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Quasiparticles of decoherence processes in open quantum many-body systems: Incoherentons
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The relaxation dynamics of an open quantum system is determined by the competition between the coherent
Hamiltonian dynamics of a system and the dissipative dynamics due to interactions with environments. It is
therefore of fundamental interest to understand the transition from the coherent to incoherent regimes. We
find that hitherto unrecognized quasiparticles—incoherentons—describe this coherent-to-incoherent transition
in eigenmodes of a Liouvillian superoperator that governs the dynamics of an open quantum many-body system.
Here, an incoherenton is defined as an interchain bound state in an auxiliary ladder system that represents the
density matrix of a system. The Liouvillian eigenmodes are classified into groups with different decay rates
that reflect the number of incoherentons involved therein. We also introduce a spectral gap—quantum coherence
gap—that separates the different groups of eigenmodes. We demonstrate the existence of incoherentons in a
lattice boson model subject to dephasing, and show that the quantum coherence gap closes when incoherentons
are deconfined, which signals a dynamical transition from incoherent relaxation with exponential decay to
coherent oscillatory relaxation. Furthermore, we discuss how the decoherence dynamics of quantum many-body
systems can be understood in terms of the generation, localization, and diffusion of incoherentons.
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I. INTRODUCTION

Understanding the role of environments on quantum co-
herence presents a key challenge in quantum physics [1–3].
The concomitant decoherence of quantum superposition of a
system places a major obstacle in the development of quantum
technologies [4–7]. Moreover, there has been a surge of inter-
est in nonequilibrium dynamics of open quantum many-body
systems owing to experimental progress in atomic, molecular,
and optical (AMO) systems, enabling one to control not only
the Hamiltonian of a quantum system but also its coupling to
an environment [8–18].

The dynamics of an open quantum system can, in general,
be described by a quantum master equation for its density ma-
trix. In particular, in a typical AMO system, the weak coupling
and the separation of time scales between the system and an
environment allow the dynamics of the density matrix to be
described by a Markovian quantum master equation [3]. The
superoperator that generates the time evolution of the density
matrix is referred to as the Liouvillian L. The relaxation
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dynamics of an open quantum system is fully characterized
by the complex spectrum and eigenmodes ofL. In general, the
LiouvillianL consists of a coherent part describing the unitary
time evolution governed by the Hamiltonian of the system
and an incoherent part due to the coupling with the environ-
ment. The competition between these contributions causes a
transition from a coherent regime to an incoherent one. Such
a coherent-to-incoherent transition, a phenomenon found in
many quantum systems [19–28], is detrimental to quantum
technologies, including quantum computation. However, it is
a formidable task to understand how decoherence proceeds in
open quantum many-body systems because of exponentially
large Hilbert-space dimensions. It is highly desirable to es-
tablish an effective description of the competition between
coherent and incoherent dynamics in many-body systems. In
this regard, it should be recalled that the concepts of spectral
gaps and quasiparticles play a pivotal role in quantum many-
body physics. In isolated systems, quantum phase transitions
in the ground state are characterized by the closing of the
spectral gap [29], and the low-energy behavior is governed by
quasiparticle excitations, which allow an effective description
of complex many-body systems [30].

In the present paper, we investigate spectral gaps and
quasiparticles that characterize the physics of Markovian
open quantum many-body systems described by a Liouvillian
superoperator. Note, however, that the incoherent-coherent
transition often occurs far from the steady state, in which the
conventional low-energy description in terms of quasiparticles
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FIG. 1. Quasiparticle description of relaxation processes in terms
of incoherentons. (a) An incoherenton is a bound state between the
degrees of freedom of ket and bra spaces of a density matrix. (b) The
incoherent-coherent transition of eigenmodes can be characterized
by the deconfinement of incoherentons (left panel) and the closing
of the quantum coherence (QC) gap �QC (middle panel), where λ is
the eigenvalue of the Liouvillian. The QC gap closing causes a dy-
namical transition from incoherent exponential relaxation to coherent
oscillatory relaxation (right panel). (c) The many-body eigenmodes
are classified into groups according to the number of incoherentons
involved. Each group of eigenvalues is separated from the others by

is inapplicable. We here discover quasiparticles, “incoheren-
tons,” that naturally describe the incoherent-coherent transi-
tion in Liouvillian eigenmodes of open quantum many-body
systems. As opposed to the conventional notion of quasipar-
ticles, incoherentons are applicable to far-from-equilibrium
regions. Incoherentons are defined on a space of operators
due to the matrix nature of the density matrix. To show this,
we use the fact that any density matrix of a system can be
mapped to a vector in the tensor product space of bra and
ket spaces. Since this product space can be interpreted as the
Hilbert space of a ladder system consisting of two chains of
bra and ket spaces [see Fig. 1(a)], we call such a mapping the
ladder representation of the density matrix. In the ladder rep-
resentation, the Liouvillian L is mapped to a non-Hermitian
Hamiltonian L̃ of the ladder system. The coherent part of L̃
governs the independent dynamics of particles in each chain,
while the incoherent part acts as a non-Hermitian interaction
between different chains. Thus, depending on which contri-
bution is dominant, the Liouvillian eigenmode either forms a
scattering state extended over the entire ladder or an interchain
bound state in which the degrees of freedom of the two chains
are strongly correlated. Since the existence of such a bound
state implies the localization of matrix elements near diagonal
components in the original matrix representation, we will refer
to it as an incoherenton [see Fig. 1(a)].

The concept of incoherentons provides several insights
into the dynamics of open quantum many-body systems and
allows us to discover a universal mechanism for incoherent-
coherent transitions. They are summarized below as well as
in Figs. 1(b)–1(d), and will be discussed in the following
sections.

Deconfinement of incoherentons (Sec. III). The incoherent-
coherent transition of Liouvillian eigenmodes can be un-
derstood by the deconfinement of incoherentons. Since the
dissipation corresponds to chain-to-chain interactions in the
ladder representation, the confinement length of an incoher-
enton increases with decreasing dissipation, and eventually
a transition from bound to scattering states occurs at some
critical strength of dissipation [see the left panel of Fig. 1(b)].

Quantum coherence gap closing (Sec. III). When the dis-
sipation is sufficiently strong, a gap exists between groups of
Liouvillian eigenvalues with different numbers of incoheren-
tons. We call the gap between such groups quantum coherence
(QC) gap because it separates groups of eigenmodes with
different degrees of quantum coherence. The QC gap �QC

closes at the deconfinement transition [see the middle panel
of Fig. 1(b), where λ denotes the eigenvalues of L].

Incoherent-coherent dynamical transition (Sec. IV). The
QC gap closing signals the onset of a dynamical transition
from overdamped relaxation, where an inhomogeneous ini-
tial state relaxes exponentially to a uniform steady state, to
underdamped relaxation, where the local density exhibits os-
cillatory behavior [see the right panel of Fig. 1(b), where O

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
the QC gaps. Since the system loses coherence over time, the more
coherent the mode, the larger the decay rate. (d) The relaxation dy-
namics of open quantum many-body systems is effectively described
by the production, localization, and diffusion of incoherentons.
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TABLE I. Quantum phase transition of the ground state (GS), dissipative phase transition of the steady state (SS), and deconfinement
of incoherentons, which are characterized by the energy gap �E , the Liouvillian gap �L , and the QC gap �QC, respectively. The closing of
the QC gap is accompanied by a divergence of the confinement length of incoherentons. The critical slowing down of relaxation dynamics
is characteristic of both quantum and dissipative phase transitions. The deconfinement of incoherentons signals a dynamical transition from
incoherent exponential relaxation to coherent oscillatory one.

Isolated quantum system Open quantum system

Operator Hamiltonian H Liouvillian L
Transition Quantum phase transition Dissipative phase transition Deconfinement of incoherentons

State Ground states (GS) Steady states (SS) Nonsteady eigenmodes

Spectral gap Energy gap �E Liouvillian gap �L Quantum coherence gap �QC

Length scale Correlation length ξg of GS Correlation length ξs of SS Confinement length ξcon of incoherentons

Dynamics Divergence of characteristic timescales Incoherent-coherent dynamical transition

is an appropriate observable]. We argue that this provides a
hitherto unknown type of incoherent-coherent transitions in
an extended lattice system.

Hierarchy of eigenmodes (Secs. V–VII). The many-body
eigenmodes are classified into groups with different decay
rates characterized by the number of incoherentons involved
therein [see Fig. 1(c), where the small gray boxes represent in-
coherentons]. Each group of eigenvalues is separated from the
others by the QC gaps. The more incoherentons an eigenmode
involves, the slower it decays.

Many-body decoherence (Sec. VIII). The number of in-
coherentons in the density matrix increases as relaxation
proceeds, which means that the relaxation of a many-body
state is accompanied by the production of incoherentons. Fur-
thermore, the late decoherence process is characterized by the
localization and diffusion of incoherentons [see Fig. 1(d)].

Here, we highlight the distinction between the incoherent-
coherent transition described in this work and conventional
phase transitions in isolated and open quantum many-body
systems. Table I summarizes different types of transitions,
spectral gaps, and characteristic length scales. In isolated
quantum systems (see the left column of Table I), the energy
gap �E of a Hamiltonian is defined as the energy difference
between the ground state and the first excited state. The cor-
relation length ξg of the ground state and �E are related to
each other by ξg ∼ v/�E , where v is the propagation velocity
of low-energy excitations with wavelengths comparable to ξg.
Here and henceforth, the Planck constant h̄ is set to unity. At
a quantum phase transition of the ground state, ξg diverges,
accompanied by the closing of �E and the divergence of
characteristic time scales of low-energy excitations [29].

In open quantum systems, a phase transition of the steady
state, known as the dissipative phase transition [31–39], is
characterized by the Liouvillian gap �L, which is defined as
the smallest absolute value of the real parts of nonzero Liou-
villian eigenvalues (see the middle column of Table I). The
relation between the correlation length ξs of the steady state
and �L is given by ξs ∼ v/�L, where v is the propagation
velocity of excitations near the steady state. The dissipative
phase transition is characterized by the divergence of ξs and
the closing of �L [40–46]. The longest timescale for the
system to reach the steady state is expected to be inversely
proportional to �L [47–49] (see, however, Refs. [50,51] for

exceptions). Thus the closing of �L leads to the divergence of
the relaxation time.

The deconfinement of incoherentons together with the QC
gap closing constitutes the third type of transition in quantum
many-body systems (see the right column of Table I). The
relation between the confinement length ξcon of incoherentons
and the QC gap �QC is given by

ξcon ∼ �

�QC
, (1)

where � is the decay rate of relevant eigenmodes and ξcon

is measured in units of the lattice spacing. An important
distinction of the deconfinement of incoherentons from other
well-known transitions is that it is a transition of nonsteady
eigenmodes having finite lifetimes. Thus the deconfinement
of incoherentons significantly alters the transient dynamics of
open quantum systems, where incoherent-coherent transitions
are expected to take place [see the right panel of Fig. 1(b)].

This paper is organized as follows. Section II details
the ladder representation of the Liouvillian and introduces
a system of hard-core bosons subjected to on-site dephas-
ing, serving as a representative model for open quantum
many-body systems. In Sec. III, the concept of incoheren-
ton is introduced for the one-particle case. We describe the
deconfinement of incoherentons and the QC gap closing in
terms of the prototypical model. Section IV demonstrates
that the relaxation dynamics of particle density display an
incoherent-coherent transition corresponding to the param-
eter at which the QC gap closes. In Sec. V, the concept
of incoherentons is generalized to many-body systems. By
numerically diagonalizing the Liouvillian of the dephasing
hard-core bosons, we demonstrate the deconfinement of in-
coherentons and the closing of the QC gap for the many-body
case. In Sec. VI, we obtain an exact many-body solution of
the dephasing hard-core boson model with the Bethe ansatz
method, which analytically confirms the existence of inco-
herentons and their deconfinement transitions. In Sec. VII,
we discuss how the incoherenton framework can be applied
in the presence of particle exchange with the environment,
and demonstrate that the phenomenology of incoherentons
remains intact for small loss and gain rates of particles.
Section VIII introduces a simple description of many-body
decoherence via incoherentons, identifying three distinct
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decoherence regimes related to the production, localization,
and diffusion of incoherentons. In Sec. IX, we summa-
rize our results and discuss prospects for future work.
In Appendix A, general properties of the Liouvillian spectrum
and eigenmodes are summarized. In Appendix B, we present
a thorough analysis of the Liouvillian spectrum and eigen-
modes for the one-particle case without resorting to the Bethe
ansatz. In Appendix C, we show that incoherentons do not
exist in continuous systems. This fact implies that the spatial
discreteness of lattice systems is crucial for the existence of
incoherentons. In Appendix D, we discuss measuring inco-
herenton correlation functions in ultracold atomic systems. In
Appendix E, we explore the Liouvillian spectra of a dephasing
Bose-Hubbard model through numerical diagonalization and
shows the deconfinement of incoherentons within this model.
In Appendix F, we present the results for dephasing hard-core
bosons with next-nearest-neighbor hopping. In Appendices E
and F, we provide evidence supporting the universality of the
incoherenton framework.

II. LADDER REPRESENTATION OF THE LIOUVILLIAN

A. Liouvillian superoperator

We focus on Markovian open quantum lattice systems with
bulk dissipation, in which the dissipation acts uniformly on
every site. Within the Born-Markov approximation [3], the
time evolution of the density matrix ρ is described by a
quantum master equation, which is generated by a Liouvillian
superoperator L [52,53]:

dρ

dt
= L(ρ) := −i[H, ρ] +

∑
ν

(
LνρL†

ν − 1

2
{L†

νLν, ρ}
)

,

(2)
where [A, B] := AB − BA, {A, B} := AB + BA, and Lν is a
Lindblad operator. The quantum master equation (2) is jus-
tified when the time scale of dynamics induced by the
system-environment coupling is much longer than the charac-
teristic time scale of the environment. This condition is well
satisfied for typical AMO systems such as trapped two-level
atoms with spontaneous emission and an optical cavity with
photon loss [16,18,38]. The index ν for the Lindblad operator
Lν denotes the lattice sites and the types of dissipation. We
assume that each Lν has support on a finite number of sites.

The master equation (2) can be rewritten as

dρ

dt
= −i(Heffρ − ρH†

eff ) +
∑

ν

LνρL†
ν , (3)

where the non-Hermitian effective Hamiltonian Heff reads

Heff := H − i

2

∑
ν

L†
νLν . (4)

It is convenient to define

LH (ρ) := −i(Heffρ − ρH†
eff ) (5)

and

Ljump(ρ) :=
∑

ν

LνρL†
ν . (6)

In the quantum trajectory description [18], where the dynam-
ics of an open quantum system is described by stochastic

trajectories of pure states, LH describes a deterministic time
evolution generated by the effective Hamiltonian Heff , and
Ljump describes quantum jump processes.

If the Liouvillian is diagonalizable, its eigenmodes ρα can
be defined by

L(ρα ) = λαρα (α = 0, 1, . . . , D2 − 1), (7)

where λα is the αth eigenvalue and D is the dimension of
the Hilbert space H of the system. A steady state ρss corre-
sponds to an eigenmode with zero eigenvalue. We arrange the
eigenvalues {λα}α=0,...,D2−1 such that 0 = Re[λ0] � |Re[λ1]|
� · · · � |Re[λD2−1]|. General properties of the Liouvillian
spectrum and eigenmodes are summarized in Appendix A. In
terms of the Liouvillian eigenmodes, the time evolution of the
density matrix is given by

ρ(t ) = ρss +
D2−1∑
α=1

cαeλαtρα, (8)

where cα is the coefficient of eigenmode expansion of the
initial density matrix. We have assumed that the steady state
ρ0 = ρss is unique. Equation (8) implies that the relaxation
dynamics of an open quantum system is fully characterized
by the spectrum and eigenmodes of the Liouvillian.

Let {|i〉}i=1,...,D be an orthonormal basis set of H that
specifies real-space configurations of particles or spins.
For example, one can consider the real-space Fock basis
|n1, . . . , nL〉, where nl = 0, 1, . . . denotes the occupation
number of particles at site l , and L is the system size. In terms
of this orthonormal basis, the density matrix ρ is written as

ρ =
D∑

i, j=1

ρi j |i〉 〈 j| , (9)

where ρi j := 〈i|ρ| j〉. Let us identify an operator |i〉 〈 j| on H
with a vector |i〉 ⊗ | j〉 in the tensor product spaceH ⊗H , the
first (second) space of which will be referred to as the ket (bra)
space [49,54–57]. Then, the density matrix (9) is mapped onto
the following vector:

|ρ) =
D∑

i, j=1

ρi j |i〉 ⊗ | j〉 , (10)

where we have used a round ket symbol | . . . ) to emphasize
that it belongs to H ⊗H rather than H . It should be noted
that, for one-dimensional cases,H ⊗H can be considered as
the Hilbert space of a ladder system composed of two chains
(see Fig. 2). Thus, in the following, we refer to Eq. (10) as the
ladder representation of the density matrix.

In the ladder representation, the Liouvillian L is mapped
to a non-Hermitian Hamiltonian L̃ of the ladder system. The
ladder representations of LH and Ljump are given by

L̃H = −iHeff ⊗ I + iI ⊗ H∗
eff (11)

and

L̃jump =
∑

ν

Lν ⊗ L∗
ν , (12)

where I is the identity operator, and H∗
eff and L∗

ν are de-
fined as 〈i|H∗

eff | j〉 := 〈i|Heff | j〉∗ and 〈i|L∗
ν | j〉 := 〈i|Lν | j〉∗. The
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FIG. 2. Ladder representation of the density matrix. A matrix
ρ = ∑

i, j ρi j |i〉 〈 j| is mapped to a vector |ρ ) = ∑
i, j ρi j |i〉 ⊗ | j〉. In

a one-dimensional tight-binding model with L sites, a basis vector
|i〉 of the Hilbert space can be written as |n1, . . . , nL〉, where nl =
0, 1, . . . is the occupation number of particles at site l = 1, . . . , L.
Similarly, 〈 j| is represented as 〈n′

1, . . . , n′
L|. In the ladder representa-

tion, a basis vector |i〉 ⊗ | j〉 describes a state of a two-leg ladder.

eigenmodes of L̃ are given by

L̃|ρα ) = λα|ρα ) (α = 0, 1, . . . , D2 − 1), (13)

where ρα in Eq. (7) and |ρα ) in Eq. (13) are related to each
other by Eqs. (9) and (10).

We comment on the diagonalizability of the Liouvillian.
Contrary to Hermitian operators, a non-Hermitian operator is
not diagonalizable at exceptional points (EPs) [58–67]. While
the set of EPs has zero measure in the parameter space (see,
e.g., Sec. 2.6.1 in Ref. [66]), the system can encounter an
exceptional point when a certain parameter is continuously
adjusted while keeping others fixed. We note, however, that
the diagonalizability of a Liouvillian is unimportant for our
argument in this work. An EP only indicates that the Liou-
villian contains a Jordan block with size larger than one. In
the most typical case of the lowest-order EP, two eigenvec-
tors coalesce, and thus the Liouvillian involves a two-by-two
Jordan block. Nevertheless, the remaining eigenvectors, cor-
responding to one-by-one Jordan blocks, are unaffected, and
it is worth studying their structure. Consequently, even if
the Liouvillian is not diagonalizable, our argument based on
Liouvillian eigenmodes is applicable due to the predominance
of one-by-one Jordan blocks in all eigenmodes.

B. Example: hard-core bosons under dephasing

We introduce a prototypical model of open quantum many-
body systems, which will be analyzed in the following
sections to demonstrate the concept of incoherentons. The
system is defined on a one-dimensional lattice with size L
under the periodic boundary condition. The Hamiltonian of
the system is given by

H = −J
L∑

l=1

(b†
l bl+1 + b†

l+1bl ), (14)

where b†
l and bl are the creation and annihilation operators

of a boson at site l , and J represents the tunneling amplitude.
We assume the hard-core condition (b†

l )2 = 0, which prohibits
more than two particles from occupying a single site. The
Lindblad operators for on-site dephasing are given by

Ll = √
γ b†

l bl (l = 1, . . . , L), (15)

FIG. 3. (a) Schematic illustration of a system of hard-core
bosons with on-site dephasing. (b) Ladder representation of the
model. While coherent hopping acts on individual particles, the
on-site dephasing acts on a particle pair occupying the same rung
(vertical dashed line). (c) Physical implementation of on-site dephas-
ing for an atom in an optical lattice. The double arrow shows the Rabi
coupling 
 induced by a laser with frequency ωL. The wavy arrow
shows spontaneous decay with rate �s. � = ωL − ωeg is the detuning
of a laser, where ωeg is the excitation energy of the atom.

where γ denotes the strength of dephasing. Note that
the total particle number N = ∑L

l=1 b†
l bl is conserved, i.e.,

Tr[NL(ρ)] = 0 for any density matrix ρ. The steady state of
the corresponding master equation is the infinite-temperature
state ρss = D−1I , where I is the identity operator, which is a
consequence of the Hermiticity of the Lindblad operator Ll .
Figure 3(a) shows a schematic illustration of the model.

Let nl = 0, 1 be the occupation number of the hard-core
bosons at site l . We define 2L orthonormal basis vectors

|{nl}〉 =
L∏

l=1

(b†
l )nl |v〉 , (16)

where |v〉 is the vacuum state of the system. In the ladder
representation, an operator |{nl}〉 〈{ml}| on the Hilbert space
of the system is interpreted as a state |{nl}〉 ⊗ |{ml}〉 of the
ladder. The Liouvillian is then rewritten as

L̃ = iJ
L∑

l=1

(b†
l,+bl+1,+ + b†

l+1,+bl,+ − b†
l,−bl+1,− − b†

l+1,−bl,−)

+ γ

L∑
l=1

b†
l,+bl,+b†

l,−bl,− − γ N, (17)

where bl,+(−) represents the annihilation operator on the first
(second) chain of the ladder. The on-site dephasing can be
considered as an interchain interaction acting on a particle
pair occupying the same rung. Figure 3(b) shows a schematic
illustration of the ladder representation.

This model can be realized with ultracold atomic gases
in an optical lattice. The on-site dephasing can be induced
by the combined effect of coherent laser fields coupled to
two internal atomic levels and spontaneous emission [68–71].
Suppose that a ground-state atom is excited by a laser field
with frequency ωL and subsequently returns to its ground state
through spontaneous emission with rate �s. Figure 3(c) shows
a level diagram of the atom excited by the laser. The transition
rate between the ground and excited states is characterized by
the Rabi coupling 
, which is proportional to the intensity
of the laser. The detuning of the laser is given by � = ωL −
ωeg, where ωeg is the excitation energy of the atom. When
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|�| 
 
,�s, the excited state can be adiabatically eliminated
and one obtains the Lindblad master equation with an on-
site dephasing γ = �s


2/�2 [38,68,69]. The dephasing-type
Lindblad operator given by Eq. (15) also appears in a master
equation of ultracold atoms in an optical lattice driven by a
stochastically fluctuating on-site potential [72].

III. INCOHERENT-COHERENT TRANSITION AS
DECONFINEMENT OF INCOHERENTONS

A. Incoherenton: an interchain bound state

The non-Hermitian Hamiltonian L̃H defined by Eq. (11)
independently acts on each chain of the ladder and does not
create correlations between the bra space and the ket space.
If the Hamiltonian only contains kinetic energy terms which
cause hopping of particles along each chain, L̃H prefers plane-
wave eigenmodes extended over each chain of the ladder. On
the other hand, L̃jump defined by Eq. (12) plays a role of an
interchain interaction, e.g., see Eq. (17). Since each Lindblad
operator Lν has its support on a finite number of sites, L̃jump

describes a local interaction between chains. The interchain
Hamiltonian L̃jump leads to the formation of an interchain
bound state, in which the degrees of freedom in each chain
are strongly correlated. As a consequence, in the case of a
one-particle system, the eigenmodes of L̃ can be classified
into the following two groups depending on which of the
contributions from L̃H and L̃jump is dominant.

(1) Deconfined eigenmode, where the intrachain kinetic
energy dominates the interchain interaction and the eigen-
modes are extended over the entire ladder.

(2) Confined eigenmode, where the interchain interaction
dominates the intrachain kinetic energy and an interchain
bound state is formed.

In terms of this classification of eigenmodes, the inter-
play between the coherent and incoherent dynamics in open
quantum systems is understood as a competition between
the intrachain kinetic energy and the interchain interaction in
Liouvillian eigenmodes. Here, the existence of an interchain
bound state in the Lindblad ladder is nontrivial since the inter-
chain interaction L̃jump has no clear notion of repulsiveness or
attractiveness due to non-Hermiticity of L̃.

Deconfined and confined eigenmodes are schematically
illustrated in the right column of Fig. 4. We call the interchain
bound state in a confined eigenmode as an “incoherenton.”
For the one-particle case, an incoherenton is defined as fol-
lows. In the ladder representation, an eigenmode can be
written as

|ρα ) =
L∑

l,m=1

ρα,lmb†
l,+b†

m,−|v), (18)

where b†
l,+(−) is the creation operator of a particle at site l on

the first (second) chain of the ladder and |v) is the vacuum
state of the ladder. An incoherenton is represented by matrix
elements ρα,lm that decay exponentially with respect to the
relative coordinate,

|ρα,lm| ∼ e−|l−m|/ξcon (|l − m| 
 1), (19)

where ξcon is the confinement length of the incoherenton (see
the right-bottom panel of Fig. 4). The divergence of ξcon

FIG. 4. Schematic illustrations of coherent eigenmodes and in-
coherent eigenmodes for a one-particle system. We call an interchain
bound state on the ladder as an incoherenton, for which the confine-
ment length is denoted by ξcon. The gray scale shows the magnitude
of each matrix elements, where the darker one shows the larger mag-
nitude. The coherent eigenmode has both diagonal and off-diagonal
matrix elements that are comparable in magnitude, whereas the in-
coherent eigenmode has the predominant diagonal matrix elements.

signals deconfinement of an incoherenton. It should be noted
that the critical values of control parameters at which the de-
confinement transition occurs depend on the eigenmode under
consideration.

In the matrix representation of the density matrix, the
presence of an incoherenton implies the localization of the
eigenmodes near diagonal matrix elements, and its decon-
finement implies the delocalization over off-diagonal matrix
elements. Since the off-diagonal elements of the density ma-
trix measure the degree of quantum coherence, we refer to the
deconfined (confined) eigenmodes in the ladder representation
as coherent (incoherent) eigenmodes in the matrix represen-
tation. The left column of Fig. 4 illustrates the coherent and
incoherent eigenmodes. The confinement length ξcon of an
incoherenton in a confined (incoherent) eigenmode quantifies
the characteristic length scale in which the quantum coherence
in the eigenmode is retained. We also call eigenvalues associ-
ated with these eigenmodes as coherent-mode eigenvalues or
incoherent-mode eigenvalues.

B. Deconfinement transition and quantum coherence gap

We demonstrate the coexistence of the confined and de-
confined eigenmodes for the one-particle case of the model
introduced in Sec. II B. Let |l〉 = b†

l |v〉 be the state in which
the particle is located at site l . Then, {|l〉}l=1,...,L provides an
orthonormal basis set of the Hilbert space of the one-particle
sector. In terms of this basis, an eigenmode of L̃ is written as

|ρα ) =
L∑

l,m=1

ρα,lm |l〉 ⊗ |m〉 (α = 0, 1, . . . , L2 − 1), (20)

where we assume the normalization
∑L

l,m=1 |ρα,lm|2 = 1. In
the absence of coherent hopping (J = 0), the matrix elements
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FIG. 5. Liouvillian spectra and eigenmodes of the one-particle
model under on-site dephasing subject to the periodic boundary con-
dition. (a) Spectra with γ = 1 and J = 0.15, 0.2, 0.25, and 0.3. The
system size is L = 20. The eigenvalues satisfying Sα,off/Sα,diag < 0.1
are shown by red squares and the other eigenvalues are shown by
blue circles. (b) Color plots of |ρα,lm| corresponding to the eigen-
values indicated by the arrows ( i )–(iv) in (a). (c) {Nb,α}α=0,...,L2−1 of
eigenmodes with varying J for system size L = 10 (left) and L = 20
(right).

of L̃ are given by

(〈l| ⊗ 〈m|)L̃(|l ′〉 ⊗ |m′〉) = γ δlmδl ′m′δll ′ − γ δll ′δmm′ . (21)

Thus the action of L̃ is decoupled into a “diagonal” subspace
spanned by {|l〉 ⊗ |l〉}l=1,...,L and an “off-diagonal” subspace
spanned by {|l〉 ⊗ |m〉}l,m=1,...,L;l �=m. In the diagonal subspace,
there is an L-fold degenerate eigenvalue λ = 0, and in the
off-diagonal subspace, there is an (L2 − L)-fold degenerate
eigenvalue λ = −γ .

We next consider the cases of J �= 0. A detailed analysis
of the one-particle eigenmodes is presented in Appendix B.
In the presence of a nonzero coherent hopping, since L̃H

mixes the diagonal subspace with the off-diagonal one, the
diagonal eigenmodes with eigenvalues near 0 are no longer
exactly diagonal. However, when J � γ , the matrix elements
ρα,lm of the eigenmodes are still localized near the diagonal
elements as in Eq. (19). Figure 5(a) shows the Liouvillian
spectra obtained by numerical diagonalization. To distinguish

the incoherent (confined) eigenmodes from the coherent (de-
confined) ones, it is convenient to define

Sα,diag :=
∑

|l−m|<L/4

|ρα,lm|, Sα,off :=
∑

|l−m|�L/4

|ρα,lm|. (22)

The smaller Sα,off/Sα,diag is, the stronger the localization
of the eigenmode is. In Fig. 5(a), the incoherent-mode
eigenvalues whose eigenmodes satisfy Sα,off/Sα,diag < 0.1 are
shown by red squares, and the other eigenvalues by blue
circles.

For a weak coherent hopping (J = 0.15 or 0.2), the Liou-
villian spectrum consists of the incoherent-mode eigenvalues
on the real axis and the coherent-mode eigenvalues accu-
mulated around Re[λ] = −γ = −1. For J = 0, these two
types of eigenvalues are highly degenerate at λ = 0 and
−γ . The presence of a nonzero J lifts such degeneracy and
leads to two elongated bands parallel to the real and imag-
inary axes. Let us define the quantum coherence (QC) gap
�QC as

�QC := min
α, β

∣∣λ(c)
α − λ

(i)
β

∣∣, (23)

where {λ(c)
α } and {λ(i)

β } are the coherent-mode eigenval-
ues (blue circles) and the incoherent-mode eigenvalues (red
squares), respectively. The QC gap �QC should not be con-
fused with the Liouvillian gap �L. While �L = |Re[λ1]| is the
gap between the steady state and the slowest decaying eigen-
mode, �QC is the gap between spectral bands of nonsteady
eigenmodes.

As J increases, �QC decreases, and for J � Jc = 0.25,
the bands of the coherent-mode and incoherent-mode eigen-
values touch one another. The arrows ( i )–(iv) in Fig. 5(a)
track an evolution of one eigenvalue that has the small-
est real part in the incoherent-mode spectrum for J < Jc.
Figure 5(b) shows the color plots of |ρα,lm| corresponding to
these eigenvalues. For ( i ) and (ii), ρα,lm is well localized near
the diagonal elements. In contrast, for (iv), ρα,lm is delocalized
over the off-diagonal elements. Thus, in the ladder represen-
tation, the deconfinement transition of an incoherenton occurs
at Jc = 0.25.

From Eq. (B12) in Appendix B, the incoherent-mode
eigenvalue with the maximal |Re[λ]| is given in the limit of
L → ∞ by

λ = −γ +
√

γ 2 − 16J2. (24)

Since the real parts of the coherent-mode eigenvalues are
identical to −γ in this limit (see Appendix B), we have

�QC =
√

γ 2 − 16J2. (25)

Thus the critical value of J at which �QC closes is given by

Jc = γ

4
. (26)

While Eq. (24) implies that a real-complex transition occurs
at J = Jc for the infinite system, the incoherent-mode eigen-
values for a finite system indicated by the arrows ( i )–(iv) in
Fig. 5(a) remain real for J > Jc.
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For each eigenmode |ρα ), we define the fraction of an on-
site bound pair in |ρα ) as

Nb,α :=
L∑

l=1

(ρα|nl,+nl,−|ρα )

(ρα|ρα )
, (27)

where nl,± = b†
l,±bl,± is the number-density operator, and

Nb,α ∈ [0, 1]. For J = 0, Nb,α = 1 for the incoherent eigen-
modes and Nb,α = 0 for the coherent eigenmodes. Figure 5(c)
shows {Nb,α}α=0,...,L2−1 for different values of J and the system
sizes L = 10 and 20. For J < Jc = 0.25, there exists a gap
between clusters of Nb,α around 0 and 1, and it closes at
J = Jc. The width of the cluster around Nb,α = 0 decreases
in inverse proportion to L, which implies that the eigenmodes
in this cluster are scattering states that extend over the entire
system. In contrast, the width of the cluster around Nb,α = 1
is independent of L because the eigenmodes in this cluster are
localized with a confinement length ξcon, which is independent
of L. Thus, in the limit of L → ∞, Nb,α can be considered as
an order parameter, which has a nonzero value for incoherent
eigenmodes but vanishes for coherent eigenmodes.

The relation between �QC and the confinement length ξcon

that is maximized over all incoherentons is given by Eq. (1).
This relation may be interpreted as follows. Let us denote
the typical decay rate of coherent eigenmodes (without in-
coherenton) as �coh and that of incoherent eigenmodes (with
an incoherenton) as �inc. For on-site dissipation, in which
each Lν acts on a single lattice site, the decay rate of ex-
tended coherent eigenmodes is larger than that of localized
incoherent eigenmodes because the dissipation suppresses
off-diagonal elements of the density matrix. Note that �inc

approaches �coh as ξcon diverges to infinity. Thus we assume
(�coh − �inc)/�coh ∼ 1/ξcon, where ξcon is measured in units
of the lattice spacing. While we have no general proof for
this assumption, we can prove it for the one-particle model
under on-site dephasing (see Appendix B). Since �QC �
�coh − �inc, we obtain Eq. (1).

It should be noted that the examination of the one-particle
spectra and eigenmodes provided above is essentially the
same as the analysis in Sec. III of Ref. [49]. The author of this
reference considered the XX spin chain with bulk dephasing,
which is equivalent to dephasing hard-core bosons discussed
in our study. We note that Eq. (8) and Figs. 3 and 4 in Ref. [49]
correspond to Eq. (B12) and Fig. 5 in our study, respectively.
The primary distinction between Ref. [49] and our study is
that the former emphasizes the most slowly decaying mode
which determines the Liouvillian gap �L, whereas the latter
focuses on the most rapidly decaying mode in the incoherent
eigenmodes which governs the QC gap �QC [see the arrows
in Fig. 5(a)].

We draw attention to the connection between our find-
ings and exceptional points (EPs) in non-Hermitian physics
[58–67]. The eigenvalues typically exhibit a square-root de-
pendence on the parameter near an EP. As indicated by
Eq. (24), the critical value Jc, where the deconfinement of an
incoherenton takes place, signifies an EP of the Liouvillian
in the limit of infinite system size. Thus we have identified
a novel class of EPs associated with the transition between
coherent and incoherent attributes of eigenmodes. In addi-
tion, as detailed in Secs. V and VI, the deconfinement of

incoherentons can be generalized to many-body cases. The
deconfinement of incoherentons offers a generic mechanism
of producing EPs that have a significant consequences on the
dynamics in open quantum many-body systems.

The discrete nature of a lattice system is essential for
the formation of incoherentons. In fact, for a free particle
under a dephasing-type dissipation in continuous space, we
can show the absence of such an interchain bound state (see
Appendix C). The creation of a bound state due to spatial
discreteness in a lattice system has also been known in the
conventional two-body problem with a repulsive interaction
[73]; while in continuous space no bound state is allowed
between particles with a repulsive interaction, on a lattice a
bound state exists for an arbitrarily strong repulsive interac-
tion.

IV. INCOHERENT-COHERENT
DYNAMICAL TRANSITION

We have shown that the QC gap �QC closes at a certain
critical point. Since the dynamics of open quantum systems
are intimately related to the Liouvillian spectrum, it is natural
to expect that such a change in the structure of the spectrum
would significantly alter the transient dynamics to the steady
state. In this section, we demonstrate that the QC gap closing
is accompanied by an incoherent-coherent dynamical transi-
tion from overdamped relaxation dominated by dissipation to
underdamped relaxation dominated by unitary time evolution.

In the one-particle sector, {|l〉 = b†
l |v〉}l=1,...,L provides an

orthonormal basis set of the Hilbert space. We denote the
corresponding matrix elements of the density matrix as ρlm,
which satisfies a normalization condition

∑
l ρll = 1. We note

that the steady state ρss is given by the infinite-temperature
state, (ρss)lm = L−1δlm. We consider the following initial
state, whose particle density is modulated with wave number
k,

ρlm(0) = L−1(1 + �n cos kl )δlm, (28)

where k = 2πs/L (s = −L/2 + 1, . . . , L/2), and �n repre-
sents the amplitude of the density modulation. For J = 0, the
initial state given by Eq. (28) shows no time evolution because
the action of the Liouvillian to any diagonal density matrix
vanishes. In the presence of a nonzero J , the density matrix
relaxes toward the uniform steady state ρss. The perturbation
with wave number k to the steady state can selectively excite
the incoherent eigenmodes with the same wave number k.
Thus we expect that the decay rate of the particle density
starting from the initial state (28) with each k reflects the
structure of the incoherent-mode spectrum.

From the density profile nl (t ) = ρll (t ) at time t , we define

n(k, t ) :=
L∑

l=1

nl (t )e−ikl , (29)

which relaxes to zero in the limit of t → ∞ for k �= 0.
Figures 6(a) and 6(b) show n(π, t ) and n(π/2, t ) for different
values of J , respectively. The decay rate is a decreasing func-
tion of J and it vanishes at J = 0. From these figures, one finds
that there exists a k-dependent critical value J rel

c (k) below
which n(k, t ) exhibits an exponential decay e−�t and above
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FIG. 6. Time evolution of the amplitude of the density modu-
lation. (a) n(π, t ) with γ = 1 and system size L = 20. The values
of J are increased from 0.2 (top) to 0.3 (bottom) in increments of
0.01. The amplitude of the density modulation for the initial state
is �n = 0.5. (b) n(π/2, t ) with γ = 1 and system size L = 20. The
values of J are increased from 0.3 (top) to 0.4 (bottom) in increments
of 0.01. (c) eγ t n(π, t ) for the same values of J as in (a). (d) γ − � and
ω as functions of J obtained from n(π, t ). The solid curves represent
(γ 2 − 16J2)1/2 for J < 0.25 and (16J2 − γ 2)1/2 for J > 0.25.

which it shows a damped oscillation e−γ t cos ωt . The critical
value is estimated as J rel

c (π ) � 0.25 and J rel
c (π/2) � 0.35. An

important observation is that J rel
c (k) is close to the value of

J at which the incoherent eigenmode with wave number k
exhibits the deconfinement transition. From Eq. (B12), the
incoherent-mode eigenvalue is written as

λinc(k) = −γ +
√

γ 2 − 16J2 sin2(k/2) (30)

in terms of the wave number k. This eigenvalue becomes
complex at a critical value:

Jc(k) = γ

4| sin(k/2)| . (31)

We then obtain Jc(π ) = 0.25γ and Jc(π/2) � 0.354γ , which
are close to J rel

c (π ) and J rel
c (π/2), respectively. It is reasonable

that the real-complex transition of λinc(k) is accompa-
nied by an incoherent-coherent dynamical transition from
overdamped to underdamped relaxations starting from an in-
coherent initial state. Recall that the QC closing occurs at J =
mink Jc(k) = γ /4, where the minimum is attained at k = π .

Figure 6(c) shows eγ t n(π, t ) for different values of J . For
J < 0.25, n(π, t ) decays exponentially with a rate � < γ . As
J approaches 0.25 from below, the decay rate � approaches
γ , and at the critical point J = 0.25, one finds

n(π, t ) ∼ te−γ t . (32)

Note that Eq. (32) exactly holds only in the limit of L → ∞.
For a finite system, there is a crossover from an early stage
described by Eq. (32) to a later stage showing an exponential
decay n(π, t ) ∼ e−�t with � < γ . The interval of this early
stage diverges in the limit of L → ∞. It should be recalled

FIG. 7. (a) Schematic illustration of an mth-order incoherenton.
(b) Ladder representation of a typical Liouvillian eigenmode of a
many-body system.

that the polynomial correction (32) to an exponential decay
also appears at EPs of non-Hermitian systems [58–67].

For J < 0.25, the decay rate � is evaluated from the fit-
ting of n(π, t ) by ae−�t , and for J > 0.25, the frequency ω

is evaluated from the fitting of eγ t n(π, t ) by a sin(ωt + b).
Figure 6(d) shows γ − � for J < 0.25 and ω for J > 0.25.
The solid lines represent Re[λinc(π )] + γ = (γ 2 − 16J2)1/2

for J < 0.25 and Im[λinc(π )] = (16J2 − γ 2)1/2 for J > 0.25.
We can confirm that � and ω are well approximated by
−Re[λinc(π )] and Im[λinc(π )], respectively. Thus, by measur-
ing the decay rate and the frequency of the density relaxation
starting from incoherent initial states with density modulation
of various wave numbers, one can reconstruct the incoherent-
mode spectrum of the Liouvillian.

We close this section by stressing that our work provides
a new type of incoherent-coherent dynamical transition in
open quantum lattice systems. Previous incoherent-coherent
dynamical transition has mostly been studied with respect to
the spin-boson model, where the expectation value of the spin
variable shows a transition from overdamped to underdamped
relaxation [19–26]. An important distinction from the spin-
boson model is that our model has spatially extended degrees
of freedom, which play an essential role in the deconfinement
of incoherentons. Furthermore, it should be noted that the
transition discussed here becomes sharp only in the limit of
infinite system size.

V. HIERARCHY OF EIGENMODES

In the following sections, we discuss the generalization of
incoherentons and QC gap to many-body systems. In these
cases, incoherentons and deconfined particles, in general, co-
exist. Furthermore, two or more particles can form a single
bound state. We refer to such a 2m-particle composite inco-
herenton as an mth-order incoherenton [see Fig. 7(a)]. An
mth-order incoherenton can be represented by the m-particle
reduced eigenmode,

G(m)
α;l1,...,lm;lm+1,...,l2m

:= Tr
[
bl1 · · · blmραb†

lm+1
· · · b†

l2m

]
. (33)

If all particles form a single mth-order incoherenton, the m-
particle reduced eigenmode is expected to behave as

∣∣G(m)
α;l1,...,lm;lm+1,...,l2m

∣∣ ∼
2m∏

i, j=1

e−|li−l j |/ξcon , (34)

where ξcon is the confinement length. Figure 7(b) shows the
ladder representation of a typical Liouvillian eigenmode. The
eigenmodes of the N-body system can be classified accord-
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FIG. 8. Hierarchy of eigenmodes for a three-particle case. The
eigenmodes are ordered from top to bottom in decreasing order of
their decay rates |Re[λ]|. The lower end of the most incoherent
band represents the steady state. For (a) with J < Jc, the groups
of eigenmodes with different decay rates are separated by the QC
gap �QC. For (b) with J > Jc, the QC gap closes and all groups are
continuously connected.

ing to how many mth-order incoherentons (1 � m � N) they
contain. In this section, we describe a typical scenario for the
structure of eigenmodes and spectra, which is expected to be
applicable to a broad class of dephasing-type dissipation.

Let J be a parameter of the Hamiltonian that creates quan-
tum coherence between lattice sites, such as the tunneling
amplitude between adjacent sites, and let γ be a parameter that
describes the strength of dissipation. The balance between J
and γ characterizes the competition between the intrachain ki-
netic energy L̃H and the interchain interaction L̃jump. Figure 8
shows a schematic diagram of the Liouvillian eigenmodes.
The structure of the eigenmodes in the ladder representation
is depicted in boxes, with circles and squares representing
particles and incoherentons, respectively. The eigenmodes are
ordered from top to bottom in decreasing order of their decay
rates |Re[λ]|. Note that eigenmodes with a larger number of
incoherentons decay more slowly. This is because the dissi-
pation suppresses off-diagonal elements of the density matrix

and thus coherent eigenmodes with less incoherentons decay
faster.

We first consider the case where the dissipation is domi-
nant over the coherent tunneling (J � γ ). In general, strong
dissipation has the effect of suppressing the coherent evolu-
tion of quantum systems, known as the quantum Zeno effect
[74–76], which has recently attracted considerable attention in
the context of AMO systems [77–82]. As shown in Fig. 8(a),
the eigenmodes of an N-particle system are divided into N + 1
groups with different decay rates. Each group of eigenmodes
is characterized by the number of particles that do not form
incoherentons. The eigenmodes in the group with the largest
decay rate have no incoherenton, while in the eigenmodes
belonging to the group with the smallest decay rate, all par-
ticles form incoherentons. Furthermore, each group contains
eigenmodes with various types of incoherenton. For N = 3,
the group with the smallest decay rate consists of eigenmodes
in which particles form (i) three first-order incoherentons or
(ii) one first-order incoherenton and one second-order inco-
herenton or (iii) a single third-order incoherenton [see the
bottom box of Fig. 8(a)]. The nth QC gap �

(n)
QC is defined by

�
(n)
QC := min

α, β

∣∣λ(n)
α − λ

(n−1)
β

∣∣, (35)

where {λ(n)
α } are the eigenvalues with n unbound pairs

[see Fig. 8(a)].
Let us consider what would happen if the coherent tunnel-

ing amplitude J is gradually increased while keeping γ fixed
(or if the dissipation strength γ is decreased while keeping
J fixed). Since J represents the amplitude of the intrachain
tunneling L̃H , the confinement length ξcon (the QC gap �QC)
of an incoherenton increases (decreases) with increasing J .
At some critical point J = Jc, the confinement length ξcon

diverges, and a deconfinement transition of an incoherenton
takes place. The QC gap �QC closes at J = Jc. Figure 8(b)
shows the hierarchy of eigenmodes for J > Jc, which forms a
continuum where the number of incoherentons can vary con-
tinuously with respect to the decay rate. As in the one-particle
case, the relationship between ξcon and �QC is expected to be
given by Eq. (1).

We highlight the uniqueness of our findings in the con-
text of the segment structure of the Liouvillian spectrum for
strong dissipation, demonstrated in Fig. 8(a), which has been
reported for several open quantum many-body systems in
recent literature [81–83]. Firstly, Ref. [81] primarily relies on
a perturbation theory relevant only to strong dissipation. How-
ever, the closing of the QC gap or merging of spectral bands
is a nonperturbative phenomenon that cannot be adequately
captured by perturbation theory. Secondly, Ref. [83] is based
on a general concept of locality and employs a randomly con-
structed Liouvillian. Consequently, it lacks an intuitive picture
of the hierarchical structure of the Liouvillian spectrum. In
contrast, our incoherenton framework offers a clear physical
picture in terms of the number or order of incoherentons,
which elucidates the relationship between the hierarchical
structure of the spectrum and the eigenmodes associated with
each spectral band.

Let us now demonstrate the scenario of Fig. 8 for the
dissipative hard-core boson model introduced in Sec. II B.
We consider the case of particle number N = 3. For each
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FIG. 9. Liouvillian spectra and eigenmodes of the hard-core
bosons under on-site dephasing. (a) Spectra with γ = 1 and J = 0.1,
0.15, 0.2, and 0.25. The system size is L = 10 and the particle
number is N = 3. The eigenvalues satisfying 0 � Nb,α < 3/4, 3/4 �
Nb,α < 3/2, 3/2 � Nb,α < 9/4, and 9/4 � Nb,α � 3 are colored by
blue, light blue, green, and red, respectively. (b) {Nb,α}α=0,...,D2−1 of
eigenmodes with γ = 1. The system sizes are L = 6 and 8, and the
number of particles is N = 3.

many-body eigenmode |ρα ), the number of bound pairs
Nb,α is defined by Eq. (27). For J = 0, there are four
highly degenerate eigenvalues 0, −γ , −2γ , and −3γ .
The number of bound pairs and degeneracy d of eigen-
modes corresponding to each eigenvalue are given as fol-
lows: Nb = 3 and d = L(L − 1)(L − 2)/6 for λ = 0, Nb =
2 and d = L(L − 1)(L − 2)(L − 3)/2 for λ = −γ , Nb = 1
and d = L(L − 1) · · · (L − 4)/4 for λ = −2γ , and Nb = 0
and d = L(L − 1) · · · (L − 5)/36 for λ = −3γ .

Figure 9(a) shows the Liouvillian spectra with J = 0.1,
0.15, 0.2, and 0.25. The colors of the dots represent Nb,α

for the corresponding eigenmodes |ρα ). In the presence of a
nonzero but small J , there are four bands around 0, −1, −2,
and −3. As J increases, the widths of these bands increase,
and at J = Jc � 0.2, they merge almost simultaneously.
Figure 9(b) shows {Nb,α}α=0,...,D2−1 in Eq. (27) with L = 6 and
8 for different values of J from 0 to 0.25. For J = 0, Nb,α

is degenerate at 0, 1, 2, and 3. In the presence of nonzero
J , since the coherent hopping mixes the eigenmodes with
different Nb,α , the values of Nb,α distribute over a finite width
around 0, 1, 2, and 3. The gaps between these clusters close
at J � 0.2, which is identical to the value of J at which the
QC gap in the Liouvillian spectrum closes. It should be noted
that the critical hopping amplitude Jc � 0.2 is slightly shifted

from that for the one-particle case Jc = γ /4 = 0.25 ow-
ing to the interactions among incoherentons and deconfined
particles.

It is a nontrivial issue whether the critical hopping ampli-
tude Jc, at which the QC gap closes, remains nonzero when the
limit of infinite system size is taken at a constant density N/L.
In Sec. VI, we will show that a certain class of incoherentons
exhibits deconfinement at a value of J independent of the
system size. However, this does not mean that Jc is gener-
ally independent of the system size because Jc could depend
on spectral bands. Specifically, it is widely believed that an
infinitesimally small integrability-breaking perturbation leads
to random matrix statistics at the center of the spectrum
[84–86], implying that Jc becomes zero for bands located
at the center of the spectrum in the thermodynamic limit.
However, even if this is the case, Jc for spectral bands near
the steady state may remain nonzero in the thermodynamic
limit.

Note that Nb,α counts the number of the particle pairs
forming incoherentons, but does not indicate the order of
incoherentons. As illustrated in Fig. 8, the spectral band with
the smallest decay rate comprises three types of eigenmodes,
which Nb,α fails to distinguish. To quantify the number of
incoherentons of each order, we introduce incoherenton cor-
relation functions:

C(2)
α (m) =

L∑
j=1

(ρα|n j,+n j,−n j+m,+n j+m,−|ρα )

(ρα|ρα )
, (36)

C(3)
α (l, m) =

L∑
j=1

(ρα|n j,+n j,−n j+l,+n j+l,−n j+m,+n j+m,−|ρα )

(ρα|ρα )
,

(37)

and so on. The qualitative features of C(s)
α (m1, . . . , ms−1) (s =

2, 3, . . . ) allow the identification of the type of eigenmodes.
For instance, let us consider the spectral band with the second
smallest decay rate in Fig. 8. It includes two types: (i) one
with two first-order incoherentons and (ii) the other with a
single second-order incoherenton. While C(2)

α (m) takes an al-
most constant value for type (i) eigenmodes, it exponentially
decreases with respect to m for type (ii) eigenmodes. Simi-
larly, the eigenmodes within the band with the smallest decay
rate can be classified based on the behavior of C(3)

α (l, m).
Figure 10(b) shows a spectrum where color differentiates the
type of eigenmodes. In particular, color maps of C(3)

α (l, m) for
three representative eigenmodes in the band with the smallest
decay rate are displayed in Fig. 10(c). These three types of
eigenmodes can be distinguished on the basis of whether
C(3)

α (l, m) is delocalized, localized on the edge, or localized
at the corners. It is worth emphasizing that quantities like
Nb,α and C(2)

α (m) can be experimentally measured in ultracold
atoms on optical lattices through a process involving the in-
terference of two system copies and the enumeration of atoms
within each copy [87,88]. Detailed experimental protocols are
explained in Appendix D.

We here remark on the universal validity of the scenario
illustrated in Fig. 8. We expect that it is applicable to systems
with local dissipation that satisfies the detailed balance con-
dition. In the context of Markovian open quantum systems,
the detailed balance condition is expressed as ρGL†(A)∗ =
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FIG. 10. Classification of eigenmodes of the dephasing hard-
core bosons. (a) Complete spectrum with γ = 1 and J = 0.15. The
system size is L = 10 and the particle number is N = 3. (b) Part of
the spectrum corresponding to the red square in panel (a). The color
differentiates between the types of eigenmodes, which are illustrated
in the insets. (c) Color maps of C (3)

α (l, m) for three representative
eigenmodes with eigenvalues λ = −0.314, −0.194, and −0.03. To
emphasize off-diagonal components, the values of C (3)

α (l, m) at l =
0, m = 0, and l = m are set to zero. For eigenmodes with three first-
order incoherentons, C (3)

α (l, m) is delocalized across the full range
of l and m. For eigenmodes with one first-order incoherenton and
one second-order incoherenton, C (3)

α (l, m) is localized at the edge of
the (l, m) space. For eigenmodes with one third-order incoherenton,
C (3)

α (l, m) is localized at the corner of the (l, m) space. In panel (b),
the eigenmodes in the band with the smallest decay rate are classified
on the basis of whether the point (l∗, m∗) that maximizes C (3)

α (l, m)
is located in the bulk, edge, or corners of the (l, m) space.

L(ρGA∗) for any operator A, where ρG = e−βH/Tr[e−βH ] is
the Gibbs state with an inverse temperature β and ∗ de-
notes the complex conjugation [89]. If the system satisfies
the detailed balance condition, it relaxes to the equilibrium
state described by ρG. The on-site dephasing Ll = b†

l bl satis-
fies this condition with β = 0. In Appendices E and F, we
present numerical results for other models, i.e., dephasing
Bose-Hubbard model and dephasing hard-core bosons with
next-nearest-neighbor hopping. In the Bose-Hubbard model,
unlike the hard-core model discussed above, a single lattice
site can be occupied by multiple particles. The Liouvillian
eigenmodes of this model also show a hierarchical structure
depending on the numbers of interchain bound states (inco-
herentons) and intrachain bound states, and the QC gap in the
spectrum closes at a certain value of the hopping amplitude.
The results presented in Appendices E and F support the
universality of our scenario.

The impact of dissipation violating the detailed bal-
ance condition on the hierarchical structure of spectra is
nontrivial. In Sec. VII, we explore the scenario involving
particle loss and gain and demonstrate that the hierarchical
structure is preserved. However, when dissipation induces
a current, the hierarchical structure depicted in Fig. 8 can

undergo substantial changes. A simple example of such dis-
sipation is realized by the Lindblad operators Ll = b†

l+1bl ,
which describe stochastic hopping induced by external driving
[51,90,91]. In this case, we observe that the spectrum pos-
sesses a topologically distinct structure from the striped band
structure shown in Fig. 9, which will be elaborated in a future
publication.

VI. EXACT MANY-BODY SOLUTION

While we have shown the numerical results for the many-
body system in the previous section, analytical solutions are
also possible since the dissipative hard-core boson model can
be exactly solved by the Bethe ansatz [92]. In the following,
we derive an exact many-body solution of the model to show
that some Liouvillian eigenmodes have higher-order incoher-
entons and that they exhibit the deconfinement transition at a
critical hopping amplitude. First, it should be noted that the
hard-core bosons can be mapped to the XX chain,

H = −J

2

L∑
l=1

(
σ x

l σ x
l+1 + σ

y
l σ

y
l+1

)
, (38)

by using the following identification between the bosonic
operators bl and the Pauli matrices σ

μ

l :

b†
l = σ+

l = σ x
l + iσ y

l

2
, bl = σ−

l = σ x
l − iσ y

l

2
. (39)

Thus our model can be regarded as a dissipative spin chain
with Lindblad operators

Ll = √
γ σ+

l σ−
l =

√
γ (σ z

l + 1)

2
(l = 1, . . . , L). (40)

The boundary condition is set to be periodic: σ
μ
L+1 = σ

μ
1 (μ =

x, y, z). In this section, we assume that the system size L is
even.

Employing the Jordan-Wigner transformation, we intro-
duce a fermion annihilation operator

cl := exp

⎡
⎣ iπ

2

l−1∑
j=1

(
σ z

j + 1
)⎤⎦σ−

l , (41)

which satisfies the anticommutation relations {cl , c†
m} = δlm

and {cl , cm} = 0, and rewrite the Hamiltonian and the Lind-
blad operator as

H = −J
L−1∑
l=1

(c†
l cl+1 + c†

l+1cl ) − Jeiπ (N+1)(c†
Lc1 + c†

1cL )

(42)
and

Ll = √
γ c†

l cl (l = 1, . . . , L), (43)

where N = ∑L
l=1 c†

l cl is the number of fermions.
We here use a pseudospin index σ =↑,↓ to express each

chain in the ladder representation of the Liouvillian, and de-
note the annihilation operator of a fermion on each chain
as cl,σ . Then, the ladder representation of the Liouvillian
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(multiplied by i) reads

iL̃ = −
L−1∑
l=1

∑
σ=↑,↓

Jσ (c†
l,σ cl+1,σ + c†

l+1,σ
cl,σ )

−
∑

σ=↑,↓
Jσ eiπ (Nσ +1)(c†

L,σ c1,σ + c†
1,σ cL,σ )

+ iγ
L∑

l=1

c†
l,↑cl,↑c†

l,↓cl,↓ − iγ

2
(N↑ + N↓), (44)

where J↑ = −J↓ = J and Nσ := ∑L
l=1 c†

l,σ cl,σ is the number
of fermions on each chain. The dependence of the hopping
amplitude Jσ on the pseudospin can be removed by a unitary
transformation

U †cl,↑U = cl,↑, U †cl,↓U = (−1)l cl,↓, (45)

and the transformed Liouvillian iU †L̃U is equivalent to the
Hubbard model with an imaginary interaction strength and an
imaginary chemical potential [92,93]. Since we focus on the
LiouvillianL of an N-particle system, we assume N↑ = N↓ =
N . Note that if N is odd (even), the periodic (antiperiodic)
boundary condition is imposed on fermions on each chain. For
this reason, we hereafter consider the non-Hermitian Hubbard
model under a flux

Hφ := −J
L∑

l=1

∑
σ=↑,↓

(e−iφ/Lc†
l,σ cl+1,σ + eiφ/Lc†

l+1,σ
cl,σ )

+ iγ
L∑

l=1

c†
l,↑cl,↑c†

l,↓cl,↓ − iγ

2
(N↑ + N↓), (46)

with the periodic boundary condition, cL+1,σ = c1,σ . If N is
odd or even, φ is set to 0 or π , respectively. Instead of twisting
the particular bond between the sites l = 1 and L, we have
introduced a uniform complex hopping amplitude to ensure
the translation invariance of the model. The original model
with the twist at the particular bond is obtained by performing
the gauge transformation cl,σ → exp(iφl/L)cl,σ onHφ .

The Hubbard model (46) has the spin SU(2) symmetry
[Hφ, Sμ] = 0 (μ = +,−, z), where

S+ =
L∑

l=1

c†
l,↑cl,↓, S− = (S+)†, (47)

Sz = 1

2

L∑
l=1

(c†
l,↑cl,↑ − c†

l,↓cl,↓). (48)

In addition, for φ = 0 or π , the model (46) possesses the
η-SU(2) symmetry [94,95] [Hφ, η

μ
φ ] = 0 (μ = +,−) and

[Hφ, ηz] = 0, where

η+
φ =

L∑
l=1

(−1)l e2iφl/Lc†
l,↑c†

l,↓, η−
φ = (η+

φ )†, (49)

ηz = 1

2

L∑
l=1

(c†
l,↑cl,↑ + c†

l,↓cl,↓ − 1), (50)

which are generalized in order to incorporate the case of
antiperiodic boundary condition [96]. These symmetries are
called the weak symmetry of the Lindblad equation and lead
to a block-diagonal structure of the Liouvillian [97,98].

The one-dimensional Hubbard model (46) is exactly
solvable by using the Bethe ansatz method [99,100]. The
Yang-Baxter integrability of the Hubbard model is pre-
served even when the interaction strength is complex valued
[92,93,101]. The Bethe equations for the Hubbard model (46)
are given by [99,100,102]

eikaL−iφ =
N↓∏

α=1

�α − sin ka − iu

�α − sin ka + iu
, (51)

N↑+N↓∏
a=1

�α − sin ka − iu

�α − sin ka + iu
= −

N↓∏
β=1

�α − �β − 2iu

�α − �β + 2iu
, (52)

where ka (a = 1, . . . , N↑ + N↓) is a quasimomentum,
�α (α = 1, . . . , N↓) is a spin rapidity, and u = iγ /(4J ) is
the pure-imaginary dimensionless interaction strength. An
eigenvalue λ of L is obtained from a solution of the Bethe
equations as

λ = −γ (N↑ + N↓)

2
+ 2iJ

N↑+N↓∑
a=1

cos ka. (53)

A Bethe wave function constructed from a solution of
the Bethe equations (51) and (52) provides a Bethe eigen-
state of the Hubbard model (46), which can be interpreted
as a Liouvillian eigenmode in the ladder representation.
Since Bethe eigenstates satisfy the highest-weight (lowest-
weight) condition of the spin SU(2) [η-SU(2)] symmetry, a
general eigenstate can be obtained by acting S− or η+

φ on
a Bethe eigenstate [96,100,103–105]. Noting the commuta-
tion relation [Hφ, η+

φ ] = 0, the steady state, Hφ|�0) = 0, is
given by

|�0) = (η+
φ )N |v), (54)

where |v) is the vacuum state of fermions [92]. Since η+
φ

creates a bound pair of particles of the two chains, the steady
state is composed of N first-order incoherentons. With the
unitary transformation (45), the state |�0) is equivalent to
the infinite-temperature state of the N-particle sector in the
original problem. We note that an incoherenton created by η+

φ

is localized on a rung of the ladder, while an incoherenton
in an excited eigenmode can have a nonzero confinement
length.

The Bethe equations (51) and (52) for sufficiently large L
allow k-� string solutions, in which a part of quasimomenta
and spin rapidities forms a string pattern [100,106]. Since
a k-� string solution of length 2m describes a bound state
made of m spin-up particles and m spin-down ones [105],
it offers an mth-order incoherenton. A k-� string of length
2m is composed of 2m quasimomenta k1, . . . , k2m and m spin
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FIG. 11. Schematic illustration of a k-� string solution in the
complex plane of sin k.

rapidities �1, . . . , �m that satisfy

k1 = arcsin[iμ + miu],

k2 = π − arcsin[iμ + (m − 2)iu],

k3 = arcsin[iμ + (m − 2)iu],

· · ·
k2m−2 = π − arcsin[iμ − (m − 2)iu],

k2m−1 = arcsin[iμ − (m − 2)iu],

k2m = π − arcsin[iμ − miu],

(55)

and

� j = iμ + (m − 2 j + 1)iu, (56)

where μ ∈ R is the center of the k-� string (see Fig. 11),
and we set the branch so that −π/2 < Re[arcsin x] � π/2
[92,93].

The deconfinement of incoherentons is diagnosed from
the disappearance of a k-� string solution. Let us consider
a situation in which all quasimomenta and spin rapidi-
ties form a single length-2m k-� string solution of the
Bethe equations for N↑ = N↓ = m. By multiplying the Bethe
equations (51) for a = 1, . . . , N , we obtain

exp

[
i

2m∑
a=1

kaL

]
= 1, (57)

where we have used Eq. (52) and the fact that φ is set to 0 or
π . Since Eqs. (55) and (57) imply that k1 + k2m is real, we can
set

k1 = p − iκ, k2m = q + iκ (p, q ∈ R, κ > 0), (58)

without loss of generality. From Eq. (55), k1 and k2m satisfy

sin k1 − sin k2m = 2miu, (59)

which leads to

(sin p − sin q) cosh κ = − 2mIm[u],

(cos p + cos q) sinh κ = − 2mRe[u]. (60)

For our case with u = iγ /(4J ), the solution of Eq. (60) is
given by

q = p + π (61)

and

cosh κ = − mγ

4J sin p
. (62)

For a given p = Re[k1], the imaginary part κ is obtained from
Eq. (62), and by substituting k1 = p − iκ into sin k1 = iμ +

miu, the center of the string can be calculated as

μ = − cos p sinh κ. (63)

Since cosh κ > 1, the solution of Eq. (62) exists only for

−mγ

4J
< sin p < 0. (64)

For mγ /(4J ) > 1, arbitrary −π < p < 0 satisfies the above
condition. However, for mγ /(4J ) � 1, the string solution for
some p around −π/2 disappears, indicating the deconfine-
ment of the string solution at

J (m)
c = mγ

4
. (65)

The eigenvalue given by Eq. (53) can be calculated from
Eqs. (55) and (62) as

λ = −mγ +
√

m2γ 2 − 16J2 sin2 p. (66)

Thus the deconfinement of the mth-order incoherenton occurs
at Liouvillian eigenmodes with eigenvalues λ = −mγ . We
here define the total momentum K of the mth-order incoher-
enton by

K =
2m∑
j=1

k j − mπ, (67)

where we have introduced the phase shift mπ to compensate
the unitary transformation (45). From Eqs. (55), (58), and
(61), the total momentum reads K = 2p. Thus, in terms of
K , Eq. (66) is rewritten as

λ = −mγ +
√

m2γ 2 − 16J2 sin2(K/2). (68)

The η-SU(2) symmetry [Hφ, η+
φ ] = 0 yields an eigenstate

ofHφ in the sector of N↑ = N↓ = N � m as

|�) = (η+
φ )N−m|ψ2m), (69)

where |ψ2m) is a length-2m k-� string solution of the Bethe
equations. Since η+

φ generates an on-site pair of particles with
opposite spins, |�) is interpreted as a state that involves an
mth-order incoherenton and N − m first-order incoherentons.
As the action of η+

φ does not change the eigenvalue, the decon-
finement transition of |�) occurs in Liouvillian eigenmodes
with eigenvalues near λ = −mγ . Thus we conclude that the
N-body dissipative dynamics governed by the Liouvillian L
shows the deconfinement transition of mth-order incoheren-
tons for m = 1, 2, . . . , N .

It is worth noting that the deconfinement of bound states
does not occur in the ordinary Hermitian Hubbard model with
real u. In this case, the solution of Eq. (60) is given by

q = p (70)

and

sinh κ = −mRe[u]

cos p
, (71)

which can be satisfied for any value of p because the range
of sinh κ is (−∞,∞). Thus the deconfinement transition in
the string solution is unique to the dissipative system which
can be mapped to the non-Hermitian Hubbard model with an
imaginary interaction strength.
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VII. EFFECTS OF PARTICLE LOSS AND GAIN

In the system of hard-core bosons subject to on-site de-
phasing, the total number of particles is conserved during time
evolution. A question arises as to whether the incoherenton
framework is applicable to situations where particle exchange
with the environment occurs. Such situations appear in cases
like driven optical cavities [39] and exciton-polariton sys-
tems [38]. In the following, we confirm that the incoherenton
framework essentially holds in the presence of particle loss
and gain, at least for small loss and gain rates.

We incorporate particle loss and gain by considering the
following Liouvillian:

L(ρ) = − i[H, ρ] +
∑

l

γ

(
nlρnl − 1

2
{n2

l , ρ}
)

+
∑

l

κ1

(
blρb†

l − 1

2
{b†

l bl , ρ}
)

+
∑

l

κ2

(
b†

l ρbl − 1

2
{blb

†
l , ρ}

)
, (72)

where H is the Hamiltonian (14) of hard-core bosons, and
κ1 and κ2 represent the rates of particle loss and gain, re-
spectively. When the hard-core boson model is mapped to a
spin model, the loss and gain terms in Eq. (72) correspond
to dissipative processes that flip spins down and up at rates
κ1 and κ2, respectively. Note that the loss and gain terms
in Eq. (72) mix sectors with different particle numbers. The
ladder representation of Eq. (72) can be expressed as

L̃ = L̃d + L̃1 + L̃2 − κ1N − κ2(L − N ), (73)

L̃1 := κ1

∑
l

bl,+bl,−, L̃2 := κ2

∑
l

b†
l,+b†

l,−, (74)

where L̃d is the Liouvillian (17) of dephasing hard-core
bosons, and N = ∑

l (nl,+ + nl,−)/2 is the total particle num-
ber.

Firstly, let us consider the scenario with particle loss but
without gain, i.e., κ2 = 0. Importantly, L̃ can be expressed
in a block-upper-triangular form because L̃1 reduces the par-
ticle number but does not increase it. The eigenvalues of a
block-triangular matrix are given by those of its diagonal
blocks. Consequently, the spectrum of L̃ is simply the union
of spectra of each particle sector:

spec(L̃) =
L⋃

N=0

spec
(
L̃(N )

d − κ1N
)
, (75)

where L̃(N )
d represents L̃d in the N-particle sector. This is

a general property of Liouvillian with loss but without gain
[101,107,108]. Equation (75) implies that the singular be-
havior of the spectra of L̃d , linked to the deconfinement of
incoherentons, is directly transferred to the spectra with loss.
Thus the presence of particle loss does not affect the incoher-
enton picture.

Next, let us consider the situation with both particle loss
and gain. We numerically diagonalize L̃ in the subspace with∑

l nl,+ = ∑
l nl,−. We calculate the total particle number N

and the number Nb of interchain bound states, as defined by

FIG. 12. Scatter plots of the particle number N and the number
Nb of interchain bound states for eigenmodes of dephasing hard-core
bosons with loss and gain. The system size is L = 8. (a) through
(d) represent varying hopping amplitudes: (a) J = 0.1, (b) 0.15,
(c) 0.2, and (d) 0.25. The rates of dephasing, loss, and gain are set to
γ = 1, κ1 = 0.02, and κ2 = 0.01, respectively. Histograms of N and
Nb are also included. For smaller values of J , clusters are observed
at integer values of N and Nb. As J increases, these clusters stretch
along the Nb axis, eventually merging around J � 0.2.

Eq. (27), for each eigenmode. Figure 12 shows the scatter
plot of (N, Nb) for small loss and gain rates, κ1, κ2 � J, γ .
For smaller values of J , a significant number of dots cluster
at integer values of N and Nb [see Fig. 12(a)], as seen in
sharp peaks in the histograms of N and Nb. As J increases,
these clusters stretch along the Nb axis, leading to a widening
of the peaks in the histogram of Nb. Eventually, they merge
around J � 0.2. Note that the sharp peaks in the histogram of
N remain unaffected throughout this process. This implies that
for almost eigenmodes, the mixing among sectors with dif-
ferent particle numbers is insignificant. The merging of bands
along the Nb axis suggests the deconfinement of incoherentons
[see Fig. 9(b)]. The QC gap closing in the spectrum can also
be observed in Fig. 13. Note that the data in Figs. 12 and
13 primarily deal with situations where loss and gain rates
are sufficiently smaller than the dephasing rate. Extending the
incoherenton framework to the case with strong loss and gain
deserves further study.

VIII. EFFECTIVE DESCRIPTION
OF MANY-BODY DECOHERENCE

In Fig. 8 of Sec. V, we have shown that the Liouvil-
lian eigenmodes are arranged in a hierarchy characterized by
incoherentons. Each group in this hierarchy has a different
decay rate and is separated from each other by the QC gap
when the dissipation dominates. In this section, we discuss
the consequences of this hierarchy of Liouvillian eigenmodes
for the process of quantum decoherence. First, we introduce
multiorder quantum coherence as a quantitative measure of
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FIG. 13. Liouvillian spectra of dephasing hard-core bosons with
loss and gain. The system size is L = 8. (a) through (d) represent
varying hopping amplitudes: (a) J = 0.1, (b) 0.15, (c) 0.2, and
(d) 0.25. The rates of dephasing, loss, and gain are set to γ = 1, κ1 =
0.02, and κ2 = 0.01, respectively. The merging of spectral bands
becomes apparent around J � 0.2.

how many incoherentons a given density matrix contains. The
time evolution of the quantum coherence is investigated for
the dissipative hard-core boson model by numerically solving
the master equation. We argue that the decay process of the
quantum coherence can be understood in terms of the produc-
tion, diffusion, and localization of incoherentons.

A. Multiorder quantum coherence

First, the general concept of “quantum coherence” is
outlined according to Refs. [109,110]. We consider the dis-
sipative hard-core boson model introduced in Sec. II B.
Similarly to Eq. (33), we define the one-particle reduced den-
sity matrix G(1) by

G(1)
l1,l2

:= Tr
[
bl1ρb†

l2

]
, (76)

where b†
l and bl are the creation and annihilation operators of

a boson at site l . Then, the state ρ is said to have the first-order
coherence if G(1) satisfies the following relation:

G(1)
l1,l2

= [
G(1)

l1,l1
G(1)

l2,l2

]1/2 = [〈
nl1

〉〈
nl2

〉]1/2
, (77)

for any l1 and l2, where nl = b†
l bl is the number operator at

site l . In other words, a strong correlation between distantly
separated points exists in a coherent state. Similarly, the two-
particle reduced density matrix G(2) is defined by

G(2)
l1,l2;l3,l4

:= Tr
[
bl1 bl2ρb†

l3
b†

l4

]
. (78)

The state ρ is said to have the second-order coherence if G(1)

and G(2) satisfy Eq. (77) and

G(2)
l1,l2;l3,l4

=
4∏

i=1

[
G(1)

li,li

]1/2 =
4∏

i=1

〈
nli

〉1/2
, (79)

for any l1, l2, l3, and l4. The notion of the sth-order coherence
(s � 3) can also be defined from the s-particle reduced density
matrix G(s) in a similar manner.

We define the amount of the first-order coherence by

χ1 :=
∑
l1,l2

|G(1)
l1,l2

|(1 − δl1,l2

)
, (80)

which simply measures the amount of off-diagonal compo-
nents of G(1). Since the steady state of the model is the
infinite-temperature state ρss = D−1I due to dephasing, all
off-diagonal components of ρ vanish in the long-time limit,
and then we have limt→∞ χ1(t ) = 0. If the state ρ has the
first-order coherence, e.g., a Bose-condensed pure state, the
amount of the first-order coherence is given by χ1 ∝ NL be-
cause |G(1)

l1,l2
| ∝ N/L from Eq. (77). It should be noted that the

expectation value of an arbitrary one-body observable,

O(1) =
∑
l1,l2

O(1)
l1,l2

b†
l1

bl2 , (81)

can be written as

〈O(1)〉 = Tr[O(1)ρ] =
∑
l1,l2

O(1)
l1,l2

G(1)
l2,l1

. (82)

In particular, G(1) is related to the momentum distribution of
particles, which is accessible by time-of-flight experiments in
ultracold atomic gases.

We also define the amount of the second-order coherence
χ2 by taking the summation of G(2)

l1,l2;l3,l4
over all off-diagonal

indices:

χ2 :=
∑
{li}

∣∣G(2)
l1,l2;l3,l4

∣∣(1 − δl1,l3

)
× (

1 − δl1,l4

)(
1 − δl2,l3

)(
1 − δl2,l4

)
. (83)

Note that G(2)
l,l;l3,l4

= G(2)
l1,l2;l,l = 0 due to the hard-core condi-

tion. If the state ρ has the second-order coherence, the amount
of the second-order coherence is given by χ2 ∝ N2L2. The
amount of the higher-order coherence χs (s = 3, 4, . . . ) can
also be defined from the s-particle reduced density matrix G(s)

in a similar manner.
When dissipation is dominant (J � γ ), the Liouvillian

eigenmodes are arranged in N + 1 bands with different decay
rates sγ (s = 0, . . . , N ), as shown in Fig. 8(a). We denote the
set of eigenmodes that belong to each band as {ρ0,α}, {ρ1,α},...,
{ρN,α}. Each ρs,α involves s deconfined pairs in the ladder
representation. Then, the eigenmode expansion of the density
matrix can be rearranged as

ρ =
∑
α∈S0

c0,αρ0,α +
∑
α∈S1

c1,αρ1,α + · · · +
∑
α∈SN

cN,αρN,α,

(84)
where Sr denotes the set of indices for {ρr,α}. Note that
the steady state ρss = D−1I belongs to {ρ0,α}. We refer to
Eq. (84) as the hierarchical expansion of the density matrix.
The decay rate of each ρs,α is given by sγ + O((J/γ )2). From
the definition, the dominant contribution to the amount of the
sth-order coherence χs comes from ρs,α , because the s-particle
reduced density matrix G(s) of eigenmodes with s deconfined
pairs has large off-diagonal components. Thus, when J � γ ,
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FIG. 14. Relaxation of the reduced density matrix and the
amount of the quantum coherence. (a) Time evolution of the absolute
values of G(1) with γ = 1 and J = 0.1. The system size is L = 10
and the particle number is N = 3. The initial state is a random pure
state. In the regime of production of incoherentons, a fast decay of
the off-diagonal components can be seen. In the diffusion regime
of incoherentons, on the other hand, a slow diffusion of the diag-
onal components occurs, leading to an infinite-temperature state in
the long-time limit. To highlight the variation of the off-diagonal
components, they are multiplied by a factor of 4, i.e., these plots
represent (4 − 3δl,m )|G(1)

l,m|. (b) Time evolution of �1 and �2 with
γ = 1 and J = 0.05, 0.1, 0.15, 0.2, and 0.25 from bottom to top at
t = 10. The horizontal and vertical axes are plotted on a logarithmic
scale. �s is calculated from χs averaged over 100 initial random
states. The system sizes are L = 10 and 12, and the particle number
is N = 3. The dotted lines show 1/t for �1 and 2/t for �2. The arrows
indicate the beginning and end of the localization regime (τ1 and τ2)
of incoherentons for J = 0.1.

χs initially decays as

χs(t ) ∼ e−sγ t . (85)

In the next section, it is argued that the initial decay of χs is
due to the generation of incoherentons and that the relaxation
of χs at long times is characterized by the localization and
diffusion of incoherentons.

B. Numerical results for relaxation of quantum coherence

By solving the quantum master equation numerically, we
investigate the time evolution of χs for the dissipative hard-
core boson model. We take a random pure state as an initial
state, i.e., ρini = |ψr〉 〈ψr| where |ψr〉 is a normalized vector
uniformly sampled from the set of unit vectors in the Hilbert
space. Figure 14(a) shows the time evolution of the absolute

values of the one-particle reduced density matrix G(1). Two
regimes can be clearly distinguished. In the first regime, the
off-diagonal components of G(1) decay rapidly, which implies
the production of incoherentons. In the second regime, a slow
diffusion of the diagonal components is observed, and at long
times they converge to N/L. We refer to the first (second)
regime as the incoherenton production (diffusion) regime.

It is convenient to define the time-dependent decay rate �s

of the sth-order coherence as

�s(t ) := − d

dt
ln χs(t ). (86)

For J = 0, we have �s(t ) = sγ for all t . Figure 14(b) shows
the time evolution of �1 and �2 with dephasing γ = 1. For a
small hopping amplitude such as J = 0.05 or 0.1, two plateaus
and subsequent algebraic decay �s ∼ 1/t are observed. (For
J = 0.1, the beginning and end of the second plateau are
indicated by arrows.) The height of the first plateau is sγ ,
which is the initial decay rate of χs. These numerical data
suggest the existence of three regimes for J � γ :

χs(t ) ∼
⎧⎨
⎩

e−sγ t (t < τ1);
e−κst (τ1 < t < τ2);
t−ηs (τ2 < t ),

(87)

with some intermediate decay rate κs and exponent ηs. The
algebraic decay is fitted roughly by 1/t for �1 and 2/t for
�2 [the dotted lines in Fig. 14(b)], which implies η1 � 1 and
η2 � 2. The first and third regimes of Eq. (87) correspond to
the production and diffusion regimes, respectively. For rea-
sons that will be explained in the next section, we refer to
the second regime of Eq. (87) as the localization regime of
incoherentons. As J approaches the transition point Jc � 0.2
where the QC gap closes, the second plateau shrinks and
eventually disappears at J = Jc, leaving a small bump.

It should be noted that the power-law decay of χs in the
diffusion regime does not last forever in a finite system. For
t 
 �−1

L , where �L is the Liouvillian gap, the relaxation of χs

is determined by the slowest eigenmode, and thus χs decays as
e−�Lt . It is known that the Liouvillian gap closes as �L ∼ L−2

for our model [92]. In Fig. 14(b), a third plateau of �s appears
in the long-time regime (see, e.g., the data of J = 0.25 at
t > 30). We can confirm that the height of this plateau scales
as L−2. The difference in the height of the third plateau for
�1 and �2 is due to the difference in the slowest decaying
eigenmodes which contribute to χ1 and χ2.

We present a simple theoretical argument showing the ex-
istence of the three relaxation regimes, i.e., regimes described
by incoherenton production, localization, and diffusion. We
assume that the relaxation of χs is given by a superposition of
exponential functions:

χs(t ) =
∫ ∞

0
dμDs(μ)e−μt , (88)

where Ds(μ) is a weighted density of states, which expresses
how many eigenmodes with decay rate μ contribute to χs.
More precisely, Eq. (88) can be obtained by substituting the
hierarchical expansion (84) into the definition of χs and re-
placing the sum over eigenmodes with an integral over the
decay rate. For simplicity, we focus on the case of s = 1. Let
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FIG. 15. (a) Density of states D1(μ) given by Eq. (89) with
η = 2. (b) �1 calculated from Eqs. (88) and (89) with δ := δ0 = δ1 =
0.05, 0.1, 0.2, and 0.4 from bottom to top. The parameters used are
γ = 1, a0 = 0.1, a1 = 1, and η = 1. The dashed line denotes 1/t .
One can observe two plateau-like regimes for small values of δ.
The arrows indicate the beginning and end of the second plateau for
δ = 0.1.

us consider the following D1(μ):

D1(μ) =
{

a0μ
η−1 (0 � μ � δ0);

a1 (γ � μ � γ + δ1).
(89)

Figure 15(a) shows a schematic illustration of D1(μ). The
support of D1(μ) near μ = 0 represents the contribution from
incoherent eigenmodes where all particles form incoheren-
tons. On the other hand, the second support near μ = γ

represents the contribution from (partially) coherent eigen-
modes where only one particle pair is deconfined. Note that
the quantum coherence gap is given by �QC = γ − δ0. The
exponent η determines how the contribution from slowly-
decaying eigenmodes decreases as the decay rate approaches
zero. By substituting Eq. (89) into (88), one can confirm that
χ1 ∼ t−η at long times. Figure 15(b) shows �1 calculated from
Eq. (89) with η = 1 and δ := δ0 = δ1. For δ � γ , one can
observe two plateaus at �1 = 1 and δ/2, and for δ ∼ γ , the
second plateau disappears. The long-time behavior is given by
�1 � 1/t . Thus a simple model defined by Eqs. (88) and (89)
qualitatively reproduces the numerical results in Fig. 14(b).

C. Characterization of many-body decoherence
by incoherentons

The numerical results on the relaxation processes in the
previous section can be explained in terms of the dynamics
of incoherentons, as summarized in Fig. 16. When the dissi-
pation dominates (J < Jc), three distinct relaxation processes
emerge.

Incoherenton production (t < τ1 ∼ γ −1 ln(Lγ /J ). In this
regime, the coherence decays exponentially as χs(t ) ∼ e−sγ t .
Thus �s has a plateau of height sγ [see Fig. 16(c2)]. Since
eigenmodes with a smaller number of incoherentons decay
faster, the number of incoherentons increases with time in this
regime. Let us now estimate the timescale τ1 at which the
deviation from χs(t ) ∼ e−sγ t begins. The magnitude of the
contribution of the incoherent eigenmodes ρ0,α to χs can be
estimated as Ls(J/γ )s from perturbation theory [111]. When
the contributions of ρs,α and ρ0,α to χs are comparable, the
incoherenton production regime ends. This condition is ex-
pressed as L2se−sγ τ1 ∼ Ls(J/γ )s, where the factor L2s comes
from the sum over off-diagonal components in, e.g., Eqs. (80)
and (83).

FIG. 16. Summary of the effective description of many-body
decoherence. The left panels show the case of J > Jc, while the right
panels show the case of J < Jc. (a) Schematic illustrations of the Li-
ouvillian spectra, where λ∗

inc denotes the incoherent-mode eigenvalue
with the smallest real part. (b) ln χs as a function of time t . For J >

Jc, χs initially decays as e−sγ t , and at long times t 
 γ −1, it exhibits
a power-law behavior t−η. For J < Jc, there is an intermediate regime
where χs decays as e−|λ∗

inc|t . (c) ln �s as a function of ln t . The early
regime where χs decays exponentially and the late regime where it
decays with a power-law correspond to the incoherenton-production
and incoherenton-diffusion regimes, respectively. The intermediate
regime is characterized by the localization of incoherentons.

Incoherenton localization (τ1 < t < τ2 ∼ |λ∗
inc|−1). We de-

note the eigenvalue with the smallest real part among the
incoherent eigenmodes {ρ0,α} as λ∗

inc. In this regime, the relax-
ation of χs is determined by eigenmodes with decay rates of
O(|λ∗

inc|), and thus, it decays as χs ∼ e−κst with κs = O(|λ∗
inc|),

which, in general, depends on s. That is, �s has a plateau
of height κs [see Fig. 16(c2)]. In general, eigenmodes that
contain incoherentons with larger confinement length ξcon de-
cay faster. Thus the decay of eigenmodes with eigenvalues of
O(λ∗

inc) leads to a reduction of ξcon, i.e., the localization of
incoherentons.

Incoherenton diffusion (τ2 < t ). In this regime, the re-
laxation of χs is determined by the incoherent eigenmodes
{ρ0,α} with small decay rates (�|λ∗

inc|). In the hard-core boson
model under on-site dephasing, since there exist eigenval-
ues arbitrarily close to 0 for an infinitely large system, the
coherence exhibits a power-law decay χs ∼ t−ηs . Note that
algebraic decay is a general feature of open quantum many-
body systems in which the Liouvillian gap �L vanishes in the
thermodynamic limit [47]. This relaxation process proceeds
by rearrangement of the positions of well-localized incoher-
entons, i.e., the diffusion of incoherentons. In a system with
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a nonzero �L in the thermodynamic limit, this regime is
expected to be absent.

When the QC gap closes (J > Jc), we have τ1 ∼ γ −1 ln L
and τ2 ∼ γ −1, and thus, the incoherenton localization regime
cannot be observed. Instead, the incoherenton diffusion
regime directly follows the incoherenton production region
[see Figs. 16(b1) and 16(c1)]. In this case, incoherenton
production and localization occur simultaneously, and these
regimes cannot be clearly separated.

As mentioned above, the crossover timescale τ1 depends
logarithmically with respect to the system size L. This is be-
cause the sum in Eq. (80) or (83) is taken over all off-diagonal
components. It may be reasonable to restrict this sum to the
off-diagonal components that are close to the diagonal com-
ponents. For a typical one-body observable (81), O(1)

l1,l2
rapidly

decays to zero as |l1 − l2| increases, so only off-diagonal
components satisfying l1 � l2 contribute to Eq. (82). Then,
we can also define

χ̃1 :=
∑
l1,l2

∣∣G(1)
l1,l2

∣∣(1 − δl1,l2

)
e−c|l1−l2|, (90)

where the exponential factor with c = O(1) suppresses the
contribution of off-diagonal components with large |l1 − l2|.
If we focus on the relaxation of χ̃1, the crossover timescale
τ1 can be given by γ −1 ln(γ /J ), which is independent of the
system size.

IX. CONCLUSION

We have proposed the notion of incoherenton in open quan-
tum many-body systems, which characterizes the hierarchical
structure of Liouvillian eigenmodes and their incoherent-
coherent transitions. Under the mapping of the Liouvillian to a
non-Hermitian ladder Hamiltonian, incoherentons are defined
as interchain bound states. The decay rate of each eigenmode
is determined approximately by the number of incoherentons
that the relevant eigenmode involves. The quantum coherence
(QC) gap is defined as the minimum difference in decay rates
between eigenmodes with different numbers of incoheren-
tons. As the coherence parameter of the system increases,
the deconfinement of an incoherenton occurs at a certain
critical point, causing the QC gap closing. For a hard-core
boson system under on-site dephasing, we have demonstrated
numerically and analytically the deconfinement of incoheren-
tons. Furthermore, the process of many-body decoherence is
discussed in terms of incoherentons. Three relaxation regimes
corresponding to the production, localization, and diffusion of
incoherentons are identified.

Note that our framework of incoherentons may not suffice
to capture every intricate detail of the Liouvillian spectra and
eigenmodes. As highlighted in Appendix E, the dephasing
Bose-Hubbard model incorporates intrachain bound states,
complementing the role of interchain bound states, i.e., inco-
herentons. However, our primary objective is to describe and
explore universal characteristics found within the complex
behaviors of the Liouvillian spectra and eigenmodes, which
are summarized as follows:

(1) Under strong dissipation, the spectrum displays multi-
ple bands, with eigenmodes distinctly marked by both inter-
and intrachain bound states.

(2) Interchain and intrachain bound states affect decay
rates and frequencies, respectively, thereby governing the tem-
poral dynamics of eigenmodes.

(3) Decreasing dissipation leads to the merging of specific
bands, signaling the deconfinement of interchain bound states.

While we believe in the robustness of these observa-
tions, these characteristics may require refinement or further
extension in more complicated situations. The presence of
additional degrees of freedom could introduce other types
of bound states. We expect that our current work provides a
solid foundation for subsequent research that further refines
the quasiparticle descriptions of Liouvillian eigenmodes.

In this study, we focused on systems with local bulk dis-
sipation. It is natural to ask whether the incoherenton picture
summarized above holds for other types of dissipation as well.
When there is dissipation only at the boundary of the system
[49], the localization of incoherentons near the boundary is
expected. The effect of nonlocal dissipation is also nontrivial,
which leads to long-range interactions between the chains in
the ladder representation of a Liouvillian. The influence of
long-range interactions on the formation of bound states is
well studied in the context of isolated quantum many-body
systems, and it has been pointed out that a new type of bound
state can be realized in quantum spin chains with long-range
interactions [112–114]. Understanding the impact of different
types of dissipation on the deconfinement transition of eigen-
modes and the QC gap closing in spectra deserves further
study.

Quasiparticles are a key concept in many-body physics.
In isolated quantum many-body systems, the existence of
well-defined quasiparticles ensures the validity of low-energy
effective field theories, which describe the thermodynamic
and transport properties of the system through statistical me-
chanics of weakly interacting quasiparticles. Identifying the
quasiparticles is to distinguish a set of relevant variables for
characterizing the low-energy behavior of the system from
many irrelevant variables. It is expected that complex re-
laxation processes in open quantum many-body systems are
described by a simple kinetic theory of various incoherentons,
which should be studied in detail in future works. A better
understanding of incoherentons can provide an efficient way
to predict decoherence effects in the control of large-scale
quantum devices.

The formation of bound states between interacting particles
is a universal phenomenon from particle physics to condensed
matter physics. Phenomena that arise from the formation of
specific types of bound states include, for example, BCS-BEC
crossover in interacting Fermi gases [115–117] and Efimov
resonances in three-body bound states of atoms with large
scattering lengths [118–121]. It is an important task to inves-
tigate the effect of the formation of various types of bound
states in Lindblad ladder systems on the structure of Liouvil-
lian spectra and dynamical features in open quantum systems.
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APPENDIX A: GENERAL PROPERTIES
OF LIOUVILLIAN EIGENMODES

The eigenmodes {ρα} and eigenvalues {λα} of a Liouvillian
are defined by Eq. (7). Here, we summarize general prop-
erties of the eigenmodes and eigenvalues of the Liouvillian
(see, e.g., Ref. [45]).

(1) The left eigenmodes {ρ ′
α} are defined by

L†(ρ ′
α ) = λ∗

αρ ′
α (α = 0, 1, . . . , D2 − 1), (A1)

where L† reads

L†(A) = −i[A, H] +
∑

ν

(
L†

νALν − 1

2
{L†

νLν, A}
)

. (A2)

Since L is not Hermitian, ρα and ρ ′
α are not identical.

While the right eigenmodes are not orthogonal to each other,
the right and left eigenmodes with different eigenvalues are
orthogonal to each other: Tr[ρ ′†

α ρβ] = 0 (λα �= λβ ). This rela-
tion is known as the biorthogonal relation.

(2) The Liouvillian is diagonalizable except for a zero
measure subset in the parameter space, i.e., exceptional points.
In this case, the eigenmodes constitute a basis of the operator
space, and thus, any operator O can be uniquely expanded as

O =
D2−1∑
α=0

cαρα, cα = Tr[ρ ′†
α O]

Tr[ρ ′†
α ρα]

, (A3)

where the expression of cα follows from the orthogonality
between the right and left eigenmodes.

(3) The real parts of λα are nonpositive and there exist zero
modes corresponding to the steady states. The negative real
parts of nonsteady eigenmodes ensure the relaxation to the
steady state,

lim
t→∞ ρ(t ) = lim

t→∞ eLtρ(0) = ρss. (A4)

(4) The Liouvillian gap is defined by �L = |Re[λ1]| if the
steady state is unique and the eigenvalues are sorted such
that 0 = |Re[λ0]| < |Re[λ1]| � · · · � |Re[λD2−1]|. Since �L

determines the relaxation dynamics in the long-time limit, it
is also referred to as the asymptotic decay rate [40].

(5) Tr[ρα] = 0 if λα �= 0. This is a consequence of the
trace-preserving nature of the Liouvillian: Tr[L(ρ)] = 0.
Thus eigenmodes with nonzero eigenvalues are not physical
states.

(6) If L(ρα ) = λαρα , then L(ρ†
α ) = λ∗

αρ†
α , which follows

from [L(ρα )]† = L(ρ†
α ). This implies that (i) the Liouvillian

spectrum on the complex plane is symmetric with respect to
the real axis, and (ii) if ρα is Hermitian, the corresponding
eigenvalue λα is real.

APPENDIX B: ONE-PARTICLE SOLUTION
OF LIOUVILLIAN EIGENMODES

In this Appendix, we present a detailed analysis of the
Liouvillian spectrum and eigenmodes in the one-particle case
without resorting to the Bethe ansatz. In the ladder repre-
sentation, the Liouvillian L is mapped to a non-Hermitian
Hamiltonian L̃ of a two-particle system on the ladder. We
denote by |l〉 ⊗ |m〉 the state in which each particle is located
at sites l and m of each chain of the ladder. Since L̃ is
translationally invariant, it is convenient to introduce a basis

|k, l ) := L−1/2
L∑

m=1

eikm |m + l〉 ⊗ |m〉 , (B1)

where k = 2πs/L (s = −L/2 + 1, . . . , L/2) is the momen-
tum of the center of mass and l = −L/2 + 1, . . . , L/2 is the
relative coordinate. We write matrix elements in this basis as

(k, l|L̃|k′, l ′) = δkk′L(k)ll ′ , (B2)

where the matrix elements between different momenta k van-
ish owing to the translational symmetry of L̃. The matrix
elements of L(k) are given by

L(k)lm =
⎧⎨
⎩

−γ (l = m �= 0);
iJ[1 − eik(l−m)] (|l − m| = 1);
0 (otherwise).

(B3)

Note that the indices l and m satisfy the periodic boundary
condition. Equation (B3) defines an effective tight-binding
model for the relative coordinate, which has an imag-
inary hopping amplitude between neighboring sites. Let
{λ j (k)} j=1,...,L be the eigenvalues of L(k). For k = 0, L(k)
becomes diagonal for arbitrary J , and it has a single zero
eigenvalue and an (L − 1)-fold degenerate eigenvalue λ =
−γ . In particular, the zero mode is given by ρ0,lm = L−1/2δlm.

In terms of the effective tight-binding model (B3), the
coherent and incoherent eigenmodes correspond to scattering
and bound states, respectively. We write an eigenmode as

ψl =
{
ψ

(+)
l = c1e−αl + c2eβl (0 � l � L/2);

ψ
(−)
l = c̃1e−αl + c̃2eβl (−L/2 < l < 0),

(B4)

where α and β are complex. The periodic boundary condition
imposes the following conditions between the coefficients c
and c̃:

c̃1 = e−αLc1, c̃2 = eβLc2. (B5)

Equation (B5) and the connection condition ψ
(+)
0 = ψ

(−)
0 at

l = 0 lead to

c1 + c2 = e−αLc1 + eβLc2. (B6)

By substituting ψl in Eq. (B4) into the eigenvalue equa-
tion

∑
m L(k)lmψm = λ(k)ψl with l �= 0, we have

λ(k) = iJ (eα + e−α − eik+α − e−ik−α ) − γ

= iJ (e−β + eβ − eik−β − e−ik+β ) − γ , (B7)

which leads to the following relation between α and β:

β = α + i(k − π ). (B8)
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FIG. 17. [(a) and (b)] Real and imaginary parts of α as functions
of k with γ = 1 for J = 0.15, 0.2, 0.25, 0.3, and 0.35. (c) Trajectories
of λinc(k) on the real axis as k increases from −π to π . J increases
from 0 to 0.25 in increments of 0.025. (d) Schematic illustration of
the Liouvillian spectrum in the limit of L → ∞. The purple and blue
bands represent the incoherent-mode and coherent-mode spectra,
respectively.

Furthermore, the eigenvalue equation for l = 0 reads

iJ (1 − eik )ψ (−)
−1 + iJ (1 − e−ik )ψ (+)

1 = λ(k)ψ (+)
0 . (B9)

From Eqs. (B6)–(B9), α, β, and λ can be calculated as func-
tions of k.

We focus on a bound state exponentially localized near
l = 0. We assume that Re[β] > 0 and Re[α] > 0. For a suffi-
ciently large L, Eq. (B6) reduces to

c2 � e−βLc1. (B10)

Substitution of Eq. (B10) into Eq. (B9) yields

λ(k) = iJ (1 − eik )e−β + iJ (1 − e−ik )e−α, (B11)

for L → ∞. From Eqs. (B7), (B8), and (B11), the eigenvalue
λinc(k) associated with the bound state can be calculated as

λinc(k) = −γ +
√

γ 2 − 8J2(1 − cos k), (B12)

which coincides with Eq. (68) with m = 1.
Figures 17(a) and 17(b) show Re[α] and Im[α] as func-

tions of k, respectively. Note that Re[α] is the inverse of the
confinement length ξcon. For k = 0, since the zero mode of
L(k) is completely localized at l = 0, we have Re[α] = ∞.
Figure 17(a) shows that there is a critical hopping amplitude
Jc below which a bound state exists (Re[α] > 0) for all k. On
the other hand, for J > Jc, there is a critical wave number
kc(J ) such that the bound state disappears (Re[α] = 0) for
k � kc(J ). From Fig. 17(b), one finds that Im[α] = −k/2
for J < Jc, which is consistent with the fact that λinc(k) is
real. For J > Jc, Im[α] shows a cusp at k = kc(J ) owing
to the disappearance of the bound state. Figure 17(c) shows
trajectories of λinc(k) for different values of J . As k increases
from −π , λinc(k) initially moves from the left end point of
the incoherent-mode spectrum to the right, reaches the origin
for k = 0, and returns to the left end point for k = π . The

quantum coherence gap �QC decreases with increasing J , and
eventually, it closes at J = 0.25. Figure 17(c) is consistent
with the numerical results shown in Fig. 5(a).

Let us determine the critical hopping amplitude Jc at which
the confinement length ξcon diverges. As J increases, the dis-
appearance of the bound state firstly occurs at k = π . Thus,
from Eqs. (B7), (B8), and (B11), we have α = β and

sinh α = − iγ

4J
. (B13)

The hyperbolic sine function has the following property: if
sinh α is purely imaginary, | sinh α| � 1 and | sinh α| > 1 im-
ply Re[α] = 0 and Re[α] �= 0, respectively. Thus we have

Jc = γ

4
, (B14)

which agrees with Eq. (65) with m = 1. It should be noted that
the incoherent-mode eigenvalue λinc(π ) given by Eq. (B12)
becomes complex for J > Jc. In Fig. 17, Jc = 0.25 since
γ = 1. From Eq. (B13), the confinement length ξcon of the
eigenmode with k = π reads

ξcon = Re[α]−1 �
( γ

2J
− 2

)−1/2
, (B15)

for J � Jc. Since the QC gap �QC is given by Eq. (25), we
have

ξcon � γ

�QC
, (B16)

which is consistent with Eq. (1).
Figure 17(d) shows the Liouvillian spectrum in the limit

of L → ∞. It consists of the coherent-mode spectrum at
Re[λ] = −γ parallel to the imaginary axis and the incoherent-
mode spectrum on the real axis. The reason why the real parts
of the coherent-mode eigenvalues are equal to −γ in the limit
of L → ∞ can be understood as follows. Since the coherent
eigenmodes are extended over the relative coordinate, Re[α]
should vanish. By substituting Re[α] = 0 into Eq. (B7), we
obtain Re[λ(k)] = −γ . By numerical diagonalization of the
Liouvillian, one can also verify that the width of the coherent-
mode spectrum along the real axis decreases as L increases.

APPENDIX C: ABSENCE OF INCOHERENTON
IN CONTINUOUS SYSTEMS

As mentioned at the end of Sec. III, the spatial discreteness
of the lattice system is crucial for the formation of incoher-
entons. In this Appendix, we show that incoherenton does
not exist in systems where a free particle in continuous space
undergoes dephasing.

The Hamiltonian of a free particle in one-dimensional con-
tinuous space is given by

H =
∫ ∞

−∞
dxψ†(x)

(
− 1

2m

∂2

∂x2

)
ψ (x), (C1)

where ψ†(x) and ψ (x) are the creation and annihilation op-
erators of a boson at position x, which satisfy the canonical
commutation relations:

[ψ (x), ψ (x′)] = [ψ†(x), ψ†(x′)] = 0,

[ψ (x), ψ†(x′)] = δ(x − x′). (C2)
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The Liouvillian L that governs the time evolution of the
density matrix ρ is given by

L(ρ) = −i[H, ρ] +
∫ ∞

−∞
dx

(
L(x)ρL†(x)

− 1

2
{L†(x)L(x), ρ}

)
. (C3)

We consider the following Lindblad operator

L(x) =
∫ ∞

−∞
dyg(x − y)ψ†(y)ψ (y), (C4)

where g(x) is a short-ranged function that rapidly decays for
large |x|. The Lindblad operator given by Eq. (C4) describes
a dephasing process of a particle near position x.

We focus on the one-particle sector of the Hilbert space.
Let |x〉 = ψ†(x) |v〉 (|v〉: vacuum state) be the state in which
a particle is located at position x. Then, {|x〉}x∈(−∞,∞) is an
orthonormal basis in the one-particle sector. In terms of this
basis, the density matrix ρ is written as

ρ =
∫ ∞

−∞
dx

∫ ∞

−∞
dyρ(x, y) |x〉 〈y| , (C5)

where ρ(x, y) is the matrix element of ρ. In the ladder repre-
sentation, |x〉 〈y| is mapped to a tensor-product state |x〉 ⊗ |y〉,
which specifies a two-particle state in a ladder. The Liouvil-
lian L is also mapped to a non-Hermitian operator

L̃ = −iH ⊗ I + iI ⊗ H +
∫ ∞

−∞
dx

(
L(x) ⊗ L(x)

− 1

2
L†(x)L(x) ⊗ I − 1

2
I ⊗ L†(x)L(x)

)
. (C6)

The matrix element of L̃ is calculated as

(〈x′| ⊗ 〈y′|)L̃(|x〉 ⊗ |y〉)

=
[

i

2m

(
∂2

∂x2
− ∂2

∂y2

)
+ γ (x − y) − γ (0)

]

× δ(x′ − x)δ(y′ − y), (C7)

where γ (x) is defined by

γ (x − y) :=
∫ ∞

−∞
dzg(x − z)g(z − y). (C8)

Let |�) be an eigenmode of L̃, i.e., L̃|�) = λ|�). If |�)
is written as

|�) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyϕ(x, y) |x〉 ⊗ |y〉 , (C9)

we have an eigenvalue equation[
i

2m

(
∂2

∂x2
− ∂2

∂y2

)
+ γ (x − y) − γ (0)

]
ϕ(x, y) = λϕ(x, y)

(C10)
from Eq. (C7)

The two-body wave function ϕ(x, y) is rewritten as

ϕ(x, y) = eik(x+y)/2ϕ̃(x − y), (C11)

where k is the center-of-mass momentum. By substituting
Eq. (C11) into Eq. (C10), we have

− k

m
ϕ̃′(z) + [γ (z) − γ (0)]ϕ̃(z) = λϕ̃(z). (C12)

The eigenvalue equation (C12) does not have a solution
that is exponentially localized near z = 0. In fact, since γ (z)
vanishes for sufficiently large |z|, we have the following solu-
tion at long distances:

ϕ̃(z) ∝ exp

(−m[λ + γ (0)]z

k

)
. (C13)

For ϕ̃(z) to be finite for |z| → ∞, we must have Re[λ +
γ (0)] = 0. Thus Eq. (C12) has only plane-wave solutions
extended over the entire space. The absence of localized so-
lutions is a consequence of the lack of the second spatial
derivative in Eq. (C12), which is a crucial distinction from the
ordinary two-body problem. It should be noted that Eq. (C12)
is equivalent to the Schrödinger equation for a chiral particle,
whose chirality is determined from the sign of the center-of-
mass momentum k.

APPENDIX D: MEASUREMENT OF INCOHERENTON
CORRELATIONS

In this Appendix, we discuss the measurement of in-
coherenton correlations defined by Eqs. (36) and (37).
The measurement protocol presented below is based on
Refs. [87,88], which can be implemented in ultracold atoms
on optical lattices. We denote the ladder representation of the
density matrix ρ as |ρ). Let nl,+(−) be the density operator
acting on the lth site of the first (second) chain. We wish to
measure the following quantities:

(ρ|nl,+nl,−|ρ)

(ρ|ρ)
,

(ρ|nl,+nl,−nm,+nm,−|ρ)

(ρ|ρ)
. (D1)

In the original matrix representation, the quantities in the
numerator and denominator are rewritten as

(ρ|ρ) = tr[ρ2], (ρ|nl,+nl,−|ρ) = tr[ρnlρnl ],

(ρ|nl,+nl,−nm,+nm,−|ρ) = tr[ρnlnmρnl nm], (D2)

where nl is the density operator in the original system.
We prepare two copies of the original system, following

the method in Refs. [87,88]. We define the SWAP operator V2

that exchanges the state of copy 1 and copy 2 as

V2(|ψ1〉 ⊗ |ψ2〉) = |ψ2〉 ⊗ |ψ1〉 . (D3)

Then, the quantities in Eq. (D2) can be rewritten as follows:

tr[ρ2] =Tr[V2(ρ ⊗ ρ)],

tr[ρnlρnl ] =Tr[(nl ⊗ nl )V2(ρ ⊗ ρ)],

tr[ρnlnmρnl nm] =Tr[{(nlnm) ⊗ (nlnm)}V2(ρ ⊗ ρ)], (D4)

where Tr[. . . ] represents the trace in the tensor product space
corresponding to the two copies. Equations (D4) can be shown
as follows. Writing the density matrix in terms of the Fock
basis |k〉, which specifies the occupation number at each site,
as ρ = ∑

k1k2
ρk1k2 |k1〉 〈k2|, we can transform, for instance,
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Tr[(nl ⊗ nl )V2(ρ ⊗ ρ)] as follows:

Tr[(nl ⊗ nl )V2(ρ ⊗ ρ)]

=
∑
{ki}

ρk1k2ρk3k4 Tr[(nl ⊗ nl )V2 |k1〉 〈k2| ⊗ |k3〉 〈k4|]

=
∑
{ki}

ρk1k2ρk3k4 Tr[(nl ⊗ nl ) |k3〉 〈k2| ⊗ |k1〉 〈k4|]

=
∑
{ki}

ρk1k2ρk3k4 (〈k2| ⊗ 〈k4|)(nl ⊗ nl )(|k3〉 ⊗ |k1〉)

=
∑
k1,k2

ρk1k2 〈k2| nl |k2〉 ρk2k1 〈k1| nl |k1〉

= tr[ρnlρnl ], (D5)

where we have used the fact that nl is diagonal with respect to
the Fock basis |k〉.

Since the SWAP operators acting on different sites com-
mute with each other, we will focus on a single-site system
in this discussion. Since (V2)2 = I, the eigenvalues of V2 are
±1. We denote the symmetric eigenspace corresponding to
the eigenvalue +1 as H+ and the antisymmetric eigenspace
corresponding to the eigenvalue −1 as H−. In the case of
hard-core bosons [87], H+ is spanned by three basis states:

|vac〉 , (a†
1 + a†

2) |vac〉 , a†
1a†

2 |vac〉 . (D6)

In contrast,H− is spanned by a single basis state:

(a†
1 − a†

2) |vac〉 . (D7)

Here, a†
1(2) represents the creation operator for copy 1(2). To

obtain the expectation value of V2, it is necessary to measure
the probability of the state being found in H+ and H−. We
here introduce a “beamsplitter operation” as follows:

1√
2

(a†
1 + a†

2) → a†
1,

1√
2

(a†
1 − a†

2) → a†
2. (D8)

This transformation can be implemented by introducing a
weak tunnel coupling between two copies and inducing Rabi
oscillations [87,88]. After this transformation, the basis ofH+
becomes

|vac〉 , a†
1 |vac〉 , a†

1a†
2 |vac〉 , (D9)

and the basis ofH− becomes

a†
2 |vac〉 . (D10)

Note that the state a†
1a†

2 |vac〉 remains unaffected by the beam-
splitter operation due to the hard-core condition suppressing
tunneling between the copies. Finally, by observing how many
particles each copy contains, we can determine the probability
of the state being found inH+ andH−.

We summarize the above discussion: when the preparation
of copies, the beamsplitter operation, and the observation of
particle number are repeated many times, we denote the prob-
ability of having no particles as p(l )

0 , having one particle in
copy 1 as p(l )

1 , one particle in copy 2 as p(l )
2 , and one particle

in each copy as p(l )
12 , where l represents the site index. The

expectation value of the physical quantity including the SWAP
operator V2 can be computed as follows:

Tr[V2(ρ ⊗ ρ)] =
∏

l

[
p(l )

0 + p(l )
1 + p(l )

12 − p(l )
2

]
, (D11)

Tr[(nl ⊗ nl )V2(ρ ⊗ ρ)] = p(l )
12

∏
j( �=l )

[
p( j)

0 + p( j)
1 + p( j)

12 − p( j)
2

]
,

(D12)

Tr[{(nlnm) ⊗ (nlnm)}V2(ρ ⊗ ρ)]

= p(l )
12 p(m)

12

∏
j( �=l,m)

[
p( j)

0 + p( j)
1 + p( j)

12 − p( j)
2

]
. (D13)

APPENDIX E: DEPHASING BOSE-HUBBARD MODEL

In this Appendix, we investigate the Liouvillian spectra of
the Bose-Hubbard model under dephasing to substantiate the
robustness of the incoherenton picture illustrated in Fig. 8.
The Hamiltonian of the Bose-Hubbard model is given by

H = −J
L∑

l=1

(b†
l+1bl + b†

l bl+1) + U

2

L∑
l=1

nl (nl − 1), (E1)

where b†
l and bl are the creation and annihilation operators

of a boson at site l and nl = b†
l bl is the density operator at

site l . Here, J and U represent the amplitude of coherent
hopping and the strength of on-site interactions. The Lindblad
operators are given by Eq. (15). The hard-core boson model
introduced in Sec. II B is a special case of the Bose-Hubbard
model with U → ∞. We proceed by numerically calculating
the three-particle Liouvillian spectra.

A key distinction of the Bose-Hubbard model from hard-
core bosons is the existence of intrachain bound states in the
ladder representation, which complicates the band structure of
the Liouvillian spectrum. We will discuss that, even with the
existence of intrachain bound states, the concepts of incoher-
enton deconfinement and QC gap closing can still be applied.
For an eigenmode |ρα ) in the ladder representation, we define
the numbers of interchain and intrachain bound states as

Ninter,α :=
L∑

l=1

(ρα|nl,+nl,−|ρα )

(ρα|ρα )
, (E2)

Nintra,α := 1

2

∑
σ=±

L∑
l=1

(ρα|nl,σ (nl,σ − 1)|ρα )

(ρα|ρα )
, (E3)

which are extensions of Eq. (27).
Figure 18(a) illustrates the three-particle Liouvillian spec-

trum and scatter plot of {(Ninter,α, Nintra,α )}α=0,...,D2−1 for a
small value of J . We focus on series of spectral bands
connected by breaking or creating a single first-order inco-
herenton, which are indicated by squares in panel (a). The
structure of eigenmodes is illustrated in panel (c), where in-
terchain and intrachain bound states are represented by red
and blue squares, respectively. As depicted, spectral bands a,
b, c, and d form a series, represented by a green square, as
the eigenmodes of b, c, and d can be obtained by sequentially
breaking first-order incoherentons in eigenmode a. Similarly,
several series containing intrachain bound states can be identi-
fied, represented by purple and orange squares. Isolated bands
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FIG. 18. Three-particle Liouvillian spectra and eigenmodes of the Bose-Hubbard model under dephasing. Schematic illustrations of the
spectra and scatter plots of (Ninter, Nintra ) are shown for the gapped case (a) and the gapless case (b). (c) illustrates the eigenmodes indicated in
(a) and (b), where the red (blue) squares represent an interchain (intrachain) bound state. In (a) and (b), series of spectral bands connected by
breaking or creating a single first-order incoherenton are highlighted by the green, purple, orange, and black squares. The QC gaps are defined
as the gaps between spectral bands belonging to the same series. In the gapless case, the QC gaps close and all bands belonging to each series
merge into a single band. (d) and (e) show the spectra and scatter plots of (Ninter, Nintra ) with J = 0.1. 0.15, 0.2, and 0.25. The system size is
L = 8 and the particle number is N = 3. The other parameters are set to U = 4 and γ = 1. The double arrows in (d)–(1) represents the QC
gaps corresponding to each series of bands.

unconnected to any other bands are denoted by black squares.
The QC gaps are defined as the gaps between spectral bands
belonging to the same series [see the double arrows in panel
(d-1)].

Figure 18(b) displays the spectrum and scatter plot of
{(Ninter,α, Nintra,α )}α=0,...,D2−1 for a large value of J . The QC
gaps between spectral bands within each series close, and
larger bands emerge. Panels (d) and (e) present the spectra
and scatter plots of {(Ninter,α, Nintra,α )}α=0,...,D2−1 obtained by
numerical diagonalization of the Liouvillian. These results
corroborate the scenario illustrated in panels (a) and (b). Note
that the hopping amplitude Jc corresponding to the QC gap
closing can vary between different spectral band series.

The scenario presented in Fig. 18 for a three-particle case
can be readily extended to multiple-particle situations. De-
spite the exponential growth in spectrum complexity with

particle number, series of spectral bands linked by breaking
or creating a first-order incoherenton can still be identified.
The hierarchical picture illustrated in Fig. 8 is valid for each
series of spectral bands.

The description of dynamics in terms of eigenmodes with
incoherentons can also be extended to that in terms of eigen-
modes with intrachain bound states. In the case of hard-core
bosons, the decay rates of eigenmodes are uniquely deter-
mined by incoherentons when the spectral bands are separated
by the QC gaps. In the case of the Bose-Hubbard model,
the temporal dynamics of eigenmodes, e.g., their decay rates
and frequencies, are governed by both incoherentons and
intrachain bound states. In particular, the frequencies of eigen-
modes, i.e., the imaginary parts of eigenvalues, are mainly
governed by the number of intrachain bound states. This
suggests a two-dimensional hierarchy encompassing the real
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FIG. 19. Liouvillian spectra for the dephasing hard-core bosons with next-nearest-neighbor hopping. (a) Spectra with γ = 1 and J = 0.1,
0.15, 0.2, and 0.25, where J := J1 = J2. The systems size is L = 10 and the particle number is N = 3. The eigenvalues satisfying 0 � Nb,α <

3/4, 3/4 � Nb,α < 3/2, 3/2 � Nb,α < 9/4, and 9/4 � Nb,α � 3 are colored by blue, light blue, green, and red, respectively. (b) Part of the
spectrum corresponding to the square in (a2). The color differentiates between the types of eigenmodes, which are illustrated in the insets.
(c) Color maps of C (3)

α (l, m) for three representative eigenmodes with eigenvalues λ = −0.543, −0.410, and −0.131. To emphasize off-
diagonal components, the values of C (3)

α (l, m) at l = 0, m = 0, and l = m are set to zero. For eigenmodes with three first-order incoherentons,
C (3)

α (l, m) is delocalized across the full range of l and m. For eigenmodes with one first-order incoherenton and one second-order incoherenton,
C (3)

α (l, m) is localized at the edge of the (l, m) space. For eigenmodes with one third-order incoherenton, C (3)
α (l, m) is localized at the corner

of the (l, m) space. In panel (b), the eigenmodes in the band with the smallest decay rate are classified based on whether the point (l∗, m∗) that
maximizes C (3)

α (l, m) is located in the bulk, edge, or corners of the (l, m) space.

axis (decay rates) defined by incoherentons and the imaginary
axis (frequencies) specified by intrachain bound states. While
the correspondence between decay rates (frequencies) and
the number of incoherentons (intrachain bound states) is not
perfectly one-to-one, such a hierarchical picture provides a
qualitative understanding of the spectral structure.

APPENDIX F: DEPHASING HARD-CORE BOSONS
WITH NEXT-NEAREST-NEIGHBOR HOPPING

In this Appendix, we present the results for dephasing
hard-core bosons with next-nearest-neighbor hopping to test
the robustness of the incoherenton picture to integrability-
breaking perturbations. The Hamiltonian of this system is
given by

H = −J1

L∑
l=1

(b†
l bl+1 + b†

l+1bl ) − J2

L∑
l=1

(b†
l bl+2 + b†

l+2bl ),

(F1)
where J1 and J2 denote the hopping amplitudes between
nearest-neighbor and next-nearest-neighbor sites, respec-
tively. The next-nearest-neighbor hopping introduces the

simplest perturbation that breaks the integrability of the orig-
inal model without altering the number of spectral bands. In
the following calculation, we assume J := J1 = J2.

Figure 19(a) presents the Liouvillian spectra for J = 0.1,
0.15, 0.2, and 0.25. The colors of the dots represent Nb,α , de-
fined by Eq. (27). With a small, nonzero J , four spectral bands
emerge around 0, −1, −2, and −3. As J increases, the widths
of bands increase, and they merge almost simultaneously at
J = Jc � 0.2. This behavior is the same as the case without
next-nearest-neighbor hopping [see Fig. 9(a)].

Each eigenmode can be classified according to the num-
ber Nb,α of incoherentons [Eq. (27)] and the qualitative
behavior of incoherenton correlations C(s)

α (m1, . . . , ms−1)
(s = 2, 3, . . . ) defined by Eqs. (36) and (37). Figure 19(b)
depicts a spectrum where color variations differentiate eigen-
mode types. Additionally, color maps of C(3)

α (l, m) for three
representative eigenmodes in the band with the smallest decay
rate are shown in Fig. 19(c). The three types of eigenmodes
can be distinguished by whether C(3)

α (l, m) is delocalized,
localized on the edge, or localized at the corners. All features
presented in Fig. 19 are consistent with those in Fig. 10,
presenting further evidence that our incoherenton picture is
applicable to nonintegrable systems.
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