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Self-diffusion and structure of a quasi two-dimensional, classical Coulomb gas under increasing
magnetic field and temperature
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The influence of a magnetic field applied perpendicularly to the plane of a quasi two-dimensional, low-
density classical Coulomb gas, with interparticle potential U (r) ∼ 1/r, is studied using momentum-conserving
dissipative particle dynamics simulations. The self-diffusion and structure of the gas are studied as functions of
temperature and strength of the magnetic field. It is found that the gas undergoes a topological phase transition
when the temperature is varied with, in accord with the Bohr–van Leeuwen (BvL) theorem, the structural
properties being unaffected, resembling those of the strictly two-dimensional Kosterlitz-Thouless transition,
with U (r) ∼ ln(r). Consistent with the BvL theorem, the transition temperature and the melting process of
the condensed phase are unchanged by the field. Conversely, the self-diffusion coefficient of the gas is strongly
reduced by the magnetic field. At the largest values of the cyclotron frequency, the self-diffusion coefficient is
inversely proportional to the applied magnetic field. The implications of these results are discussed.
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I. INTRODUCTION

The globally neutral, two-dimensional (2D) Coulomb gas
is a system with equal number of positively and negatively
charged disks whose electrostatic interaction is given by
U (r) ∼ q2 ln(r), with q being the charge on the disks, as
follows from solving Poisson’s equation in 2D. Kosterlitz
and Thouless (KT) showed that a topological phase transition
takes place in this type of system at temperature TC = q2/4
[1]. Above TC the gas is conducting while below TC it is a
dielectric. This transition is also characterized by the lack of
a well-defined order parameter and no symmetry is broken
at the phase transition. A peak in the specific heat appears at
a temperature slightly above TC , and the spatial correlation
function of the disks decays algebraically below TC with a
temperature-dependent exponent η(T ) such that η(TC ) = 1/4
[1]. Above TC the correlation function decays exponentially.
This is the basic phenomenology of the KT transition [2,3].

In this paper we focus on studying the effects of applying
a magnetic field, perpendicularly to the plane of a quasi-2D
Coulomb gas having electrostatic interactions of the U (r) ∼
1/r type, as the temperature and strength of the magnetic field
are varied. Recent work [4] demonstrates that an overall neu-
tral system of charged spheres under quasi-2D confinement
undergoes a topological phase transition similar to that of its
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strictly 2D counterpart. In particular, the critical temperature
is given by the KT prediction divided by a constant length
scale; the correlation functions decay algebraically with dis-
tance below TC , albeit with an exponent larger than 1/4 at
TC . Above TC , the correlations decay exponentially. There is
a maximum in the specific heat close to TC ; the translational
order parameter is size dependent and disappears in the ther-
modynamic limit. As the thickness of the quasi-2D Coulomb
gas increases and the system becomes fully three dimensional,
the topological phase transition disappears [4].

The importance of these types of studies lies in the need
to better understand low-dimensional (quasi-2D) systems,
since there are no truly two-dimensional materials. Recent
examples are quasi-2D electron gases (q2DEG) found at
the interfaces of rare-earth oxide heterostructures such as
LaTiO3-SrTiO3 [5,6], LaAlO3-SrTiO3 [7–9], and LaAlO3-
EuTiO3-SrTiO3 [10]. They have generated interest in the last
20 years because of their remarkable electronic and mag-
netic properties. In some experiments, the q2DEG can be
confined within a layer up to 2 nm thick [5]. On the other
hand, there exists experimental evidence showing that the
magnetoresistance of the q2DEG in oxide heterointerfaces
can be modulated with the orientation of the external mag-
netic field [11,12], displaying rather different behavior from
its three-dimensional counterpart [11]. The purpose of this
work is to determine to what extent the properties of such
a topological phase transition are modified when a magnetic
field is applied. This problem is important not only because
of its relevance in energy storage, materials design, and de-
vice engineering [13–15], but also because several aspects at
the basic science level remain poorly understood. First, the
question arises as to what extent are the structural properties
of a quasi-2D Coulomb gas affected by the presence of a
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perpendicular magnetic field. It is also of crucial importance
to determine how the thermodynamic and transport properties
of this type of system are modified by a transverse magnetic
field, as it happens with more ordinary phase transitions, such
as in superconductors. Also, this knowledge can potentially
increase the number of applications. The Bohr–van Leeuwen
(BvL) theorem, applicable to general classical systems, states
that the free energy of the equilibrium system is invariant
under the application of an external magnetic field. The well
proof of the BvL theorem by a trivial shift of momentum
space integration variables in the partition function integral
[16] can be replicated when the Hamiltonian is augmented
by external fields. This invariance also holds when additional
external fields of infinitesimal strength are added to the Hamil-
tonian. The derivatives of the free energy relative to such
additional fields yield general correlation functions which,
by the BvL theorem, must similarly be invariant under the
application of an external magnetic field. This includes, in
particular, also correlation functions that provide structural
measures. Thus, a trivial generalization of the BvL theorem
implies that general equilibrium correlation functions includ-
ing correlation functions associated with structural measures
must, rigorously, remain invariant when a magnetic field is
present. This conclusion relates to thermodynamic and such
general time-independent equilibrium correlations’ structural
properties. The free energy cannot provide information on
time-dependent correlation functions such as the velocity
autocorrelation function (whose integral yields, by the Green-
Kubo relation, the self-diffusion constant). Thus, while the
long-time average equilibrium properties are invariant (by the
BvL theorem and the trivial generalization thereof discussed
above) under the application of the magnetic field, no such
general statements follow for general time-dependent quanti-
ties. Studying the effect of the magnetic field on the system
dynamics is a central objective of our work. In what follows,
we first illustrate that our numerical results for long-time
averaged static equilibrium quantities remain invariant under
the application of the magnetic field as required by the BvL
theorem. Following this verification of our in silico results, we
then proceed to explicitly study the effects of an applied ex-
ternal magnetic field on the dynamical properties (principally,
the self-diffusion coefficient) of these quasi-2D systems.

There are only a few reports concerning the low-density,
2D Coulomb gas under a transverse magnetic field. One of
the first was the work of Hansen et al. [17], who calculated
the self-diffusion coefficient of a system of negatively charged
disks in a positive background. The self-diffusion coefficient
D was obtained for several values of the coupling constant,
� (defined as the ratio of the electrostatic energy to the ther-
mal energy), finding that smaller values of � yielded larger
values of D. They concluded that the magnetic field did not
affect the self-diffusion coefficient of the charged disks [17].
This result is not expected, since the circular motion of the
charges produced by the magnetic field precludes diffusion.
Yamada and Ferry [18] found that structural properties, such
as the radial distribution function, displayed no change when
the intensity of the magnetic field was increased. Dubey and
Gumbs [19] modeled a low-density set of negatively charged
particles in a positive background in 2D, using molecular dy-
namics. Neither the structure nor the thermodynamics of their

system was qualitatively affected by magnetic fields, though
the self-diffusion coefficient was not calculated. A follow-up
publication [20] studied a 2D system of negative charges in
a positive background under a 2D modulating potential in
the xy plane subject to a perpendicular magnetic field. In the
absence of the latter potential, D decreased monotonically
with magnetic field; both cases were studied at fixed tem-
perature [20]. Other studies have modeled 2D charges under
a perpendicular magnetic field, with the electrostatic interac-
tion given by U (r) ∼ 1/r, such as that of Ranganathan et al.
[21]. Their self-diffusion coefficient decreases monotonically
when the magnetic field is increased up to 5 T [21]. Feng
et al. [22] found that the self-diffusion coefficient decays as
the transverse magnetic field increases, as D ∼ 1/(1 + cβ2).
Here, β = ωC/ωP is the ratio of the cyclotron frequency over
the plasma frequency and c is a constant [22]. Similar systems
are modeled by Ott et al. [23], whose self-diffusion coefficient
is seen to decay as D ∼ 1/β under strong transversal mag-
netic field [23], in contradiction to Feng et al.’s predictions
[22]. In most of these works, the authors modeled charged
disks in strictly 2D, with logarithmic electrostatic interactions.
However, to compare with experiments and to predict proper-
ties that are useful for applications of quasi-2D systems, one
should model spheres instead of disks, since no material is
truly two dimensional. That is the focus of this work.

II. MODELS, METHODS, AND SIMULATION DETAILS

The system studied here is a low-density, quasi-2D
Coulomb gas of spheres confined to move in a box whose
thickness is small but finite, by means of numerical simula-
tions. The motion of the particles is obtained from the solution
of the dissipative particle dynamics (DPD) force field [24,25],
complemented with the 3D Ewald sums for confined systems,
to account for the long-range nature of the electrostatic in-
teractions [26]. The charged spheres are restricted to move
under quasi-2D confinement by effective, short-range wall
forces acting only along the z axis, which is the confining
direction [27]. All quantities are reported in reduced units,
unless stated otherwise, and are represented by asterisked
symbols. The number density of the gas is set to ρ∗ = 0.03 for
all cases reported here. The volume of the simulation box is
L∗

x × L∗
y × L∗

z = 80 × 80 × 1r∗3
C , where r∗

C = 1 is the length
scale in DPD [28]. In all cases, the charge on the particles is
fixed to |q∗| = 4 and the total number of particles is N = 200,
unless stated otherwise. Lengths are reduced by the DPD
forces’ cutoff radius, rC = 6.46 Å [28], so that L∗ = L/rC , and
similarly for all other units [29]. All simulations are run for at
least 107 time steps. The magnetic field is varied from B∗

Z = 0
up to B∗

Z = 0.1 [29]. The contribution of the perpendicular
magnetic field to the dynamics of the system is introduced
through the Lorentz force. Full details have been provided
elsewhere [4] and are therefore omitted here for brevity. All
additional details pertinent to this work can be found in the
Supplemental Material [29].

III. RESULTS AND DISCUSSION

As we briefly reviewed in the Introduction, by the BvL
theorem and a trivial extension thereof, the thermodynamic
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FIG. 1. The translational order parameter, �T , as a function of
the normalized temperature, T ∗/T ∗

C for increasing values of the ex-
ternal magnetic field, B∗

z , applied perpendicularly to the xy plane of
the slit on which the charged spheres move. The dashed lines are
guides for the eye. The data for B∗

Z = 0.0 were taken from Ref. [4].

and structural properties of our system must remain invari-
ant under the application of an external magnetic field. In
what follows, we begin by demonstrating that our numerical
results indicate that thermodynamic and structural measures
are indeed independent of the applied field. Armed with these
results, we then turn to our main objective of studying the
system dynamics and illustrate that the diffusion constant is
strongly dependent on the applied field. To track changes in
the structure of the quasi-2D Coulomb gas when the strength
of the transverse magnetic field and the temperature are in-
creased, the translational order parameter (TOP), is calculated
as follows [30]:

�T = 1

N

〈∣∣∣∣∣∣
N∑

j=1

ei �K ·−→r∗
j

∣∣∣∣∣∣
〉
. (1)

In Eq. (1), N is the total number of charged particles,
�K is the first-shell reciprocal lattice vector, and the angular
brackets represent an average over time. To determine T ∗

C ,
the TOP is calculated for temperatures in the range 0.375 �
T ∗/T ∗

C � 11.14, defining T ∗
C as the temperature at which the

TOP has the steepest change [4]. The T ∗
C obtained with this

approach is found to be in excellent agreement with the KT
prediction, T ∗

C = q∗2
/4r∗

C [1]. This procedure is conducted for
transverse magnetic field in the range 0.00 � B∗

Z � 0.10. The
results are presented in Fig. 1, showing that the TOP is close
to 1 below T ∗

C , where the charges are condensed into a single
structure, independently of the strength of the magnetic field.
The temperatures are normalized by the value of T ∗

C , found
as previously described. Above T ∗

C , most of the charges are
unpaired and the TOP is close to zero. The magnetic field
does not change the critical temperature, T ∗

C , of a low-density,
quasi-2D Coulomb gas. This is one of our main conclusions.

To study the structure and the spatial correlations of the
quasi-2D Coulomb gas, the radial distribution function (RDF),
g(r), is calculated as the temperature is increased, for particles
of opposite charge, under the influence of a constant magnetic
field. Figure 2 shows the RDF at a temperature (a) below
T ∗

C and (b) above T ∗
C . For simplicity, only results for the

minimum and maximum values of B∗
z are shown. For charged

spheres with no external field, spatial correlations decay alge-
braically with relative distance at T ∗ < T ∗

C , in agreement with
predictions for strictly 2D charges [1,4]. This is afforded in
Fig. 2(a) by a comparison between the raw data (black curve)
and the power-law fit (dashed red line). Consistent with the
BvL theorem, the application of the maximum transverse field
used in this work introduces (up to negligible numerical error)
somewhat sharper oscillations. However, it does not change
this algebraic-decay behavior, as displayed in Fig. 2(a) by the
blue line.

Above the critical temperature of this topological phase
transition, the spatial correlations decay exponentially [4], as
in the 2D KT transition [1]; see Fig. 2(b). At T > T ∗

C , the
charged spheres dissociate and the gas becomes conducting.
The application of a transverse magnetic field does not change
the structure of the quasi-2D Coulomb gas above its T ∗

C , as

FIG. 2. Radial distribution functions, g(r∗) − 1, between charges of opposite sign at (a) T ∗ = 0.75T ∗
C , and at (b) T ∗ = 7.5T ∗

C , as functions
of relative distance, r∗, in reduced units. Only data for the maximum and minimum strengths of the applied magnetic field are shown, for
simplicity. The data are plotted in semilog scale, rather than log-log scale, to avoid having broken lines along the y axis when g(r∗) − 1
becomes negative. The dashed blue lines in (a) and (b) are best fits to algebraic and exponential decays, respectively. In all cases, there are
N = 3 × 104 charged spheres, with number density ρ∗ = 0.03 and charge |q∗| = 4.0. The data for B∗

Z = 0.0 were taken from Ref. [4].
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FIG. 3. The melting of the system, measured by the proliferation
of the number density of free charges, nF , as the temperature is
raised and for increasing strength of the applied magnetic field.
The data for B∗

Z = 0.0 were taken from Ref. [4]. The solid red line
is an approximate analytical expression for strictly 2D disks [3],
nF = ρ∗(r0/λ)1/2(T/TC ), where ρ∗ = 0.03 is the absolute number
density, r0 is maximal extension of the charge distribution, and λ is
the charge-screening length, with (r0/λ) = 0.6. See text for details.

shown by the blue line in Fig. 2(b), just as it did not change it
below T ∗

C . This relative insensitivity of the RDF to the applied
magnetic field agrees with previous findings [19,20], using
molecular dynamics simulations for a strictly 2D Coulomb
gas under a perpendicular magnetic field.

The melting of the low-temperature condensed phase is
also unaffected by the application of a transverse magnetic
field, as shown in Fig. 3. Here, nF represents the number
density of free charges, namely, those that are not forming
dipole pairs. The solid red line in Fig. 3 is an approximate an-
alytical solution, nF = ρ∗(r0/λ)1/2(T/TC ), found by Minnhagen
[3], for the strictly 2D Coulomb gas. Here, ρ∗ is the number
density, r0 is maximum extension of the charge distribution,
and λ is the screening length. As the temperature is raised,
progressively more dipole pairs disintegrate yet the magnetic
field does not modify the density of free particles, as seen
in Fig. 3. The melting process of the condensed phase is not
affected by the magnetic field. This is another one of our main
conclusions, which is supported by experiments [31], as well
as by the data shown in Fig. 1.

We now turn to our central objective of studying the system
dynamics. Starting from the calculation of the mean-square
displacement of the charged particles, their self-diffusion co-
efficient, D∗, is obtained [29]. At temperatures T ∗ � T ∗

C , the
data show that D∗ is almost negligible for all values of the
applied magnetic field; see Fig. 4. The magnetic field strongly
reduces the self-diffusion coefficient, especially at low tem-
peratures, as seen in Fig. 4. At T ∗/T ∗

C < 1 the diffusion is
negligible, which is expected because at those temperatures
the system is condensed (see Fig. S1(a) in Ref. [29]); hence,
the Lorentz force is zero. For T ∗/T ∗

C > 1 there is diffusion
that increases with increasing temperature, but it is strongly
suppressed by the magnetic field. The growing cyclotron

FIG. 4. The self-diffusion coefficient of the charged spheres, D∗,
as a function of the reduced temperature, T ∗/T ∗

C , for increasing
strength of the transverse magnetic field, B∗

Z . The dashed lines are
only guides for the eye.

frequency favors circular motion of the charges over their
diffusion. A large increase in the self-diffusion coefficient is
found at T ∗ = 6T ∗

C for B∗
Z = 0 in Fig. 4. This is a consequence

of the fact that around that temperature, the number of free
(unbound) charges per unit volume has almost reached the
value of the global number density; see Fig. 3. Since most
charges are unpaired, the temperature is high, and there is
no magnetic field to induce circular motion, their diffusion
is maximized.

To compare our results with previously published work
on dusty plasmas in strictly 2D [22,23,32], we plot

FIG. 5. Self-diffusion coefficient, D∗, normalized by its value
without magnetic field at T ∗/T ∗

C = 7.5, D∗
0, as a function of the

parameter β∗ = ω∗
C/ω∗

P, for four values of the coupling constant,
�∗, for T ∗/T ∗

C > 1 in all cases. Here, ω∗
C and ω∗

P are the cyclotron
and plasma frequencies, respectively. The inset shows the normal-
ized self-diffusion coefficient, perpendicular to the magnetic field
(D⊥/D0) reported by Vidal and Baalrud [34], for a system of N =
5 × 103 particles and � = 10. The solid lines are the best fits to the
function D∗/D∗

0 = α/β∗ + δ, where α and δ are fitting parameters.
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FIG. 6. Temperature dependence of the parameter α used to fit
the self-diffusion constant, D∗, to the equation D∗/D∗

0 = αβ∗−1 + δ

(see also Fig. 5), where β∗ = ω∗
C/ω∗

P, and δ is a fitting parameter.
Here, ω∗

C and ω∗
P are the cyclotron and plasma frequencies, respec-

tively. The solid blue line is the best linear fit.

D∗, normalized by its value for B∗
Z = 0 at T ∗/T ∗

C = 7.5,
called D∗

0, as a function of β∗ = ω∗
C/ω∗

P, in Fig. 5. The

self-diffusion coefficient D∗ is reduced when increasing �∗
and β∗, with �∗ = q∗2/a∗T ∗ being the coupling constant, and
a∗ = (4πρ∗/3)−1/3 is the Wigner-Seitz radius. The results
follow the same trend seen in experiments on dusty plas-
mas under strong magnetic field [31]. The solid lines in the
main panel in Fig. 5 are best fits to D∗ ∼ 1/β∗, which is
approximately fulfilled for all four �∗ values. This so-called
Bohm-diffusion type [33] has also been observed in one-
component and binary-charged systems in strictly 2D with
Yukawa interactions [23]. A strong drop in the self-diffusion
coefficient with increasing magnetic field has been observed
in molecular dynamics simulations of 3D plasmas by Vidal
and Baalrud [34]. They report data on the component of the
self-diffusion coefficient perpendicular to the magnetic field
(D⊥), which also follows approximately Bohm’s diffusion for
relatively high magnetic fields (β � 0.1) [34]; see the inset in
Fig. 5.

In Fig. 6 one finds the dependence on reduced tempera-
ture of the fitting parameter α, used to fit the dependence
of the diffusion coefficient on the parameter β∗ = ω∗

C/ω∗
P,

where ω∗
C and ω∗

P are the cyclotron and plasma frequen-
cies, respectively. The data and the solid blue line in
Fig. 6 show that D∗ ∝ T ∗, for T ∗/T ∗

C > 1 for weak cou-
pling and for the values of the cyclotron frequency used in
this work.

FIG. 7. The average self-diffusion coefficient of all the charged spheres, D∗, as a function of the coupling constant, �∗, for increasing
values of the parameter β∗ = ω∗

C/ω∗
P, for T ∗/T ∗

C > 1 in all cases. The data from the simulations are shown in solid (red) circles. The solid
(blue) lines are the best fit to Eq. (2). Here, ω∗

C and ω∗
P are the cyclotron and plasma frequencies, respectively.
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Below T ∗
C all charges are condensed into a single structure

with q∗ = 0; thus, there is no contribution to the dynamics
from the Lorentz force. Therefore, we focus on the properties
of D∗ for increasing magnetic field, at T ∗ > T ∗

C . To extract the
influence of the magnetic field and temperature on the average
self-diffusion coefficient of the charged spheres, D∗ is plotted
as a function of the coupling constant, �∗, for increasing
β∗, in Fig. 7. Since the charge, mass, and number density
remain constant, increasing �∗ is equivalent to reducing the
temperature, while larger β∗ corresponds to stronger magnetic
field. The solid lines in Figs. 7(a)–7(f) are the best fits to the
function

D∗ = A

�∗ e−b�∗ + c, (2)

obtained by Daligault [35] for 3D one-component plas-
mas whose diffusion is driven by thermally activated jumps
between equilibrium configurations (“cages”) separated by
energy barriers. A, b, and c in Eq. (2) represent adjustable
parameters. Lowering the temperature and increasing the
magnetic field (higher values of �∗ and β∗, respectively) re-
sults in a pronounced decrease in the self-diffusion coefficient.
The fits to Eq. (2) in Fig. 7 show that at high temperature (low
�∗), D∗ ∼ (Aa∗/q∗2)T ∗, which agrees with the temperature
dependence found for the self-diffusion coefficient of strictly
2D, unmagnetized charges [32,36].

IV. CONCLUSIONS

Consistent with the BvL theorem for static and thermo-
dynamic properties, our numerical results indicate that a

transverse magnetic field applied to a quasi-2D neutral set
of charged spheres influences mostly their diffusion, with the
structural properties turning out to be almost insensitive to
the field. In particular, the critical or melting temperature is
unaffected by the presence of the magnetic field, as is the
melting process itself, for low-density systems. The spatial
correlations below and above the critical temperature under
the applied magnetic field conserve their behavior as it was
without field. The rate of dipole-pair breaking under a trans-
verse magnetic field with temperature follows the same trend
as that found without magnetic field. The BvL theorem does
not apply to dynamic properties which we explore here. These
exhibit marked changes as a result of the application of the
external field. The self-diffusion coefficient is strongly influ-
enced by the magnetic field. As the magnitude of the magnetic
field grows, the self-diffusion coefficient decays as the inverse
of the field (Bohm diffusion) for relatively weak coupling,
in agreement with experiments on dusty plasmas. This work
explores the influence of magnetic field on the structural and
dynamical properties of a low-density, quasi-2D topological
phase transition in a Coulomb gas and should afford a better
comparison with experiments, which are never carried out in
strictly 2D.
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