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Broken-symmetry magnetic phases in two-dimensional triangulene crystals
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We provide a comprehensive theory of magnetic phases in two-dimensional triangulene crystals, using both
Hubbard model and density functional theory (DFT) calculations. We consider centrosymmetric and noncen-
trosymmetric triangulene crystals. In all cases DFT and the mean-field Hubbard model predict the emergence
of broken-symmetry antiferromagnetic (ferrimagnetic) phases for the centrosymmetric (noncentrosymmetric)
crystals. This includes the special case of the [4,4]triangulene crystal, whose noninteracting energy bands feature
a gap with flat valence and conduction bands. We show how the lack of contrast between the local density
of states of these bands, recently measured via scanning tunneling spectroscopy, is a natural consequence of
a broken-symmetry Néel state that blocks intermolecular hybridization. Using random phase approximation,
we also compute the spin wave spectrum of these crystals, including the recently synthesized [4,4]triangulene
crystal. The results are in excellent agreement with the predictions of a Heisenberg spin model derived from
multiconfiguration calculations for the unit cell. We conclude that experimental results are compatible with an
antiferromagnetically ordered phase where each triangulene retains the spin predicted for the isolated species.
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I. INTRODUCTION

Triangulenes are graphene fragments with the shape of an
equilateral triangle, terminated with zigzag edges and of var-
ious sizes, customarily defined in terms of the number n of
benzenes in a given edge [1–3]. According to single-particle
theory, [n]triangulenes host n − 1 nonbonding half-filled zero
modes [2]. Coulomb interactions favor the maximal spin con-
figuration, very much like the Hund’s first rule in atoms, so
that [n]triangulenes are predicted [2,4–7] to have a ground
state with total spin S = n−1

2 [see Fig. 1(a)], consistent with
Lieb’s theorem for the Hubbard model for bipartite lattices at
half-filling [8], and in agreement with Ovchinnikov’s rule [9].

The highly reactive nature of radicals hampered the ex-
perimental study of triangulenes for several decades. This
situation has radically changed with the advent of on-surface
synthesis [10,11] and experimentation in ultra-high vacuum.
Therefore, triangulenes of various sizes (n = 2, 3, 4, 5, 7)
have been synthesized, both in isolated form [12–16] and also
forming dimers [17], rings [18,19], chains [18], and, very
recently, small two-dimensional (2D) lattices [20].
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Using inelastic electron tunneling spectroscopy [21], zero-
bias Kondo resonances in individual [2]triangulenes [16] as
well as spin excitations in [3]triangulene dimers [17], rings
[18,19], and chains with more than 40 units [18] have been ob-
served. These experiments provide strong evidence that these
zero- and one-dimensional (1D) supramolecular structures
remain open-shell, and their low-energy electronic properties
can be accounted for by spin Hamiltonians with antiferromag-
netic interactions [Fig. 1(b)].

Spin-restricted density functional theory (DFT) calcu-
lations of [n, m]triangulene crystals—i.e., honeycomb 2D
crystals whose unit cell is made of a pair of triangulenes with
sizes n and m—show the formation of n + m − 2 weakly dis-
persive energy bands [22]. Using tight-binding models, it has
been shown [22] that these bands are made of linear combina-
tions of the in-gap zero modes of the triangulenes, hybridized
via third-neighbor hopping. Intermolecular hybridization
splits the zero modes into bonding-antibonding pairs, pro-
moting nonmagnetic closed-shell electronic configurations.
Therefore, in contrast with the case of isolated triangulenes,
interactions need to overcome intermolecular hybridization
in order to promote open-shell states. This is expected to be
harder in the case of the [4,4]triangulene crystal, for which
both spin-restricted DFT [23] and tight-binding calculations
predict a narrow-gap insulator, unlike the [2,2] and [3,3] cases,
which feature Dirac cones at the Fermi energy. The synthesis
of a [4,4]triangulene 2D lattice has been recently reported
[20], putting this specific system under the spotlight.

In this work we undertake a systematic study of the elec-
tronic properties of triangulene 2D crystals, focusing on the
magnetic properties of their ground states. To do so, we go
beyond the spin-restricted framework in the case of DFT,
and beyond noninteracting tight-binding models. We take the
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FIG. 1. (a) [4]triangulene has a fourfold degenerate ground state with total spin S = 3/2. (b) [4]triangulene dimer is an open-shell singlet
with an entangled wave function as a result of antiferromagnetic intermolecular coupling. (c) Two examples of broken-symmetry Néel states
for [4,4]triangulene 2D crystals, obtained with a collinear mean-field Hubbard model. The size of the circles represents the magnitude of the
local moments, with red and blue denoting spin-↑/↓. Total spin is no longer a good quantum number.

natural next step, doing spin-unrestricted DFT calculations
and adding a Hubbard term to the tight-binding model used in
previous work. The Hubbard model is treated at three levels
of approximation: collinear mean-field theory, random phase
approximation (RPA), and exact diagonalization of small
structures in a restricted space of configurations, the so-called
complete active space (CAS) method.

Previous spin-unrestricted DFT calculations predict that
[2,2]- [24] and [3,3]- [22] triangulene 2D crystals should
display antiferromagnetic order, with the two sublattices being
polarized in opposite directions. The [4,4]triangulene crystal
is different from [2,2] and [3,3] as it features a small band
gap when calculated both with spin-restricted DFT [20,22,23]
and with the conventional single-orbital tight-binding model
with third-neighbor hopping [22]. On the basis of this nar-
row gap, an excitonic insulating phase has been proposed
[23], taking as a reference state the closed-shell nonmagnetic
ground state. A major goal of this paper is to address whether
the [4,4]triangulene crystal also features an antiferromagnetic
phase [Fig. 1(c)], and how this affects the size of the gap and
the putative excitonic insulator.

The rest of the paper is organized as follows. In Sec. II we
review the different theoretical methods used in this work. In
Sec. III we present our results for triangulene dimers within
the CAS approach for the Hubbard model. These calculations
allow us to derive the effective spin interactions, in the form
of polynomials of the Heisenberg coupling, and to estimate
the magnitude of the intermolecular exchange couplings. In
Sec. IV we present the results of collinear mean-field Hubbard
and spin-unrestricted DFT calculations. The results are very

similar, validating the Hubbard model, and systematically pre-
dict broken-symmetry magnetic phases as the ground state of
triangulene 2D crystals. In Sec. V we present our Hubbard
model RPA calculations of the spin waves for the [2,3], [3,3],
and [4,4] crystals and compare them with those obtained
from the spin models derived from the Hubbard model CAS
calculations. In Sec. VI we discuss how the lack of con-
trast in the local density of states (LDOS) of the conduction
and valence bands can be used to identify the emergence of
broken-symmetry states, providing an explanation to recent
experimental scanning tunneling spectroscopy results [20]. In
Sec. VII we present the conclusions.

II. METHODS

In this section we provide a brief description of the theo-
retical methods used throughout the paper.

A. Hubbard model

Following previous work [2,25–28], we use a single-orbital
Hubbard model to describe π -magnetism in graphene nanos-
tructures. The Hubbard model [29] can be written as

H =
∑
i, j,σ

ti, jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (1)

where the indices i, j run over carbon atoms, ti, j stands for the
hopping between sites i and j, U is the on-site Hubbard repul-
sion, c†

iσ (ciσ ) denotes the operator that creates (annihilates)
an electron in site i with spin projection along a quantization
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axis σ = ↑,↓, and niσ = c†
iσ ciσ is the corresponding number

operator. While the first term in the Hamiltonian describes
hopping between different sites, the second deals with the
intra-atomic Coulomb repulsion cost associated with having
a given site (or, more formally, the corresponding pz-orbital)
doubly occupied.

Unless stated otherwise, we consider systems at half-
filling (i.e., uncharged nanographenes) and assume that all
ti, j are zero except when i and j are first or third neighbors.
We denote first- and third-neighbor hoppings by t and t3,
respectively. Second-neighbor hopping t2 introduces charge
inhomogeneities that are penalized by the Hartree interaction,
so that best agreement with DFT is obtained by assuming
t2 = 0. Throughout this paper we set t = −2.7 eV [30] and
t3 is taken as a free parameter. For triangulene 2D crystals,
good agreement with DFT calculations is obtained if we take
t3 � 0.1t [22].

B. CAS

Due to the exponential increase in complexity as the size of
a quantum system grows, exact diagonalization of many-body
problems is possible for only rather small systems. To treat
larger systems, approximate solutions have to be introduced,
one of them being the configuration interaction method in the
CAS approximation. Here we follow the implementation of
the CAS method for the Hubbard model presented in previous
work by some of us [7,18,31,32]. First, the single-particle
spectrum of a given triangulene structure is obtained. Then
a subset of NMO molecular orbitals (MOs)—containing the
zero modes and closest states in energy—is selected, and a
complete set of multielectronic configurations with Ne elec-
trons occupying these NMO MOs is considered; the rest of
the electrons are assumed to fully occupy the MOs below the
active space. The Hubbard Hamiltonian is represented in this
restricted basis set and diagonalized numerically. Hereinafter,
we shall refer to this procedure as CAS(NMO, Ne). Since there
is one electron per π -orbital for triangulenes at charge neu-
trality, we always consider Ne = NMO.

C. Mean-field approximation

In contrast with the CAS method, the mean-field approxi-
mation for the Hubbard model makes it possible to include all
the single-particle states of molecules and crystals, but inter-
actions are treated approximately. The mean-field theory can
be formulated variationally, where the many-body wave func-
tion is written in terms of a set of independent electrons that
occupy the energy levels of a mean-field Hamiltonian. Here
we impose that the total Sz is a good quantum number, thus
breaking the spin-rotation invariance present in the original
Hubbard model; this is the so-called collinear mean-field ap-
proximation, extensively used in the modeling of magnetism
in graphene nanostructures [2,25,26,28,33–41]. In this case,
the Hamiltonian takes the form

H =
∑
i, j,σ

ti, jc
†
iσ c jσ + U

∑
i

(〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉〈ni↓〉),

(2)

where the local densities 〈niσ 〉 are computed with the varia-
tional wave function. Therefore, the variational wave function
and the mean-field Hamiltonian have to be determined in a
self-consistent manner. In practice, this is done by iteration,
starting from an initial guess for the local densities. In crystals,
the local densities are also periodic so that the eigenvalues and
eigenvectors of Eq. (2) satisfy Bloch’s theorem and can be
classified in terms of a wave vector k.

In general, we classify the collinear mean-field solu-
tions in two groups: broken-symmetry solutions for which
the expectation values of the local spin operators are fi-
nite, and nonmagnetic solutions, which are isomorphic to
the noninteracting case, except from a trivial rigid shift
of the energies. Therefore, the mean-field method provides
the value of Sz that minimizes the energy, the expectation
value of the local moments, and a set of energy levels.
These three quantities can be compared with DFT. In the
case of graphene nano-islands [2] and ribbons [25,28,42],
the predictions of mean-field theory were found to be in
good agreement with those of DFT for some values of U .
For triangulene 2D crystals we also find a good agreement.
Therefore, comparison of DFT and mean-field Hubbard mod-
els allows us to obtain an educated guess for U in these
systems.

In our mean-field calculations for 2D triangulene crystals,
we have considered a 5 × 5 Monkhorst-Pack grid for the k-
point sums and a tolerance of 10−4 for convergence in the
local densities. Different initial guesses for the local densities
were tested, with the antiferromagnetic guess found to yield
the lowest energy solution in all relevant cases.

D. RPA

In order to study spin excitations of 2D triangulene crys-
tals, we use the standard RPA to calculate their transverse
spin susceptibility matrix for wave vector Q and frequency
� [26,27,43,44],

χii′ (Q, h̄�) = 1

N

∑
R

eiQ·R
∫ ∞

−∞
d t e−i�tχii′ (R, t ), (3)

which is the space and time Fourier transform of the spin-flip
Green function,

χii′ (R − R′, t ) = −iθ (t )〈[S+
R,i(t ), S−

R′,i′ (0)]〉, (4)

where i, i′ are atomic site indices within a unit cell, h̄ is
the reduced Planck constant, N is the number of unit cells,
R, R′ denote unit cell positions, S+

R,i(t ) is the time-dependent
version (in the Heisenberg picture) of the spin ladder op-
erator S+

R,i ≡ c†
R,i,↑cR,i,↓ at time t , S− ≡ (S+)†, θ (t ) is the

unit step function, and [·, ·] denotes the commutator. The
spin-flip Green function depends only on the relative position
of unit cells R − R′ due to the translation symmetry of the
crystal.

Within the RPA, we first obtain the mean-field sus-
ceptibility χ0, which corresponds to taking the average
〈·, ·〉 over a self-consistent mean-field state associated
with the Hamiltonian given in Eq. (2). Then the “in-
teracting” susceptibility can be calculated using the RPA
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equation

χii′ (Q, h̄�) = χ0
ii′ (Q, h̄�)

− U
∑

i′′
χ0

ii′′ (Q, h̄�)χi′′i′ (Q, h̄�), (5)

which can be cast in the following matrix form:

[χ ] = (1 + U [χ0])−1[χ0], (6)

where [χ ] contains the matrix elements χii′ (Q, h̄�), and anal-
ogously for [χ0]. The specific mean-field susceptibilities that
are relevant to us are given by Lindhard-like expressions,

χ0
ii′ (Q, h̄�)

= 1

N

∑
k

∑
λ,λ′

ψk,λ,↑(i′)ψ∗
k,λ,↑(i)ψk+Q,λ′,↓(i)ψ∗

k+Q,λ′,↓(i′)

× f (Ek,λ,↑) − f (Ek+Q,λ′,↓)

h̄� + Ek,λ,↑ − Ek+Q,λ′,↓ + iη
, (7)

where ψk,λ,σ (i) is the wave function coefficient, at site i, of
a Bloch eigenstate of band λ with wave vector k and spin σ

of the mean-field Hamiltonian. The associated eigenvalues are
Ek,λ,σ , and f (E ) is the Fermi-Dirac distribution function. The
sum over k spans the Brillouin zone of the crystal. To calculate
χ0

ii′ (Q, h̄�), we have used 2500 reciprocal space points within
the Brillouin zone of the crystal (equivalent to considering
N = 2500 unit cells), which guarantees convergence of the k-
space sum. All the results are obtained at zero temperature. An
empirical broadening of the single-particle states η = 5 meV
has been adopted.

The RPA expression for χ also allows us to determine
the critical value of U , denoted by Uc, above which the
nonmagnetic solutions are no longer stable. The magnetic
instability is signaled by the condition det(1 − Uc[χ0]) = 0,
with [χ0] calculated at � = 0 for the Hamiltonian in Eq. (2)
with U = 0. The kind of spin arrangement towards which
the true self-consistent mean-field solution tends, either
ferromagnetic or antiferromagnetic, is indicated by the wave
vector Q at which the condition is satisfied for the smallest
Uc, together with the eigenvector of [χ0] corresponding to its
largest eigenvalue [45].

E. DFT

The DFT calculations have been performed with the local-
density approximation, as implemented in Quantum Espresso
[46]. We have used norm-conserving pseudopotentials, with
a kinetic energy cutoff of 50 Ry and a k-point sampling of
12 × 12 × 1 in a Monkhorst-Pack mesh. To avoid spurious
interaction between replicas we have set a vacuum distance
of 20 Å. We have set the same lattice parameter and atomic
positions for the three cases of magnetic order (nonmagnetic,
ferromagnetic, and antiferromagnetic). The optimized atomic
positions (see Supplemental Material for the XYZ file [47])
have been calculated using the nonmagnetic phase and the
final structure is planar.

F. LDOS

The LDOS at energy E and position r = (x, y, z) was cal-
culated using the following equation:

LDOS(E , r) =
∑
k,λ,σ

|φk,λ,σ (r)|2δ(E − Ek,λ,σ ). (8)

The δ function was approximated by a Lorentzian of the form

δ(E − Ek,λ,σ ) � 1

π

�

�2 + (E − Ek,λ,σ )2
, (9)

where � is the half width at half maximum of the Lorentzian
function. In our calculations, we took � = 8 meV and used
a 5 × 5 Monkhorst–Pack grid for the k-point sum. Moreover,
we considered a carbon Slater distribution for the 2pz atomic
wave function,

φk,λ,σ (r) ∝
∑

R

eik·R ∑
i

ψk,λ,σ (i)ze− |r−Ri |
r0 , (10)

with r0 = 0.325 Å [31,48]. For clarity, R denotes a lattice vec-
tor and Ri is the specific position of site i in the corresponding
unit cell.

III. HUBBARD MODEL CAS CALCULATIONS
FOR CENTROSYMMETRIC DIMERS

In this section we present the results of CAS calculations
for [n]triangulene dimers. The main goal here is to show that,
for U/|t | � 1, the low-energy spectrum can be mapped to a
spin model, providing evidence that the dimers remain open-
shell and the triangulenes preserve their magnetic moments.
We focus on the cases of n = 4 and n = 3 dimers, as the
n = 2 case has been already studied in detail in previous
work [32].

According to the theorem for the number of zero modes
in sublattice-imbalanced bipartite lattices, one should find (at
least) n − 1 zero-energy states for an individual [n]triangulene
molecule [7,49]. In contrast, [n]triangulene dimers have a null
sublattice imbalance, so they may have no zero modes. How-
ever, we find [22] that there are 2(n − 1) states close to zero
energy, on account of the vanishing weight of the zero modes
on the intermolecular binding sites. Only third-neighbor hop-
ping leads to a small intermolecular hybridization of the
triangulene zero modes [22].

In Fig. 2 we show the single-particle spectra for [3]-
and [4]triangulene dimers, obtained by solving the Hamil-
tonian of Eq. (1) with U = 0 and t3 = t/10. As expected,
for the [3]triangulene dimer we find four states close to
zero energy, originating from the weak intermolecular hy-
bridization of the two zero modes hosted by each monomer
individually, promoted by third-neighbor hopping. For the
[4]triangulene dimer, a similar result is found, only this time
the three zero modes of the monomers hybridize to give six
states close to zero energy. We also depict the choice of
MOs that will enter in the CAS calculation for each of the
molecules. These active spaces were chosen to include an
additional pair of orbitals besides the zero modes, as this
is crucial to account for the Coulomb-driven superexchange
mechanism [32].
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FIG. 2. Single-particle energy levels of [3]triangulene (top) and
[4]triangulene (bottom) dimers, and the respective active space used
in the CAS calculations. Results obtained using t3 = t/10.

We now discuss our CAS calculations for the [3]- and
[4]triangulene dimers. The results for U = |t | and t3 = t/10
are presented in Figs. 3(a) and 3(b). While the [3]- and
[4]triangulene monomers are sublattice imbalanced, which
according to Lieb’s theorem implies a ground state with
finite total spin (S = 1 and S = 3/2, respectively), for
[n]triangulene dimers the sublattice imbalance vanishes and
the ground state has S = 0. For the n = 3 dimer, this ground
state is followed by a triplet (S = 1) and a quintet (S = 2). For
the [4]triangulene dimer, an additional septet (S = 3) follows
the S = 1 and S = 2 manifolds.

In Figs. 3(b) and 3(d), we show the CAS results for differ-
ent values of U , thus allowing us to study how the energies
of the many-body states are affected by the strength of the
on-site Coulomb repulsion. Inspecting this figure, it becomes
clear that, for U � |t |, the low-energy excitation order S = 1,
S = 2 (and S = 3 for the [4]triangulene dimer) is preserved
and, crucially, remains well separated from higher-energy ex-
citations. As U is reduced, however, the low-lying excitations
become closer to the high-energy ones, and for a critical value
of U a crossover is visible.

In the parameter region where the low-energy manifold is
well separated from the higher-energy states, the low-energy
spectrum of the triangulene dimers can be modeled by a sim-
ple spin Hamiltonian where each triangulene is represented
by a spin whose value is that of the ground state of the cor-
responding monomer. To establish a quantitative comparison,
we postulate a nonlinear Heisenberg dimer Hamiltonian,

H = J[�SA · �SB + β2(�SA · �SB)2 + β3(�SA · �SB)3], (11)

where �SA, �SB are the vectors of the spin operators for the
individual [n]triangulenes, taken to be SA = SB ≡ s = 1 and
SA = SB ≡ s = 3/2 for n = 3 and n = 4, respectively.

(a) (b)

(c) (d)

FIG. 3. Results obtained with CAS for [3]triangulene (a), (b) and
[4]triangulene (c), (d) dimers. Panels (a) and (c) show the energy of
the many-body states, obtained with U = |t | and t3 = t/10. Panels
(b) and (d) show the energy difference between the ground state and
the first few excited states, as a function of U , for t3 = t/10.

In Appendix A we derive analytical expressions for the
energy levels of this Hamiltonian. By matching these expres-
sions with the results found with CAS for the low-energy
manifolds of the [n]triangulene dimers, we are able to com-
pute J, β2, β3 as a function of U and t3. As a reference, in
Table I we give their values for U = |t | and t3 = 0.1t . We
see that, for both molecules, the exchange coupling J is in
the order of tens of meV, with the n = 3 dimer presenting the
larger antiferromagnetic exchange. In both cases it is found
that the biquadratic term (given by β2J) is approximately

TABLE I. Exchange coupling parameters (J, β2, β3) obtained by
equating the eigenvalues of the nonlinear Heisenberg dimer Hamilto-
nian of Eq. (11) to the CAS results obtained for [n]triangulene dimers
with U = |t | and t3 = 0.1t .

n J (meV) β2 β3

3 27.9 0.12 —
4 11.3 0.09 0.007
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10% of the bilinear one (J), emphasizing its importance to
accurately capture the energy levels with a spin model. As for
β3, which is included only in the model of the n = 4 dimer
(as explained in Appendix A), it is found to be one order of
magnitude smaller than β2. Thus, we see that the bicubic term
introduces only minor corrections to the energy spectrum,
which further justifies not accounting for it to describe the
n = 3 dimers.

The fact that we can map the low-energy levels of the
fermionic CAS calculation to a spin model together with
the fact that, for U � |t |, these are well separated from
higher-energy excitations provides strong evidence that the
dimers are in the open-shell regime, the triangulenes host
local moments, and the singlet ground state arises from the
intermolecular antiferromagnetic coupling. This shows that,
although intermolecular hybridization is present, the magnetic
nature of the triangulenes is preserved and the intermolecular
interactions are antiferromagnetic. A comparison of the inter-
molecular hybridization and the Coulomb energies is provided
in Appendix B. As we decrease U , the low-energy excitations
and the high-energy ones become closer, and the validity of
the model is no longer warranted. The spin model description
certainly fails where the crossover between low- and high-
energy excitations occurs [50].

IV. 2D CRYSTALS: DFT AND MEAN-FIELD HUBBARD
MODEL CALCULATIONS

In this section we undertake the study of magnetic
properties in 2D triangulene crystals. For that matter, we
compare DFT-based calculations, both spin-restricted and
spin-polarized, with mean-field Hubbard model results. We
consider ferromagnetic (FM) and antiferromagnetic (AF)
broken-symmetry solutions, as well as nonmagnetic (NM)
states. In all cases considered, we find that the lowest energy
configuration corresponds to the AF solution.

A. DFT for the [4,4]triangulene crystal

We now discuss the electronic properties of the [4,4]tri-
angulene crystal, as described with DFT-based calculations.
We note that both the spin-restricted and the AF cases of the
[2,2]- and [3,3]triangulene crystals were addressed in previous
works [22,24]. In both systems, it was found that the NM
solution is an excited state and describes a zero-gap semicon-
ductor with two Dirac cones and a narrow bandwidth. The
spin-polarized AF solution opens up a large gap and is the
ground state.

Previous work [20,22,23] has shown that the spin-
unpolarized [4,4]triangulene crystal is a narrow-gap semicon-
ductor with flat valence and conduction bands. Here we go
beyond the NM framework and study two magnetic phases,
AF and FM. We find that the AF phase has smaller energy than
both the FM (EFM − EAF = 0.171 eV) and the NM (ENM −
EAF = 0.457 eV). It is thus apparent that DFT calculations
confirm the open-shell nature of the [4]triangulenes when co-
valently bonded to form a 2D honeycomb crystal. If we model
the energy difference between the AF and FM phases with a
classical Heisenberg model on a honeycomb lattice, we get
6JS2 = 0.171 eV. Using S = 3/2, we pull out J = 12.7 meV.

(a) (b) (c) NM FM AF

(d) 
FM Mag.

(e)
AF Mag.

FIG. 4. Electronic structure, obtained with DFT, of [4,4]tri-
angulene 2D crystals for the following cases: (a) nonmagnetic,
(b) ferromagnetic, and (c) antiferromagnetic. In (a) the Bril-
louin zone of triangulene 2D crystals is also shown, along with
high-symmetry k points and the k path chosen for the band
structure representations. The corresponding magnetizations of
the FM and AF cases are shown in panels (d) and (e), re-
spectively; the value of Sz per triangulene is also indicated.
Red and blue correspond to spin-up and -down. In (c) spin-up
and spin-down bands are degenerate.

For the [3,3]triangulene crystal, a similar analysis [22] found
E [3,3]

FM − E [3,3]
AF = 0.159 eV and J [3,3] = 26.5 meV.

In Fig. 4 we show the energy bands for the three configura-
tions (NM, FM, AF) of the [4,4]triangulene crystal, together
with the distribution of the magnetic moments in the FM and
AF solutions. The three solutions are gapped, but the size of
the gap increases in the magnetic phases, specially in the AF
case. The FM bands have a similar line shape than the NM
bands, except for the top of the conduction band. The AF
bands are much narrower than the NM bands. This relates
to the quenching of intermolecular hybridization due to the
opposite-sign spin splitting of the zero modes of adjacent
molecules.

We note that, whereas the magnetic moments lie predom-
inantly in the majority sublattice of each triangulene, there
is a smaller magnetization with opposite sign in the minor-
ity sublattice, coming presumably from electrons in nonzero
modes. Moreover, we find that the magnetization per triangu-
lene shares a similar pattern for both FM and AF solutions,
and the values obtained are compatible with the predictions
for individual triangulenes.

B. Mean-field Hubbard model results

We now present our results for the [2,2]-, [2,3]-, [3,3]-,
and [4,4]triangulene 2D crystals, obtained using the collinear
mean-field approximation to the Hubbard model at half-
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FIG. 5. Electronic properties of (a) [2,2]-, (b) [2,3]-, (c) [3,3]-, and (d) [4,4]triangulene 2D crystals. Top panels show the NM energy bands,
obtained using a tight-binding model with t3 = 0.1t ; horizontal black lines denote the Fermi energy. Middle panels show the energy bands of
the ground-state solution of a collinear mean-field Hubbard model with U = |t |; red and blue denote spin-up and -down. The corresponding
magnetizations are shown in the bottom panels, where the size of the circles represents the magnitude of the local moments. The value of Sz

per triangulene is also indicated.

filling. For the centrosymmetric [n, n]trianguelene crystals,
we find that, for U above an n-dependent critical value
Uc(n) below which the ground-state solutions are NM (see
Sec. IV D), the lowest energy solutions are AF, in agreement
with DFT calculations. As for the noncentrosymmetric [2,3]
case, the ground state obtained is always ferrimagnetic.

In Fig. 5 we show the energy bands for both NM and
ground-state (magnetic) configurations, obtained with U =
0 and U = |t |, respectively. Two features are immediately
apparent. First, the dispersion of the AF bands is nar-
rower compared to the NM case. This is a consequence of
suppressed intermolecular hybridization, on account of the
opposite-sign spin splitting in the two triangulenes of the unit
cell. Second, the separation between conduction and valence
bands increases in the magnetic phases. Thus, the [2,2]-,
[2,3]-, and [3,3]triangulene crystals, gapless for U = 0, be-
come gapped when magnetic order appears. In the case of the
[4,4]triangulene crystal, gapped for U = 0, the interactions
increase the gap by more than a factor of 3. The gap of
the magnetically ordered phases reflects the fact that every
triangulene is closed-shell in each spin channel, so that the
addition of a new electron is possible only in the minority spin
channel that became spin-split.

In Fig. 5 we also show the local magnetic moments of the
ground-state mean-field solutions. The magnetization pattern
is such that carbon sites in different sublattices are magne-
tized with opposite sign. For U � |t |, the magnetic moments
per triangulene are close to the values expected from Lieb’s
theorem for individual triangulenes, and in qualitative agree-
ment with those of DFT. We note that mean-field theory is
not constrained by Lieb’s theorem, which applies to exact
solutions.

For the noncentrosymmetric [2,3]triangulene crystal, the
magnetic order appears for arbitrarily small values of U . This
is expected on account of the flat band at the Fermi energy.
For small values of U , magnetic moments are present only
in the larger unit, which hosts the flat-band states. As U is
ramped up, the magnitude of the magnetic moments in both
units increases towards values close to those of the isolated
triangulenes, and a ferrimagnetic ground state is obtained.

C. Comparison between mean-field and DFT models

In this section we briefly compare the results of the mean-
field Hubbard models with those of DFT, for the [2,2],
[3,3] and [4,4] crystals. The DFT results for the [2,2] crys-
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TABLE II. Agreement between DFT and mean-field Hubbard
model calculations for different magnetic phases of [n, n]triangulene
2D crystals. Mean-field results were obtained with t3 = 0.1t and
U = |t |.

System Quantity DFT Mean-field

[2,2] EFM − EAF (eV) 0.11a 0.109
[2,2] ENM − EAF (eV) 0.12a 0.097
[3,3] EFM − EAF (eV) 0.159b 0.137
[4,4] EFM − EAF (eV) 0.171 0.133
[4,4] ENM − EAF (eV) 0.457 0.508
NM [4,4] Gap (eV) 0.185 0.148
AF [4,4] Gap (eV) 0.716 0.625
AF [4,4] Sz per triangulene 1.53 1.49
AF [4,4] |Mtot| (μB) 8.89 9.01

aReference [24].
bReference [22].

tals are taken from Ref. [24]. As for the [3,3] crystals,
DFT calculations were reported in Ref. [22] by two of us.
Since the comparison of the NM phases was already es-
tablished in previous work [22], we focus on the magnetic
phases.

Qualitatively, both levels of theory are in agreement. They
both predict AF solutions as the ground state, with magnetic
moments close to those predicted for isolated triangulenes.
Moreover, in both mean-field and DFT models the band gap
of the magnetic solutions is much larger than the NM cases,
and the band dispersion is narrower.

Given the uncertainty over the best value of U , we make
no attempt to find the value of U for which this agreement
is better, and we take U = |t | as a reasonable guess. It is ap-
parent that the mean-field bands obtained with U = |t | are in
good agreement with the DFT calculations [compare Fig. 4(c)
with middle panel of Fig. 5(d) for the [4,4] case]. The same
is also verified for the magnetization patterns [Fig. 4(e) and
lower panel of Fig. 5(d)]. A quantitative comparison between
the mean-field theory for U = |t | and DFT is provided in
Table II. We find a fairly good agreement that justifies the use
of Hubbard models for this type of system. Specifically, for
the [4,4] case, we obtain a good agreement in (1) the energy
difference between the different magnetic phases (with the
NM configuration featuring the highest energy of the three);
(2) the band gaps of the NM and AF solutions, with both levels
of theory predicting an increase of the band gap by a similar
factor in the AF phase; (3) the Sz per triangulene (discussed
above); and (4) the absolute value of the magnetization, de-
fined by |Mtot| = gμB

∑
i |Sz(i)|, where g = 2 is the electron

g-factor and μB stands for the Bohr magneton.

D. Critical value of U

We now discuss the minimal value of U that makes the NM
solution unstable within the mean-field Hubbard approxima-
tion. This can be obtained in two ways: first, by comparing the
NM and the magnetic solutions of a mean-field calculation
as a function of U and finding the critical value Uc above
which the disordered phase becomes an excited state, and,
second, a faster approach, discussed in Sec. II D and adopted

FIG. 6. Critical values Uc of the Hubbard parameter for the onset
of the magnetic instability, as predicted by the RPA, as a function of
the third-neighbor hopping t3, for the [2,2]-, [3,3]-, and [4,4]triangu-
lene crystals.

here, where we look for the value U = Uc for which the RPA
susceptibility diverges. The results are shown in Fig. 6 for the
[n, n] crystals with n = 2, 3, 4. We note that, for a honeycomb
Hubbard model at half-filling, the mean-field critical value for
the NM to AF transition is Uc = 2.2|τ | [51], where τ is the
first-neighbor hopping of the honeycomb lattice.

For the [2,2]triangulene crystal, whose low-energy single-
particle Hamiltonian maps exactly to that of a honeycomb
model [22], the effective first-neighbor hopping is given by
t̃ = |t3|/3 and the effective Hubbard interaction is Ũ = U/6
[22]. Therefore, by renormalizing the Uc = 2.2|τ | equation,
we can estimate a critical value Uc = 4.4|t3| for the [2,2]
crystal, in good agreement with the Uc numerically obtained
(see Fig. 6).

Given that the low-energy spectrum of the [3,3]triangulene
crystal also features graphene-like bands in the neighborhood
of the Fermi energy, we can also compare the numerically
obtained Uc with that of the honeycomb crystal. For the [3,3]
crystal, the effective first neighbor hopping is given by t̃ =
2|t3|/11 and the effective Hubbard is Ũ � U/11 [22]. There-
fore, we also estimate a critical value Uc � 4.4|t3|. The fact
that our numerical estimates for Uc(t3) are slightly different
(see Fig. 6) indicates that Uc is also influenced by the flat
bands away from the Fermi energy.

The critical values of U for t3 = 0.1t are in the range of
Uc � 0.45|t | = 1.2 eV. Estimates of atomic U for carbon are
higher than this, in the range of 3.5 eV [6]. Mean-field the-
ories are known to underestimate Uc. For instance, quantum
Monte Carlo methods [51] predict Uc = 4.5|τ | for the Hub-
bard model on the honeycomb lattice. Even if Uc is twice as
large as the values predicted by mean-field methods, magnetic
order should appear in the triangulene crystals.

Interestingly, the numerical estimates of Uc(t3) are very
similar for the [3,3] and [4,4] crystals. This result further
supports the picture that, once moderately large interactions
are included, the fact that the NM bands of the [4,4] crystal
have a band gap does not seem to have a dramatic effect on
its electronic properties, and the [4,4]triangulene crystal is
(antiferro) magnetic.
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(a) (b)

(c) (d)

FIG. 7. Spin wave dispersion relations within the RPA for
[n, m]triangulene crystals. (a) [3,3] crystal, (b) [4,4] crystal, and
(c) [2,3] crystal, for which the two spin wave branches (correspond-
ing to different polarities) are nondegenerate due to the ferrimagnetic
nature of the ground state. In contrast, for the [3,3] and [4,4] (an-
tiferromagnetic) crystals, the two polarities are degenerate; thus a
single dispersion is shown for each. In panels (a), (b), and (c) the dots
have been extracted from magnon spectral densities (the imaginary
part of the transverse spin susceptibility), and the solid curves are
fits to nearest-neighbor Heisenberg models. (d) Integrated magnon
density of states for the nearest-neighbor antiferromagnetic Heisen-
berg model on the honeycomb lattice, obtained from Eq. (12) with
SA = SB = S.

V. COLLECTIVE SPIN EXCITATIONS
IN 2D TRIANGULENE CRYSTALS

A. RPA for the Hubbard model

The choice of a “ground state” with broken spin rotation
symmetry implies the existence of gapless Goldstone modes,
the spin waves. Here we obtain the spin wave spectra of
2D triangulene lattices by computing the transverse spin
susceptibility χ (Q, h̄�) of the Hubbard Hamiltonian in the
RPA, as discussed in Sec. II D, taking t3 = 0.1t and U = |t |.
The spin wave frequencies are associated with the poles of
χ (Q, h̄�). For a given wave vector, two poles occur at ener-
gies ±h̄�(Q), due to the opposite directions of the spins in the
two magnetic sublattices [52]. From those we can build a spin
wave dispersion relation, shown in Figs. 7(a) and 7(b) for the
[3,3] and [4,4] crystals, and in Fig. 7(c) for the [2,3] crystal.
We note that, for the centrosymmetric cases ([3,3],[4,4]), the
two modes are degenerate, in contrast with the [2,3] for which
we find an acoustic and an optical branch of spin waves. In
these figures the symbols represent the locations of the poles
of χ (Q, h̄�) for a few wave vectors along two high-symmetry
directions in the honeycomb Brillouin zone. It is apparent that
the bandwidth of the magnon spectrum is larger for the [3,3]
crystal, in agreement with the larger values of intermolecular

TABLE III. Estimates for intermolecular exchange from DFT
model and from Hubbard model (with U = |t | and t3 = 0.1t), in
three approximations, for the [3,3] and [4,4] triangulenes.

CAS DFT Mean-field RPA

J [3,3] (meV) 27.9 26.5a 22.8 20.8
J [4,4] (meV) 11.3 12.7 9.9 8.8

aReference [22].

exchange obtained with the CAS calculations for the
dimers.

B. Comparison with spin models

We now compare the RPA results with those of a Heisen-
berg spin model with first-neighbor exchange J , calculated in
the linear spin-wave approximation [53,54]. The calculation
(not shown) is standard [54]. The spin operators are expressed
in terms of Holstein-Primakoff (HP) bosons [53], taking the
quantization axis parallel to the classical ground state (AF
for the [3,3] and [4,4], ferrimagnetic for the [2,3]), where the
classical magnetization of each [n]triangulene is S = n−1

2 . The
resulting bosonic Hamiltonian is truncated so that only terms
bilinear in the HP bosons are kept. This bilinear Hamiltonian
can be solved exactly, by means of a paraunitary canonical
transformation. For a lattice with two spins per unit cell,
such as the honeycomb, two spin-wave branches are obtained,
given by

ε±(k)

3J
= SA + SB

2

√
1 − ξk ± SB − SA

2
, (12)

where ξk = 4SASB|φk|2/(SA + SB)2, SA and SB denote the spin
of the triangulenes in sublattice A and B, 3φk = 1 + eia1·k +
eia2·k, a1,2 are the lattice vectors of the honeycomb lattice, and
J is the intermolecular exchange. It is apparent that in the AF
case we have SA = SB, and the two branches become degen-
erate. It is also apparent that, for k = (0, 0), the lower energy
branch vanishes, complying with the Goldstone theorem.

In Figs. 7(a)–7(c), we compare the magnon dispersion cal-
culated from the fermionic RPA theory with the spin wave
dispersion of Eq. (12). Taking SA and SB from the mean-
field calculation, we determine the value of intermolecular
exchange J that provides the best fitting to the RPA calculation
within the fermionic model. We find that the RPA curves lie
exactly on top of the spin-wave curves, providing additional
support to the notion that the low-energy excitations of 2D
triangulene crystals can be described with spin model Hamil-
tonians, very much like the 1D triangulene spin chain. In
Table III we compare the values of J obtained with all levels
of theory, for the [3,3] and [4,4] crystals.

We can determine the dependence of J on U and t3 by
repeating this procedure for different values of those pa-
rameters. In Fig. 8 we plot J , so obtained, as a function
of U/|t | with t3 = t/10 for the [3,3] and [4,4] cases. The
general behavior is qualitatively very similar to the results
from CAS calculations for dimers. In fact, even the actual
values of J given by RPA and CAS are reasonably similar
for 0.5 � U/|t | � 1.5. This qualitative good agreement backs
up the robustness of the main underlying picture of this work:
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FIG. 8. Effective exchange as a function of U , obtained by fit-
ting the RPA spin wave spectrum to a nearest-neighbor Heisenberg
model in the linear spin wave approximation (dots), and from CAS
calculations on single dimers (solid curves).

despite the intermolecular hybridization between triangulenes
in the 2D crystals considered here, they retain their magnetic
moment.

VI. PREDICTIONS FOR SCANNING
TUNNELING SPECTROSCOPY

We now discuss experimental consequences of the mag-
netic order discussed in the previous sections. Given that, so
far, triangulenes structures have been studied with the scan-
ning tunneling microscope (STM) [15,19,20], we focus on
properties that can be probed with this technique. STM dI/dV
can reveal two different properties of the surface [21]: LDOS
and inelastic excitations. In the case of nanographenes, LDOS
features are revealed as prominent peaks at large voltages,
in the range of hundreds of meV, corresponding to resonant
tunneling across specific energy levels of the molecules.

A. Probing LDOS

Here we discuss the LDOS at the energy of the valence
and conduction bands, which can be measured by means of
STM spectroscopy. The LDOS is sensitive to the interatomic
coherence: by virtue of Eq. (8), the LDOS is proportional to
the square of the MO wave function, that is in turn a linear
combination of atomic orbitals. Therefore, LDOS is sensitive
to the relative phases of the weights of the MO at different
atoms. Specifically, for the noninteracting bands of a bipartite
lattice, electron-hole symmetric states, such as valence and
conduction bands, have opposite relative phases between ad-
jacent atoms. More formally, let us denote the wave function
of a conduction band MO as

ψk,λ(i) = (ψk,λ(A), ψk,λ(B)), (13)

where ψk,λ(A/B) encodes the MO weight on all the atoms
in the unit cell that belong to the A/B sublattices. Then,
for a bipartite lattice, the wave function of the electron-hole
conjugate state λ in the valence band is given by [37]

ψk,λ(i) = (ψk,λ(A),−ψk,λ(B)). (14)

FIG. 9. LDOS for [4,4]triangulene 2D crystals. All calculations
were performed at height z = 2.8 Å. Panels (a) and (b) show the
results obtained with the noninteracting tight-binding model, with
t3 = 0.1t , for energies in (a) conduction band (E = 0.1 eV) and
(b) valence band (E = −0.1 eV). Panels (c) and (d) show the re-
sults obtained with the collinear mean-field Hubbard model, taking
U = |t |, for energies in (c) conduction band (E = 0.315 eV) and
(d) valence band (E = −0.315 eV).

Thus, electron-hole conjugate MO wave functions have the
same probability amplitudes but opposite phases at one sub-
lattice. As a result, LDOS will have a enhancement/depletion
at the regions connecting atoms with different sublattices.
Specifically, at the bonding region between any pair of atoms,
we can truncate Eq. (10) keeping only the contribution of
the two closest atoms, a and b, that, by definition, belong to
different sublattices. This leads to

φk,λ(r) � [ψk,λ(a)g(r − Ra) + ψk,λ(b)g(r − Rb)], (15)

where g(r − Ra/b) ≡ ze− |r−Ra/b|
r0 .

We can now compute the difference of the LDOS computed
in the bonding region between two atoms, for which Eq. (15)
holds, evaluated at energies +Eλ and −Eλ. The contributions
to the difference of LDOS at these two energies from states
with the same wave vector k in a pair of electron-hole conju-
gate bands λ, λ will be given by

δρk,λ(r) = 4Re[ψ∗
k,λ(a)ψk,λ(b)]g(r − Ra)g(r − Rb). (16)

From Eq. (16) it is apparent that the LDOS contrast between
electron-hole bands is controlled by the weights (and crucially
the respective phases) of the wave functions of the MOs of
adjacent atoms (which belong to different sublattices).

In the case of conduction and valence bands of triangu-
lenes, the weight of the wave functions inside each triangulene
is all on a single sublattice. Therefore, the LDOS contrast
is only seen at the intertriangulene binding sites. These are
shown for the [4,4]triangulene crystal in Fig. 9. For the
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noninteracting case we find a depletion of the LDOS at the in-
termolecular binding sites at the conduction band energy and
a corresponding enhancement of the valence band [Figs. 9(a)
and 9(b)].

We now discuss how interactions, described at the mean-
field level, change this picture. The broken-symmetry Néel
states result in the presence of a staggered exchange potential.
As a result, for a given spin direction, the on-site energy of two
adjacent triangulenes is no longer the same. Consequently, the
wave functions of valence and conduction bands no longer
have the same weight on both sublattices [37]; i.e., Eqs. (13)
and (14), relating the wave functions of valence and conduc-
tion bands, no longer hold. In the interacting cases the MOs
become sublattice biased and, in the very strong coupling
limit, completely sublattice polarized. This ultimately reduces
the amplitude of the bonding-antibonding interference effect,
as shown in Figs. 9(c) and 9(d). This is in agreement with the
experimental observations of Delgado et al. [20].

We note that the reduction of the LDOS contrast between
valence and conduction bands in the interacting cases relates
to the reduced bandwidth of the interacting bands. The spin-
dependent staggered potential creates an energy barrier for
intermolecular hybridization.

In the work of Delgado et al. [20], the observed reduced
contrast of LDOS at the binding sites is attributed to an
excitonic insulator state that arises on account of the small
gap obtained from the spin-unpolarized DFT calculations. As
both our DFT and mean-field results show, the spin-polarized
solution has lower energy and a larger gap (that makes the
excitonic insulator state less likely) and, more important, al-
ready accounts for the reduced LDOS contrast in terms of the
sublattice symmetry breaking of the AF solution.

B. Probing magnons

In contrast to the large-bias LDOS measurements dis-
cussed above, STM spectroscopy can reveal inelastic excita-
tions as bias-symmetric dI/dV steps, at bias voltages below
100 meV, whose height is dramatically smaller than the res-
onant peaks. The underlying mechanism for these steps is
inelastic cotunneling of electrons [21,55]. In spin systems,
inelastic electron tunneling spectroscopy (IETS) can probe
spin transitions between the ground state and excited states
that satisfy the rule for the change of total spin �S = 0,±1.
Therefore, IETS is optimal to probe magnons [56,57]. We
expect that dI/dV will have a line shape that reflects the
density of states (DOS) of magnon excitations. In Fig. 7(d) we
show the magnon DOS associated with the dispersion energy
from Eq. (12) for SA = SB = S, relevant for [n, n]triangulene
crystals. It is apparent that the magnon DOS features an
outstanding Van Hove singularity, at energy

√
8JS, corre-

sponding to the M-points in the Brillouin zone. Therefore, we
anticipate the presence of steps at eV = ±√

8JS energy in the
dI/dV spectra. For the [4,4]triangulene crystal, taking J �
9 meV (see Table III), and S = 3/2, the steps are expected at
±38 meV.

VII. SUMMARY AND CONCLUSIONS

The main goal of this paper is to describe the conse-
quences of electron-electron interactions in triangulene 2D

crystals. Specifically, we address the question of whether
triangulenes retain their magnetic moments when forming
2D crystals that entail intermolecular hybridization. This is
particularly relevant in the case of [4,4]triangulene crys-
tals, for which the single-particle model [22] predicts an
insulating state that, naively, may quench the emergence of
magnetism.

We employ spin-unrestricted DFT, as well as Hubbard
model calculations with three different approximations:

(1) Multiconfiguration CAS calculations of triangulene
dimers.

(2) Mean-field approximation of the 2D crystals.
(3) RPA calculations of the spin excitations in 2D crystals.
Importantly, these different methods allow us to perform

cross-validations. For instance, both the spin-polarized DFT
and mean-field Hubbard model yield very similar results for
all the key quantities (see Table II). The Hubbard model RPA
calculations, built on top of mean-field solutions, predict an
excitation spectra that can be fitted very well to a Heisen-
berg model, with just a single fitting parameter, the effective
exchange [see Figs. 7(a)–7(c)]. In turn, this exchange is in
qualitative agreement with the one obtained from CAS cal-
culations, for a range of values of U (see Fig. 8).

Our main conclusions are the following:
(1) Triangulenes retain their magnetic moment when

forming 2D crystals, according to both DFT and Hubbard
model calculations.

(2) Triangulene crystals are insulating, on account of the
electron-electron interactions. This is supported both by our
mean-field Hubbard model and our spin-polarized DFT cal-
culations. In the case of the [4,4] crystal, the size of the gap,
calculated with DFT, comes out 3.9 times larger than the spin-
unpolarized gap, which calls for a revision of the predictions
[20,23] of an excitonic insulator state based on the smaller gap
of the NM ground state.

(3) Two-dimensional triangulene crystals are magnetically
ordered, either antiferrromagnetically, in the centrosymmetric
case, or ferrimagnetically, for noncentrosymmetric crystals.
This statement is based on both DFT and mean-field Hubbard
calculations.

(4) The value U = |t | gives a very good agreement
between mean-field Hubbard model and DFT for several
quantities, such as the intermolecular exchange, the magnetic
moments, and the band gap. We have not tried to fine-tune
U/|t | to improve that agreement, but we can be sure that
U � |t | is a good ballpark reference for this important ratio.

(5) The low-energy spin excitations obtained from the
RPA fermionic calculations are very well described with
Heisenberg Hamiltonians. The exchange interactions so ob-
tained are in qualitative agreement with those obtained from
CAS, mean-field, and DFT methods (see Table III).

(6) Intermolecular exchange features nonlinear interac-
tions, beyond the usual Heisenberg terms. This is found by
comparing CAS calculations for the Hubbard model with
spin models. For U � |t |, the values of the nonlinear terms
are in qualitative agreement with previous work for spin-1
triangulene chains [18]. For S = 3/2 triangulenes, the values
of the nonlinear interactions are small (see Table I), so that it
is very unlikely that the system realizes the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model [58] for the honeycomb lattice,
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which would be relevant for measurement-based quantum
computing [59].

(7) Magnetically ordered states reduce the intermolecular
hybridization in triangulene 2D crystals. This has two main
consequences: First, the bandwidth of magnetically ordered
triangulene crystals is narrower than in the noninteracting
case (see, e.g., Fig. 5). Second, the difference between the
LDOS at the valence and conduction band energies at the
intermolecular binding sites is smaller in the magnetically
ordered phase (Fig. 9). This lack of contrast is consistent with
recent experimental observations in [4,4]triangulene crystals
[20].

We now briefly discuss the robustness of the predicted
AF states. By construction, both the mean-field and DFT
calculations predict broken-symmetry or NM solutions. Both
quantum and thermal fluctuations can destroy long-range or-
der in two dimensions.

At zero temperature (T = 0), broken-symmetry states are
robust in this class of systems. Using quantum Monte Carlo, it
was shown that the Hubbard model in the honeycomb lattice,
at half-filling, features AF long-range order [51]. Since the
effective model for the [2,2] crystal is a similar Hubbard
Hamiltonian that maps into an S = 1/2 Heisenberg model,
and given that quantum fluctuations scale with 1/S and larger
triangulenes have larger S, we expect that at T = 0 the ground
state of the centrosymmetric triangulene crystals also features
Néel long-range order.

In contrast, thermal fluctuations are expected to destroy
long-range order, on account of the Mermin-Wagner theorem
[60]. However, the spin correlation length may be larger than
the system size for the small 2D crystals reported experimen-
tally [20]. Therefore, the broken-symmetry solutions remain
a good approximation for these systems, as in the case of 1D
edge magnetism in graphene ribbons [61].

Our results, together with previous experimental work
[18,20], should pave the way for the design of other
nanographene molecular crystals [62,63], both 1D and 2D,
that realize interesting spin Hamiltonians with nontrivial elec-
tronic properties. Furthermore, extensions of this work to
noncarbon triangulene-like structures, such as triangular sil-
icene nanoflakes [64] or artificial triangulenes made of cesium
atoms on a surface [65], are examples of alternative lines of
research to be explored.
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APPENDIX A: DERIVATION OF SPIN
HAMILTONIAN PARAMETERS

In this Appendix we derive the analytical expressions for
the energy levels of the spin model dimer Hamiltonian of
Eq. (11). Then, by matching these expressions with the nu-
merical results obtained with CAS for [n]triangulene dimers,
we study how the parameters of the spin model, J , β2, and β3,
depend on U and t3.

In terms of the total spin S and the spin of the triangulenes
s, the eigenvalues of the spin model of Eq. (11) are given by

Es(S) = J[ f (S, s) + β2 f (S, s)2 + β3 f (S, s)3], (A1)

with

f (S, s) = 1
2 [S(S + 1) − 2s(s + 1)], (A2)

where S can take the values S = 0, 1, . . . , 2s. Thus, for the
n = 3 (n = 4) case, S can take values up to S = 2 (S = 3).
For the [4]triangulene dimer, the spectrum of the spin model
has four multiplets, with S = 0, 1, 2, 3. For the [3]triangulene
dimer, we assume β3 = 0 since the s = 1 dimer model can
take the values S = 0, 1, 2, and we can fit only two energy
parameters out of three multiplets. As we found in previous
work [18], the model with β3 = 0 can account for experimen-
tal observations of a large number of structures.

The excitation energies for the n = 3 case are related to J
and β2 as follows:

E1(1) − E1(0) = J (1 − 3β2), (A3)

E1(2) − E1(0) = 3J (1 − β2). (A4)

These equations can be easily inverted to obtain J and β2 for
a given fermionic calculation.

In the case of the [4]triangulene dimer, with s = 3/2, we
obtain the following equations:

E 3
2
(1) − E 3

2
(0) = J

(
1 − 13

2
β2 + 511

16
β3

)
, (A5)

E 3
2
(2) − E 3

2
(0) = 3J

(
1 − 9

2
β2 + 279

16
β3

)
, (A6)

E 3
2
(3) − E 3

2
(0) = 6J

(
1 − 3

2
β2 + 171

16
β3

)
. (A7)

As before, the system of equations can be inverted in order to
obtain expressions for J , β2, and β3 in terms of the excitations
energies; this then allows us to match the spin model with
the fermionic calculation and obtain the dependence of the
parameters with U and t3.
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(a) (b)

(c) (d) (e)

FIG. 10. Parameters of the spin model, obtained by matching
the spin dimer energy levels to the CAS calculations for triangulene
dimers, as a function of U , for t3 = 0.06t , t3 = 0.1t , and t3 = 0.14t .
Panels (a) and (b) show the results for the [3]triangulene dimer, and
panels (c)–(e) show the results for the [4]triangulene dimer.

In Fig. 10 we present the values of J , β2, and β3 obtained
for the two considered molecules, as a function of U , for
possible values of t3. In each panel, the data are presented
only up to the critical value of U for which the crossover
between low- and high-energy excitations occurs; for smaller
U the extraction of the spin model parameters is not valid.
From these figures, one clearly sees that, for both dimers, the
intermolecular AF exchange J is on the order of a few tens of
meV, with the n = 3 dimer presenting a stronger intermolecu-
lar exchange than the n = 4. In both molecules we find that for
U � |t |, the parameter β2, which quantifies the weight of the
quadratic term relative to the linear one in the model Hamil-

TABLE IV. Energy scales for [n]triangulene dimers, obtained
with t3 = 0.1t . MO index m refers to the rank of a given molecular
orbital when these are ordered in increasing energy order; the indices
in parentheses refer to the electron-hole symmetric partners. δ is the
energy splitting between electron-hole symmetric orbitals. IPR is the
inverse participation ratio defined in Eq. (B1) of the sublattice mode
of Eq. (B2). r is defined in Eq. (B3), and its value, obtained assuming
U = |t |, indicates the closed- or open-shell nature of a given pair of
MOs.

n MO index, m δ (meV) IPR r

3 20 (23) 199 0.139 0.53
3 21 (22) 0.2 0.140 5 × 10−4

4 30 (35) 197 0.132 0.55
4 31 (34) 0.2 0.092 10−3

4 32 (33) 0 0.069 0

tonian, takes values up to approximately 1/5, emphasizing its
importance to accurately describe these molecules with a spin
model. The value of β3, describing the strength of the cubic
term relative to the leading one, is found to be much smaller
than β2, indicating that it introduces only a small correction
in the spectrum of the [4]triangulene dimer. Moreover, the fact
that β3 � β2 further justifies our choice of setting β3 = 0 for
the n = 3 dimer.

Finally, we note that, for the n = 3 dimer, the value of β2

approaches 1/3 asymptotically as U decreases. In that limit,
the spin model—which corresponds to the well-known AKLT
model [58]—has a vanishing singlet-triplet gap, but it is not
a faithful description of the fermion model. We note that the
singlet-triplet gap cannot vanish for the Hubbard model, as
Lieb’s theorem [8] states that the ground state is unique.

APPENDIX B: COMPARISON OF ENERGY SCALES
CONTROLLING OPEN-SHELL NATURE

OF [n]TRIANGULENE DIMERS

A preliminary estimate of the open-shell nature of
[n]triangulene dimers can be obtained by analyzing the ra-
tio between intermolecular hybridization energy of the zero
modes and the effective addition energy.

The low-energy MOs are bonding and antibonding linear
combinations of zero modes. Therefore, the intermolecular
hybridization is proportional to the splitting between electron-
hole symmetric single-particle energies, ±Em, given by δm =
2|Em|. The addition energy associated with the double oc-
cupancy of a single-triangulene zero mode is given by the
product of the atomic Hubbard repulsion parameter U with
the inverse participation ratio (IPR) [7],

U (±)
m = U

∑
i

|z±
m (i)|4, (B1)

where the zero mode wave functions can be obtained from
the MOs |m±〉, associated with the states with energies ±Em,
through the equation

|z±
m 〉 = 1√

2
(|m+〉 ± |m−〉). (B2)

We note that the zero modes so obtained are not necessarily
identical to those obtained from the solution of the individual
triangulene problem, on account of the degeneracy of the zero
mode manifold, which allows one to define different zero
mode bases. The values of U depend on that choice. It is
found that for centrosymmetric triangulene dimers, U (+)

m =
U (−)

m ≡ Um. Thus, considering only these two energies, every
electron-hole symmetric pair maps into an effective Hubbard
model dimer at half-filling, with effective hopping τm = δm/2
and Hubbard repulsion Um. Depending on the ratio between
these two energies [66],

rm = δm

Um
= 2τm

Um
, (B3)

the Hubbard dimer model can describe a closed-shell
configuration, for large rm, where two electrons occupy
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the bonding state with energy −|Em|, or an open-shell
system where double occupancy of the zero modes is
inhibited. We also note that the representation of the
many-body Hamiltonian on the zero mode basis contains
other interacting terms that couple the effective Hubbard
dimers.

In Table IV we show the values of rm for the n = 3 and n =
4 triangulene dimers, obtained with U = |t | and t3 = 0.1t . All
ratios are smaller than 1, in some cases much smaller. For
comparison, the ratios for the closest energy MOs not formed
with zero modes are ∼10 for n = 3 and ∼11 for n = 4. This
analysis backs up the open-shell nature of triangulene dimers.
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