scalar field which has the same
analytic thermal nature of the near-horizon modes to all orders
in the (hydrodynamic) large proper time expansion. Further-
more, this solution is unique up to the coefficients that give
the leading near-horizon behavior of the ingoing modes, and
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the on-shell action to all orders is the product of the ingo-
ing and outgoing modes, as the terms which are quadratic
in the ingoing modes or the outgoing modes cancel exactly
between the radial arms corresponding to the forward and
backward parts of the time contour due to the thermal nature
of their leading near-horizon behavior. Here we compute the
Schwinger-Keldysh correlation functions from the on-shell
action of the bulk scalar field in an appropriate late-time
expansion. We show that the correlation functions are con-
sistent with the field theory identities which hold even for
out-of-equilibrium states and one of them can be used to fix
the coefficients that give the leading near-horizon behavior of
the ingoing modes and thus determine the bulk scalar field
solution uniquely. Furthermore, we show that the all-order
hydrodynamic correlation function has a matrix factorized
form giving a bilocal generalization of the corresponding form
of the thermal correlation functions.

In Sec. V A, we discuss the general identities satisfied by
the Schwinger-Keldysh correlation functions and discuss how
they transform under Weyl transformations. In Sec. V B, we
obtain the Schwinger-Keldysh correlation functions from the
on-shell action and establish its matrix factorized form which
is consistent with the field theory identities. We also show that
one of the latter identities can determine the bulk solution of
the dual scalar field uniquely and therefore the Schwinger-
Keldysh correlation functions. In Sec. V C, we obtain the
correlation functions in the perfect fluid limit and show that
it is thermal after space-time reparametrizations up to over-
all Weyl factors. In Sec. V D, we establish the systematic
late-time expansion of the correlation functions. Finally, in
Sec. V E, we discuss consistency checks, including the feature
find that the retarded propagator given by the ingoing modes
reproduces the normalizable bulk solutions at complex fre-
quencies (which map to quasinormal modes of the static black
brane [23]) with vanishing sources to all orders although the
relevant phase factors at first and higher orders are determined
as functions of the frequency via the near-horizon behavior
of the outgoing modes at real frequencies. The latter implies
nontrivially that one can indeed obtain the normalizable bulk
solutions dual to the nonequilibrium transients of the dual field
theory to all orders in the large proper time expansion from the
retarded correlation function generalizing how we can obtain
the quasinormal modes (thermal transients) as poles of the
thermal retarded correlation function.

A. Some useful relations and their consequences

Some crucial identities are valid for the Schwinger-
Keldysh correlation functions even in out-of-equilibrium
states. The first such identity of interest is

GR(x1, x2) = −iθ
(
x0

1 − x0
2

)
Tr(ρ[Ô(x1), Ô(x2)])

= −i[Tr(ρT(Ô(x1)Ô(x2))) − Tr(ρÔ(x2)Ô(x1))]

= G11(x1, x2) − G12(x1, x2). (116)

Similarly, we can arrive at the identity

GA(x1, x2) = iθ
(
x0

2 − x0
1

)
Tr(ρ[Ô(x1), Ô(x2)])

= −i[Tr(ρT(Ô(x1)Ô(x2))) − Tr(ρÔ(x1)Ô(x2))]

= G11(x1, x2) − G21(x1, x2). (117)

These identities give the retarded and advanced correlation
functions in the usual Schwinger-Keldysh basis. The defi-
nitions of the correlation functions also imply that in any
arbitrary state

G11(x1, x2) = G11(x2, x1), G12(x1, x2) = G21(x2, x1),

G22(x1, x2) = G22(x2, x1). (118)

Finally, it is obvious also that in any arbitrary (nonequilib-
rium) state

GR(x1, x2) = GA(x2, x1). (119)

We show that these identities imply the following for the hori-
zon cap of the Bjorken flow. First, we use (116) to show that
the retarded correlation function is always obtained from the
ingoing mode and (117) to show that the advanced correlation
function is always obtained from the outgoing mode. Second,
due to (119), we can uniquely determine γn,in for n � 1. These
coefficients cannot be determined by the regularity condition
(108) of the horizon cap unlike γn,out, as discussed previously,
but together with γn,out they provide unique solution of the
bulk scalar field for specified sources at the two boundaries
via our ansatz (104). We also see that, by satisfying (119), we
can also ensure the validity of (118).

Another important issue is the Weyl transformation. Con-
sider a background metric gμν and its Weyl rescaled version
�2(x)gμν such that �(x) is a nonvanishing function. Disre-
garding the Weyl anomaly, the correlations functions of a
scalar primary operator Ô of conformal dimension 	O in a
conformal field theory living in these two background metrics
would be related by

Tr(ρ̃Ô(x1) · · · Ô(xn))�2gμν

= �−	O (x1) · · · �−	O (xn)Tr(ρÔ(x1) · · · Ô(xn))gμν
,

(120)

where ρ̃ = U †ρU with U denoting the unitary operator im-
plementing the Weyl transformation. In the context of the
holographic Bjorken flow, the states ρ and ρ̃ would be
described by the holographic geometries whose boundary
metrics are the Milne metric and its Weyl rescaled version,
respectively, and the respective energy-momentum tensors are
also appropriately Weyl transformed including the correct
holographic Weyl anomaly. This has been described in detail
already in Sec. III B.

We have seen that it is easier to implement the out-of-
equilibrium horizon cap prescription in the Weyl-transformed
geometry (state) in which the temperature and entropy density
become a constant at late proper time, and the Klein-Gordon
equation in the bulk assumes the form of that in a static
black brane at leading order. It is convenient to compute the
correlation functions in this background first and then go back
to the usual Bjorken flow background by Weyl transformation.
In this case, we should use

�	O (τ1)�	O (τ2)G̃(x1, x2),

with G̃(x1, x2) being the correlation functions computed after
Weyl rescaling to obtain the correlation functions in the usual
Bjorken flow background with � given by (56) and (57). We
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disregard Weyl anomalies since they are not state-dependent
(same as in vacuum).

Note that the full correlation functions to all orders in
the late proper time expansion should depend on ζ̂1 and
ζ̂2 only through the relative separation ζ̂1 − ζ̂2 in rapid-
ity due to the boost invariance of the background, and
similarly only on |�x⊥1 − �x⊥2| due to translation and rota-
tion symmetries of the background in the transverse spatial
plane.

We note that we can practically use the Weyl transforma-
tion to compute the correlation functions because we are in
the boost-invariant hydrodynamic regime where the state is

characterized only by a proper time-dependent temperature.
A Weyl rescaling makes the temperature constant at late time
leading us to set up a perturbative derivative expansion con-
trolled by a fixed dimensionful parameter. However, there will
be contributions to the correlation functions in the form of
a generalized trans-series which depend on the initial condi-
tions and are not constructed from hydrodynamic data. Such
contributions which represent transients leading to hydrody-
namization of correlation functions are discussed in Sec. VI.
In this section, we discuss the Schwinger-Keldysh correlation
functions in the hydrodynamic regime using a well-defined
late proper time expansion.

B. General structure of hydrodynamic correlation functions

It is useful to define a new variable

s(σ ) = d − 1

d − 2
σ − γ̃0ε

−1/d
0 ln(σ/τ0), (121)

with γ̃0 = γ0ε
1/d
0 /ω being a numerical constant (independent of ω). We have already seen that the smoothness of the horizon

cap requires that, in the case of AdS5, γ̃0 = 1/4 [see (113)].22 In terms of this variable, we can readily see from (104) that the
non-normalizable mode of the scalar field in the gravitational background dual to the Bjorken flow takes the form(

J1(σ, ζ̂ , �x⊥)

J2(σ, ζ̂ , �x⊥)

)
=
∫

dωdkLdd−2kT e−iωs(σ )ei(kL ζ̂+�kT ·�x⊥)
∞∑

n=0

(
ε

1/d
0 σ

)−nSn(ω, κL, �κT ) ·
(

p(ω, kL, kT )
q(ω, kL, kT )

)
, (122)

and similarly the expectation value of the dual operator (up to state-independent contact terms) is(
〈O1(σ, ζ̂ , �x⊥)〉
〈O2〉(σ, ζ̂ , �x⊥)

)
= (2	O − d )

∫
dωdkLdd−2kT e−iωs(σ )ei(kL ζ̂+�kT ·�x⊥ )

∞∑
n=0

(
ε

1/d
0 σ

)−nRn(ω, κL, �κT ) ·
(

p(ω, kL, kT )
q(ω, kL, kT )

)
, (123)

where Sn and Rn can be defined from the asymptotic expansion ofMn:

Mn(v, ω, κL, �κT ) = vd−	O [Sn(ω, κL, �κT ) + · · · ] + v	O [Rn(ω, κL, �κT ) + · · · ], (124)

and the labels 1 and 2 stand for the sheets of the bulk space-time ending on the forward and backward arms of the Schwinger-
Keldysh contour, respectively.

It is also useful to define

R(σ, ω, κL, �κT ) =
∞∑

n=0

(
ε

1/d
0 σ

)−nRn(ω, κL, �κT ), S(σ, ω, κL, �κT ) =
∞∑

n=0

(
ε

1/d
0 σ

)−nSn(ω, κL, �κT ). (125)

Clearly (105) leads to

S(σ, ω, κL, �κT ) =
(

a(σ, ω, κL, �κT ) b(σ, ω, κL, �κT )

a(σ, ω, κL, �κT ) eβωb(σ, ω, κL, �κT )

)
,

R(σ, ω, κL, �κT ) =
(

A(σ, ω, κL, �κT ) B(σ, ω, κL, �κT )

A(σ, ω, κL, �κT ) eβωB(σ, ω, κL, �κT )

)
, (126)

where

φin(v, σ, ω, κL, �κT ) =
∞∑

n=0

(
ε

1/d
0 σ

)−n
φn,in(v, ω, κL, �κT ),

φout(v, σ, ω, κL, �κT ) =
∞∑

n=0

(
ε

1/d
0 σ

)−n
φn,out(v, ω, κL, �κT ) (127)

22In the case of AdS4, γ̃0 = 2/3.
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gives us a(σ, ω, κL, �κT ), A(σ, ω, κL, �κT ), b(σ, ω, κL, �κT ), and B(σ, ω, κL, �κT ) from their following near boundary expansions:

φin(v, σ, ω, κL, �κT ) = vd−	O [a(σ, ω, κL, �κT ) + · · · ] + v	O [A(σ, ω, κL, �κT ) + · · · ],

φout(v, σ, ω, κL, �κT ) = vd−	O [b(σ, ω, κL, �κT ) + · · · ] + v	O [B(σ, ω, κL, �κT ) + · · · ]. (128)

It should also be obvious that if we define an, An, bn, and Bn via

φn,in(v, ω, κL, �κT ) = vd−	O [an(ω, κL, �κT ) + · · · ] + v	O [An(ω, κL, �κT ) + · · · ],

φn,out(v, σ, ω, κL, �κT ) = vd−	O [bn(ω, κL, �κT ) + · · · ] + v	O [Bn(ω, κL, �κT ) + · · · ], (129)

then

a(σ, ω, κL, �κT ) =
∞∑

n=0

(
ε

1/d
0 σ

)−n
an(ω, κL, �κT ), A(σ, ω, κL, �κT ) =

∞∑
n=0

(
ε

1/d
0 σ

)−n
An(ω, κL, �κT ),

b(σ, ω, κL, �κT ) =
∞∑

n=0

(
ε

1/d
0 σ

)−n
bn(ω, κL, �κT ), B(σ, ω, κL, �κT ) =

∞∑
n=0

(
ε

1/d
0 σ

)−n
Bn(ω, κL, �κT ). (130)

The correlation function can be extracted simply from the on-shell action, which, as shown in the previous section, is the sum
of the two boundary terms obtained from Sin-out. The computations are similar to the case of the thermal equilibrium discussed
before. The general structure of the correlation function with {a, b} = {1, 2} standing for the forward and backward arms of the
Schwinger-Keldysh contour [using (61)] is (see Appendix D for more details)

G̃ab(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|)

= 1√−g̃1
√−g̃2

δ2Son-shell[J1, J2]

δJa(σ1, ζ̂1, �x⊥1)δJb(σ2, ζ̂2, �x⊥2)
(−)a+b

= (d − 2)2

(d − 1)2

∫
dωdkLdd−2kT e−iω[s(σ1 )−s(σ2 )]eikL (ζ̂1−ζ̂2 )+i�kT ·(�x⊥1−�x⊥2 )Ĝab(σ1, σ2, ω, kL, �kT ), (131)

where [compare with the thermal case (42)—recall that σ3 is the Pauli matrix]

Ĝ(σ1, σ2, ω, kL, �kT ) = 2	O − d

2
(s′(σ2)σ3 · R(σ1, ω, κL1, �κT 1) · S−1(σ2, ω, κL2, �κT 2)

+ (transpose σ1 ↔ σ2, ω → −ω, κL1 ↔ −κL2, �κT 1 ↔ −�κT 2)), (132)

with

κL1 = kL
τ0

σ1
, κL2 = kL

τ0

σ2
, �κT 1 = �kT

(
τ0

σ1

)−1/(d−2)

, �κT 2 = �kT

(
τ0

σ2

)−1/(d−2)

. (133)

The transpose above denotes matrix transposition, ↔ denotes exchange operation and → replacement. The second term in (132)
is produced by the symmetrization due to the differentiation in (131).

Explicitly [compare with the thermal case given by Eq. (43)],

Ĝ11(σ1, σ2, ω, kL, �kT ) ≡ ĜR(σ1, σ2, ω, kL, �kT )[1 + n(ω)] − ĜA(σ1, σ2, ω, kL, �kT )n(ω),

Ĝ12(σ1, σ2, ω, kL, �kT ) ≡ [ĜR(σ1, σ2, ω, kL, �kT ) − ĜA(σ1, σ2, ω, kL, �kT )]n(ω),
(134)

Ĝ21(σ1, σ2, ω, kL, �kT ) ≡ [ĜR(σ1, σ2, ω, kL, �kT ) − ĜA(σ1, σ2, ω, kL, �kT )][1 + n(ω)],

Ĝ22(σ1, σ2, ω, kL, �kT ) ≡ ĜR(σ1, σ2, ω, kL, �kT )n(ω) − ĜA(σ1, σ2, ω, kL, �kT )[1 + n(ω)],

with n(ω) = 1/(eβω − 1) is the Bose-Einstein distribution and

ĜR(σ1, σ2, ω, kL, �kT ) ≡ (d − 2)2

(d − 1)2
(2	O − d )

s′(σ1) + s′(σ2)

2

A(σ1, ω, κL1, �κT 1)

a(σ2, ω, κL2, �κT 2)
,

ĜA(σ1, σ2, ω, kL, �kT ) ≡ (d − 2)2

(d − 1)2
(2	O − d )

s′(σ1) + s′(σ2)

2

B(σ1, ω, κL1, �κT 1)

b(σ2, ω, κL2, �κT 2)
. (135)

Above ≡ denotes equality up to terms which vanish after the frequency and momentum integration in (131) and β is given by
(97).

In order that (134) and (135) follow from (132), and also for the general identities (119) and (118) to be satisfied, we should
have

A(σ1, ω, κL1, �κT 1)

a(σ2, ω, κL2, �κT 2)
≡ B(σ2,−ω,−κL1,−�κT 1)

b(σ1,−ω,−κL2,−�κT 2)
, (136)
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i.e.,

ĜR(σ1, σ2, ω, κL1, �κT 1) ≡ ĜA(σ2, σ1,−ω,−κL2,−�κT 2). (137)

As mentioned, we show in Sec. V D that the above can be satisfied by appropriate choices of γn,ins at each order in the late proper
time expansion where we go to large values of the average reparametrized proper time σ = (σ1 + σ2)/2 with fixed difference
σr = σ1 − σ2. Thus we see that the correlation functions of the hydrodynamic Bjorken flow has a hidden and simple bilocal
thermal structure to all orders in the late proper time expansion. We show this satisfies crucial consistency tests.

Using (134) and (135), and the identities (116) and (117), which are valid out-of-equilibrium, we readily see that the actual
retarded and advanced propagators of the Weyl-transformed Bjorken flow is

G̃R(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|) = (d − 2)2

(d − 1)2
(2	O − d )

s′(σ1) + s′(σ2)

2

∫
dωdkLdd−2kT e−iω[s(σ1 )−s(σ2 )]

× eikL(ζ̂1−ζ̂2 )+i�kT ·(�x⊥1−�x⊥2 ) A(σ1, ω, κL1, �κT 1)

a(σ2, ω, κL2, �κT 2)
,

G̃A(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|) = (d − 2)2

(d − 1)2
(2	O − d )

s′(σ1) + s′(σ2)

2

∫
dωdkLdd−2kT e−iω[s(σ1 )−s(σ2 )]

× eikL(ζ̂1−ζ̂2 )+i�kT ·(�x⊥1−�x⊥2 ) B(σ1, ω, κL1, �κT 1)

b(σ2, ω, κL2, �κT 2)
. (138)

Therefore, it follows from (135) that indeed the retarded propagator is obtained purely from the out-of-equilibrium ingoing
mode and the advanced propagator is also obtained from the out-of-equilibrium outgoing mode as claimed before. Note that at
the zeroth order, these results are automatic as it reduces to the thermal case described earlier.23

Finally, to obtain the Schwinger-Keldysh correlation function of the Bjorken flow, we should implement the Weyl transfor-
mation. Using (57), the Weyl transformation finally yields the correlation function of the Bjorken flow:

G(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|) =
(

τ0

σ1

) 	O
d−2
(

τ0

σ2

) 	O
d−2

G̃(σ1, σ2, ζ̂1 − ζ̂2, |�x⊥1 − �x⊥2|). (139)

C. In the limit of the perfect fluid expansion

At a very late proper time, the Bjorken flow is simply a perfect fluid expansion. For the Weyl-transformed Bjorken flow which
reaches a specific final temperature, the scalar field in the dual gravitational geometry can be mapped to that in the static thermal
black brane space-time at the leading order in the late proper time expansion. This naturally implies that the Schwinger-Keldysh
correlation functions at late proper time should be related to the corresponding thermal correlation functions via appropriate
space-time-reparametrizations. After undoing the Weyl transformation, we should obtain the Schwinger-Keldysh correlation
functions of the perfect fluid expansion.

To obtain the correlation function in the perfect fluid expansion, we first take the limit in G̃ given by Eqs. (131)–(135), where
we take the average reparametrized proper time coordinate σ = (1/2)(σ1 + σ2) to infinity keeping the relative reparametrized
proper time coordinate σr = σ1 − σ2 fixed, and also ζ̂1 − ζ̂2 and �x⊥1 − �x⊥2 fixed. In this limit,

κL1, κL2 → κL, �κT 1, �κT 2 → �κT , (140)

where

κL = kL
τ0

σ
, �κT = �kT

(τ0

σ

)−1/(d−2)
. (141)

As shown in the previous section, both φin and φout assume the form in the static black brane geometry, and therefore,

ĜR → A0(ω, κL, �κT )

a0(ω, κL, �κT )
, ĜA → B0(ω, κL, �κT )

b0(ω, κL, �κT )
, (142)

given by the corresponding static black brane results and therefore all Schwinger-Keldysh correlation functions after the
momentum integrals shown in (131) should assume the thermal form, i.e.,

G̃ → Gβ

[
σ1 − σ2, (ζ̂1 − ζ̂2)

σ

τ0
, |�x⊥1 − �x⊥2|

(τ0

σ

) 1
d−2

]
, (143)

23The bilocal thermal structure of hydrodynamic correlation functions in holography was argued earlier in Ref. [48] via the Wigner transform.
However, the arguments here were less rigorous and relied on the possibility of obtaining correlation functions utilizing only one copy of the
nonequilibrium background where the interior of the perturbative horizon could be removed.
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with Gβ denoting the thermal correlation functions. To obtain the above form, we change variables in the momentum integrals
from kL and �kT to κL and �κT . Note the Jacobian of this transformation is identity. We also need to change the integration variable
ω to ω = ω(d − 1)/(d − 2) which yields a Jacobian (d − 2)/(d − 1). Furthermore, we have used

s′(σ1), s′(σ2) → d − 1

d − 2
. (144)

The factor (d − 2)2/(d − 1)2 in (131) is canceled by one factor of (d − 1)/(d − 2) each from the Jacobian and s′.
Finally, the Weyl transformation in the late proper time limit gives

G →
(τ0

σ

) 2	O
d−2

Gβ

(
d − 1

d − 2
(σ1 − σ2), (ζ̂1 − ζ̂2)

σ

τ0
, |�x⊥1 − �x⊥2|

(τ0

σ

) 1
d−2

)
, (145)

the Schwinger-Keldysh correlation functions of the perfect fluid expansion. Since the static black brane has full rotational
invariance in terms of the reparametrized space-time coordinates, we may also write

G →
(τ0

σ

) 2	O
d−2

Gβ

⎛⎝d − 1

d − 2
(σ1 − σ2),

√
(ζ̂1 − ζ̂2)2

σ 2

τ 2
0

+ |�x⊥1 − �x⊥2|2
(τ0

σ

) 2
d−2

⎞⎠ (146)

for the correlation functions in the limit of the late time perfect fluid expansion. The explicit analytic forms of the thermal
holographic propagators is known, see Refs. [33,49], for instance.

It is obvious that we are actually resumming over the associated σ factors in the spatial factors ζ̂1 − ζ̂2 and �x⊥1 − �x⊥2. For
brevity we denote the variables as σr = σ1 − σ2 (as defined before) and

ζ̃r = (ζ̂1 − ζ̂2)
σ

τ0
, x̃⊥r = |�x⊥1 − �x⊥2|

(τ0

σ

) 1
d−2

. (147)

The late proper time expansion of the Schwinger-Keldysh correlation function then amounts to the following series:

G(x1, x2) =
(τ0

σ

) 2	O
d−2

∞∑
n=0

1

σ nε
n/d
0

Gn(σr, ζ̃r, x̃⊥r ) + · · · , (148)

with · · · denoting trans-series type completion about which we discuss more below.
Since the choice of τ0 determines the effective final temperature T = β−1 via (97), let us consider a scaling τ0 → ξτ0 to see

if there is any ambiguity in the above result. Note that Gβ in (146) depends only on T σr and T (̃ζ 2
r + x̃⊥2

r )1/2 as it is a thermal

correlation matrix of a conformal field theory. Under this scaling, it is evident from (7) that σ → ξ
1

d−1 σ , and therefore σr →
ξ

1
d−1 σr , σ → ξ

1
d−1 σ , ζ̃r → ξ

1
d−1 ζ̃r , and x̃⊥r → ξ

1
d−1 x̃⊥r . Also ε0 → ξ− d

d−1 ε0 and T → ξ− 1
d−1 T as discussed earlier in Sec. III A.

Together these imply that Gβ and also Gn in (148) are invariant under τ0 → ξτ0 since T σr and T ζ̃r and T x̃⊥r are invariant this

scaling. However, the Weyl factor in (9) scales as ξ
2	O
d−1 implying that the dimensionless correlation function σ−2	0 G is invariant

under the scaling of τ0.

D. First and higher orders in the late proper time expansion

From the form of the Schwinger-Keldysh correlation functions given by Eqs. (131)–(135) which are valid to all orders, we
can readily go beyond the perfect fluid limit systematically and construct the late proper time expansion (148). The contribution
to the first-order correction comes from the following terms:

(1) The phase factor

e−iω[s(σ1 )−s(σ2 )] → e−iωσr
d−1
d−2

[
1 + iωγ̃0ε

−1/d
0

σr

σ
+ O(σ−2)

]
. (149)

(2) The Jacobian

s′(σ1) and s′(σ2) → d − 1

d − 2
− γ̃0

σε
1/d
0

+ O(σ−2). (150)

(3) Late-time expansion of the matrices R and S given by (126) in σ−1. This also includes the κL and �κT dependence. For
instance, consider any generic function f (κL1) and f (�κT 1),

f (κL1) = f (κL ) − ∂κL f (κL )
σrκL

2σ
, f (�κT 1) = f (�κT ) + ∂�κT

f (�κT )
σr �κT

2(d − 2)σ
, (151)

and similarly for f (κL2) and f (�κT 2).
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From (132), we obtain

Ĝ1 = (2	0 − d )

2

d − 2

d − 1
σ3 ·
[
R0 · S−1

1 + R1 · S−1
0 + (R0 · ∂κLS−1

0 − ∂κLR0 · S−1
0

)σrκL

2

− (R0 · ∂�κT
S−1

0 − ∂�κT
R0 · S−1

0

) σr �κT

2(d − 2)
− γ̃0ε

−1/d
0

d − 2

d − 1
R0 · S−1

0

]
(ω, κL, �κT )

+ ( transpose ω → −ω, κL → −κL, �κT → −�κT ). (152)

An easier way to read off the first-order correction is to use (134) and (135) and consider similar σ−1 expansion of ĜR and ĜA.
Collecting first-order terms from (135), for instance, we obtain

ĜR,1 = (2	0 − d )

2

d − 2

d − 1

[
2A1

a0
− 2A0a1

a2
0

+ A0σr

a2
0

(
�κT

d − 2
∂�κT

− κL∂κL

)
a0

+ σr

a0

(
�κT

(d − 2)
∂�κT

− κL∂κL

)
A0 − γ̃0ε

−1/d
0 A0

a0

d − 2

d − 1

]
(ω, κL, �κT ), (153)

and

ĜA,1 = (2	0 − d )

2

d − 2

d − 1

[
2B1

b0
− 2B0b1

b2
0

+ B0σr

b2
0

(
�κT

d − 2
∂�κT

− κL∂κL

)
b0

+ σr

b0

(
�κT

(d − 2)
∂�κT

− κL∂κL

)
B0 − γ̃0ε

−1/d
0 B0

b0

d − 2

d − 1

]
(ω, κL, �κT ). (154)

This allows us to finally determine γ1,in and similarly γn,in for n > 1 as follows. After integrating over the frequency and
momentum integrals (i.e., doing integrals over ω, kL, and �kT ) as in (138), we obtain the first-order correction in the series
expansion of the type (148):

GR(x1, x2) =
∞∑

n=0

1

σ nε
n/d
0

GR,n(σr, ζ̃r, x̃⊥r ), (155)

and similarly for GA(x1, x2). For the identities (116) and (117) to be satisfied, we therefore need (note that x̃⊥r is invariant under
x1 ↔ x2)

GR,n(−σr,−ζ̃r, x̃⊥r ) = GA,n(σr, ζ̃r, x̃⊥r ) (156)

at each n, which can be ensured by appropriate choices of γn,in(ω, κL, �κT ) at each order for n � 1, since they determine both An

and an. In turn, this justifies the bilocal thermal structure (134) and (135) which implies via (116) and (117) that the retarded
correlation originates purely from the ingoing mode and the advanced correlation function purely from the outgoing mode at
all orders. We emphasize that, although γn,out are only functions of the frequency ω, γn,in are functions of both frequency and
momenta.

With γn,in determined we know the RHS of (153) completely. Doing the frequency and momenta integrals shown in (131),
we can obtain the first and similarly higher-order corrections to all Schwinger-Keldysh propagators.

E. Consistency checks

The general result for the hidden bilocal thermal structure of the hydrodynamic correlation functions given by Eqs. (131)–
(135) to all orders satisfies a simple consistency check. When J1 = J2, i.e., when the sources are the same at the two boundaries,
we have only the ingoing solution which is analytic. The on-shell solution also vanishes. When J1 = J2, we have

〈O1(x1)〉 =
∫

x2

[G11(x1, x2)J1(x2) − G12(x1, x2)J2(x2)] =
∫

x2

GR(x1, x2)J1(x2)

on the forward arm, and thus we see that the response in the forward arm is indeed given by the retarded correlation function,
and this also follows from the bilocal thermal structure of the hydrodynamic correlation functions resulting in (138) as shown
above. We can also see that the analytic ingoing mode is indeed always related to the causal response from the full nonlinear
evolution (we just consider the forward arm here). There is a unique regular solution to Einstein’s gravity minimally coupled to
a scalar field corresponding to an initial condition for the bulk scalar field �(v, ζ , �x⊥) at a constant Eddington-Finkelstein time
hypersurface when the boundary source J (σ, ζ , �x⊥) is specified for all time in the future. This solution can be obtained via a
Chebyshev grid in the radial direction [9] which implies analyticity at the horizon, and thus the causal evolution is built out of
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analytic ingoing modes. Our result then should follow in the linearized limit. The way to implement this explicitly was shown
earlier in Ref. [10] which is thus reproduced by the horizon cap prescription.24

A more nontrivial consistency check involves the outgoing mode. Consider an outgoing mode with frequency ω and momenta
kL and �kT in the Bjorken flow background. Evidently, from the discussion before, to all orders in the late proper time expansion,
we have

J2(ω, kL, �kT ) = eβωJ1(ω, kL, �kT ),

with β defined by ε0 as in (97). Therefore, on the forward arm (where we choose to do the kL and �kT integrations first)

〈O1(x1)〉 =
∫

dω

∫
dd x2e−iω[s(σ1 )−s(σ2 )][Ĝ11(ω, x1, x2)J1(ω, �x2) − Ĝ12(ω, x1, x2)J2(ω, �x2)]

=
∫

dω

∫
dd x2e−iω[s(σ1 )−s(σ2 )][Ĝ11(ω, x1, x2) − Ĝ12(ω, x1, x2)eβω]J1(ω, �x2)

=
∫

dω

∫
dd x2e−iω[s(σ1 )−s(σ2 )][Ĝ11(ω, x1, x2) − Ĝ21(ω, x1, x2)]J1(ω, �x2)

=
∫

dω

∫
ddx2e−iω[s(σ1 )−s(σ2 )]ĜA(ω, x1, x2)J1(ω, �x2)

=
∫

dd x2GA(x1, x2)J1(x2).

Above, we have used the result from (134) that Ĝ12eβω = Ĝ21 and also the identity (117). Thus indeed we see that the outgoing
mode gives advanced response. Note for both J2 = eβωJ1 and Ĝ12eβω = Ĝ21 (used above) to hold, we need absence of log terms
at the horizon, which follows if γn,out are functions of ω only. The outgoing solution which satisfies the regularity condition
(111) at the horizon cap indeed has this property with γn,out determined from the cancellation of the double and single poles of
the equation of motion being a linear function of ω and independent of κL and �κT .

Furthermore, let us consider transients which are ingoing solutions with vanishing sources at the boundary. To be simplistic,
let us consider the homogeneous transients first. Since we can map the leading order solution to the static black brane background,
we should have

ω = ωQ,

where ωQ corresponds to the homogeneous quasinormal mode frequencies of the static black brane, as noted by Janik and
Peschanski. A nontrivial consistency test of our ansatz for the bulk scalar field is that the condition for the sources to vanish at
the first subleading order is

γ0 = γ0
(
ωQ
)
,

i.e., for AdS5 we should have

γ0(ω) = ωQ

4ε
1/4
0

.

The details of the numerical verification are shown in Appendix E. These transients can be added to the solution with specific
sources since the equation of the scalar field is linear and are needed for matching with arbitrary initial conditions for the bulk
scalar field, as discussed below. The case of the inhomogeneous transients is complicated since the effective momenta κL and �κT

also depend on the proper time, and will be examined in a later work.
Our key result that the horizon cap is pinned to the nonequilibrium event horizon is consistent with the feature in nonequi-

librium quantum field theory that the evolution of the Schwinger-Keldysh correlation functions, which can be written in the
form of the Schwinger-Dyson equations for the commutator and anticommutator via functional derivatives of the two-particle
irreducible effective action, is causal and uniquely determined once we give the initial conditions for these in the initial state [1].
The bulk analog is that the evolution of the field configuration on the full complexified geometry with the horizon cap should
be uniquely and causally determined for given initial conditions. For this to hold, the horizon cap should cover the space-time
outside the event horizon, which is indeed the case.

VI. ON INITIAL CONDITIONS AND SEEING BEHIND THE EVENT HORIZON

The discussion on initial conditions is subtle.25 We only discuss this briefly here and hope to address it fully in the future. For
the full complexified geometry, in order to obtain a unique solution for the bulk scalar field on both arms, we need to specify

24See Ref. [50] for the nonequilibrium retarded correlation function in a hydrodynamic expansion, and [51,52] for AdS-Vaidya and states
corresponding to quenches, etc. The latter uses the prescription of Ref. [10].

25We thank Skenderis for discussions on these issues.
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�1(v, ζ , �x⊥) and �2(v, ζ , �x⊥) at an initial time σ0 on both arms, and also the sources J1(σ, ζ , �x⊥) and J2(σ, ζ , �x⊥) at the two
boundaries for all times in the future. Our horizon cap prescription leads to unique solutions for the ingoing and outgoing modes
corresponding to J1(σ, ζ , �x⊥) and J2(σ, ζ , �x⊥) in a large proper time expansion. However, it is not guaranteed we can match
with arbitrary initial conditions �1(v, ζ , �x⊥) and �2(v, ζ , �x⊥) at σ = σ0. This is a conceptual problem although the matching
with data for the initial density matrix is a separate issue from obtaining the correlation functions in the limit where the state
hydrodynamizes and forgets most details of the initial conditions; we have concerned ourselves with the latter here. The two
arms of the Schwinger-Keldysh contour specify the two in-states which have overlap, in principle, with arbitrary bulk field
configurations at initial time, corresponding to �1(v, ζ , �x⊥) and �2(v, ζ , �x⊥), respectively. The full on-shell gravitational action
beyond the hydrodynamic limit should yield the matrix element

〈�1|Tc

(
exp

[
−i
∮

J (x)Ô(x)

])
|�2〉, (157)

with Tc denoting time-ordering in the closed time contour, and 〈�1| and 〈�2| denoting states in the dual field theory correspond-
ing to the semiclassical bulk field configurations.26

This issue can be partly addressed by allowing for the ingoing transients discussed above. These do not change the sources at
the two boundaries but they modify the initial conditions at the two slices. However, this is not enough because we have a pair
of initial conditions, one each for each arm. The transients are analytic at the horizon cap and do not affect the initial conditions
on the two arms independently. Although this needs to be investigated further, presently we may conclude that one may not
be able to obtain semiclassical solutions corresponding to arbitrary in-in states meaning that decoherence, which suppresses
some off-diagonal matrix elements, is built in the semiclassical gravity approximation. This issue is also relevant for the general
approach of Skenderis and van Rees [18]. We also note that there is possibility of adding other semiclassical complex saddles of
the gravitational action which do not have a natural hydrodynamic limit.

There is another independent route for matching with initial conditions. The late proper time expansion of the correlation
functions (148) is divergent and would require a trans-series completion which would naively be of the form (like multi-instanton
series)

G(x1, x2) =
∞∏

α=1

⎧⎨⎩
∞∑

nα=0

[Cα (σr, ζ̃r, x̃⊥r )σγα (σr ,̃ζr ,x̃⊥r )e−ξα (σr ,̃ζr ,x̃⊥r )σ ]nα

⎫⎬⎭�n1,n2,...(σ, σr, ζ̃r, x̃⊥r ),

with

�n1,n2,...(σ, σr, ζ̃r, x̃⊥r ) =
∞∑

k=0

�k;n1,n2,...(σr, ζ̃r, x̃⊥r )σ−k . (158)

This is a generalization of the trans-series for ε(σ ) for the Bjorken flow which completes the divergent asymptotic hydrodynamic
series at large proper time [22,45,55]. Above �nα=0 coincides with the matrix hydrodynamic power series (148) which we have
explicitly computed here; while generally �n1,n2,... is a similar matrix power series in σ−1 whose coefficients are related to those
of (148) for each fixed σr , ζ̃r , and x̃⊥r . Physically, the functions ξα (σr, ζ̃r, x̃⊥r ) and γα (σr, ζ̃r, x̃⊥r ) govern the hydrodynamic
relaxation of the Green’s function for fixed separations of the reparametrized space-time arguments x1 and x2. It is possible
that these functions are approximately constants. Crucially the Stokes data Cα (σr, ζ̃r, x̃⊥r ) are determined by initial conditions.
Instead of being constants as in the case of ε(τ ), the Stokes data are now functions.

The mathematical formulation of the trans-series is required to formulate a precise way to capture information about the initial
state via Stokes data, and therefore the quantum fluctuations behind the event horizon. To match with the initial conditions,
we should add the transients and therefore the Stokes data to hydrodynamic gravitational background as well. Furthermore,
additional Stokes data for the evolving event horizon which can be captured by the time-dependent residual gauge transformation
is needed too [recall that the residual gauge transformation itself is expressed in the large proper time expansion for which a
trans-series completion is necessary like for ε(σ )]. One could interpret the latter feature as the horizon hair (more precisely a
proper residual gauge transformation) playing a crucial role in decoding the interior of the event horizon.27

VII. CONCLUSIONS AND OUTLOOK

We believe that our method for computing the real-time correlation functions of the hydrodynamic Bjorken flow can be
generalized to generic situations where the state hydrodynamizes, meaning that the dynamics of one-point functions can be
captured by an asymptotic series expansion which is generated by the hydrodynamic evolution of the temperature and velocity
fields. The key would be to see if there exists Weyl transformations with nontrivial space-time dependence which can map the

26In the approach of Skenderis and van Rees [18], the in-in states are defined using Euclidean path integrals. Even in this approach, it is
unclear if one can glue arbitrary in-in states by bulk geometries. See Refs. [53,54] for some discussions on this issue.

27See Refs. [56,57] for recent reviews on current progress in resolving black-hole information paradoxes with substantial discussion on the
role played by hair degrees of freedom at the horizon.
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flow at late time to a configuration with constant temperature and entropy density although time-translation symmetry may not
be present. In this case, as demonstrated here for the Bjorken flow, the dual black hole would attain a horizon with constant
surface gravity and area at late time, although a timelike Killing vector may be eternally absent. The event horizon’s shape
would fluctuate in space and time keeping the total area fixed when entropy production ceases in this limit. Nevertheless, with
appropriate space-time reparametrizations, the horizon cap prescription can be made to work as in the case of the Bjorken flow
provided at the leading order in the large (suitably reparametrized) time expansion the equation of motion of bulk fields can be
mapped to that on a static black brane. We will pursue this direction in the future, particularly the Gubser flow [58].

Another important problem would be to understand the Borel resummation of the hydrodynamic series (148) and compute
the Schwinger-Keldysh correlation functions of the holographic hydrodynamic attractor [22]. Furthermore, the late time thermal
nature of the correlation functions in terms of the reparametrized space-time arguments could be of phenomenological relevance
in heavy ion collisions especially with regards to the dynamics of heavy quarks and bound states, and jets in the expanding
quark-gluon plasma [59].

Our prescription can be used to construct the quantum generalization of classical stochastic hydrodynamics (see Refs. [60,61]
for reviews) in holographic theories by considering the backreaction of the fluctuations on the background geometry systemati-
cally. This is especially important in the context of superfluid fluctuations since quantum dynamics is important at coherence time
and length scales which are shorter than the scattering time and the mean-free path, respectively (see Ref. [14] for an excellent
related discussion)—nonlinearities can potentially cause nontrivial effects such as quantum corrections to the long time tails.28

A more general goal is to develop a quantum generalization of the large deviation function [13] in classical nonequilibrium
statistical mechanics, which is essentially a generalization of the equilibrium free energy to the hydrodynamic regime, assigning,
for instance, probability to a macroscopic hydrodynamic configuration which may not satisfy the hydrodynamic equations. The
approach of Ref. [33] which constructs an effective action at finite temperature from the complexified bulk space-time will
be very relevant for such developments if it can be generalized to out-of-equilibrium situations at least in the hydrodynamic
limit.

More generally, we would like to use the horizon cap method to study holographic (evaporating) black holes interacting
with heat baths or dynamical reservoirs and understand the reconstruction of the islands [57,63] (which include the black-hole
interior) from Hawking quanta. In such cases, semiholographic formulations for open quantum systems (see Refs. [64,65] and
also [33], for instance) can provide useful models.
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APPENDIX A: DETAILS OF THE FIVE-DIMENSIONAL METRIC DUAL TO THE BJORKEN FLOW
UP TO SECOND ORDER IN THE LATE-TIME EXPANSION

Consider the late-time expansion of Einstein’s equations based on the ansatz (89) along with (92). At zeroth order, the six
components of Einstein equations read

Evv : 2k′
0(x)2 + 4k′′

0 (x) + l ′
0(x)2 + 2l ′′

0 (x) = 0,

Evσ : a0(x)x2[4k′′
0 (x) + l ′

0(x)2 + 2l ′′
0 (x)] + 2xa0(x)k′

0(x)[xl ′
0(x) − 6] + 3x2a0(x)k′

0(x)2

− 6xa0(x)l ′
0(x) + 24a0(x) + xa′

0(x)[2xk′
0(x) + xl ′

0(x) − 6] − 24 = 0,

Eσσ : a0(x)x2[4k′′
0 (x) + l ′

0(x)2 + 2l ′′
0 (x)] + 2xa0(x)k′

0(x)[xl ′
0(x) − 6] + 3x2a0(x)k′

0(x)2

− 6xa0(x)l ′
0(x) + 24a0(x) + xa′

0(x)[2xk′
0(x) + xl ′

0(x) − 6] − 24 = 0,

Es⊥s⊥ : 2x(a′
0(x){x[k′

0(x) + l ′
0(x)] − 6} + xa′′

0 (x)) + 24a0(x) − 24

+ a0(x)x{k′
0(x)[xl ′

0(x) − 6] + 2x[k′′
0 (x) + l ′′

0 (x)] + xa′
0(x)2 + xl ′

0(x)2 − 6l ′
0(x)} = 0,

Eζ ζ : a0(x)[3x2k′
0(x)2 + 4x2k′′

0 (x) − 12xk′
0(x) + 24] + 4x[xk′

0(x) − 3]a′
0(x) + 2x2a′′

0 (x) − 24 = 0, (A1)

28For a recent work on the role of classical fluctuations of the superfluid order parameter in modifying transport properties, see Ref. [62].
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where x ≡ ε
1/d
0 v. We solve these equations based on the conditions

a0(x) = 1 − x4, l0(x) = 0, k0(x) = 0,

which is motivated from the fact that, at very late times, we have an AdS5 black hole with constant horizon area and surface
gravity.

Once these initial conditions are imposed, then at each subleading order, the six equations can be repackaged to the following
three equations:

2k′′
i (x) + l ′′

i (x) = S1,i, (x4 + 3)[k′
i (x) − l ′

i (x)] + x(x4 − 1)[k′′
i (x) − l ′′

i (x)] = S2,i,

3
2 x2a′′

i (x) − 6xa′
i(x) + 6ai(x) − 2x5[2k′

i (x) + l ′
i (x)] = S3,i, (A2)

where S1,i, S2,i, and S3,i are the sources at the ith order which depend on a j , l j , k j and their derivatives, for j < i. Now at each
subleading order, the most general solution to these equations are given by

2ki(x) + li(x) = ρi + αix + PI1,i, ki(x) − li(x) = ξi − κi

4
ln(1 − x4) + PI2,i,

ai(x) = βix
4 + αi

x(3 + x4)

3
+ PI3,i. (A3)

where the Greek letters with subscript i correspond to the integration constants at ith order and PI1,i, PI2,i, and PI3,i are the
particular solutions determined by the sources S1,i, S2,i, and S3,i, respectively. The expressions for the PI for i = 1 are simple
and already mentioned in (93) and (94). For i = 2, we get

PI1,2 = 1

12
[8x2 + 6 ln(x2 + 1) − α2

1 (x + 2)x − 4α1(x + 2)x + 16x + 4 ln(x + 1) + 2(2 − 6x) arctan (x) + 4],

PI2,2 = Re

{
1

24

[
−24x2 − 16x

x3 + x2 + x + 1
+ 16x + (4 + 4i) arctan (x)2 − (1 − i) ln2 (i − x)

+ 4 ln2(x + 1) − 2 ln2 (−i + x) − (3 + i) ln2(i + x) − 4 ln2(x2 + 1) + (2 + 8i) arctan

(
x + 1

1 − x

)
+ 2iπ arctan (x) − 8 arctan (x) + (2 − 8i) arctan

(
x − 1

x + 1

)
− π ln (2) + 4π ln(1 + e−2i arctan (x) )

− 16 arctan (x) ln(1 + e2i arctan (x) ) + 8 arctan (x) ln
(
1 − ie2i arctan (x)

)+ 2π ln(1 − ie2i arctan (x) )

+ 6 ln (1 − x) − (4 + 4i) ln

[(
1

2
+ i

2

)
(ix + 1)

]
ln(x + 1)

+ 2 ln(x + 1) + 4 ln(x − 1) ln

[(
1

2
+ i

2

)
(−i + x)

]
− (6 + 2i) ln

(
1

2
(ix + 1)

)
ln(i + x)

+ 4 ln(x − 1) ln

[(
1

2
− i

2

)
(i + x)

]
+ (4 + 4i) ln(x + 1) ln

[(
−1

2
− i

2

)
(i + x)

]
− (2 − 2i) ln (i − x) ln

(
−1

2
i(i + x)

)
− 4 ln (−i + x) ln

(
−1

2
i(i + x)

)
+ (2 − 2i) ln (i − x) ln(x2 + 1)

− 4 ln(x − 1) ln(x2 + 1) + 4 ln (−i + x) ln(x2 + 1) + (6 + 2i) ln(i + x) ln(x2 + 1)

+ 2π ln(x2 + 1) − 4 ln(x2 + 1) + 8 ln(x + 1) ln

(
1 −

(
1

2
− i

2

)
(x + 1)

)
− 4π ln

(
sin
(

arctan (x) + π

4

))
+ 2π ln

(
x + 1√
x2 + 1

)
− (6 − 2i)Li2

(
ix

2
+ 1

2

)
+ 8iLi2(−e2i arctan (x) )

− 4iLi2
(
ie2i arctan (x)

)+ 4Li2

((
−1

2
+ i

2

)
(x − 1)

)
+ 4Li2

((
−1

2
− i

2

)
(x − 1)

)
+ (4 + 4i)Li2

((
1

2
+ i

2

)
(x + 1)

)
+ (4 − 4i)Li2

((
1

2
− i

2

)
(x + 1)

)
− (6 + 2i)Li2

(
−1

2
i(i + x)

)
+
[

− 8x

x3 + x2 + x + 1
+ 8x

+ (2 + 4i) arctan

(
x + 1

1 − x

)
− 4 arctan (x) + (2 − 4i) arctan

(
x − 1

x + 1

)]
α1 − 8

x3 + x2 + x + 1

]}
,
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PI3,2 = x

108

{
α2

1 (−9x5 − 6x4 + 3x + 6) − 4α1(9x5 + 12x4 − 9x − 8) + 4[−9x5 − 9(x4 + 1) arctan (x) + x3

+ 9x3 ln(x2 + 1) + 9x + 16]
}
,

where Li2(x) is the polylogarithmic function of order two. The expressions for the particular solution get increasingly com-
plicated at higher orders. However, the simple structure of the homogeneous solutions remain the same at every order. The
integration constants associated with the homogeneous solutions can be fixed at every order in the following way:

(i) The fixation of αi has been detailed in (112)–(114). The same pattern repeats for the rest of αi>2.
(ii) The integration constants βi are fixed by mapping the coefficients of x4 terms in (A3) to a4(τ ), l4(τ ), and k4(τ ) of (79)

[or a4(σ ), l4(σ ), and k4(σ ) in the Weyl transformed coordinate] and then solving the constraint equations (80).
(iii) The constants ρi and ξi are fixed by demanding that metric asymptotes to (58) at the boundary.
(iv) Finally, the integration constants κi are fixed such that the dual geometry is regular at the horizon to all orders.
For i = 1, 2, this gives

β1 = 2

3
, κ1 = 2, ξ1 = 0, ρ1 = 0,

β2 = − 1

54
[11 + 6 ln (2)], κ2 = −1

3
[2 ln (2) − 3], ρ2 = −1

3
,

ξ2 = 1

288
i
[
−24πα1 + 48iC − (48 − 96i)Li2

(
1

2
+ i

2

)
+ (48 + 96i)Li2

(
1

2
− i

2

)
+ (7 + 6i)π2

− 96i − 48π + 72i ln2 (2) − (24 − 60i)π ln (2) + 48π ln (2) + 24iπ ln (1 − i)
]
, (A4)

where C is the Catalan’s constant C = 0.915966.
One can verify that these solutions reproduce the same late-time expansion of the stress tensor (setting τ0 = 1 and ε0 = 1)

Tττ ≈ τ−4/3 − 2

3
τ−2 + 1 + 2 ln (2)

18
τ−8/3 + · · · ,

Tζ ζ ≈ 1

3
τ 2/3 − 2

3
+ 5[1 + 2 ln (2)]

54
τ−2/3 + · · · , (A5)

Tx⊥x⊥ ≈ 1

3
τ−4/3 − [1 + 2 ln (2)]

54
τ−8/3 + · · · .

APPENDIX B: THE EVENT HORIZON AND THE APPARENT HORIZON OF THE BJORKEN FLOW

This Appendix is devoted to a comparative discussion between the event horizon and the apparent horizon in the dynamical
geometry dual to the Bjorken flow.

1. Event horizon

Classically, the event horizon marks the null hypersurface from which no signal can come out, i.e., the outgoing null rays
become tangential to the hypersurface. To determine its location in the geometry given by (89), consider radial null geodesics in
this space-time whose equation is given by

∂v

∂σ
+ v2

2

d − 2

d − 1
gσσ = 0 with gσσ = 1

v2

(
(d − 1)2

(d − 2)2
A(v, σ ) + 2(d − 1)v

(d − 2)2σ

)
. (B1)

For a static geometry, vE = const and the event horizon is simply given by the zero of gσσ . However, in a dynamical geometry,
the event horizon will depend on σ . Consider the late-time expansion of the horizon of the form

v(σ ) ≡ vE (σ ) =
∑
i=0

vEiσ
−i. (B2)

Now to determine vEi, we use the equation (B1) along with the known late-time expansion of A(v, σ ),

A(v, σ ) = 1 − ε0v
d + 1

ε
1/d
0 σ

a1(v) + 1

ε
2/d
0 σ 2

a2(v) + · · · . (B3)

At leading order, we have

vE0 = 1/ε
1/d
0
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in any space-time dimensions d + 1. The subleading corrections to the event horizon depend on the residual gauge parameters.
For instance, the first and second subleading corrections in d = 429 are

vE1 = (3 + α1)

6ε0
1/2

, vE2 = 72α2 − 9π − 20 + 12 ln(2)

216ε0
3/4

, (B4)

where α1 and α2 are the residual gauge parameters associated with the late-time expansion of A(v, σ ). Now the gauge parameters
can be uniquely fixed by demanding regularity of the horizon cap. In d = 4, this gives [recall (113) and (114)]

α1 = −3, α2 = 9π + 20 − 12 ln(2)

72
. (B5)

These values, in turn fix the event horizon to 1/ε
1/d
0 up to the second subleading order. Thus, regularization of the horizon cap

leads to vanishing of the subleading corrections vEi (for i > 0) to the static event horizon. We expect this feature to remain true
to all orders in the late-time expansion.

2. Apparent horizon

The apparent horizon is a null hypersurface that acts as a boundary between the trapped and untrapped regions, whose
location is given by the product of the expansion parameters θ±, i.e., � = e f θ+θ−, where the factor e f is defined below. The
trapped region is characterized by � > 0, where the light rays directed outward propagates inward, whereas in the untrapped
region the light rays directed outward propagate outward and are characterized by � < 0. Therefore, � = 0 gives the location
of the apparent horizon.

Here we adopt the dual-null formalism [43,66–68] to study location of the apparent horizon, where one defines a pair of null
hypersurfaces �± parameterized by scalars ζ±, with associated one-forms n± = −dζ±. The null normal vector associated with
these hypersurfaces are given by

lμ
± = e− f gμνn∓

ν ,

where e f is the normalization factor given by

e f = −gμνn−
μ n+

ν .

Next, we define the expansion parameters θ±,

θ± = L±ln(μ),

where μ is the spatial volume element of the geometry in which the hypersurfaces are defined and L± is the Lie derivative along
the null normal vectors, l±. Finally, we introduce the invariant30 quantity � = e f θ+θ−, whose zero gives the location of the
apparent horizon.

In case of our geometry (89), we consider a pair of null hypersurface defined by constant values of the retarded and advanced
radial null coordinates, whose normal one-forms are given by

n− = −N−dσ, n+ = −N+
{[

2v

σ
+ (d − 1)A(v, σ )

]
dσ + 2(d − 2)dv

}
, (B6)

and the null normal vectors lμ
± along with the normalization factor e f and the volume element μ reads

e f = 2(d − 2)2

d − 1
N+N−v2,

lμ
+ =

(
1

2(d − 2)N+ , 0, 0, �0
)

,

lμ
− =

(
−σ (d − 1)A(v, σ ) + 2v

2(d − 2)N−σ
, 1/N−, 0, �0

)
,

μ = σ + v

v3σ

√
e2K (v,σ )+L(v,σ ). (B7)

whereN+ andN− are the overall normalizability factor that can be determined by the integrability condition d (dn±) = 0. This
ensures that the one-forms (B6) and (B7) are exact. However there is no need of computing them explicitly, as when we compute
� the contribution of N+ and N− from e f will cancel with those coming from θ− and θ+.

29For d = 3, the first subleading correction is vE1 = 5(5 + 3α1)/3ε
2/3
0 , which again depends on the residual parameter. However, these

corrections do not have a universal form like the leading order.
30This parameter � is invariant under reparameterization of the scalar ζ± → ξ±(ζ±) or interchange of ζ± → ζ∓, as discussed in Ref. [66].
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FIG. 4. The figure shows the evolution of the event horizon (blue
curve) and the apparent horizon (yellow curve) in the dynamical
geometry dual to the Bjorken flow, up to second order in late-time
expansion. Here ε0 is set to one and the gauge parameters α1 and
α2 are so chosen that the event horizon is fixed at one. The apparent
horizon always lies inside the event horizon (at greater v).

Now since the apparent horizon depends on σ , one can
consider a late-time expansion of the apparent horizon similar
to the event horizon as

vA(σ ) =
∑
i=0

vAiσ
−i.

To determine the coefficients vAi we solve � = 0 at ev-
ery order. In case of any space-time dimensions d + 1, the
leading-order result is universal and turns out to be

vA0 = 1/ε
1/d
0 ,

which coincides with the event horizon. However, the sublead-
ing corrections are dimension dependent. For d = 4, the first
and second subleading corrections to the leading terms are

vA1 = 3 + α1

6ε
1/2
0

,

vA2 = 72α2 − 9π − 8 + 12 ln (2)

216ε
3/4
0

. (B8)

Note that, for α1 = −3 the first-order correction to the appar-
ent horizon vanishes similar to the case of the event horizon.
However, at second order, the value of α2 [given by (114)]
for which the correction to the event horizon vanishes, now
renders vA2 > 0. So the apparent horizon will lie inside the
event horizon (see Fig. 4). Again, we expect this feature to
remain true at higher orders as well.

APPENDIX C: MORE DETAILS OF THE BULK SCALAR FIELD IN THE AdS5 BJORKEN FLOW BACKGROUND

In this Appendix, we provide brief details of the solution of Klein-Gordon equation at the leading (102) and first subleading
order (107) (for n = 1) and validate the near-horizon behaviors (106) and (110) for the same. To be specific, we will consider
the example of d = 4.

At leading order, the homogenous Klein-Gordon equation (102) simply takes the form of that in a static black brane geometry.
So we can expand the solution in the standard basis provided by the ingoing and outgoing modes. Near the horizon, these modes
admit the following expansions:

φ0,in(v, ω, κL, �κT ) = p0

{
1 + (ε−1/4

0 − v
)(κ2

L + �κ2
T − m2ε

1/2
0 + 3iε−1/4

0 ω
)

2
(
2ε

1/4
0 − iω

) + O
[(

ε
−1/4
0 − v

)2]+ · · ·
}

, (C1)

(
ε

−1/4
0 − v

)− iω

2ε
−1/4
0 φ0,out(v, ω, κL, �κT ) = q0

{
1 + (ε−1/4

0 − v
)(2κ2

L + 2�κ2
T − 2m2ε

1/2
0 − 3iω

)
4
(
2ε

1/4
0 + iω

) + O
[(

ε
−1/4
0 − v

)2]+ · · ·
}

. (C2)

Now, without loss of generality, we can set p0 = 1 and q0 = 1. Then, in the limit v → ε
−1/4
0 we reproduce the behavior given in

(106).
At the first subleading order (n = 1), the Klein-Gordon equation is given by (107) with

S1,in = S̃φ0,in(v, ω, κL, �κT ), S1,out = S̃φ0,out(v, ω, κL, �κT ), (C3)

where

S̃ = − v

6ε
1/4
0

{
α1ε

1/4
0 v
(
2κ2

Lv + 2�κ2
T v + 3iω

)+ 2v
(
2κ2

L − �κ2
T

)
tan−1

(
ε

1/4
0 v
)+ 4

(
κ2

L + �κ2
T

)
ε

1/4
0 v2

+ (2κ2
L − �κ2

T

)
v
[
ln
(
ε

1/2
0 v2 + 1

)+ 2 ln
(
ε

1/4
0 v + 1

)]+ 12iγ0ε
1/4
0 + 6iε1/4

0 vω
}

− 1

6
v
[(

4ε
3/4
0 v5 + 2α1ε0v

6 + 4ε0v
6 + 2α1v

2 + 4v2
)
∂2
v + (2ε0v

5 − α1v − 8iγ0v + 4ε
3/4
0 v4 + α1ε0v

5 − 2v
)
∂v

− 12κL∂κL + 6�κT ∂�κT − 4�κT v∂�κT ∂v + 8κLv∂κL ∂v

]
. (C4)

The action of S̃ on φ0,out gives rise to singular terms having poles of order one and two at the horizon, as mentioned in (112).
Upon removing these poles by suitably fixing α1 and γ0 as in (113), the particular solution at the first subleading order for the
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outgoing mode admits the near-horizon expansion,

(
ε

−1/4
0 − v

)− iω

2ε
−1/4
0 φ1(p),out(ω, v, κL, �κT ) =

(
ε

−1/4
0 − v

)
48ε

1/4
0 + 24iω

{− 2κ2
L[π − 7 + ln(64)] + �κ2

T [π + 2 + ln(64)]

− 2m2ε
1/2
0 − 4iε1/4

0 ω − ω2
}+ O

([
ε

−1/4
0 − v

]2)+ · · · . (C5)

However, for the ingoing mode no such divergent terms appear and we simply have the following near-horizon expansion:

φ1(p),in(ω, v, κL, �κT ) = (κ2
L

{−4ε
1/4
0 [π − 7 + ln(64)] + 2iω[π − 3 + ln(64)]

}
+ �κ2

T

{
2ε

1/4
0 [π + 2 + ln(64)] − iω[π + 6 + ln(64)]

}
− 4m2ε

3/4
0 + 2im2ε

1/2
0 ω + 6ε

1/4
0 ω2 + 12iε1/2

0 ω
) (

ε
−1/4
0 − v

)
24
(
2ε

1/4
0 − iω

)2
+ O

([
ε

−1/4
0 − v

]2)+ · · · . (C6)

Clearly, in the limit v → ε
−1/4
0 , we reproduce (110) for d = 4 and n = 1. Similar behavior persists at higher orders as well.

APPENDIX D: DERIVATION OF EQS. (131)

The source and vev of the dual operator at the boundary are given by

J (σ2, ζ̂2, �x⊥2) =
∫

dωdkLdd−2kT e−iωs(σ2 )ei(kL ζ̂2+�kT ·�x⊥2 )S(σ2, ω, κL, �κT ) · Q(ω, kL, kT ), (D1)

〈O(σ1, ζ̂1, �x⊥1)〉 = (2	O − d )
∫

dωdkLdd−2kT e−iωs(σ1 )ei(kL ζ̂1+�kT ·�x⊥1 ) R(σ1, ω, κL, �κT ) · Q(ω, kL, kT ), (D2)

where

J (σ, ζ̂ , �x⊥) =
(

J1(σ, ζ̂ , �x⊥)

J2(σ, ζ̂ , �x⊥)

)
, 〈O(σ, ζ̂ , �x⊥)〉 =

(
〈O1(σ, ζ̂ , �x⊥)〉
〈O(σ, ζ̂ , �x⊥)〉

)
, Q(ω, kL, kT ) =

(
p(ω, kL, kT )
q(ω, kL, kT )

)
.

To extract the Sk Green’s function, we first invert (D1) to get

Q(ω, kL, kT ) =
∫

dσ2d ζ̂2dd−2x⊥2s′(σ2)eiωs(σ2 )e−i(kL ζ̂2+�kT ·�x⊥2 )S−1(σ2, ω, κL, �κT ) · J (σ2, ζ̂2, �x2⊥). (D3)

Finally, plugging it back to (D2) and using linear-response theory,

〈O(σ1, ζ̂1, �x⊥1)〉 =
∫

dσ2d ζ̂2dd−2�x⊥2G̃
(
σ1, σ2, ζ̂1, ζ̂2, �x⊥1, �x⊥2

)
J (σ2, ζ̂2, �x⊥2),

we read off the SK Green’s function

G̃(σ1, σ2, ζ̂1 − ζ̂2, �x⊥1 − �x⊥2) =
∫

dωdkLdd−2kT e−iω[s(σ1 )−s(σ2 )]eikL (ζ̂1−ζ̂2 )+i�kT ·(�x⊥1−�x⊥2 )Ĝ(σ1, σ2, ω, kL, �kT ), (D4)

where

Ĝ(σ1, σ2, ω, kL, �kT ) = 1
2 (s′(σ2)σ3 · R(σ1, ω, κL1, �κT 1) · S−1(σ2, ω, κL2, �κT 2)

+ (transpose σ1 ↔ σ2, ω → −ω, κL1 ↔ −κL2, �κT 1 ↔ −�κT 2)), (D5)

with

κL1 = kL
τ0

σ1
, κL2 = kL

τ0

σ2
, �κT 1 = �kT

(
τ0

σ1

)−1/(d−2)

, �κT 2 = �kT

(
τ0

σ2

)−1/(d−2)

.

First, note that the variable conjugate to the momentum ω is the reparametrized time s(σ ) whereas the boundary quantities
depend on σ . This gives rise to the factor s′(σ2) in (D3) as the Jacobian of the transformation s(σ2) → σ2. Also note that, due to
translational invariance along the spatial directions, the matrices S and R are independent of ζ̂ and �x⊥. Hence, on carrying out
the momentum integrals in (D4), we would get G̃(σ1, σ2, ζ̂1, ζ̂2, �x⊥1, �x⊥2) ≡ G̃(σ1, σ2, ζ̂1 − ζ̂2, �x⊥1 − �x⊥2).
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APPENDIX E: TRANSIENTS AND γ0

The quasinormal frequencies and transients capture the causal response of a black hole to small perturbations. Typically, for
a black hole these are determined using the spectral representation method. However, here we adapt a simpler approach for the
computation of the same.

For the homogeneous transients, consider the field ansatz (104) with only the ingoing modes of a massless scalar, i.e.,

�(v, σ ) =
∫

dωe−i d−1
d−2 ωσ

(
σ

τ0

)iγ0(ω/ε
1/d
0 ) ∞∑

n=0

(
ε

1/d
0 σ

)−n
φn,in(v, ω)p(ω), (E1)

where φn,in(v, ω) obeys the same equations (102) and (107) [and hence admit the solutions (106) and (109)] with κL, �κT = 0.
The residual gauge parameters αi appearing in the subleading solutions are fixed such that at every order, the event horizon is
pinned at vh = ε

−1/4
0 with associated Hawking temperature T = ε

1/4
0 /π . For concreteness, we again consider d = 4.

Recall that, at leading order, the ingoing mode (with zero spatial momentum) admits the near-horizon expansion

φ0,in(v, ω) = 1 + 3iε1/4
0 ω

2
(
2ε

1/4
0 − iω

)(ε−1/4
0 − v

)+ O
([

ε
−1/4
0 − v

]2)+ · · · . (E2)

To compute the transients, we introduce the dimensionless decay rate λ = ω/πT and also scale the horizon to set vh = 1. In
terms of the dimensionless parameter, the solution (E2) when expanded near the boundary v = 0 reads

φ0,in(v = 0, λ) ≡ a0(λ) = 1 − 3λ

2(2i + λ)
+ · · · . (E3)

The quasinormal mode corresponds to a0(λqnm) = 0, implying that there is no contribution to the source from the leading order
field. The lowest quasinormal mode frequency obtained in this method turns out to be

λqnm = −2.7668i ± 3.11945,

which agrees with the one obtained from spectral representation method up to order 10−10.
Similarly at subleading orders n > 0, the sources can be made to vanish, i.e., an>0(λqnm) = 0 by suitably fixing γ0 (for

n = 1) and γn,in (for n > 1) as functions of λqnm. For example, corresponding to this lowest λqnm, γ0(λqnm) obtained by setting
a1(λqnm) = 0 at the first subleading order is

γ0(λqnm) = −0.68669i ± 0.779863, (E4)

which turns out to be same as the one computed from the outgoing mode analysis (113),

γ0 = ωQ

4ε
1/4
0

= λqnm

4
= −0.68669i ± 0.779863. (E5)

These two results agree up to order 10−9.
See Ref. [69] for a recent relevant work in the large-D limit.
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