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Dissipative boundary state preparation
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We devise a generic and experimentally accessible recipe to prepare boundary states of topological or non-
topological quantum systems through an interplay between coherent Hamiltonian dynamics and local dissipation.
Intuitively, our recipe harnesses the spatial structure of boundary states which vanish on sublattices where losses
are suitably engineered. This yields unique nontrivial steady states that populate the targeted boundary states
with infinite lifetimes while all other states are exponentially damped in time. Remarkably, applying loss only
at one boundary can yield a unique steady state localized at the very same boundary. We detail our construction
and rigorously derive full Liouvillian spectra and dissipative gaps in the presence of a spectral mirror symmetry
for a one-dimensional Su-Schrieffer-Heeger model and a two-dimensional Chern insulator. We outline how our
recipe extends to generic noninteracting systems.
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I. INTRODUCTION

Dissipation is ubiquitous and traditionally seen as detri-
mental to quantum phenomena. Much effort is thus aimed
at minimizing its effects. Recently, however, it has been re-
alized that structured dissipation can instead lead to new and
intriguing topological physics [1–5]. In the quantum realm,
an example thereof are dynamical Liouvillian skin effects
[6–9] reflecting the underlying non-Hermitian (NH) topology
[10–14] on the level of quantum master equations. Another
exciting aspect is the preparation of topological steady states
of matter through judiciously engineered dissipation, which
provide an alternative to ground-state cooling [1,15–23]. A
preeminent idea considers the limit of strong dissipation in
which jump operators [24] mimic localized Wannier functions
and facilitate a projection onto the pertinent (“low-energy”)
subspace [1,15,16]. Yet, while conceptually appealing, such
approaches are both extremely challenging to implement and
face a number of fundamental obstructions [16–18].

Here, we consider an alternative approach that crucially
depends on the interplay of both coherent dynamics and
dissipation. This approach alleviates both practical and fun-
damental challenges: with directly accessible ingredients, we
can devise a combination of Hamiltonian dynamics and dissi-
pation whose interplay uniquely prepares the system in what
is the key hallmark of a topological phase, namely, its bound-
ary states. At long times, all bulk modes vanish and only
the boundary states prevail. A minimal example is shown in
Fig. 1. Adding loss on a single site in a Su-Schrieffer-Heeger
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(SSH) chain evolves the system into a state localized at the
same boundary. Our recipe is generic and can be applied
to essentially any topological (or nontopological) noninter-
acting system. It also does not rely on fine tuning. Instead,
the success of the construction is rooted in choosing lattices
harboring boundary modes with the unique property of being
the only eigenstates that vanish exactly on some sublattices
[25–28]—where we engineer loss. In fact, in the SSH example
of Fig. 1, the same boundary steady state is obtained whenever
loss is applied to one or more of the B sites.

We derive the aforementioned results analytically, and
in the presence of a spectral mirror symmetry we obtain
the full exact Liouvillian spectrum of the corresponding
Lindblad master equation. We exemplify our construction for
SSH chains with even and odd number of sites (Figs. 1–3)
and for a two-dimensional (2D) Chern insulator hosting exact
chiral edge steady states (Fig. 4). We also consider the effect
of gain yielding steady-state currents and how our exact solu-
tions provide key intuitions for nonsolvable systems also (cf.
Fig. 3).

II. SETUP AND DISSIPATIVE SSH MODELS

We consider the Lindblad master equation [24,29] which
captures the quantum dynamics of Markovian dissipative sys-
tems [30–34],

dρ

dt
= L̂ρ := −i[H, ρ] +

∑
μ

(L̂μρL̂†
μ − 1

2
{L̂†

μL̂μ, ρ}), (1)

where ρ is the density matrix of the system and μ denotes the
summation over all types of jump operators.

As a minimal example, we study an SSH model of
spinless fermions with an odd number of sites L = 2N −
1, with Hamiltonian HS = ∑N−1

j=1 t1a†
j,Aa j,B + t2a†

j+1,Aa j,B +
H.c. We add local loss on the first B site: L̂l

1,B =
√

γ l
0,Ba1,B
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FIG. 1. Minimal example: boundary state from single site loss.
An open SSH chain with local loss only on the first site of (a) the
B sublattice, exhibiting a dynamical damping towards the boundary
state at the same boundary as indicated by the particle density 〈nj (t )〉
for a chain of length L = 2N − 1 = 9 with t1 = 0.5, t2 = 1.0, and
γB = 0.5.

[see Fig. 1(a)]. Here, a†
j,A(a j,B) are creation (annihilation)

operators on the sublattice A(B) in the jth unit cell satisfy-
ing anticommutation relations: {aj,α, a†

j′,α′ } = δ j, j′δα,α′ . The
quadratic Hamiltonian and linear Lindblad dissipators yield a
quadratic Lindbladian diagonalizable in the third quantization
approach [35–37]. The damping matrix X which governs the
dynamics can be mapped to a NH tight-binding Hamiltonian
encoding information of both the original Hamiltonian and
Lindblad dissipators (see Appendix A),

X = γ

2
× IL×L + iUHNHU −1, HNH = HS + iϒ, (2)

A
Bt1 t2

FIG. 2. Solvable SSH chain with odd number of sites and uni-
form gain and loss. (a) Illustration of an open SSH chain with loss
rate γB on the B sublattice and gain rate γA on the A sublattice.
(b) Rapidity spectrum for γB = 0.5 (green dots) and γB = 3.0 (blue
dots). The red dot at zero corresponds to the steady boundary
mode. (c) Dynamics of the particle density 〈nj (t )〉 for a chain of
length L = 2N − 1 = 27 with t1 = 2.0, t2 = 1.0, γA = 0.0, γB =
0.5. (d) Steady-state current JS as a function of γA. The other pa-
rameters are as in (c).

FIG. 3. Topology and scaling in SSH chains with even number
of sites and uniform loss. (a) Dynamics of the density 〈nj (t )〉 for
a topologically trivial chain of length L = 2N = 28 with t1 = 2.0,
t2 = 1.0, γB = 0.5. (b) Dynamics of the density 〈nj (t )〉 for a topo-
logical chain of length L = 28 with t1 = 0.5, t2 = 1.0, γB = 0.5.
(c) Real part of the rapidity spectrum as a function of t1 for a system
with L = 46 sites and t2 = 1.0, γB = 1.0. (d) Dependence of the
Liouvillian gap � = 2 min{Re[βm]} on the chain length L for an even
number of sites. Blue dots are the numerical result, while the red line
indicates an exponential fit f (N ) = C exp(−αN ) with C = 1.202
and α = 0.695.

under a unitary transformation U = diag{1, i, 1, i, . . . , 1}.
For a single loss on the first B site, γ = γB = |γ l

0,B|/2,
I = diag{1, 1, 0, . . . } and ϒ = diag{γ /2,−γ /2, 0, . . . , 0}.
The damping matrix X = Xc(d ) denotes the equal

FIG. 4. Preparation of chiral Chern insulator edge states.
(a) Chern insulator on a cylinder geometry with (b) the distribution
of the steady chiral mode prepared by B-sublattice loss as a func-
tion of kx along the y direction. We adopt Ly = 2N − 1 = 31 for
OBC and Lx = 200 for PBC. The chiral edge state is localized at
the left (right) boundary when |r(kx )| = |2 cos(kx/2)| < 1 (>1). The
localization position changes at k∗

x = 2π/3, 4π/3 when |r(k∗
x )| = 1.

(c),(d) Complex rapidity spectrum of the Chern insulator for N = 16
and t ′/t = √

3/2, t = γ = 1 demonstrating bulk modes (blue lines)
and exact chiral mode (red line). The (c) real part illustrates the
dissipative gap and the (d) imaginary part is equivalent to the full
energy spectrum.
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contribution from two Majorana fermions species:
a j,A = 1

2 (c j,A − id j,A), a j,B = 1
2 (d j,B + ic j,B). It can also

be decomposed into its eigenmodes, X = ∑
m βm|ψRm〉〈ψLm|,

with m the band index. The left and right eigenvectors satisfy
the biorthogonal relations [12,38,39] ψ∗

L,m
· ψ

R,m′ = δm,m′ .
This decomposition enables us to derive dynamical observ-

ables by integrating the Lindblad master equation. The parti-
cle number 〈nj (t )〉 = Tr[a†

j a jρ(t )] reads (see Appendix A)

〈n j (t )〉 − 〈n j〉s =
∑
m,m′

L∑
l=1

e−(βm+β∗
m′ )tψLm′ ( j)

× ψ∗
Rm′ (l )ψRm(l )ψ∗

Lm( j), (3)

where 〈n j〉s = 〈n j (t = ∞)〉 = 0 corresponds to the trivial
nonequilibrium steady state (NESS) in the presence of loss,
i.e., an empty chain, and the initial condition is chosen
as a completely filled chain. The eigenvalues βm of the
damping matrix coincide with the rapidity spectrum of the
Liouvillian [8,35]. Its real part encodes the decay rates of dif-
ferent modes towards the NESS and we define the dissipative
gap � = 2 min{Re[βm]} � 0.

For an odd number of sites, HS hosts a zero-energy bound-
ary mode fully suppressed on the B sublattice [28]: HSψ0

=
E0ψ0

, E0 = 0 and

ψ
0

= N (r, 0, r2, 0, . . . , 0, rN )T , (4)

with r = −t1/t2 the localization factor and N 2 = (1 −
r2)/[r2(1 − r2N )] a normalization. For |r| < 1 (> 1), the
boundary mode is exponentially localized at the left (right)
end of the chain. Intuitively, the frustrated nature of the bound-
ary mode indicates its robustness against local loss on any B
site. Indeed, with a single loss on the first B site, we find a
vanishing rapidity for this boundary mode: Xψ

R0
= β0ψR0

,

X †ψ
L0

= β∗
0 ψ

L0
, where β0 = 0 and ψ

R0
= ψ

L0
= ψ

0
, while

all bulk modes have a finite dissipative gap. It implies that
starting from all sites that are filled, through the dissipation
the system always selects the boundary mode as the nontrivial
steady state. For t → ∞, the particle number becomes

〈n j〉s = r j−1 − r j+1

1 − r2N
( j odd), 〈n j〉s = 0 ( j even). (5)

To verify our observation, in Fig. 1(b), we calculate the time
evolution of the particle number on individual sites by numer-
ically diagonalizing the damping matrix. At sufficiently long
times, the boundary mode (red line), with |r| = | − t1/t2| =
0.5 and site occupation 〈n j〉s predicted by Eq. (5), exponen-
tially localizes (|r| < 1) even when the single B-site loss is
placed close to the same left end of the chain. We also ob-
serve that with single weak loss (γ /2 � ||t1| − |t2||), the bulk
dissipative gap is inversely proportional to the chain length:
�bulk ∝ γ /N . The single loss of our minimal model is par-
ticularly useful for small system size in modern experimental
setups.

In the second example, while keeping the dissipation-
less feature of the boundary mode, we can make the
dissipative gap of the bulk modes saturate in the large sys-
tem size limit by adding loss on the entire B sublattice:

L̂l
j,B =

√
γ l

0,Ba j,B,∀ j [red arrows in Fig. 2(a)]. The damping
matrix X in Eq. (2) holds new entries with I = 1L×L and
ϒ = (γ /2) × diag{1,−1, 1, . . . ,−1, 1}. The rapidity for the
boundary mode in Eq. (4) remains rigorously zero, β0 = 0,
and it is thus selected as the nontrivial steady state again. This
steady boundary mode with a vanishing Liouvillian gap [de-
noted by the red dot in Fig. 2(b)] is not included in Ref. [40],
while it is referred to as an “edge dark state” in Ref. [41]. Re-
markably, we can obtain the bulk dissipative gap analytically
by exploiting spectral mirror symmetry under an open bound-
ary condition (OBC) with odd sites. The rapidity spectrum
of the (2N − 2) bulk modes comes in pairs βm = γ /2 ± iEm,
where Em denote the eigenenergies of HNH from the mapping
of Eq. (2) and we have adapted the notation for the band
index m = (±, q), with q = πm′/N , m′ = 1, 2, . . . , N − 1.
The spectrum obeys spectral mirror symmetry βOBC

± (q) =
βOBC

± (−q), establishing a direct link to the spectrum under
a periodic boundary condition (PBC) [28,39,42]: βOBC

± (q) =
βPBC

± (q), reflecting the absence of a NH skin effect. We thus

obtain βOBC
± (q) = γ

2 ± i
√

t2
1 + t2

2 + 2t1t2 cos(q) − γ 2

4 . Shown
in Fig. 2(b), all bulk modes have a finite gap and the min-
imum �bulk = 2 min{Re[β±(q)]} determines the dissipative
preparation time for the steady boundary mode: τ ∼ �−1

bulk. In
the large-N limit, we find the analytical solution to the bulk
dissipative gap, �bulk = γ , for ||t1| − |t2|| � γ /2; �bulk =
γ −

√
γ 2 − 4(|t1| − |t2|)2 otherwise. An exact complete set

of right and left eigenvectors for the damping matrix X is ob-
tained as well (see Appendix A), where the bulk modes can be
viewed as a superposition of two Bloch waves with opposite
momenta vanishing on the last B site (which is removed in
the odd chain). We are able to analytically resolve the full
time evolution of the particle number shown in Fig. 2(c).
For weak dissipation with �bulk = γ , the damping wavefront
arises from the steady boundary mode, in contrast to previous
studies with a major contribution from bulk skin modes [6–9]
(here our bulk modes are delocalized).

Next, we study the effect of small gain L̂g
j,A =√

γ
g
0,Aa†

j,A,∀ j on the A sublattice [green arrows in Fig. 2(a)].
The damping matrix X in Eq. (2) is still exactly solvable
with entries γ = γA + γB, I = 1L×L, ϒ = [(γB − γA)/2] ×
diag{1,−1, 1,−1, . . . , 1} and γA = |γ g

0,A|/2. The boundary
mode remains an eigenmode, yet it is associated with a
nonzero rapidity β0 = γA leading to a finite gap: �0 = 2γA.
A small gain also eliminates the empty state as trivial NESS.
In Appendix B, we identify the analytical structure of the
nontrivial NESS in the presence of γA as a mixed state contin-
uously connected to the empty state and the boundary mode
when γA → 0. The system exhibits a steady-state current JS =
(i/L)

∑
j (〈a†

j a j+1〉s − 〈a†
j+1a j〉s), which we can obtain in a

closed form [see Eq. (B9)]. We compare the analytical result
with numerics in Fig. 2(d). Once 0 < γA � γB, regardless of
the initial conditions, the system eventually evolves to the
nontrivial NESS with a localization structure approximating
the boundary mode in Eq. (4).

We now address the nonsolvable model by obtaining the
eigenmodes of the damping matrix through exact diagonal-
ization (ED). The simplest scenario is encountered when
we consider the SSH chain with an even number of sites
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L = 2N . For L = 2N − 1, the model is symmetric under the
exchange of t1 and t2 bonds [see Fig. 2(a)]. The boundary
mode remains the steady state in both the topological (|t1| <

|t2|) and nontopological (|t1| > |t2|) regions, with the local-
ization direction reversed under the exchange (|r| → |r|−1).
For L = 2N , topology comes into play. With loss on the
B sublattice, the boundary mode disappears in the topologi-
cally trivial region (|t1| > |t2|), as seen by comparing Fig. 3(a)
with Fig. 2(c). Yet, it is retrieved in the topological region
(|t1| < |t2|) [see Fig. 3(b)] with the same localization fac-
tor |r| = |t1/t2| < 1 as in Eq. (4). This phenomenon can be
predicted by noticing that two zero-energy boundary modes
of the SSH model of even lengths are localized at different
ends, and only one of them is protected under the B-sublattice
loss [43,44]. From the rapidity spectrum in Fig. 3(c), we
observe this boundary mode only at |t1| < |t2| and find that
its dissipative gap decays exponentially with the chain length
[see Fig. 3(d)]. The lifetime of the topological boundary
state is enhanced exponentially by increasing the system size,
τ ∼ �−1 ∼ exp (αN ) with α > 0, a remarkable feature due to
topological protection.

III. GENERALIZATION TO DISSIPATIVE LATTICE
MODELS IN ANY DIMENSION

Our recipe for devising unique steady boundary states
naturally generalizes to any dimension with localization on
boundaries of any codimension including surfaces, corners,
edges, and hinges. This is achieved by inferring results on
boundary state solutions that vanish exactly on certain sublat-
tices [26,27]. In the presence of a spectral mirror symmetry,
the full Liouvillian spectrum may be obtained [28]. Increasing
both the bulk dimension and the codimension simultaneously
is straightforward, yielding, e.g., corner steady states on the
breathing kagome lattice [26,45], in full analogy with the
SSH chain. Increasing the bulk dimension is suitably done
by dimensional extension, which is slightly more technically
involved. Here, we provide an explicit example of dimen-
sional extension in the preparation of dissipationless chiral
edge modes of a two-dimensional Chern insulator on the
honeycomb lattice [28,46].

Figure 4(a) illustrates the corresponding cylinder
geometry: we impose PBC on the x direction with an
even number of sites Lx and OBC along the y direction
with an odd number of sites Ly = 2N − 1. The real
nearest-neighbor and next-nearest-neighbor hopping
amplitudes are denoted as t and t ′. The complex hoppings t ′eiφ

with φ = π/2 are allowed only between unit cells along the
x direction. For each kx, a mapping to the generic SSH-like
model can be established (see Appendix C): HS (kx ) =∑

j

∑
α=A,B εαa†

j,αa j,α + ∑N−1
j=1 t1 a†

j,A a j,B + t2a†
j+1,Aa j,B +

H.c., with t1 = 2t cos(kx/2), t2 = t, εA = −εB = −2t ′ sin(kx )
(we use renormalized kx = √

3kx,0 compared with the
actual value). With the B-sublattice loss γ = γB, the
rapidity spectrum consists of two copies (μ = ±1)
for distinct Majorana fermions species (c, d). For the
topological chiral mode, β

μ
0 = −iμεA, while for the

bulk modes, the spectral mirror symmetry β
μ
±(kx, ky) =

β
μ
±(kx,−ky) leads to βOBC

μ,± (kx, ky) = βPBC
μ,± (kx, ky) = γ /2 ± i

√
t2
1 + t2

2 + 2t1t2 cos(ky) + (iγ /2 − μεA)2 with ky = π j/N ,
j = 1, . . . , N − 1. Figures 4(c) and 4(d) show the real
and imaginary parts of the rapidity spectrum of the chiral
mode (red) and bulk modes (blue). The bulk modes have
a vanishing dissipative gap in the large system limit at the
momenta k∗

x which satisfies |r(k∗
x )| = 1 where the chiral

mode becomes delocalized and switches sides. Nevertheless,
for momenta when the chiral mode is isolated within the
real rapidity spectrum of Fig. 4(c), the system has a finite
instantaneous �bulk to separate the chiral and bulk modes
for any system size, and thus inherits the localization
structure to the boundary mode of the SSH model with
|r(kx )| = |t1/t2| = |2 cos(kx/2)|. This feature is illustrated by
the steady-state particle number of Eq. (5) in Fig. 4(b).

IV. DISCUSSION

In this work, we have explored an alternative to ground-
state cooling and Floquet engineering of topological phenom-
ena [17,47–51], as well as other finite-time methods to probe
boundary states [52,53]. Our generic approach utilizes both
dissipation and coherent dynamics to prepare boundary states
as steady states which can be operated at arbitrarily long
times. It circumvents the problem of thermal excitations faced
at finite temperature in existing platforms. Compared with
other dissipative preparation schemes [1,15], in our recipe
coherent dynamics from the Hamiltonian itself is introduced,
while the form of dissipation is greatly simplified.

Our exact construction is not only simple, but also very
general. By choosing appropriate lattice geometries, it carries
over directly to a plethora of topological and nontopologi-
cal boundary states, including Fermi arcs and higher-order
states at corners and hinges, which all have the desired nodal
boundary state structure [25–28]. Going beyond the idealized
model, one can break spectral mirror symmetry in the SSH
Hamiltonians by adding disorder on the nearest-neighbor hop-
ping terms. We find that the unique localization structure of
the boundary mode is a generic property of any odd length
chain: it still vanishes on the entire B sublattice without its
dissipative gap opening, and is robust against on-site-potential
disorder on any B site (see Appendix D). In real experiments,
weak disorder on the other sublattice and further-neighbor
interactions directly interfere with the boundary mode and
should be precisely controlled. The latter can be effectively
suppressed on sufficiently deep optical lattices [54] that make
the SSH models applicable [53,55–57].

From the theoretical side, our analytical study offers
promising outlooks for future exploration as well. One could
test targeted boundary state distillation in open systems in-
herent with Liouvillian skin effects [6–9], critical phenomena
[58,59], and phase transitions [60–62]. In particular, the
preparation of steady boundary modes with NH skin effects
would bestow exponentially enhanced sensitivity on quan-
tum sensing devices [63–67]. It is equally exciting to extend
the current framework from open fermions to bosonic and
even hybrid systems via a similar third quantization approach
[68–70].

Very recently, experiments on light in lossy optical waveg-
uides showed that a similar boundary state preparation is
possible at the level of NH effective Hamiltonians in classical
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settings [43]. The present work shows that a similar NH phe-
nomenology is also relevant in the quantum realm and opens
up different avenues for quantum control.

We also note that related systems with staggered loss
or weak measurements have been considered earlier in
the context of quantum walks described by effective NH
Hamiltonians [71–73]. There, however, rather than the prepa-
ration of topological boundary states, the focus was on other
aspects such as defects, phase transitions, and mean displace-
ment.

Recently, we became aware of two independent works
numerically observing the amplification of states at one
boundary in Chern insulator models with gain and loss
[41,74]. In these studies, the boundary modes are classified
and dynamically selected [43,44,75] as long-lived modes on
even-length lattice models, but not as steady states once the
system size becomes finite. By contrast, our predominantly
analytical work focuses on odd-length lattice models and
achieves this goal with generic boundary states hosting an
exact zero dissipative gap. We also consider systems in which
the entire family of boundary states is prepared, such as the
Chern insulator model. This indicates a great flexibility and
generality in harnessing structured dissipation for probing
topological boundary state physics through its interplay with
coherent Hamiltonian dynamics.
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APPENDIX A: LIOUVILLIAN SPECTRUM OF 1D SSH
MODEL AT ODD LENGTHS

Here we present the exact solutions to the Lindblad master
equation for the SSH model with loss on the B sublattice at
arbitrary odd number of sites using third quantization. The
exactly solvable dissipationless boundary mode together with
the damping bulk modes give us full access to the quantum
dynamics of the relaxation process, as well as a nontrivial
nonequilibrium steady state (NESS).

1. Derivation of the damping matrix in third quantization

We start by writing the Hamiltonian of an SSH chain
of spinless fermions with an odd number of sites: HS =∑N−1

j=1 t1a†
j,Aa j,B + t2a†

j+1,Aa j,B + H.c. The operator a†
j,A(a j,B)

creates (annihilates) a fermion on the sublattice A(B) in the
jth unit cell and they satisfy fermionic anticommutation rela-
tions {a j,α, a†

j′,α′ } = δ j, j′δα,α′ . The last unit cell is broken and
the total number of sites becomes odd, L = 2N − 1. Adding
particle loss on the B sublattice with the jump operator L̂l

j,B =√
γ l

0,Ba j,B yields a quadratic Lindbladian from the Lindblad
master equation in Eq. (1), of which the rapidity spectrum can

be obtained via third quantization [35–37]. We briefly review
the approach and adopt the same Majorana representation
as in Ref. [8]. One spinless fermion can be mapped to two
Majorana fermions per site:

a j,A = 1
2 (c j,A − id j,A), a j,B = 1

2 (d j,B + ic j,B). (A1)

This particular choice of mapping decouples two sectors
in the damping matrix belonging to different Majorana
fermions species c and d . Let us group them into a
whole set under a vector notation w = (w1,w2, . . . ,w2L )T =
(c1, . . . , cL, d1, . . . , dL )T . Majorana fermions are their own
antiparticles as evinced by w

†
j = w j , and they obey anticom-

mutation relations {w j,wk} = 2δ j,k such that each Majorana
fermion squares to one. The density matrix ρ in the orig-
inal Hilbert space of dimension 2L × 2L is now embedded
in the set of Majorana operators with the new form Pα =
w

α1
1 w

α2
2 · · ·wα2L

2L , where α j ∈ {0, 1}. In the Majorana rep-
resentation, the Hamiltonian and Lindblad dissipators take
the form H = ∑

j,k w jHj,kwk and Mi j = ∑
ν=g,l (l

ν
i,μ)T (lν

μ, j )
∗.

More precisely,

wT Hw = (cT dT )

(
H0 0
0 H0

)(
c
d

)
,

wT Mw = (cT dT )

(
M1 iM2

−iM2 M1

)(
c
d

)
, (A2)

where

H0 = i

4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1
−t1 0 −t2

t2 0 t1
. . .

0 −t2
t2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

M1 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

γA

γB

γA
. . .

γB

γA

⎞
⎟⎟⎟⎟⎟⎟⎠

,

M2 = M1(γα → ηα ), α = A, B, (A3)

where γα’s and ηα’s stand for the sum and the imbalance of
the most generic loss and gain dissipators on two sublattices,

2γα = |γ l
0,α| + |γ g

0,α|, 2ηα = |γ l
0,α| − |γ g

0,α|,

for L̂l
j,α =

√
γ l

0,αa j,α, L̂g
j,α =

√
γ

g
0,αa†

j,α, ∀ j. (A4)

Over the 22L-dimensional Liouville space K, we now
define adjoint fermionic operators that annihilate and create
Majorana fermions, ϕ j |Pα〉 = δα j ,1|w jPα〉, ϕ

†
j |Pα〉 =

δα j ,0|w jPα〉, which obey {ϕ j, ϕ
†
k } = δ j,k . Since the Fermi

parity PF = (−1)
∑

j ϕ
†
j ϕ j is conserved, [L̂,PF ] = 0 and

(PF )2 = 1, we can represent the Liouvillian in the even-parity
sector PF = +1 as

L̂+ = 1

2
(ϕ† · ϕ·)

(−X † iY
0 X

)(
ϕ

ϕ†

)
− A0, (A5)
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with X = −4iH + M + MT , Y = −2i(M − MT ), and A0 =
1
2 Tr[X ]. In the chosen Majorana fermions representation in
Eq. (A1), the full damping matrix is decoupled in different
Majorana fermions species. The diagonal and off-diagonal
blocks read

X =
(

Xc 0
0 Xd

)
, Y = 4

(
0 M2

−M2 0

)
, (A6)

with Xc = Xd = −4iH0 + 2M1. The upper-triangular form
of L̂+ indicates that the eigenvalues of the Liouvillian co-
incide with those of the damping matrix X [8,35]. After
proper diagonalization, we are able to express the Liou-
villian in terms of rapidities β and normal master modes
(NMMs) b′, b:

L̂+ = −
L∑

m=1

βm(b′
c,mbc,m + b′

d,mbd,m). (A7)

Here, βm = βc,m = βd,m, with the band index m, and
NMMs satisfy the anticommutation relations {b′

c,m, bc,l} =
{b′

d,m, bd,l} = δm,l .
Furthermore, we can map the damping matrix in the

Liouvillian to the SSH Hamiltonian with additional non-
Hermitian imbalanced chemical potential on the two sublat-
tices. For the (uniform) loss on the B sublattice only, we arrive
at

Xc = Xd = γ

2
× 1L×L + iUHNHU −1, HNH = HS + iϒ,

HS =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1
t1 0 t2

t2 0
. . .

0 t2
t2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

L×L

,

ϒ = γ

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1

1
. . .

−1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

L×L

, (A8)

with the unitary transformation U = diag{1, i, 1, i, . . . , i, 1}
and γ = |γ l

0,B|/2. Therefore, the rapidity spectrum satisfies
the relation

βm = γ

2
+ iEm, (A9)

where Em denotes the eigenvalues of the matrix HNH =
HS + iϒ .

2. Boundary mode and full rapidity spectrum with spectral
mirror symmetry

Under open boundary conditions (OBCs), for the SSH
chain with an odd number of sites L = 2N − 1, we first iden-
tify the zero-rapidity boundary mode βm=0 = 0.

It comes from the zero-energy boundary state of the SSH
Hamiltonian,

HSψ̃m
= Ẽmψ̃

m
, Ẽ0 = 0, ψ̃

0
= N

⎛
⎜⎜⎜⎜⎜⎜⎝

r
0
r2

· · ·
0

rN

⎞
⎟⎟⎟⎟⎟⎟⎠

, r = − t1
t2

,

(A10)

where the normalization factor reads N 2 = (1 − r2)/[r2(1 −
r2N )]. It is straightforward to check that

(HS + iϒ)ψ̃
R0

= E0ψ̃R0
, E0 = i

γ

2
, (A11)

which leads to zero rapidity from Eq. (A9),

β0 = 0, ψ
R0

= ψ
L0

= ψ̃
0
. (A12)

Physically, this is consistent with the observation that the
wave function of the zero-energy boundary mode is fully
suppressed on the B sublattice for an SSH chain with an odd
number of sites. The boundary mode survives under the dis-
sipation on the frustrated sublattice in the infinitely long-time
limit.

For a chain with an odd number of sites, the bulk spectrum
fulfills a spectral mirror symmetry: βOBC

± (q) = βOBC
± (−q).

The mirror symmetry allows one to establish a rigorous rela-
tion between the spectrum under OBC and the spectrum under
periodic boundary conditions (PBC) [28,39,42],

βOBC
± (q) = βPBC

± (q)

= γ

2
± i

√
t2
1 + t2

2 + 2t1t2 cos(q) − γ 2

4
, (A13)

with q = πm′
N , m′ = 1, 2, . . . , N − 1. We plot the real part of

the rapidity spectrum as a function of the hopping amplitude
and the dissipation strength in Fig. 5.

From the exact solutions, we can also obtain the dissipative
gap that separates the boundary and bulk modes, together with
the relaxation time τ for the system to evolve to the boundary
mode in the long chain limit N � 1,

�bulk = 2 min{Re[βm �=0]}, τ ∼ 1

�
, (A14)

where

�bulk =
{
γ , ||t1| − |t2|| � γ /2
γ −

√
γ 2 − 4(|t1| − |t2|)2, ||t1| − |t2|| < γ/2.

(A15)

3. Exact eigenmodes of the damping matrix
and dynamical observables

The complete set of eigenvectors of the damping matrix
can be used to obtain dynamical observables. Apart from the
exact boundary mode in Eq. (A10), next we show how to
construct the analytical solutions to the bulk eigenmodes.

To make the solutions more generic, we start from a Bloch
form of the non-Hermitian tight-binding Hamiltonian HNH

into which the damping matrix can be transformed through

043229-6
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FIG. 5. (a),(b) Real part of the rapidity spectrum as a function of
t1 for t2 = 1 and N = 46. The gray lines show the structure of the
periodic system, while the blue and red lines correspond to the bulk
and boundary modes under OBC. We set different loss dissipation
strengths on the B sublattice: (a) γ = 0.5, (b) γ = 2, (c) γ = 5.
(d) Real part of the rapidity spectrum as a function of γ for t1 = 2,
t2 = 1, and N = 46. The green line denotes the half of the bulk
dissipative gap estimated according to Eq. (A15) for N � 1.

Eq. (A8),

HNH(q) = �h(q) · �σ , �h = (hx, hy, hz ), �σ = (σx, σy, σz ),

(A16)

where hx, hy ∈ R and hz ∈ C. The non-Hermitian term enters
into the sublattice potential. From the eigenvalue equa-
tions, HNHuR(q) = E (q)uR(q) and H†

NHuL(q) = E∗(q)uL(q),
one obtains the right and left eigenmodes of the Bloch
Hamiltonian,

uR,±(q) = 1√
2h(h∓hz )

(
hx − ihy

±h − hz

)
,

u∗
L,±(q) = 1√

2h(h∓hz )

(
hx + ihy

±h − hz

)
. (A17)

Due to the spectral mirror symmetry, we establish the relation
for energy eigenvalues switching from PBC to OBC,

EOBC
± (q) = EPBC

± (q) = ±
√

h2
x + h2

y + h2
z , (A18)

with q = πm′
N , m′ = 1, 2, . . . , N − 1. Therefore, the bulk

eigenmodes under OBC can be constructed as a superposition
of the PBC eigenmodes at opposite momenta,

ψ̃
R/L,ν

(q, j) = 1√
2N

[eiq juR/L,ν (q) − e−iq juR/L,ν (−q)].

(A19)

Here, the minus sign is determined by the boundary condition,
ensuring that the overall wave function vanishes on the B site
of the last broken unit cell.

If we denote the band index as m ∈ {0, (±, q)}, it is
straightforward to check that the boundary and bulk modes
in Eqs. (A10) and (A19) satisfy the biorthogonal rela-
tions [12,38,39]: ψ̃

∗
L,m

· ψ̃
R,l

= δm,l . The eigenmodes of the

damping matrix can be obtained with an additional unitary
transformation according to Eq. (A8),

ψ
Rm

= U ψ̃
Rm

, ψ
Lm

= U ψ̃
Lm

, (A20)

and they inherit the biorthogonal relations

ψ∗
Lm

· ψ
Rl

= ψ̃
∗
Lm

· ψ̃
Rl

= δm,l . (A21)

For the SSH model with loss on the B sublattice, we obtain
the bulk modes by identifying

hx = t1 + t2 cos(q), hy = t2 sin(q), hz = i
γ

2
. (A22)

It is then convenient to resolve the time evolution of the ob-
servables with the complete set of exactly solvable eigenstates
of the damping matrix. Applying the anticommutation rela-
tions of Majorana fermions {w j,wk} = 2δ j,k to the Lindblad
master equation in Eq. (1), we arrive at the equation of motion
for the covariance matrix Cjk (t ) = −Tr[w jwkρ(t )] + δ j,k :

∂tC(t ) = −C(t )X − X †C(t ) + iY. (A23)

For the trivial steady state,

∂tCs = 0, Cs = i

(
0 1L×L

−1L×L 0

)
. (A24)

Now, we define the expectation value of a local observable
with respect to the trivial NESS: C̃(t ) = C(t ) − Cs. Start-
ing from an arbitrary initial configuration that is not trivial,
C̃(0) �= 0, we can integrate the equation of motion and imple-
ment the diagonalized damping matrix in the exponential,

X =
∑

m

∑
μ=c,d

βm|�μ
Rm〉〈�μ

Lm|,

|�c
R(L)m〉 =

(
ψ

R(L)m
0

)
, |�d

R(L)m〉 =
(

0
ψ

R(L)m

)
. (A25)

Due to the biorthogonality of the basis, one reaches a compact
form,

C̃(t ) =
∑
m,m′

∑
μ,μ′

e−(βm+β∗
m′ )t |�μ′

Lm′ 〉〈�μ′
Rm′ |C̃(0)|�μ

Rm〉〈�μ
Lm|.

(A26)

At t = 0, we choose the system to be a completely filled chain,
〈n j (0)〉 = 1,∀ j. It corresponds to a covariance matrix,

C̃(0) = −2i

(
0 1n×n

−1n×n 0

)
, (A27)

that selects μ �= μ′. Going back to the physical space con-
sisting of spinless fermions, we define the single-particle
correlator Qjk (t ) = Tr[a†

j akρ(t )]. The mapping to Majorana
fermions in Eq.( (A1)) yields

Qjk (t ) = i

4
σ ( j, k)[Cj,k+L (t ) + Ck, j+L (t )], (A28)

where the phase factor depends on whether or not the correla-
tion resides on the same sublattice,

σ ( j, k) =
{

1, j + k = even
(−1) j · (−i), j + k = odd.

(A29)
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Combined with Eqs. (A26) and (A27), the single-particle cor-
relator takes an explicit form in terms of the exact solutions of
the damping matrix,

Qjk (t ) = σ ( j, k)
∑
m,m′

L∑
l=1

e−(βm+β∗
m′ )t

× ψ∗
Lm( j)ψLm′ (k) · ψRm(l )ψ∗

Rm′ (l ). (A30)

The particle number operator then reads

〈ñ j (t )〉 = 〈n j (t )〉 − 〈n j〉s

=
∑
m,m′

L∑
l=1

e−(βm+β∗
m′ )tψLm′ ( j)ψ∗

Rm′ (l )ψRm(l )ψ∗
Lm( j),

(A31)

where 〈n j〉s = 0 denotes the trivial steady state.

APPENDIX B: NONEQUILIBRIUM STEADY STATE FOR
GENERIC LOSS AND GAIN

Below, we show the analytic structure of the nontrivial
NESS with generic loss on the B sublattice and gain on the
A sublattice. It also leads to a closed form for the steady-state
current.

Given the set of Lindblad dissipators L̂l
j,B =

√
γ l

0,Ba j,B,

L̂g
j,A =

√
γ

g
0,Aa†

j,A,∀ j, the damping matrix from Eqs. (A2)–

(A6) becomes

Xc = Xd = (γA + γB)

2
× 1L×L + iU (HS + iϒ)U −1,

ϒ = (γB − γA)

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1
−1

1
. . .

−1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

L×L

, (B1)

with γA = |γ g
0,A|/2 and γB = |γ l

0,B|/2. The Bloch Hamiltonian

of HNH = HS + iϒ = �h(q) · �σ reads

hx = t1 + t2 cos(q), hy = t2 sin(q), hz = i
(γB − γA)

2
.

(B2)

It encompasses all the ingredients to solving the rapidity
spectrum,

β0 = γA,

β±(q) = γA + γB

2

± i

√
t2
1 + t2

2 + 2t1t2 cos(q) − (γB − γA)2

4
, (B3)

together with the eigenmodes according to Eqs. (A16)–(A20).
To find the NESS that satisfies

∂tCs = 0, X †Cs + CsX = iY, (B4)

we begin by rewriting each matrix into the blocks,

X =
(

Xc 0
0 Xd

)
, Cs =

(
0 Ds

−Ds 0

)
,

Y =
(

0 YA + YB

−(YA + YB) 0

)
. (B5)

It simplifies to

X †
c Ds + DsXc = i(YA + YB),

YA =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2γA

0
−2γA

. . .

0
−2γA

⎞
⎟⎟⎟⎟⎟⎟⎠

,

YB =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
2γB

0
. . .

2γB

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B6)

In the presence of generic loss and gain, an analytical solution
to the steady-state covariance matrix follows,

Ds = i(1L×L + �D),

�D =
∑

m,m′ �=0

pm,m′ |ψ
Lm

〉〈ψ
Lm′ | + c0|ψL0

〉〈ψ
L0

|. (B7)

While the matrix 1L×L in Ds gives back the state of an empty
chain due to loss, c0 denotes the contribution from the bound-
ary mode immune to loss and coefficients pm,m′ denote the
overlaps between the bulk modes arising from gain,

c0 = p0,0 = −2, pm,m′ = 〈ψRm|2YA|ψRm′ 〉
β∗

m + βm′
. (B8)

We consider the scenario when γB � γA and γA → 0+. The
nontrivial NESS can be connected to a sum of the empty
state and the boundary mode. Since the former gives zero
particle number occupation, regardless of the initial condi-
tions, the dissipative system always relaxes to a unique NESS
with a localization structure approximating that of the bound-
ary mode.

For the measurement of the steady-state current JS =
(i/L)

∑
j (〈a†

j a j+1〉s − 〈a†
j+1a j〉s), we reach a closed form by

substituting Eqs. (A28) and (B7) to the above definition:

JS = − 1

L

L−1∑
j

∑
m,m′ �=0

pm,m′ψLm( j)ψ∗
Lm′ ( j + 1). (B9)

APPENDIX C: LIOUVILLIAN SPECTRUM OF 2D CHERN
INSULATOR

Here, we present more details on the derivation of the
exactly solvable rapidity spectrum of a 2D dissipative Chern
insulator [28,46] through a mapping to the generic SSH
model.

As shown in Fig. 6, we place the honeycomb lattice on
a cylinder and adopt PBC along the x direction with M unit

043229-8
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FIG. 6. Illustration of a Chern insulator on a honeycomb lattice
consisting of two sublattices A and B. We consider a system with
PBC in the x direction and OBC in the y direction, yielding a cylinder
geometry. We wrap the cylinder such that its edges are of zigzag
type on the left and bearded type on the right. The vectors �a1 and �a2

indicate the Bravais lattice vectors of the honeycomb lattice, while
�δ1 indicate the vectors in the three possible bond directions. The
sites are coupled by nearest-neighbor hopping t (depicted in yellow)
and next-nearest-neighbor hopping t ′ (depicted in green). We further
require that the next-nearest-neighbor hoppings along the x direction
acquire an additional phase factor eiφ to open a Chern/Haldane
insulator gap. In the text, we adopt φ = π/2.

cells and OBC along the y direction with N unit cells. The last
unit cell along y direction is broken, leading to Ly = 2N − 1
sites. We choose the zigzag edge on the left boundary and the
bearded edge on the right boundary. The nearest-neighbor and
next-nearest-neighbor hopping strengths are denoted by real
parameters t and t ′. The complex hoppings t ′eiφ with φ = π/2
are allowed only within unit cells along the y direction. Setting
the honeycomb lattice constant to 1, different unit cells are
connected by the vectors

�a1 =
(√

3

2
,

3

2

)
, �a2 =

(
−

√
3

2
,

3

2

)
. (C1)

First, we perform a Fourier transform on the x components of
the fermionic annihilation and creation operators (α = A, B),

�r = (l, j), aα (l, j) = 1√
M

∑
kx

eikx laα (kx, j). (C2)

For each kx = 2πm′/M, m′ = −M/2, . . . , M/2 − 1, the real-
space Hamiltonian shares the form

H (kx )|Ly×Ly

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

HA HA←B

H†
A←B HB H†

B→A
HB→A HA

. . .

HB H†
B→A

HB→A HA

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(C3)

The matrix elements can be obtained as follows:

HA :
∑

l

t ′eiφa†
A(l, j)aA(l + �a1 − �a2, j) + H.c.

=
∑

kx

−2t ′ sin(k1 − k2)a†
A(kx, j)aA(kx, j),

HB :
∑

l

t ′e−iφa†
B(l, j)aB(l + �a1 − �a2, j) + H.c.

=
∑

kx

2t ′ sin(k1 − k2)a†
B(kx, j)aB(kx, j),

HA←B :
∑

l

ta†
A(l, j)aB(l, j) + ta†

A(l, j)aB[l − (�a1 − �a2), j]

=
∑

kx

t (1 + e−i(k1−k2 ) )a†
A(kx, j)aB(kx, j),

HB→A :
∑

l

ta†
A(l, j + 1)aB(l − 1, j)

=
∑

kx

te−i(k1−k2 )/2a†
A(kx, j + 1)aB(kx, j), (C4)

where ki = �k · �ai, i = 1, 2.
Next, let us absorb the complex phases appearing in the

hopping terms by the transformation

aA(kx, j) → e−i(k1−k2 )/2aA(kx, j). (C5)

It allows us to map H (kx ) to a generic SSH model with real
hopping terms as before,

HS (kx ) =
N−1∑
j=1

t1a†
j,Aa j,B + t2a†

j+1,Aa j,B + H.c.

+
∑

j

∑
α=A,B

εαa†
j,αa j,α, (C6)

with t1 = 2t cos(kx/2), t2 = t, εA = −εB = −2t ′ sin(kx ).
For simplicity, we have adopted the renormalized kx =

k1 − k2 = √
3kx,0, compared with the original value kx,0 on

the honeycomb lattice.

Adding the B-sublattice loss L̂l
j,B =

√
γ l

0,Ba j,B,∀ j, we ap-

ply the Majorana fermions representation in Eq. (A1). The
generic SSH Hamiltonian reads

wTHSw = (cT dT )

(
H0 −iH1

iH1 H0

)(
c
d

)
,

H0 = i

4
h0, H1 = i

4
h′, (C7)
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where

h0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1
−t1 0 −t2

t2 0
. . .

0 −t2
t2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Ly×Ly

,

h′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−iεA

−iεB

−iεA
. . .

−iεB

−iεA

⎞
⎟⎟⎟⎟⎟⎟⎠

Ly×Ly

.

(C8)

And the damping matrix takes the form

X = (cT dT )

(
h0 + 2M1 −ih′

ih′ h0 + 2M1

)(
c
d

)
,

M1 = diag{0,
γ

2
, 0, . . . ,

γ

2
, 0}, (C9)

with γ = γB = |γ l
0,B|/2. It is convenient to introduce a new set

of Pauli matrices �τ acting on different subspaces of Majorana
fermions species c and d , in order to decouple them,

X = U0X̃U −1
0 ,

X̃ =
(

h0 + h′ + 2M1 0
0 h0 − h′ + 2M1

)
=

(
X̃c 0
0 X̃d

)
,

(C10)

where U0 = (1 + iτ x )/
√

2. The eigenmodes of X̃c(d ) can be
exactly solved by the method we have developed earlier in
Eqs. (A8)–(A20), which requires the identification of their NH
Bloch Hamiltonians in Eq. (A16). From the mapping of the
damping matrix in Eq. (A8), one arrives at

hx = t1 + t2 cos(ky), hy = t2 sin(ky), hz = i
γ

2
∓ μεA,

(C11)

where μ = ±1 for c, d , respectively. For the chiral edge
mode,

β
μ
0 = −iμεA, ψ

R0
= ψ

L0
= N

⎛
⎜⎜⎜⎜⎜⎜⎝

r
0
r2

· · ·
0

rN

⎞
⎟⎟⎟⎟⎟⎟⎠

,

r(kx ) = − t1
t2

= −2 cos(kx/2), (C12)

while for the bulk modes (ky = πm′/N with m′ = 1, . . . , N −
1), the spectral mirror symmetry β±(kx, ky) = β±(kx,−ky )
leads to

βOBC
μ,± (kx, ky) = βPBC

μ,± (kx, ky)

= γ /2 ± i
√

t2
1 + t2

2 + 2t1t2 cos(ky) + (iγ /2 − μεA)2.

(C13)

Furthermore, we check that the trivial steady state remains
the same as the 1D SSH model (an empty state of spinless
fermions along the y direction),

Cs = i

(
0 1

−1 0

)
. (C14)

The time evolution of the particle number distribution can be
resolved as well,

〈n j (t )〉 = 1

2

∑
m,m′

Ly∑
l=1

∑
μ=c,d

e−(βμ,m+β∗
μ,m′ )t (C15)

× ψL,μm′ ( j)ψ∗
R,μm′ (l )ψR,μm(l )ψ∗

L,μm( j).

Starting from a completely filled lattice driven by the
B-sublattice loss, the steady-state particle number distribution
becomes that of the chiral edge mode,

〈n j〉s = r j−1 − r j+1

1 − r2N
( j odd), 〈n j〉s = 0 ( j even). (C16)

APPENDIX D: ROBUSTNESS OF THE BOUNDARY STATE
AGAINST SUBLATTICE AND BOND DISORDERS

In the following, we discuss the robustness of the boundary
state in Eq. (4) hosted by the 1D SSH model with odd sites and
generalize its localization structure in the presence of bond
disorders.

Further-neighbor interactions and weak on-site-potential
disorder on the A sublattice would eliminate the boundary
mode from being a steady state of the Liouvillian. However,
with loss engineering, there are other types of disorders that
the boundary mode is robust against, including strong random
disorders in the B-sublattice potentials and in the t1 and t2
hopping terms. Let us include them explicitly in the model
with B-sublattice loss,

H0 =
N−1∑
j=1

t j,1a†
j,Aa j,B + t j,2a†

j+1,Aa j,B + H.c.,

V =
∑

j

ω j,Ba†
j,Ba j,B,

L̂l
j,B =

√
γ l

0,Ba j,B,∀ j. (D1)

Casting the Hamiltonian into a matrix form, it is straightfor-
ward to check that due to local destructive interference arising
from disordered nearest-neighbor hopping terms, the targeted
zero-energy boundary state takes a new form,

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1,1

t1,1 0 t1,2

t1,2 0 t2,1
. . .

0 tN−1,2

tN−1,2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

H0ψ0
= E0ψ0

: E0 = 0, ψ
0

= N (r1, 0, r2, 0, . . . , 0, rN )T ,

r1 = 1, rm =
m−1∏
j=1

(
− t j,1

t j,2

)
, m > 1, (D2)
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with a normalization factor N−2 = ∑N
m=1 r2

m. It still shares a localization structure fully suppressed on the B sublattice, thus
immune to both loss and on-site disorder on the same sublattice. Indeed, after a proper rotation in the subspaces of different
Majorana fermions species c and d as has been performed in Eqs. (C6)–(C10), random on-site disorder acting as a real chemical
potential enters the rotated damping matrix in the diagonal terms belonging to B sites and becomes purely imaginary (μ =
+1,−1 for c, d),

X̃c,d =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 t1,1

−t1,1 0 −t1,2

t1,2 0 t2,1
. . .

0 −tN−1,2

tN−1,2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−iμω1,B + γB

0
. . .

−iμωN−1,B + γB

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (D3)

The vanishing gap of the generalized boundary mode ensures an infinite lifetime as a steady state,

X̃c,dψ0
= β0ψ0

, β0 = 0. (D4)
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