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Nonperturbative theory of spontaneous parametric down-conversion in open
and dispersive optical systems
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We develop a nonperturbative formulation based on the Green’s function quantization method that can describe
spontaneous parametric down-conversion in the high-gain regime in nonlinear optical structures with arbitrary
amount of loss and dispersion. This formalism opens the way for description and design of arbitrary complex
and/or open nanostructured nonlinear optical systems in quantum technology applications, such as squeezed-
light generation, nonlinearity-based quantum sensing, and hybrid quantum systems mediated by nonlinear
interactions. As an example case, we numerically investigate the scenario of integrated quantum spectroscopy
with undetected photons, in the high-gain regime, and uncover novel gain-dependent effects in the performance
of the system.
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I. INTRODUCTION

With the ever-growing importance of optical quantum tech-
nologies, new ways to leverage nonclassical properties of light
are in high demand [1,2]. Some of the most prevalent meth-
ods for generating nonclassical light are based on nonlinear
sources of photon pairs in which nonlinear optical processes,
such as spontaneous parametric down-conversion (SPDC) or
spontaneous four-wave mixing (SFWM), are used to convert
input light into pairs of photons which exhibit nonclassical
correlations [3,4], highly relevant for many applications in
quantum technologies. Such sources also offer the advantage
that they can be implemented in integrated platforms [2,4],
as well as utilized in hybrid quantum photonic systems, to
overcome the limitations of monolithic integrated systems [5].

Apart from generating entangled photon pairs, nonlinear
photon-pair sources are also commonly used as a means to
obtain heralded single photons [6–8]. In both cases the sources
are operated in the so-called low-gain regime, where the domi-
nant contribution to the output state (apart from the vacuum) is
a single photon-pair state [7]. This is achieved by keeping the
input pump beam of the nonlinear source at a power that is low
enough to keep the multiple photon-pair contributions in the
output state negligible. Although such low-gain probabilistic
sources of photon pairs are of importance in many areas
of. quantum technologies, their development in the high-gain
regime is also of interest [9]. In the high-gain regime, the
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SPDC and SFWM sources can be used as sources of squeezed
light, where squeezed light has wide applications in contin-
uous variable (CV) quantum computation [10–13], quantum
communication [14], as well as quantum sensing [15–17]. An-
other application of high-gain operation of such sources can
be for generating multiphoton Fock states [18,19], which have
applications in many branches of quantum technology as well
as metrology and fundamental tests of quantum entanglement
[20–22].

The rapidly growing interest in the utilization of high-
gain nonlinear sources of quantum light in nanostructured
and hybrid platforms [13,23–28] necessitates the development
of new theoretical formalisms to describe high-gain SPDC
and SFWM, as such systems can be generally open or lossy
with highly complex spatial and spectral properties [29,30].
Formalisms for describing SPDC and SFWM in the high-gain
regime in closed systems are well established but either ne-
glect loss altogether [31–33] or are only able to account for
weak losses that have negligible effect on the modal structure
of the system [9,34] but are not capable of treating systems
where loss is an inherent part of the system’s optical prop-
erties, such as nanoresonators [35], plasmonic systems [30],
or structures with inherently leaky guided modes [36,37], or
strongly lossy systems that can be encountered in quantum
sensing applications [38]. Finally, many established high-
gain formalisms use a weak-dispersion approximation for the
involved modes or rely on approximate expansions to accom-
modate higher-order dispersions [9,32,39] and do not offer a
straightforward path to inclusion of complex dispersion rela-
tions, such as those that can appear in photonic crystals with
internal loss or gain, where the combination of loss or gain
and evanescent modes create complex dispersion diagrams
[40,41].

The Green’s function (GF) quantization method [42–44]
offers a way to describe light quantization in optical systems
with arbitrary dispersion, loss, and nanostructuring, as the
classical GF of the system incorporated into this quantiza-
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tion approach naturally takes all these effects into account.
In contrast to closed systems, where the normal modes of
the field are quantized to obtain photon creation or annihi-
lation operators, the GF method quantizes the local bosonic
excitations of the combined field and medium system, which
allows it to naturally describe any form of loss as a coupling
between different field-matter modes. A detailed overview of
the GF quantization procedure can be found in Ref. [45].
The GF formalism has already been used to describe photon-
pair generation in plasmonic structures [46] and dielectric
nanoresonators and nanoparticles [47–49], as well as in the
presence of quantum emitters and significant loss [38,50,51],
but in all these cases, it has only been used do describe pair
generation in the low-gain regime.

In this work, we present a formalism, based on the GF
quantization method, to describe high-gain SPDC in arbitrary
open and dispersive optical systems, within the undepleted
pump approximation. Our developed nonperturbative for-
malism allows the exact calculation of the field operators,
while intrinsically taking into account arbitrary dispersion
and losses of nanostructured systems through the classical
electromagnetic GF of the optical system. This method can be
of special interest for the description of engineered squeezed-
light generation in nanostructured systems in CV quantum
computing applications [13] or systems where losses can-
not be treated perturbatively (e.g., nonlinear metasurfaces
for quantum light generation [52–54]), as well as high-gain
quantum sensing and imaging applications, where loss is not
necessarily a weak effect [15,16,38,51]. Additionally, our for-
malism may open the path for the high-gain description of
hybrid nonlinear systems, which involve direct interfacing of
quantum emitters with nonlinear systems [50].

The paper is organized as follows: In Sec. II we in-
troduce the theoretical framework for describing SPDC in
arbitrarily dispersive and lossy systems using fields quantized
using the GF quantization method. We derive coupled-mode
equations that allow the calculation of the full electric field
operator at arbitrary times and amounts of gain (within the
undepleted pump approximation). Then we introduce a mod-
ified formalism for the calculation of frequency-domain field
components, which is extremely useful in evaluating the spec-
tral properties of the output quantum state. In Sec. III, as an
example application scenario, we apply the formalism to the
problem of integrated quantum spectroscopy with undetected
photons (QSUP) and investigate the effects of a spectrally
localized loss on the spectrum of the output photons of a
waveguide SPDC source, operating in the high-gain regime.
We show that the performance of the sensing system is gain
dependent and its signatures become more prominent as gain
is increased, but also that they saturate at even higher gain val-
ues. Finally, in Sec. IV we discuss our results and review the
advantages and use cases of our nonperturbative formalism.

II. NONPERTURBATIVE DESCRIPTION OF SPDC IN
OPEN AND DISPERSIVE SYSTEMS

We are considering a generally inhomogeneous, dispersive,
and lossy dielectric system, characterized by the linear per-
mittivity ε(r, ω) = ε′(r, ω) + iε′′(r, ω), where ε′ and ε′′ are
its real and imaginary parts, respectively. To make our expres-

sions less cumbersome, we restrict our present analysis to an
isotropic system and note that a generalization to anisotropic
systems is possible by using an appropriately generalized GF
quantization procedure, such as the one derived in Ref. [55].

We consider the system to have a second-order nonlinear-
ity, characterized by the second-order nonlinear susceptibility
tensor χ

(2)
i jk (r). In the Heisenberg picture, the SPDC interac-

tion Hamiltonian has the following form [56]:

ĤSPDC(t ) = −ε0

∫
drχ (2)

i jk (r)E (−)
P,i (r, t )

× Ê (+)
j (r, t )Ê (+)

k (r, t ) + H.c., (1)

where Ê (+)
j,k (r, t ) are Cartesian components of the positive-

frequency part of the generated quantum fields, E (−)
P,i (r, t ) are

the Cartesian components of the negative-frequency part of
the pump field, and ε0 is the dielectric permittivity of vac-
uum. We emphasize that we are working in the undepleted
pump approximation and thus assume the pump field to be an
undepleted classical pulse, which results in the Hamiltonian
being quadratic in the field operators and is a crucial as-
sumption for finding the input-output operator relations later
in this work. Treating the extremely high-gain scenarios, in
which the pump can also deplete substantially or ones where
the pump is in a few-photon state at the input, results in
more complex dynamics which cannot be described by the
Hamiltonian of the quadratic form given in Eq. (1). However,
such scenarios can be used for generation of non-Gaussian
quantum states [57,58] and advancing the GF formalism to
go beyond the undepleted pump approximation could be an
interesting direction for future works.

In addition, we note that for our calculations, we assume a
nondispersive and real-valued χ (2) nonlinearity, which corre-
sponds to operating the nonlinear material in spectral regions
that are far from its material resonances. Such an approxima-
tion is widely used in treatment of high-gain squeezed-light
generation in most scenarios of practical interest [9,31–
34,56,59]. In principle, our approach could be generalized
to treat dispersive nonlinearities by starting the calculations
from a more complex nonlinear Hamiltonian that includes a
dispersive χ (2) coefficient [60–63], provided that the Hamil-
tonian remains quadratic in the electric field operators. We
also emphasize, that in our model, we assume an undepleted
pump approximation, which is a well-justified approximation
to almost all cases with a practically reachable value for the
nonlinear gain. In this approximation, the nonlinear Hamil-
tonian keeps its quadratic form, allowing us to formulate an
input-output relation for the electric field operator. Finally, it
should be noted that we do not consider the effect of nonlin-
ear noise, predicted to have an effect for very strong pump
intensities [60,61].

As will be the convention in the remainder of the paper,
repeated Latin indices are implicitly summed over and the
domains of integration for spatial and frequency integrals are
(−∞,∞) and [0,∞), respectively, unless otherwise noted in
the text. We carry out all of our calculations in the Heisenberg
picture and assume that the nonlinear interaction is adiabati-
cally “turned on” at t → −∞ and adiabatically “turned off”
as t → ∞.
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To allow for the treatment of open and dispersive systems,
the electric field operator is quantized using the GF quantiza-
tion method [42–44]:

Ê(±)(r, t ) =
∫

dωÊ
(±)

(r, ω, t ),

Ê
(+)
i (r, ω, t ) = iK ω2

c2

∫
dr′√ε′′(r′, ω)

× Gi j (r, r′, ω) f̂ j (r′, ω, t ),

Ê
(−)
i (r, ω, t ) = [Ê

(+)
i (r, ω, t )]†, (2)

where K =
√

h̄
πε0

, Ê
(±)

(r, ω, t ) is the amplitude operator

of frequency ω, Gi j (r, r′, ω) are the matrix elements of

the dyadic GF of the dielectric system
←→
G (r, r′, ω), and

f̂ j (r′, ω, t ) are the Cartesian components of the bosonic an-
nihilation operator f̂ (r′, ω, t ).

The GF in (2) is the solution to the classical Helmholtz
equation:[

∇ × ∇ × −ω2

c2
ε(r, ω)

]←→
G (r, r′, ω) = ←→

I δ(r − r′), (3)

together with the condition that it vanishes at infinity. In the
above equation

←→
I is the identity matrix.

The operator f̂ (r′, ω, t ) annihilates a local field-matter ex-
citation of frequency ω, located at r′. Along with its adjoint

f̂
†
(r′, ω, t ), it makes up the fundamental operator algebra of

the GF quantization method and obeys the canonical commu-
tation relation:

[ f̂i(r, ω, t ), f̂ †
j (r

′, ω′, t )] = δi jδ(r − r′)δ(ω − ω′). (4)

Using Eq. (4), it can be shown that the amplitude operators

Ê
(±)

(r, ω, t ) obey the following commutation relation:

[Ê
(+)
i (r, ω, t ), Ê

(−)
j (r′, ω′, t )] = K2 ω2

c2
δ(ω − ω′)

× Im[Gi j (r, r′, ω)], (5)

where Im[Gi j (r, r′, ω)] is the imaginary part of the Green’s
function. The full derivation of the above relation can be found
in Appendix A.

Before proceeding, we note that the explicit results of our
nonperturbative approach, presented in this paper, are strictly
valid for fields in nonmagnetic systems. However, the main
ideas and steps of our formalism could potentially be adapted
for magnetic systems by using an appropriate field quantiza-
tion, such as one used in Ref. [64].

A. Equations of motion

The Cartesian components of Ê
(±)

(r, ω, t ) evolve in time
according to the Heisenberg equation of motion:

∂t Ê
(±)
i (r, ω, t ) = 1

ih̄
[Ê

(±)
i (r, ω, t ), Ĥ (t )], (6)

where Ĥ (t ) = Ĥ0(t ) + ĤSPDC(t ) and Ĥ0(t ) =
h̄

∫
dr

∫
dωω f̂ †

i (r, ω, t ) f̂i(r, ω, t ) is the free-field
Hamiltonian in the GF quantization scheme [43]. The
resulting differential equations thus contain terms describing

both the nonlinear and free-field evolution. The latter can
be eliminated and the equations of motion made simpler by
introducing the slowly varying, rotating-frame operators,
Ē

(±)
(r, ω, t ), where

Ê
(±)

(r, ω, t ) = Ē
(±)

(r, ω, t ) e∓iωt , (7a)

Ê(±)(r, t ) =
∫

dω Ē
(±)

(r, ω, t ) e∓iωt . (7b)

The exponential factors account for the free-field component
of the evolution and the rotating-frame operators Ē

(±)
(r, ω, t )

evolve according to

∂t Ē
(±)

(r, ω, t ) = 1

ih̄
[ Ē

(±)
(r, ω, t ), ĤSPDC(t )]. (8)

A proof of the above equation, as well as a more formal defi-
nition of the rotating-frame operators is given in Appendix B.

Rotating-frame creation and annihilation operators
f̄ (†)(r, ω, t ) are defined equivalently to Eq. (7a) and are
related to the rotating frame amplitude operators Ē

(±)
(r, ω, t )

by the relation:

Ē (+)
i (r, ω, t ) = iK ω2

c2

∫
dr′√ε′′(r′, ω)

× Gi j (r, r′, ω) f̄ j (r′, ω, t ), (9)

and its adjoint for Ē (−)
i (r, ω, t ) and f̄ †

j (r′, ω, t ). The rotating-

frame amplitude operators Ē
(±)

(r, ω, t ), as well as the
rotating-frame creation or annihilation operators f̄ (†)(r′, ω, t ),
can be shown to obey equivalent commutation relations as
their Heisenberg picture counterparts:

[ f̄i(r, ω, t ), f̄ †
j (r′, ω′, t )] = δi jδ(r − r′)δ(ω − ω′),(10a)

[ Ē (+)
i (r, ω, t ), Ē (−)

j (r′, ω′, t )] = K2 ω2

c2
δ(ω − ω′)

× Im[Gi j (r, r′, ω)]. (10b)

The above relations are further discussed in Appendix B
and, from this point onward, operators will be considered
exclusively in the rotating frame without explicitly noting the
fact, e.g., “rotating-frame amplitude operators” will simply be
referred to as “amplitude operators,” and so on.

We find the equations of motion governing the evolution of
the Cartesian components of Ē

(+)
(r, ω, t ) from Eq. (8) (the

full derivation is given in Appendix C):

∂t Ē (+)
i (r, ω, t ) =

∫
dr′

∫
dω′

× Fi j (r, ω; r′, ω′; t ) Ē (−)
j (r′, ω′, t ), (11)

with the corresponding equation for ∂t Ē (−)
i (r, ω, t ) obtained

by simply taking the adjoint of Eq. (11). Here we also defined

Fi j (r, ω; r′, ω′; t ) = 2i

π

ω2

c2
Im[Gil (r, r′, ω)]

× E (+)
P,k (r′, t )χ (2)

kl j (r
′) ei(ω+ω′ )t . (12)

Before proceeding with our derivation, we note that the equa-
tions of motion in Eq. (11) are derived under the condition
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of Kleinmans symmetry (assuming a nondispersive nonlin-
ear susceptibility), where the χ

(2)
i jk tensor is symmetric under

the permutation of its indices. Although this assumption is
reasonable in many systems [3], it is not necessary for the
development of our formalism, and only results in simpler
expressions. The case of Kleinmans symmetry not being ap-
plicable is discussed in Appendix C.

B. Input-output relations

The obtained equations of motion Eqs. (11) are linear in
terms of the amplitude operators Ē (±)

i (r, ω, t ). Along with
the fact that the Ē (±)

i (r, ω, t ) are themselves canonical, i.e.,
their commutator Eq. (10b) is scalar, this enables us to claim
that, at an arbitrary time t , Ē (±)

i (r, ω, t ) can be expressed as a
linear combination of Ē (±)

i (r, ω, t → −∞), i.e., the free-field
amplitude operators [31,32,65]. Thus, we can postulate an
ansatz for the general solution of Eqs. (11) in which the time-
dependent (output) operators are expressed in terms of the
free-field (input) operators via an input-output (IO) relation.
Additionally, due to the linear relation between the amplitude
operators Ē (±)

i (r, ω, t ) and creation or annihilation operators
f̄ (†)(r, ω, t ), as can be seen from Eq. (9), either the free-field
amplitude operators or the free-field creation or annihilation
operators can be used to formulate the IO relation. For the
purpose of this work, we use the creation or annihilation
operators f̄ (†)(r′, ω, t → −∞), which we label f̄ (†)(r′, ω) for
compactness. We note that a completely equivalent formalism
is obtained if the amplitude operators Ē

(±)
(r, ω, t → −∞)

are used instead and the main reason we opted for f̄ (†)(r′, ω)
was to have more streamlined final expressions due to their
simpler commutation relation in Eq. (10a). With the above
discussion in mind, we assume the following ansatz for the
IO relation:

Ē (+)
i (r, ω, t ) =

∫
dξ

∫
dν[Bi j (r, ω; ξ, ν; t ) f̄ j (ξ, ν)

+ A∗
i j (r, ω; ξ, ν; t ) f̄ †

j (ξ, ν)]. (13)

In the above expression, Ai j (r, ω; ξ, ν; t ) and Bi j (r, ω; ξ, ν; t )
are the IO coefficients. In Eq. (13), ξ and ν are spatial and fre-
quency variables, which enumerate the free-field field-matter
local excitations.

The distribution of the contributing excitations is deter-
mined by the IO coefficients, which are, in turn, determined
by the properties of the system under consideration. A similar
IO relation is often derived in existing works on high-gain
SPDC in lossless systems, where the output normal-mode
photon creation or annihilation operators are expressed as
linear combinations of normal-mode photon operators at the
input, and is associated with frequency mixing caused by the
nonlinear interaction [31,32]. In the present context, Eq. (13)
does indeed represent the output as a linear combination of ex-
citation of different frequencies, manifested by the frequency
integral over ν. However, it also shows the output to be a
linear combination of excitations at different spatial positions,
manifested by the spatial integral over ξ. This is a property
inherent to the GF quantization method and is a consequence
of the local nature of the fundamental bosonic modes, which
itself enables the treatment of arbitrary open optical systems.

In the remainder of the paper, to make expressions more
compact, we will combine the variables ξ and ν into the vec-
tor � = (ν, ξ) whenever possible and replace

∫
dξ

∫
dν with∫

d�.
Here, we again emphasize that the linearity of Eqs. (11) in

terms of the field operators, necessary for establishing the IO
relation Eq. (13), is a direct consequence of the undepleted
pump approximation and treating the pump field as a classical
pulse (as shown in Appendix C).

The input-output relation (13) allows us to reconstruct
the field operators at any time t if the IO coefficients
Ai j (r, ω,�; t ) and Bi j (r, ω,�; t ) have been obtained. More-
over, Eq. (13) can be used to express field-dependent
quantities directly in terms of the IO coefficients. To illus-
trate this, we consider the first-order field correlation function
g(1)

i j (r, r′; t, t ′) = 〈Ê (−)
i (r, t )Ê (+)

j (r′, t ′)〉 as an example. Here
the expectation value is to be taken in the initial state of
the system, since we are working in the Heisenberg picture.
To write g(1)

i j (r, r′; t, t ′) in terms of the IO coefficients, we
expand the field operators using Eq. (7b) and then replace
the amplitude operators using the IO relation Eq. (13). If we
assume the initial state to be the vacuum, then we obtain (see
Appendix D for details):

g(1)
i j (r, r′; t, t ′) =

∫∫
dωdω′ eiωt−iω′t ′

∫
d�

×Aik (r, ω,�; t )A∗
jk (r′, ω′,�; t ′). (14)

If the system is initially not in the vacuum state, e.g., in the
case of a seeded nonlinear process, then g(1)

i j (r, r′; t, t ′) (and
any higher-order correlation function) can still be expressed
in terms of the IO coefficients; however, a nonvacuum initial
state will also result in a more complicated expression—more
details on this are given in Appendix D. To obtain numerical
values of g(1)

i j (r, r′; t, t ′), one need only find the IO coefficients
at times t and t ′ and insert them into Eq. (14).

C. Comparison with existing methods

To make the benefits of the formalism discussed in this
paper more apparent, before continuing, we will briefly re-
view the differences and similarities between our approach
and existing formalisms for treating high-gain SPDC. The
IO relation Eq. (13) is conceptually identical to Bogoliubov
transformations used in Refs. [31,32], as well as the ansatz
used in Ref. [33]; all of the aforementioned relations, includ-
ing Eq. (13), relate the output field operators to the creation
and annihilation operators for the modes of the input field in
a linear fashion. However, the key difference between these
previous works and ours is the type of quantization used for
the field operators, which results in different definition of
the modes of the quantized field, which in our case allows
for direct inclusion of arbitrary amounts of linear losses. In
Refs. [31–33], where loss or dissipation is completely ne-
glected, one can use a quantization scheme where the creation
and annihilation operators correspond to the normal modes
of the photonic system, which are power-orthogonal and spa-
tially nonlocal. This results in output fields being expressed
as linear combinations of normal-mode photon operators (dis-
tinguished either by frequency or wave vector). In the present
context, with the GF quantization method, the field operator is
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expressed in terms of local bosonic excitations of the field and
matter, sometimes also called polaritonic modes [45]. Such
a description directly includes all the effects coming from
the linear light-matter interactions in the photonic system
(embedded in the GF), with potential loss channels. Some
forms of linear losses can also be treated in the case of
normal photonic modes, as has been done in Refs. [9,39,59],
through coupling the normal modes to weakly lossy channels.
However, such treatment can only account for weak scattering
and absorption losses, as it relies on assuming lossless or
power-orthogonal normal modes for the underlying photonic
system that are only weakly perturbed by the presence of the
loss channels. The GF quantization method can in turn also ac-
count for cases where loss is very strong and/or is inherently
shaping the modal properties of the system, such as in strongly
leaky systems (e.g., Mie nanoresonators [66]) or strongly
lossy systems (e.g., plasmonic systems [46]). This generality
of our method comes at the cost of increased computational
efforts, coming from the local nature of the creation and anni-
hilation operators in the GF method, which requires carrying
around the spatial degree of freedom in all the calculations.
Another notable difference between our formalism and exist-
ing ones is the absence of a weak-dispersion approximation,
which is commonly used to simplify the equations of motion
for the field operators by assuming a linear dispersion relation
(between the wave-vector and frequency of the modes) and
using the assumption to replace the time degree of freedom by
the spatial one [9,31–33,39,59]. In certain cases, higher-order
dispersion can also be included through additional terms in the
equations of motion, corresponding to terms in a power-series
expansion of the wave vector of the photonic modes of the
system [9,39,59]. In order to make our formalism applicable
to general nanostructured and open systems, with potentially
highly complex dispersion relations for the involved photonic
modes, we do not make any assumptions regarding the dis-
persion relation and solve our equations of motion temporally.
This does come at the cost of increased computational effort
when implementing the formalism numerically, but we note
that the prescriptions for simplifying the resulting equations in
cases where the weak-dispersion approximation is valid could
also be applied to our formalism to obtain similar computa-
tional benefits. Finally, we emphasize that generalizing the
existing photon-based formalisms for inclusion of weak losses
is usually done on a per-system basis, with focus on a specific
system geometry (e.g., a waveguide or a ring resonator). In
contrast, the formalism presented in our work offers a uni-
fied approach, applicable to a wide variety of open photonic
systems, and is formulated in a way that is compatible with
existing numerical methods to facilitate its usefulness.

D. Coupled-mode equations for the IO coefficients

In order to calculate the IO coefficients at a certain time,
we find the coupled differential equations governing their time
evolution by inserting Eq. (13) into the Heisenberg equa-
tions of motion Eq. (11) as an ansatz to obtain

∂tAi j (r, ω,�; t ) =
∫

dr′
∫

dω′F ∗
ik (r, ω; r′, ω′; t )

×Bk j (r′, ω′,�; t ), (15a)

∂tBi j (r, ω,�; t ) =
∫

dr′
∫

dω′Fik (r, ω; r′, ω′; t )

×Ak j (r′, ω′,�; t ). (15b)

The boundary conditions for the IO coefficients are derived by
equating Eq. (13) with Eq. (9) and setting t → −∞ on both
sides,

Ai j (r, ω; �; t → −∞) = 0, (16a)

Bi j (r, ω; �; t → −∞) = iK ν2

c2

√
ε′′(ξ, ν)

× Gi j (r, ξ, ν)δ(ω − ν). (16b)

In most practical cases, Eqs. (15) do not have analytical solu-
tions and have to be solved numerically. To that end, we can
rewrite them in a form more appropriate for implementation,
which has the added benefit of more clearly distinguishing
the different contributions to the output field in the IO re-
lation of Eq. (13). We begin by decomposing the coefficient
Bi j (r, ω,�; t ) in the following way:

Bi j (r, ω,�; t ) = b(0)
i j (r, ω,�) + Bi j (r, ω,�; t ), (17)

where b(0)
i j and Bi j satisfy the following conditions:

b(0)
i j (r, ω,�) ≡ Bi j (r, ω,�; t → −∞)

∂t Bi j (r, ω,�; t ) = ∂tBi j (r, ω,�; t ),

Bi j (r, ω,�; t → −∞) = 0.

After inserting the decomposition Eq. (17) into Eq. (13) and
relabeling Ai j → Ai j for notational convenience, the IO rela-
tion takes the form:

Ē (+)
i (r, ω, t ) = Ē (0,+)

i (r, ω) +
∫

d�[Bi j (r, ω,�; t ) f̄ j (�)

+ A∗
i j (r, ω,�; t ) f̄ †

j (�)], (18)

where Ē (0,+)
i (r, ω) = ∫

d�b(0)
i j (r, ω,�) f̄ j (�) is exactly the

free-field (input) amplitude operator of frequency ω, since
Ē

(+)
(r, ω, t → −∞) = Ē

(0,+)
(r, ω). The remaining two

terms in Eq. (18) quantify the changes that the free-field com-
ponent of frequency ω undergoes due to the nonlinear interac-
tion through the “new” set of coefficients—Ai j (r, ω,�; t ) and
Bi j (r, ω,�; t ).

The differential equations coupling the IO coefficient
Ai j (r, ω,�; t ) and the newly introduced Bi j (r, ω,�; t ) are
derived by inserting the decomposition Eq. (17) into Eqs. (15):

∂t Ai j (r, ω,�; t ) = S(0)
i j (r, ω,�; t )

+
∫

dr′
∫

dω′F ∗
ik (r, ω; r′, ω′; t )

× Bk j (r′, ω′,�; t ), (19a)

∂t Bi j (r, ω,�; t ) =
∫

dr′
∫

dω′Fik (r, ω; r′, ω′; t )

× Ak j (r′, ω′,�; t ). (19b)

The coupled quantities in the above system
have the initial values Ai j (r, ω,�; t → −∞) =
Bi j (r, ω,�; t → −∞) = 0 and we defined S(0)

i j (r, ω,�; t ) =
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∫
dr′ ∫ dω′F ∗

ik (r, ω; r′, ω′; t )b(0)
k j (r′, ω′,�), which acts as a

source term for Eq. (19a). After taking the frequency integral,
it will have the following form:

S(0)
i j (r, ω,�; t ) = 2K

π

ω2ν2

c4

√
ε′′(ξ, ν) e−i(ω+ν)t

×
∫

dr′χ (2)
klm(r′)E (−)

P,k (r′, t )

× Im[Gil (r, r′, ω)]Gm j (r′, ξ, ν). (20)

The systems of coupled equations (15) and (19), along with
their respective boundary conditions, are equivalent formula-
tions of our theoretical formalism and are the first part of the
main results presented in this work. They are valid in arbitrary
dispersive and open nanostructured systems, such as pho-
tonic crystals, nanoresonators, metasurfaces, and waveguides,
where the complex spatial and dispersive properties inherent
to such devices can all be accounted for in the electromagnetic
GF, as well as arbitrary loss, e.g., radiation leakage, material
absorption, scattering losses, etc.

To summarize the main results derived in this section: In
order to find the output electric field operator of a high-gain
SPDC system, our proposed formalism consists of solv-
ing the coupled equations (19), which are defined by the
system’s classical Green’s function Gi j (r, r′, ω), linear sus-
ceptibility ε(r, ω), and nonlinear susceptibility χ

(2)
i jk (r). These

properties, along with the pump field E(±)
P (r, t ) are used to

define the integration kernel Fik (r, ω; r′, ω′; t ) and source term
S(0)

i j (r, ω,�; t ), given by Eqs. (12) and (20), respectively.
Solving the equations provides the IO coefficients, which are
then inserted into the IO relation Eq. (18) to obtain the output
amplitude operators Ē

(±)
(r, ω, t ). These, in turn, enable us to

reconstruct the full electric field operator as shown in Eq. (7b).
The IO coefficients can also be used to directly calculate scalar
quantities related to the field, such as correlation functions, as
was given in Eq. (14).

E. Frequency domain formulation

The formalism developed in the previous section enables
straightforward calculation of output fields and field-related
quantities and is valid under very general considerations.
However, the fields (and thus, all field-dependent quanti-
ties) are obtained in the time domain and the calculation of
frequency-domain fields and quantities, e.g., the spectra of
output photons, is inefficient to calculate numerically from
the obtained time-domain quantities. This can be seen by
examining, for example, the expression for the single-photon
spectrum of the electric field calculated using the IO coeffi-
cients used in Eq. (18).

The spectrum of a quantized electric field, measured at a
time t and position r0 and summed over all field polarizations,
is given by [67]

σ (r0, ω0, t ) =
∫∫ t

−∞
dt ′dt ′′ e−iω0(t ′−t ′′ )

×〈Ê(−)(r0, t ′) · Ê(+)(r0, t ′′)〉, (21)

where ω0 is the frequency at which the spectrum is evaluated.

To obtain an expression for σ (r0, ω0, t ) in terms of the
IO coefficients Ai j (r, ω,�; t ) and Bi j (r, ω,�; t ), we use the
first-order correlation function Eq. (14) (remembering that
Ai j ≡ Ai j) and insert it into Eq. (21):

σ (r0, ω0, t ) =
∫∫ t

−∞
dt ′dt ′′

∫∫
dωdω′

∫
d�

× Ai j (r0, ω,�; t ′)A∗
i j (r0, ω

′,�; t ′′)

× e−i(ω0−ω)t ′
ei(ω0−ω′ )t ′′

. (22)

Although Eq. (22) theoretically allows one to calculate the
spectrum, it can be impractical in a realistic case, when the
IO coefficients have to be obtained numerically. Namely, in
order to perform the t ′/t ′′ and ω/ω′ integrals with sufficient
numerical accuracy, one requires the values of the coefficient
Ai j (r, ω,�; t ) at many narrowly spaced times t in addition to
the other variables ω and �, which dramatically increases the
computational resources required for such a calculation.

The above limitation is a consequence of the individual
frequency amplitudes Ē

(±)
(r, ω, t ) not being equivalent to the

spectral components of the field that are detected in a spec-
trally resolved measurement in the presence of field sources,
such as during a nonlinear field interaction [67,68].

To overcome these difficulties and further expand the ap-
plicability of our formalism, we develop a frequency-domain
formulation, which can be applied in the calculation of various
spectral quantities, while still rigorously including the effects
of arbitrary loss and dispersion. It focuses on the “spectrally
relevant” parts of the field, i.e., special field operators which
directly contribute to the spectrum. These are defined as time-
frequency transforms of the time-domain fields [68] and, as
will be shown in the next sections, evolve in time in a way
quite similar (although not identical) to Ē

(±)
(r, ω, t ). They

also have their own IO relation, which enables us to use them
as fundamental field variables when determining the time
evolution of frequency-domain quantities.

We begin by noting that the field spectrum Eq. (21) can
also be written as

σ (r0, ω0, t ) = 〈Ẽ(−)(r0, ω0, t )Ẽ(+)(r0, ω0, t )〉, (23)

where the operators Ẽ(±)(r, ω, t ) have been defined as

Ẽ(±)(r, ω, t ) =
∫ t

−∞
dt ′ e±iωt ′

Ê(±)(r, t ′). (24)

We will refer to them as filtered field operators, due to the def-
inition [Eq. (24)] being reminiscent of the action of a causal,
ideally monochromatic filter on the time-domain field. In the
absence of an interaction, they reduce to the free-field am-
plitude operators Ē

(0,±)
(r, ω) as t → ∞. For finite t and/or

with sources (i.e., an interaction) present, their interpretation
is more involved and is discussed in Refs. [67,68].

The expression for the spectrum in terms of the filtered
field Eq. (23) is immediately more appealing than Eq. (21),
as it involves the expectation value of operators at a time
t , when the spectrum itself is evaluated. Thus, the need for
knowing the fields (or, equivalently, the IO coefficients) at
all times prior to t is eliminated, provided the filtered fields
Ẽ(±)(r, ω, t ) can be obtained without much additional compu-
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tational complexity, which, as will be shown in the following,
is indeed the case.

As can be noted from Eq. (24), the filtered field operators
are a linear transform of the “regular” Ê(±)(r, t ) and thus
of Ē

(±)
(r, ω, t ), as well. This enables us to formulate an

analogous input-output relation for the filtered fields, To that
end, we combine Eq. (18) and Eq. (7b) and insert the resulting
field decomposition into Eq. (24). Thus we obtain

Ẽ (+)
i (r, ω, t ) = Ẽ (0,+)

i (r, ω) +
∫

d�[B̃i j (r, ω,�; t ) f̄ j (�)

+ Ã∗
i j (r, ω,�; t ) f̄ †

j (�)], (25)

where we defined

Ẽ (0,+)
i (r, ω) =

∫ t

−∞
dt ′

∫
dω′

× ei(ω−ω′ )t ′
Ē (0,+)

i (r, ω′), (26a)

Ãi j (r, ω,�; t ) =
∫ t

−∞
dt ′

∫
dω′

× e−i(ω−ω′ )t ′
Ai j (r, ω′,�; t ′), (26b)

B̃i j (r, ω,�; t ) =
∫ t

−∞
dt ′

∫
dω′

× ei(ω−ω′ )t ′
Bi j (r, ω′,�; t ′). (26c)

Here Ẽ (0,+)
i (r, ω) is the filtered analog of the free-field ampli-

tudes Ē (0,+)
i (r, ω) and Ãi j (r, ω,�; t ) and B̃i j (r, ω,�; t ) are

the IO coefficients of the filtered field. For conciseness, we
will refer to them as filtered IO coefficients.

An expression for the spectrum in terms of the filtered
coefficients can be found by grouping time and frequency in-
tegrals with their corresponding Ai j coefficient in Eq. (22) and
recognizing that the resulting integral quantities exactly match
the definitions in Eqs. (26). The expression thus obtained is

σ (r0, ω0, t ) =
∫

d�Ãi j (r0, ω0,�; t )Ã∗
i j (r0, ω0,�; t ). (27)

As expected, we no longer require knowledge of the IO co-
efficients at narrowly spaced times, unlike Eq. (22); we only
need the filtered coefficients at time t . To find their values at
a given time, we obtain a new set of coupled equations by
combining the definitions Eqs. (26) with the system Eq. (19)
(the full derivation can be found in Appendix E):

∂t Ãi j (r, ω,�; t ) = S̃(0)
i j (r, ω,�; t )

+
∫

dr′
∫

dω′F̃ ∗
ik (r, ω; r′, ω′; t )

× B̃k j (r′, ω′,�; t ), (28a)

∂t B̃i j (r, ω,�; t ) =
∫

dr′
∫

dω′F̃ik (r, ω; r′, ω′; t )

× Ãk j (r′, ω′,�; t ), (28b)

where S̃(0)
i j (r, ω,�; t ) is derived from the source term

S(0)
i j (r, ω,�; t ), present in Eq. (19a) and is defined as

S̃(0)
i j (r, ω,�; t ) = 2iK ν2

c2

√
ε′′(ξ, ν) e−i(ω+ν)t

×
∫

dr′χ (2)
klm(r′)Gm j (r′, ξ, ν)

×
∫

dωp
(ωp − ν)2

c2
E (−)

P,k (r′, ωp)

× G∗
il (r, r′, ωp − ν) eiωpt . (29)

Here E (±)
P,k (r, ωp) is the Fourier transform of the pump am-

plitude, defined by E(±)
P (r, t ) = ∫

dωpE (±)
P (r, ωp) e∓i ωpt . The

integral kernel F̃ik (r, ω; r′, ω′; t ) which couples the two coef-
ficients in Eq. (28) is given by

F̃ik (r, ω; r′, ω′; t ) = 2i

π

∫
dω̄

ω̄2

c2
χ

(2)
lmk (r′)E (+)

P,l (r′, ω′ + ω̄)

× Im[Gim(r, r′, ω̄)] ei(ω−ω̄)t , (30)

and the initial conditions for the filtered coefficients are easily
inferred from the definitions (26):

Ãi j (r, ω,�; t → −∞) = B̃i j (r, ω,�; t → −∞) ≡ 0.

The coupled equations Eqs. (28) are the second part of
our main results and can be summarized as follows: To find
the output field in the frequency domain, one must solve the
coupled equations (28) to obtain the filtered IO coefficients.
As was the case in the time-domain formulation, the proper-
ties of the optical system and the pump field are embedded
in the source term S̃(0)

i j (r, ω,�; t ), defined in Eq. (29), and
the integration kernel F̃ik (r, ω; r′, ω′; t ), given by Eq. (30).
The filtered IO coefficients can then be used to reconstruct
the frequency domain field operators using the IO relation
Eq. (25). Alternatively, the filtered IO coefficients can also
be used to directly evaluate frequency-domain expectation
values, such as the field spectrum Eq. (27), discussed in
the beginning of this section, or field moments of the form
〈Ẽ (−)

i (r, ω, t )Ẽ (+)
j (r, ω′, t )〉 and 〈Ẽ (+)

i (r, ω, t )Ẽ (+)
j (r, ω′, t )〉.

The field moments can be used to reconstruct the joint spectral
amplitude (JSA) of the output state of the system [9], which
is extremely useful when investigating high-gain effects, e.g.,
squeezing [56].

To verify the results of our frequency-domain approach,
we find the low-gain analytical solutions to Eqs. (28) and
insert them into Eq. (27) to obtain the low-gain signal photon
spectrum. These calculations are shown in Appendix F and
the obtained expression for the spectrum, shown in Eq. (F5),
matches the results obtained in previous works on low-gain
SPDC that used the GF quantization formalism [46,50].

III. INTEGRATED QUANTUM SPECTROSCOPY WITH
UNDETECTED PHOTONS IN THE HIGH-GAIN REGIME

QSUP is a spectroscopic technique which relies on
frequency-entangled, nondegenerate photon pairs, where only
one of the entangled photons (e.g., the idler) interacts with
the measured sample, but the effects of the samples disper-
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FIG. 1. Schematic representation of the integrated quantum
spectroscopy process. A nonlinear waveguide SPDC source of length
L produces signal (blue) and idler (red) photons when excited by
a pump pulse (purple). The idler mode, with a larger wavelength
and consequently broader mode profile, interacts with the analyte
(pale red) which has an absorption line in the frequency range of
the idler photons. At the output of the waveguide, the signal and
idler photons are separated by a beamsplitter which directs the signal
photons into a spectrally resolving detector while the idler photons
remain undetected. The periodic light-blue-green region represent
the periodically poled region of the nonlinear waveguide, allowing
efficient phase-matching within the length L.

sion and/or absorption can be studied by detecting the other
photon (e.g., the signal). This method can be used as a way
to overcome the limited availability of high-sensitivity detec-
tors in certain frequency regions, e.g., infrared or terahertz
[69–71].

In Ref. [38], a QSUP scheme was proposed, in which a
material to be sensed is placed in the near-field of a waveguide
SPDC source. In such a configuration, when the material has
a spectrally localized absorption line around the frequency
range of the idler photons, it also affects the spectral properties
of the generated signal photons [38,50]. In the aforementioned
work, the proposed scheme was investigated perturbatively
in the low-gain regime of SPDC. Using our formalism, we
can now extend the investigation into the high-gain regime
through numerical simulations of integrated QSUP at varying
amounts of gain and show that the spectral sensitivity of the
scheme improves at higher parametric gains.

We note here that a similar improvement of sensitivity at
high gain has already been observed in other schemes involv-
ing measurements with undetected photons, such as quantum
imaging and optical coherence tomography systems based
on nonlinear interferometers and induced coherence [72–74].
In these types of schemes, a sample is placed between two
coherently pumped high-gain SPDC sources, which interacts
with the output idler arm of the first source after generation.
In contrast, the integrated QSUP scheme proposed and investi-
gated in the low-gain regime in Ref. [38], involves an analyte
sample interacting with the nonlinear waveguide during the
pair-production process, resulting in the spectroscopic infor-
mation about the sample being imparted onto the spectrum of
the produced photon pairs. The frequency domain formulation
of our formalism is ideally suited for investigating this kind of
scheme, as it enables us to study the spectral properties of
the output photons at high parametric gains in the presence
of significant, spectrally varying loss, that is directly affecting
the SPDC process at the generation stage.

We consider the system shown schematically in Fig. 1: A
periodically poled nonlinear waveguide, oriented along the
z axis, is excited by a pump pulse with a Gaussian tem-
poral envelope. For simplicity, we neglect any polarization
or transverse dependence and assume that the waveguide
is homogeneous, dispersive, and lossy, characterized by the
complex, frequency-dependent permittivity ε(ω), which in-
cludes both the effect of the waveguide plus an analyte that is
interacting with the near-field of the waveguide modes. Under
the assumptions noted here, the GF of the waveguide has the
analytical form [43]

G(z, z′, ω) = i

2 ω
c

√
ε(ω)

ei ω
c

√
ε(ω)|z−z′ |. (31)

Since many relevant analytical properties of the GF are direct
consequences of the Kramers-Kronig relations between the
real and imaginary parts of the dielectric permittivity, absorp-
tion and dispersion of the model medium must be consistent
with the aforementioned relations to ensure physically mean-
ingful results [43]. Accordingly, we use a Lorentz model for
the permittivities of the waveguide dielectric and the analyte
[75]. The permittivity of the combined waveguide and analyte
system has the form:

ε(ω) = 1 + 
2
Pl(


2
0 − ω2 − i�ω

) + α εloss(ω), (32)

where 
Pl is the plasma frequency of the waveguide dielectric,
while 
0 and � are the frequency and width of the dielec-

tric resonance, respectively. The term εloss(ω) = 
2
Pl

(ω2
loss−ω2−iγω)

,
models the spectrally localized loss of the analyte, whose
magnitude is modulated through the unitless factor α. Here
ωloss and γ are the frequency and width of the analyte res-
onance, respectively. The plasma frequency of the analyte is
assumed to be the same as the waveguide for simplicity.

The factor α represents effective overlap of the evanes-
cent tails of the guided mode at the idler frequency with the
surrounding analyte. More specifically, we are assuming a
scenario similar to Ref. [38], where the mode at the longer-
wavelength idler has a much stronger overlap with the analyte,
compared to the shorter-wavelength signal and pump. For a
given waveguide geometry, the value of α can be determined
by numerically finding the eigenmodes of the waveguide and
calculating the effective permittivities of the involved modes
[38]. In our simulations, the value was chosen to be α = 3 ×
10−8, corresponding to only a small portion of the idler mode
interacting with the analyte, which was nevertheless sufficient
for our investigations. We note that in our model, to focus
on the main physics, we are not considering the waveguide-
geometry-dependent modal dispersions, which, again, can be
calculated through a rigorous eigenmode solver and can be
directly inserted into our model by substituting ε(ω) with a
numerically calculated effective quantity.

For the incoming pump pulse, we use the frequency-
domain form: E (+)

P (z, ω) = E0
√

τp e−2τ 2
p (ωp0 −ω)2

eik(ω)z. Here
ωp0 is the pump central frequency, τp is the temporal width of
the pulse, k(ω) = ω

c

√
ε(ω), and E0 is a normalization constant

determined by the total energy of the pump pulse U0, where
U0 ∝ |E0|2.
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A. Simulation parameters

All of the simulation parameters given here were nor-
malized in the following manner: Frequency quantities are
expressed in units of ωp0, temporal quantities in units of 1

ωp0

and spatial quantities in units of 2πc
ωp0

(the central wavelength
of the pump in vacuum). The nonlinear region of the waveg-
uide is centered at the coordinate origin with the length L =
3 × 104 and is periodically poled with a spatial dependence
χ (2)(z) = χ (2)

m cos �z, where χ (2)
m is the maximum absolute

value of the nonlinear permittivity and � is the poling period,
chosen such that the central phase-matched frequencies of
the signal and idler photons are ωs0 = 0.7 and ωi0 = 0.3,
respectively. The resonance frequency of the analyte was set
to be identical to the idler central phase-matching frequency,
ωloss = ωi0 = 0.3, to make the effects of the loss more promi-
nent. The width of the loss spectrum was chosen to be γ =
2.5 × 10−3. The waveguide parameters in ε(ω) were set to be

0 = 2.1, 
Pl = 0.25, and � = 10−7 in order to satisfy the
following conditions:

(i) The resonance of the dielectric is far above the fre-
quency region of interest and is narrow enough so the
dielectric is effectively lossless for frequencies around and
below ωp0;

(ii) the length of the nonlinear region, in combination with
the refractive index of the dielectric, ensures a phase-matching
bandwidth significantly wider than the width of the loss spec-
trum; and

(iii) the pump temporal width was chosen to be τp =
2400, resulting in a bandwidth sufficiently narrower than the
loss spectrum to allow for observing the spectral correlation
between the signal photon spectrum and the spectrum of the
loss.

The strength of the nonlinear interaction, which contributes
to determining the parametric gain, is characterized by the
product χ (2)

m E0 ∝ χ (2)
m

√
U0, which is varied to simulate SPDC

at different values of parametric gain. In our case, this is done
by adjusting the pump pulse energy U0, while keeping the
maximum nonlinear susceptibility χ (2)

m constant.
Finally, all of our simulations were performed for a suffi-

ciently long time interval, in which the pump has had enough
time to completely pass through the structure.

B. Lossless medium

We begin our investigation by studying the single-photon
spectrum of SPDC at different values of parametric gain in
the “lossless” case, i.e., without an analyte [the loss associated
with the waveguide dielectric, although negligibly small in
the frequency region of interest, is nevertheless accounted for
in ε(ω)]. For different values of pump pulse energy U0, we
calculate the IO coefficients by numerically solving Eqs. (28),
which are then used to evaluate the spectrum, as per Eq. (27).

To extract the values of parametric gain associated with
different pump intensities, we follow the prescription detailed
in Ref. [33]: We plot the dependence of the maximal intensity
of the single-photon spectrum Im (at ωs = ωs0 = 0.7) as a
function of the pump energy U0 and fit it with the well-known
dependence of the single-mode intensity in the case of a
two-mode squeezer, Im = a sinh2 (b

√
U0), where a and b are

FIG. 2. (a) The dependence of the spectral maximum at ω = 0.7
on the total pump energy for the narrow-band pump (red squares)
with τp = 2400 and wide-band pump (blue circles) with τp = 600.
The solid lines indicate the fitted sinh2 (b

√
U0 ) and the inset shows

the intensity dependencies at very low pump pulse energies. In this
regime, the behavior of the spectrum becomes independent of the
pump bandwidth. (b) The dependence of the observed parametric
gain on the square root of the pump energy for the narrow- (red
squares) and wide-band pump pulses (blue circles). In accordance
with previous works, the wide-band pump results in higher paramet-
ric gain for a given pump pulse energy.

fitting parameters. The parametric gain G for a particular value
of pump energy is then defined as G = b

√
U0. In Fig. 2(a),

we show the dependence of the spectrum maximum on pump
pulse energy for pump pulses of two different bandwidths,
defined by their temporal widths τp = 2400 and τp = 600, and
observe that they both indeed follow the sinh2 law. The wider-
bandwidth pulse, corresponding to τp = 600, was included
in our simulations to make sure our formalism correctly pre-
dicts that a wider pump spectrum results in higher parametric
gain for the same total pulse energy [33,56]. The inset of
Fig. 2(a) shows that the maximal intensity is approximately
independent of the pump bandwidth at low pump energies,
again, in accordance with previous observations [33,56]. The
dependence of the parametric gain on the pulse energy is
shown in Fig. 2(b), where the higher amount of parametric
gain obtained for wider pump bandwidths is evident.

Aside from the behavior of the spectrum amplitudes,
our formalism also correctly predicts the broadening of the
single- and two-photon spectra, occurring as gain is increased
[33,56]. The broadening of the two-photon spectrum can be
observed by studying the second-order moment of the output
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FIG. 3. (a) The normalized second-order field moment N (ωi, ωs )
for the wide-band pump (τp = 600) at low parametric gain, G =
0.0915, and high parametric gain, G = 3.54. The output state at
higher parametric gain exhibits less frequency correlations between
the photons due to gain-induced broadening. (b) Normalized single-
photon spectrum of the signal photons at the output (each spectrum
normalized to its maximum) for the wide-band pump with τp = 600
at varying gain.

field N (ω,ω′) = 〈Ẽ(+)(r0, ω, t ) · Ẽ(+)(r0, ω
′, t )〉, which is re-

lated to the JSA of the output photons [59]. We can calculate
the moment directly in terms of the IO coefficients using the
expression:

N (ω,ω′) =
∫

d�B̃i j (r0, ω,�; t )Ã∗
i j (r0, ω

′,�; t ), (33)

which is obtained by expanding the filtered field operators
using Eq. (25) and taking the expectation value. N (ωi, ωs), in
the case of wide-band pump (τp = 600), is shown in Fig. 3(a)
for two values of parametric gain and we observe that higher
gain indeed results in the moment becoming broader in fre-
quency and, correspondingly, in output photons to exhibit less
frequency correlations. Additionally, in Fig. 3(b), we show the
normalized single photon spectrum at different values of gain
for the wide-band pump. As gain is increased, the spectrum
broadens, in accordance with previous results on high-gain
lossless SPDC [33,56].

C. Lossy medium

To investigate the effects of increasing gain in QSUP, we
introduce the analyte into the material permittivity ε(ω) and
calculate signal photon spectra at the output. In Fig. 4(a) we
show the output spectra without the analyte and in Fig. 4(b)
we show the spectra with the analyte present. The effect of the
idler loss is immediately evident, as the spectra show a dip in

FIG. 4. Normalized single-photon spectrum of the signal pho-
tons for the narrow-band pump with τp = 2400 at varying amounts
of parametric gain (a) without the analyte and (b) with the analyte.
The analyte loss is centered around ωloss = 0.3. In the lossy case,
each spectrum is normalized to its lossless counterpart with the same
gain in order to better showcase the changes in the spectral shape of
the dip.

the signal intensity, centered around the frequency ω(c) = 0.7,
which corresponds to the resonance frequency of the analyte
ωloss through the conservation of energy ωp0 = ω(c) + ωloss.
Both sets of spectra were obtained for the narrow-band pump
with τp = 2400.

The appearance of the spectral dip in the presence of idler
loss is in accordance with the perturbative results of Ref. [38],
where the perturbative calculations also suggested the spec-
tral shape of the dip (i.e., its relative depth and width) to
be independent of gain. However, using our nonperturbative
formalism, we observe that the depth and spectral width of
the dip does change as gain is increased. To quantify and
investigate this behavior we calculate the signal photon extinc-
tion spectrum (defined as the difference between the lossless
and lossy spectra) for different values of gain. The extinction
spectra and their properties at different values of gain are
shown in Fig. 5. We observe two main tendencies: The max-
imal extinction (equivalent to the relative depth of the dip in
the signal spectrum at ωs = ω(c) = 0.7) increases with gain,
while the width of the dip decreases.

In Fig. 5(a), we show extinction spectra obtained at various
amounts of gain, which are normalized to 1 to better showcase
the change in the spectral width as gain is increased. The
lineshape of the analyte absorption spectrum (i.e., Im[εloss])
is also shown for comparison. The dependence of the extinc-
tion maximum and its full-width-at-half-maximum (FWHM)
on parametric gain are shown in Fig. 5(b). We observe that
the maximum monotonically increases with gain but with a
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FIG. 5. (a) The extinction spectra of the signal photon at different
values of parametric gain (solid lines) and the lineshape of the idler
loss, namely Im[εloss] (dashed line). The plots are all normalized to
their own maximum amplitude to showcase the extinction spectrum
becoming narrower as gain is increased. (b) The dependence of the
extinction maximum (blue circles) and the FWHM of the extinction
spectrum on parametric gain (red squares). The solid lines are in-
terpolation curves to help illustrate the observed tendencies of the
extinction spectrum.

progressively slower rate as gain rises and seems to show
signs of saturation at very high gain values. On the other hand,
the extinction FWHM decreases with gain [also shown in
Fig. 5(b)] and shows signs of saturation at higher gain values
as well.

Both the monotonic increase of the extinction maximum
and the decrease of its FWHM can be explained as a con-
sequence of self-seeding being impeded by the analyte loss:
idler photons with frequencies within the loss spectrum of the
analyte are removed from the idler field before they have a
chance to seed the production of further photons at those fre-
quencies. This results in signal photon intensity at frequencies
affected by the loss to increase at a lower rate (with increasing
gain) as compared to the lossless case. On the other hand, the
intensity at frequencies unaffected by the loss increases at the
“lossless” rate, resulting in a net increase of the maximum ex-
tinction. Analogously, the decreasing extinction FWHM with
gain can also be seen as a consequence of self-seeding being
impeded in the presence of loss, but here we also need to take
into account the shape of the loss spectrum. The lineshape
of the analyte absorption spectrum dictates that idler pho-
tons experience less loss, the further their frequency is from
the analyte resonance ωloss. The idler photons further from
resonance thus have a lower chance to be absorbed before
seeding further pairs, leading to the signal photon intensities

increasing faster (with gain) for frequencies further away from
ω(c), resulting in a net narrowing of the extinction spectrum.

As mentioned at the beginning of this section, sensitivity
enhancement in the high-gain regime has already been ob-
served for undetected photon measurement schemes based on
induced coherence and nonlinear interferometers. The nature
of the enhancement in the case of induced coherence is dis-
cussed in detail in Ref. [72] and the authors conclude that it
also occurs due to seeding effects, where idler photons from
the first source, after interacting with the sample, seed further
pairs in the second source and thus impart the effects of the
sample onto those newly generated photons.

The observed “saturation” of both the extinction maximum
and FWHM at very high gain has, to our knowledge, not been
reported before, but it too can be understood to be another
consequence of self-seeding, more specifically, high-order
self-seeding. In such cases, idler (signal) photons of frequency
ω seed the generation of further signal (idler) photons, not
only at the frequency ωp0 − ω, but also at frequencies around
it. At sufficiently high values of gain, the idler (signal) photons
thus generated, can seed further signal (idler) photons and so
on. This enables signal and idler photons unaffected by the
loss to potentially seed the production of additional photons
within the extinction spectrum. Eventually, these high-order
effects compensate the gain reduction experienced by signal
photons within the extinction region, resulting in the spectral
shape of the extinction saturating at very high parametric gain.
As these effects correspond to higher-order processes, they
only appear at sufficiently high gain values (G > 2 in our
case), but become more prominent as gain is further increased.

D. Spatial evolution of the spectrum

The spectra given and discussed in Sec. III B and III C
were obtained assuming a detector located immediately at the
output of the nonlinear waveguide, however, our formalism
also allows the study of the spectrum of the produced photons
throughout the entire length of the nonlinear medium—all
obtained by solving Eqs. (28) once, for a given value of
parametric gain.

Although we do not use the evolution of the spectrum
within the nonlinear waveguide to obtain new insight in the
context of QSUP, it can be used to showcase that our nonper-
turbative formalism can predict the spatial functionality of the
field and field-related quantities. In Fig. 6(a), we show the evo-
lution of the signal photon spectrum as the photons propagate
through the nonlinear waveguide without the analyte present.
At the start of the waveguide, we see the spectrum having a
very wide bandwidth and negligible amplitude; as we go for-
ward in length, we see phase matching taking hold—reducing
the bandwidth and increasing the amplitude. Additionally, in
Fig. 6(b) we see the effect of the idler loss accumulating dur-
ing propagation, causing the dip in spectral intensity, which
increases with propagation, according to the discussion in
Sec. III C.

Finally, in Fig. 6(c), we show the spatial behavior of the
spectral maximum of the signal photons for increasing values
of gain, in the lossless case. We observe that, in the low-
gain regime, the spectral maximum obeys the well-established
quadratic law, where the intensity is ∝ l2, l being the length
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FIG. 6. The normalized spectral intensity of the signal photons
as a function of their frequency and position within the nonlinear
waveguide in the (a) lossless and (b) lossy cases. Both plots were
obtained for the narrow-band pump (τp = 2400) and parametric gain
of G = 1.33. (c) Normalized maximum spectral intensities of the sig-
nal photons as a function of position within the nonlinear waveguide,
obtained for the narrow-band pump (τp = 2400) in the lossless case,
for different values of gain.

of the nonlinear region. As gain is increased, the exponential
nature of the length dependence of the maximum spectral
intensity becomes more apparent.

IV. CONCLUSION

In summary, we presented a nonperturbative formalism
for the description of high-gain SPDC, applicable to a wide
variety of nanostructured and/or open optical systems with
arbitrarily high complex spatial and spectral properties. Our
formalism enables the calculation of the field operators and
field-dependent quantities (e.g., correlation functions and
spectra) at the output and within the nonlinear optical system.

In contrast to previous methods, our formalism is capable
of describing systems with arbitrary amounts of dispersion
and loss through the use of the Green’s function quantization
method, which intrinsically takes into account these effects.

We presented both a time domain, as well as a frequency-
domain, formulation, which allows the formalism to be
applicable to many types of temporal and spectral analyses
in the field of quantum technologies. As an example, we
used this formalism to investigate quantum spectroscopy with
undetected photons in a nonlinear waveguide surrounded by
an analyte with a loss spectrum corresponding to the frequen-
cies of one of the output photons. We have thus expanded
upon the results of previous low-gain investigations [38] and
discovered that the spectral sensitivity of the QSUP scheme is
heavily dependent on the amount of the parametric gain and
can be improved by operating the nonlinear waveguide in the
high-gain regime.

Although derived here for the case of SPDC, the formalism
can be generalized to treat high-gain SFWM in lossy and
dispersive systems, since the SFWM interaction Hamiltonian
has an identical operator structure as Eq. (1), when considered
in the undepleted pump approximation [76].

We believe the formalism presented here will advance the
design and implementation of nonlinear sources of quantum
light in many emerging quantum technologies, especially ones
implemented on nanostructured platforms. In addition to in-
tegrated squeezed light and high-order Fock state sources in
nanostructured systems with arbitrary loss and dispersion,
other examples include hybrid systems [5], quantum sensing
applications [15], and quantum frequency conversion in the
optical domain [77] or microwave to optical domain [78].
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APPENDIX A: COMMUTATION RELATION FOR THE
FREQUENCY AMPLITUDE OPERATORS

We begin by expanding the Ê
(±)
i, j (r, ω, t ) operators in the

commutator according to Eq. (2),

[Ê
(+)
i (r, ω, t ), Ê

(−)
j (r′, ω′, t )]

= K2 ω2

c2

ω′2

c2

∫∫
dr1dr2

√
ε′′(r1, ω)

√
ε′′(r2, ω′)

× Gik (r, r1, ω)G∗
jl (r

′, r2, ω
′)

× [ f̂k (r1, ω, t ), f̂ †
l (r2, ω

′, t )].

Now we use the commutation relation Eq. (4) and the
properties of the δ functions to obtain on the right-hand
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side,

K2 ω4

c4
δ(ω − ω′)×

∫
dr1ε

′′(r1, ω)Gik (r, r1, ω)G∗
jk (r′, r1, ω).

The above expression can be simplified by using the fol-
lowing GF identity [42]:

ω2

c2

∫
d r̄ε′′(r̄, ω)Gik (r, r̄, ω)G∗

jk (r′, r̄, ω)

= Im[Gi j (r, r′, ω)], (A1)

to finally arrive at Eq. (5).

APPENDIX B: THE ROTATING FRAME

The rotating frame operators introduced in Sec. II can be
more formally defined through a decomposition of the uni-
tary evolution operator that separates the free-field evolution
and the evolution induced by the nonlinear interaction. This
procedure is very similar to the definition of the interaction
picture of quantum mechanics.

In general, the Heisenberg equation of motion (6) is equiv-
alent to the relation:

Ê
(+)
i (r, ω, t ) = Û †(t )Ê

(+)
i (r, ω)Û (t ), (B1)

where Û (t ) = T e
1
ih̄

∫ t
−∞ dt ′[Ĥ0+ĤSPDC(t ′ )]; Ĥ0 and ĤSPDC(t ′) are

the free-field and nonlinear interaction Hamiltonians, respec-
tively, both considered in the Schrödinger picture; and T
indicates the time-ordering superoperator. Last, Ê

(+)
i (r, ω) ≡

Ê
(+)
i (r, ω, t → −∞) represents the field amplitude operators

before the nonlinear interaction, where we omitted the time
t → −∞ for compactness. By using Feynman’s disentan-
glement theorem [79], we can decompose Û (t ) as Û (t ) =
Û0(t )ÛSPDC(t ), where

Û0(t ) = e
1
ih̄ Ĥ0t , (B2a)

ÛSPDC(t ) = T e
1
ih̄

∫ t
−∞ dt ′H̃SPDC(t ′ ), (B2b)

H̃SPDC(t ) = Û †
0 (t )ĤSPDC(t )Û0(t ). (B2c)

We can use the decomposition of Û (t ) to rewrite Eq. (B1) as

Ê
(+)
i (r, ω, t ) = Û †

SPDC(t )Û †
0 (t )Ê

(+)
i (r, ω)Û0(t )ÛSPDC(t ),

using Ĥ0 = h̄
∫

dr
∫

dωω f̂ †
i (r, ω) f̂i(r, ω) and the definition

(2) we then obtain:

Ê
(+)
i (r, ω, t ) = Û †

SPDC(t )Ê
(+)
i (r, ω)ÛSPDC(t ) e−iωt .

If we now define

Ē (+)
i (r, ω, t ) = Û †

SPDC(t )Ê
(+)
i (r, ω)ÛSPDC(t ), (B3)

then we arrive at Eq. (7a). The rotating-frame creation or
annihilation operators can be defined in a similar manner to
be

f̄ (†)
i (r, ω, t ) = Û †

SPDC(t ) f̂ (†)
i (r, ω)ÛSPDC(t ), (B4)

where again we have f̂ (†)
i (r, ω) ≡ f̂ (†)

i (r, ω, t → −∞) for
compactness. As with the amplitude operators, the rotating-
frame annihilation operators are related to their Heisenberg
picture counterparts as

f̂ j (r, ω, t ) = f̄ j (r, ω, t ) e−iωt , (B5)

with the relation for the creation operators obtained by taking
the adjoint of Eq. (B5).

To find the general equation of motion for Ē (+)
i (r, ω, t ), we

begin by finding the time derivative of Eq. (B3),

∂t Ē (+)
i (r, ω, t ) = [ ∂tÛ

†
SPDC(t )]Ê

(+)
i (r, ω)ÛSPDC(t )

+ Û †
SPDC(t )Ê

(+)
i (r, ω)[ ∂tÛSPDC(t )].

We then recall Eq. (B2b) and obtain, after some straightfor-
ward calculation,

∂t Ē (+)
i (r, ω, t )

= 1

ih̄
Û †

SPDC(t )[Ê
(+)
i (r, ω), H̃SPDC(t )]ÛSPDC(t ).

Due to the properties of the commutator, Û (†)
SPDC(t ) can act on

the operators inside of it independently and give, on the right-
hand side,

1

ih̄
[ Ē (+)

i (r, ω, t ), Û †
SPDC(t )H̃SPDC(t )ÛSPDC(t )],

where we used Eq. (B3). Also recalling Eq. (B2c) and
the decomposition Û (t ) = Û0(t )ÛSPDC(t ), we can identify
Û †

SPDC(t )H̃SPDC(t )ÛSPDC(t ) to be the full, Heisenberg-picture
SPDC Hamiltonian given in Eq. (1). Thus we have proven
Eq. (8).

The commutation relation for the rotating-frame creation
or annihilation operators is easily found by replacing the defi-
nition Eq. (B5) in the commutation relation for the Heisenberg
picture operators Eq. (4):

[ f̄i(r, ω, t ), f̄ †
j (r′, ω′, t )] = δi jδ(r − r′)δ(ω − ω′) ei(ω−ω′ )t .

Since the δ function in the above expression results in ω ≡
ω′, the exponential factor can be ignored. The same is valid
for the commutation relation of the rotating-frame amplitude
operators, which is found by replacing Eq. (7a) in Eq. (10b),

[ Ē (+)
i (r, ω, t ), Ē (−)

j (r′, ω′, t )]

= K2 ω2

c2
Im[Gi j (r, r′, ω)]δ(ω − ω′) ei(ω−ω′ )t .

APPENDIX C: EQUATIONS OF MOTION FOR THE AMPLITUDE OPERATORS

To find the commutator [ Ē (+)
i (r, ω, t ), ĤSPDC(t )], we first expand the SPDC Hamiltonian from Eq. (1) in terms of the rotating-

frame operators Ē
(±)

(r, ω, t ):

ĤSPDC(t ) = −ε0

∫
dr′

∫∫
dω′dω′′χ (2)

l jk (r′)E (−)
P,l (r′, t ) Ē (+)

j (r′, ω′, t ) Ē (+)
k (r′, ω′′, t ) e−iω′t e−iω′′t + H.c.
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Due to the linear properties of the commutator and the fact that amplitude operators with the same sign in the superscript
commute, it is sufficient to calculate

[ Ē (+)
i (r, ω, t ), Ē (−)

j (r′, ω′, t ) Ē (−)
k (r′, ω′′, t )] = K2 ω2

c2
{δ(ω − ω′)Im[Gi j (r, r′, ω)] Ē (−)

k (r′, ω′′, t ) (C1)

+ δ(ω − ω′′)Im[Gik (r, r′, ω)] Ē (−)
j (r′, ω′, t )}, (C2)

where we used Eq. (10b). As pointed out in the main text, to simplify the relations, we assume that the Kleinman symmetry
condition is valid. This is applicable when the frequency dependence of the nonlinear susceptibility is negligible, as is commonly
assumed in many practical scenarios of interest [3], as well as in the present case. In this case, we have the permutation symmetry
of the nonlinear susceptibility χ

(2)
l jk = χ

(2)
lk j , and hence the two terms on the right-hand-side of Eq. (C1) will result in identical

contributions to the final equation of motion. If Kleinman symmetry is not valid, then we can simply keep both terms in Eq. (C1),
which adds no complexity to the calculation and only makes the expressions longer. Thus we can write:

∂t Ē (+)
i (r, ω, t ) = 2i

ε0K2ω2

πc2

∫
dr′χ (2)

l jk (r′)E (+)
P,l (r′, t )Im[Gik (r, r′, ω)]

∫∫
dω′dω′′δ(ω − ω′′) Ē (−)

j (r′, ω′, t ) eiω′t eiω′′t .

After performing the ω′′ integral and replacing the value of K, we obtain the final form of the equation of motion given in
Eq. (11).

APPENDIX D: DERIVATION OF EQ. (14)

To find the correlation function g(1)
i j (r, r′; t, t ′) = 〈Ê (−)

i (r, t )Ê (+)
j (r′, t ′)〉 in terms of the IO coefficients, we begin by expanding

the electric field operators in the expectation value according to Eq. (7b):

〈Ê (−)
i (r, t )Ê (+)

j (r′, t ′)〉 =
∫∫

dωdω′〈 Ē (−)
i (r, ω, t ) Ē (+)

j (r′, ω′, t )〉 eiωt e−iω′t ′
. (D1)

We then expand each of the amplitude operators using the IO relation Eq. (13). To avoid writing out all of the terms that thus
appear, we will only remark that they are each proportional to one of the products, f̄ (†)

α f̄ (†)
β , where α, β are arbitrary indices. The

expectation value of each product is then taken in the initial state of the system (as we are working in the Heisenberg picture).
In the present case, we assume the initial state to be the vacuum, which causes the expectation values to evaluate to zero for all
terms except ones proportional to f̄α f̄ †

β . Thus we are left with

〈Ê (−)
i (r, t )Ê (+)

j (r′, t ′)〉 =
∫∫

dωdω′
∫

d�d�′Aik (r, ω,�; t )A∗
jl (r

′, ω′,�′; t ′)〈 f̄k (�) f̄ †
l (�′)〉 eiωt e−iω′t ′

, (D2)

where the remaining expectation value can be evaluated using the commutation relation Eq. (10a) to result in 〈 f̄k (�) f̄ †
l (�′)〉 =

δklδ(� − �′) ≡ δklδ(ξ − ξ′)δ(ν − ν ′). The �′ integral can then be evaluated to obtain Eq. (14).
If the system was initially in a state other than vacuum, then the expectation values of the various f̄ (†)

α f̄ (†)
β products may result

in multiple nonzero terms, which can also be analytically evaluated using Eq. (10a) by first expressing the initial state using the
free-field creation or annihilation operators f̄ (†)

α .

APPENDIX E: DERIVATION OF THE COUPLED EQUATIONS FOR THE FILTERED IO COEFFICIENTS

To obtain the differential equation governing the evolution of Ãi j (. . . ) we first take the time derivative of both sides of
Eq. (26b),

∂t Ãi j (r, ω,�; t ) =
∫

dω′ e−i(ω−ω′ )t Ai j (r, ω′,�; t ). (E1)

Then we write out Ai j (r, ω′,�; t ) as the formal solution of Eq. (15a). This is found by integrating both sides of the equation over
time,

Ai j (r, ω,�; t ) =
∫ t

−∞
dt ′S(0)

i j (r, ω,�; t ′) +
∫ t

−∞
dt ′

∫
dr′

∫
dω′F ∗

ik (r, ω; r′, ω′; t ′)Bk j (r′, ω′,�; t ′),

where we used the fact that Ai j (r, ω,�; t → −∞) = 0. When we introduce this form for Ai j (r, ω,�; t ) into Eq. (E1), we obtain
two main terms which contribute to the equation of motion. The first term we label as S̃(0)

i j (r, ω,�; t ) and it has the form,

S̃(0)
i j (r, ω,�; t ) =

∫
dω′ e−i(ω−ω′ )t

∫ t

−∞
dt ′S(0)

i j (r, ω′,�; t ′).
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We can immediately rewrite it using the full expression for S(0)
i j (r, ω′,�; t ′), obtained from Eq. (20),

S̃(0)
i j (r, ω,�; t ) = 2K

π

ν2

c2

√
ε′′(ξ, ν)

∫
dω′ ω

′2

c2
e−i(ω−ω′ )t

∫ t

−∞
dt ′ e−i(ω′+ν)t ′

×
∫

dr′χ (2)
klm(r′)E (−)

P,k (r′, t ′)Im[Gil (r, r′, ω′)]Gm j (r′, ξ, ν).

Our next aim is to be able to evaluate the time integral in the above expression. To do that, we expand the pump field into
a Fourier integral, E (−)

P,k (r, t ) = ∫
dωpE (−)

P,k (r, ωp) ei ωpt , where E (−)
P (r, ωp) is the pump amplitude in the frequency domain. The

full form of S̃(0)
i j (r, ω,�; t ) is now

S̃(0)
i j (r, ω,�; t ) = 2K

π

ν2

c2

√
ε′′(ξ, ν)

∫
dr′χ (2)

klm(r′)Gm j (r′, ξ, ν)

×
∫

dω′ ω
′2

c2
Im[Gil (r, r′, ω′)]

∫
dωpE (−)

P,k (r′, ωp) e−i(ω−ω′ )t
∫ t

−∞
dt ′ ei(ωp−ω′−ν)t ′

, (E2)

Now we examine the time integral
∫ t
−∞ dt ′ ei(ωp−ω′−ν)t ′

and introduce a substitution t ′ = t − τ which allows us to rewrite it as
ei(ωp−ω′−ν)t

∫ ∞
0 dτ ei(ω′+ν−ωp)τ ≡ ei(ωp−ω′−ν)tζ (ω′ + ν − ωp), where ζ (ω) is a generalized function proportional to the Fourier

transform of the Heaviside step function and is closely related to the analytical properties of the GF [80,81]. One notable
analytical property of the GF is [46,81]∫

dωω2Im[Gi j (r, r′, ω)]ζ (ω − ω0) = iπω2
0G∗

i j (r, r′, ω0), (E3)

which we can use to further simplify Eq. (E2) by performing the integration over ω′. Thus we arrive at the final form for the
filtered source term (29).

The second term appearing on the right-hand side of Eq. (E1) is∫
dω′ e−i(ω−ω′ )t

∫ t

−∞
dt ′

∫
dr′

∫
dω′′F ∗

ik (r, ω′; r′, ω′′; t ′)Bk j (r′, ω′′,�; t ′).

If we write out the full form of F ∗
ik (r, ω; r′, ω′; t ′) using Eq. (12), then we have

−2i

π

∫
dω′ e−i(ω−ω′ )t

∫ t

−∞
dt ′

∫
dr′

∫
dω′′ ω

′2

c2
χ

(2)
lmk (r′)Im[Gim(r, r′, ω′)]

×
[∫

dωpE (−)
P,l (r′, ωp) ei ωpt ′

]
e−i(ω′+ω′′ )t ′

Bk j (r′, ω′′,�; t ′),

where we immediately expanded the pump field into a Fourier integral. After some reordering of the integrals in the above
expression, we can identify ∫ t

−∞
dt ′

∫
dω′′ ei(ωp−ω′−ω′′ )t ′

Bk j (r′, ω′′,�; t ′) = B̃k j (r′, ωp − ω′,�; t ),

where the right-hand side was established according to Eq. (26c). Thus, we now write the term in question as

−2i

π

∫
dr′

∫
dω′ ω

′2

c2
χ

(2)
lmk (r′)Im[Gim(r, r′, ω′)] e−i(ω−ω′ )t

∫
dωpE (−)

P,l (r′, ωp)B̃k j (r′, ωp − ω′,�; t ).

To arrive at the form of the term given by Eqs. (28a) and (30), we first introduce a variable substitution ωp = ω′ + ω̄ into the
above expression:

−2i

π

∫
dr′

∫
dω′ ω

′2

c2
χ

(2)
lmk (r′)Im[Gim(r, r′, ω′)] e−i(ω−ω′ )t

∫ ∞

−ω′
dω̄E (−)

P,l (r′, ω̄ + ω′)B̃k j (r′, ω̄,�; t ).

The newly introduced ω̄ has the limits [−ω′,∞), as shown above, which indicates that the filtered coefficients have to be
evaluated at certain negative frequency values during calculation. Although this is also formally allowed by the definitions in
Eqs. (26), these negative-frequency contributions can be safely neglected and the lower integration limit set to 0 without any
loss of accuracy. The reason for this can be seen by examining the source term in (29), where negative values of the variable ω

would cause the term to oscillate at optical frequencies, thus averaging to 0 on the timescales of the SPDC process and resulting
in these negative-frequency values of the IO coefficients not contributing in the final equations of motion. Finally, to make the
resulting expression consistent with the notation used in the main text, we will exchange the variables ω′ and ω̄ and write the
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final form of the second term of Eq. (E1):

−2i

π

∫
dr′

∫
dω′

{∫
dω̄

ω̄2

c2
χ

(2)
lmk (r′)Im[Gim(r, r′, ω̄)] e−i(ω−ω̄)tE (−)

P,l (r′, ω′ + ω̄)

}
B̃k j (r′, ω′,�; t ),

where the expression in the parentheses exactly corresponds to the definition Eq. (30) and, when the above expression is
combined with Eq. (29), we get exactly the equation of motion Eq. (28a). An analogous procedure can be performed to find
the equation of motion for the coefficient B̃k j (r, ω,�; t ), after which we obtain the coupled equations (28).

APPENDIX F: LOW-GAIN SOLUTION

To test the validity of the coupled equations Eqs. (28), we find the perturbative solutions for the IO coefficients in the the
low-gain regime, when the pump amplitude is sufficiently weak, and use them to calculate the low-gain single-photon spectrum.

The single-photon output spectrum in terms of the IO coefficients is given in Eq. (27), where we see that it is entirely
determined by Ãk j (r, ω,�; t ). Thus, an analytical expression for the spectrum in the low-gain regime can be obtained by finding
a first-order perturbative solution for the IO coefficient Ãk j (r, ω,�; t ) and replacing it in Eq. (27).

To obtain a perturbative expansion of Ãk j (r, ω,�; t ), we begin by integrating both sides of Eq. (28a) over time, to find the
formal form of the solution. This yields:

Ãi j (r, ω,�; t ) =
∫ t

−∞
dt ′S̃(0)

i j (r, ω,�; t ′) +
∫ t

−∞
dt ′

∫
dr′

∫
dω′F̃ ∗

ik (r, ω; r′, ω′; t ′)B̃k j (r′, ω′,�; t ′). (F1)

Next, we find the formal solution of Eq. (28b) in the same manner:

B̃i j (r, ω,�; t ) =
∫ t

−∞
dt ′

∫
dr′

∫
dω′F̃ik (r, ω; r′, ω′; t ′)Ãk j (r′, ω′,�; t ′),

and insert it into (F1):

Ãi j (r, ω,�; t ) =
∫ t

−∞
dt ′S̃(0)

i j (r, ω,�; t ′) (F2)

+
∫ t

−∞
dt ′

∫
dr′

∫
dω′F̃ ∗

ik (r, ω; r′, ω′; t ′)

[∫ t ′

−∞
dt ′′

∫
dr′′

∫
dω′′F̃kl (r′, ω′; r′′, ω′′; t ′′)Ãl j (r′′, ω′′,�; t ′′)

]
.

(F3)

The full perturbative expansion is obtained by iteratively expanding the above expression using the formal solutions of Eqs. (28).
However, as we are interested in the first-order solution for Ãi j (r, ω,�; t ), Eq. (F2) is already sufficient. This can be confirmed
by noting that both S̃(0)

i j (r, ω,�; t ) and F̃ik (r, ω; r′, ω′; t ) are proportional to the pump amplitude, according to Eqs. (29) and
(30), respectively, and any further expansion will result in terms of third- and higher-order in the pump amplitude.

Thus we conclude that the first-order analytical expression for Ãi j (r, ω,�; t ), is just the source term S̃(0)
i j (r, ω,�; t ) integrated

over time. Using Eq. (29) we find it has the form:

Ãi j (r, ω,�; t → ∞) = 4iπK ν2ω2

c2

√
ε′′(ξ, ν)

∫
dr′χ (2)

klm(r′)E (−)
P,k (r′, ω + ν)G∗

il (r, r′, ω)Gm j (r′, ξ, ν). (F4)

Now we insert the above expression into (27) to obtain the spectrum in the low-gain regime. The resulting expression is rather
long but, through some straightforward algebra and an application of Eq. (A1), it can be reduced to obtain:

σ (ω0, t → ∞) ∝ ω4
0

c4

∫∫
dr′dr′′χ (2)

klm(r′)χ (2)
qrs (r′′)G∗

il (r0, r′, ω0)Gir (r0, r′′, ω0)

×
∫

dν
ν2

c2
E (−)

P,k (r′, ω0 + ν)E (+)
P,q (r′′, ω0 + ν)Im[Gms(r′, r′′, ν)], (F5)

APPENDIX G: NOTES ON NUMERICAL
IMPLEMENTATION

In both the time- and frequency-domain formulations,
the relatively high dimensionality of the IO coefficients
Ãi j (r, ω,�; t ) and B̃i j (r, ω,�; t ) requires a careful approach
to discretising the relevant ranges for each of the variables
present in order to minimize the computational resources

required for solving the coupled equations Eq. (28). In the
case of the QSUP scheme investigated in this work, the one-
dimensional nature of the waveguide and the homogeneity of
the waveguide dielectric result in a phase matching function
that is well approximated by sinc2(�k(ωp, ωs, ωi ) L

2 ), where
ωp, ωs, and ωi are the pump, signal, and idler frequencies,
respectively and �k(ωp, ωs, ωi ) is the phase mismatch. With
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this in mind, the width of the frequency range of interest �ω

was chosen to include frequencies around the central and first-
order peaks of the sinc function for both the signal and idler
photons. The spatial discretization step δz was then chosen
to satisfy δz  L

2π
to ensure that phase-matching is correctly

reproduced.
The ranges and discretization steps for the variables ξ and

ν are determined in a more involved manner, but one that is
entirely defined by the properties of the nonlinear waveguide
and the behavior of its GF. As noted in Sec. II A, ξ and ν

serve to index the initial-time field-matter excitations taking
part in the IO relations (18) and (25) with the contributions
from each excitation being weighted by the IO coefficients.
In theory, all possible values for these variables should be
taken into account in order to obtain the exact output fields;
however, as will now be discussed, the relevant contributions
come from specific limited ranges determined by the spatial
and spectral properties of the structure in question, as well as
the nonlinear interaction.

To determine which range of the spatial variable ξ gives
a dominant contribution to the output we examine the low-
gain analytical expression for the coefficient Ã(z, ω,�; t →
∞) (since it is the only one contributing to the spectrum) given
by simplifying Eq. (F4) according to the assumptions made
about the waveguide under consideration in Sec. III:

Ã(z, ω,�; t → ∞) = 2iK ν2ω2

c2

√
ε′′(ν)

×
∫

dz′χ (2)(z′)E (−)
P, (z′, ω + ν)

× G∗(z, z′, ω)G(z′, ξ , ν). (G1)

The only ξ -dependent factor present, G(z′, ξ , ν), in the case of
the GF given by (31), is proportional to ei ν

c

√
ε(ν)|z′−ξ |. Due to

ε(ν) being complex, this factor represents an oscillating func-
tion with an exponentially decreasing amplitude in |z′ − ξ |
with the decay length ld (ν) = 1

ν
c Im[

√
ε(ν)]

. Since the variable z′

is always confined to the nonlinear region of the waveguide,
the effective range of the variable ξ consists of the nonlinear
region itself and a multiple of the length ld of the linear
regions surrounding the nonlinear waveguide. Physically this
means that field-matter excitations sufficiently far away from
the nonlinear region are unable to influence the nonlinear
interaction due to their effects being damped away by the
absorption of the dielectric.

In practice, it is sufficient to find the largest possible decay
length for the frequency range of interest ld,max and fix that as
the boundary value for ξ . For materials with small amounts
of loss or where the loss is very narrow-band, these boundary
values can be extremely large and could present a problem in
a numerical implementation, where memory limitations are a
factor.

The potentially large range of ξ outside of the nonlinear
region can be made more manageable via a variable trans-
formation. We used the double-exponential transformation of
the form [82]: ξ = sinh( π

2 sinh θ ) where θ is the substitution
variable whose range is chosen to correspond to values of
ξ outside the nonlinear region. With such a transformation,
we compress the potentially long range of integration for
the variable ξ in the surrounding linear regions into a much
shorter range for the variable θ . This transformation resembles
the coordinate transformation used in implementing perfectly
matched layers in computational photonics [83].

Even though the above conclusions were made using the
low-gain result, they also hold in the high-gain regime as well,
as was confirmed by our simulations. This is due to the spatial
or absorbing properties of the structure being independent of
the pump intensity and thus, the spatial distribution of the
initial-time field-matter excitations contributing to the output
stays the same, regardless of gain.

On the other hand, the relevant frequency range for the con-
tributing initial-time field-matter excitations, i.e., the relevant
range of ν, cannot simply be inferred from the low-gain, due
to the seeding effect that couples neighboring frequencies in
the high-gain regime. Looking again at Eq. (F5), we observe
the following in the low-gain regime: The range of frequencies
ν contributing to the output at frequency ω0 is determined by
the spectrum of the pump, i.e., output photons of frequency
ω0 are influenced by field-matter excitations of frequencies
within a pump bandwidth of ν0 = ωp0 − ω0. However, as gain
is increasing, the generated field at frequencies neighboring
ω0 will start contributing to the intensity at ω0 through higher-
order seeding effects, where those neighboring frequencies
themselves are affected by their own respective neighboring
frequencies further from ω0. Hence, to have an accurate rep-
resentation of the intensity at ω0, one has to include the whole
range of frequencies with substantial intensities around ω0,
which are mainly determined by the phase-matching condi-
tion. Hence, in our calculation, for both ω and ν that appear
in Eqs. (28), we consider the whole range of frequencies
around the main and the first surrounding peaks of the phase-
matching function.
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technologies, Nat. Photon. 3, 687 (2009).

[2] J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Inte-
grated photonic quantum technologies, Nat. Photon. 14, 273
(2020).

[3] R. W. Boyd, Nonlinear Optics (Academic Press, San Diego,
2020)

[4] L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini,
M. Galli, R. Morandotti, and D. J. Moss, Integrated sources of

photon quantum states based on nonlinear optics, Light: Sci.
Appl. 6, e17100 (2017).

[5] A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and
V. Zwiller, Hybrid integrated quantum photonic circuits, Nat.
Photon. 14, 285 (2020).

[6] A. Anwar, C. Perumangatt, F. Steinlechner, T. Jennewein,
and A. Ling, Entangled photon-pair sources based on three-
wave mixing in bulk crystals, Rev. Sci. Instrum. 92, 041101
(2021).

043228-17

https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1038/s41566-019-0532-1
https://doi.org/10.1038/lsa.2017.100
https://doi.org/10.1038/s41566-020-0609-x
https://doi.org/10.1063/5.0023103
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