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How adaptive evolution to one environmental stress improves or suppresses adaptation to another is an impor-
tant problem in evolutionary biology. For instance, in microbiology, the change of resistance to one antibiotic by
resistance acquisition by another drug is a critical issue that has been investigated as cross-resistance. Recent ex-
periments on bacteria have suggested that the cross-resistance of their evolution to various stressful environments
can be predicted based on the transcriptome changes after evolution under the corresponding stresses. However,
there are no studies so far that explain a possible theoretical relationship between cross-resistance and changes
in the transcriptome, which causes high-dimensional changes to cell phenotype. In the present paper, we show
that a correlation exists between fitness change in stress tolerance evolution and response to the environment,
using a cellular model with a high-dimensional phenotype and establishing the relationship theoretically by
formulating a macroscopic potential theory against environmental and genetic changes. Finally, we applied
the theory to experimental data on bacterial evolution under antibiotics, which demonstrates the theoretically
predicted correlation between the fitness changes by evolution and transcriptome changes upon environmental
stresses. Thus, evolution is predicted from transcriptome information in response to stresses before evolution.
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I. INTRODUCTION

Generally, organisms change their state to adapt to various
environmental stresses. This ability is thought to have been
acquired through evolution [1,2]. Those that evolved to adapt
to one environment may increase or decrease the degree of
their adaptation to another environment. For example, adap-
tive evolution to one stressful environment may increase or
decrease fitness to manage another stress as compared with
that of the organism before evolution. This correlated change
in fitness is called cross-resistance [3–11]. If the adaptive evo-
lution to one environmental stress increases or decreases the
fitness for another, the cross-resistance is positive or negative,
respectively. In medicine, understanding the cross-resistance
of bacteria to different antibiotics is a crucial issue.

Can such cross-resistance be predicted? Extensive studies
have been conducted to uncover specific genetic mutations
which allow adaptive evolution to individual environmen-
tal stresses and to unveil functional changes that occur as
a result of such mutations. Molecular changes caused by
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mutations have been identified in certain genes which al-
low for resistance to environmental stress [12,13]. However,
the detailed mechanisms of cross-resistance remain unclear.
Cross-resistance between different environmental conditions
involves interactions among diverse components that are in-
fluenced by the mutation and are not explained directly by
specific molecular changes. Examination of the correlation
between fitness changes across different environmental con-
ditions using standard molecular biology methods that focus
on a one-to-one correspondence between genes and functions
is not easy.

How can we compare adaptive evolution under different
environmental conditions? For this purpose, we need to con-
sider changes to the cellular state that is shaped by a wide
variety of components. Such a cellular state can be represented
by the concentrations of these components. Changes in the
cellular state in response to environmental changes, such as
antibiotics, temperature, and nutritional conditions, will lead
to a change in the growth of a cell. The correlation of changes
in the cellular state across different environmental changes
will provide information on how organisms evolve to them.
Such information involves high-dimensional data that charac-
terize the cellular state.

Recent advances in experimental techniques have en-
abled the acquisition of high-dimensional data of cel-
lular states, such as the transcriptome, proteome, and
metabolome [14–16]. Using these high-dimensional data,
a detailed analysis of the cellular state is now possible.
However, how can we extract relevant information from
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high-dimensional data with thousands of components to
obtain the correlation between evolutionary adaptation to dif-
ferent conditions?

A recent experimental report examined transcriptome
changes throughout the evolution of bacteria in response to a
variety of environmental stresses [8,17]. In these studies, the
authors measured the cross-resistance, that is, how adaptive
evolution to one environment, E (1), changed the growth rate
of bacteria in another environment, E (2). Then, by measuring
transcriptome changes through adaptive evolution, they con-
structed a low-dimensional linear model for these changes,
explaining the observed cross-resistance. Notably, the envi-
ronmental stresses adopted in their experiments had a variety
of molecular effects on cells. The transcriptome of E. coli
used in their experiment was high-dimensional data with over
4000 dimensions. Despite this complexity, low-dimensional
information extracted from high-dimensional information is
suggested to be relevant to predict cross-resistance to a variety
of conditions to a certain degree.

If cellular states moved throughout the entire high-
dimensional space during adaptive evolution to various stress
environments, changes in phenotype (i.e., cellular state) in
response to different stress environments would not be corre-
lated, and predictions of cross-resistance by the environmental
response would not be possible. However, such predictions
may be possible if transcriptome changes due to adaptive evo-
lution are restricted to a relatively low-dimensional subspace.
Is there general support for a such low-dimensional reduction
in adaptive changes to cellular states?

Several recent experiments have suggested that changes in
cellular state in response to environmental stresses are con-
strained in low-dimensional space [18–23]. Changes in the
transcriptome of E. coli across various stress environments
were found to be strongly correlated. Horinouchi et al. also
showed that transcriptomic changes in independent evolution-
ary lineages converge along the common principal component
(PC) space in the adaptive evolution of E. coli under ethanol
stress. These results suggest that phenotypic changes in the
adaptation and evolution of cells in response to environmental
stress occur within a low-dimensional space.

How are phenotypic changes constrained to a low-
dimensional space? By simulating a catalytic chemical
reaction network model with thousands of components, it
was found that high-dimensional concentration changes in
response to environmental or mutational changes are con-
strained to a common low-dimensional space as a result of
evolution to increase the fitness [24–26]. This constraint is
then formulated in terms of dynamical systems theory as
a separation of a few slow eigenmodes for the relaxation
dynamics of the rate equation representing the cellular state
changes.

Can we, then, theoretically predict cross-resistance using
the information in such low-dimensional constraints [27]?
In the presence of phenotypic constraints, responses to en-
vironmental and evolutionary changes are restricted to a
common, lower-dimensional subspace. Accordingly, one does
not need the entire high-dimensional data to predict the fitness
change; information within the low-dimensional subspace
will be sufficient to estimate the fitness changes across envi-
ronmental conditions. Thus, the information needed to predict

cross-resistance is significantly reduced. In the present study,
we first used a gene regulatory network (GRN) model to
demonstrate such low-dimensional phenotypic constraints by
evolution, and then demonstrated that cross-resistance is pre-
dicted by cellular responses to stress before evolution by
taking advantage of phenotypic constraints [28–33]. Then, to
show that the result is universal, independent of the specific
choice of GRN model, we formulate a macroscopic poten-
tial theory, where the fitness is represented as a function of
environmental and genetic changes, from which the cross-
resistance is predicted generally in terms of the response to
antibiotics in before evolution. This allows for experimental
verification of the theoretical predictivity as will be presented.

The remainder of this paper is organized as follows: In
Sec. II we introduce the GRN model of a cell used in the
present study and describe the procedure of simulated evo-
lution. Next, in Sec. III we show that phenotypic constraints
are produced when the GRNs are evolved under fitness to
satisfy multiple input-output relationships. We demonstrate
that the degree of the phenotypic constraint acquired through
evolution is determined by the number and strength of the
postulated input-output relationships. We also explain such
constraints in terms of the nature of gene regulatory matrices.
In Sec. IV we show the results of simulations of adaptive
evolution to a variety of environmental stresses, by using the
evolved GRNs obtained in Sec. III as the ancestor. Then we
computed the cross-fitness, that is, the fitness of a cell that has
evolved under another environment for a new environment.
We demonstrated that this cross-fitness is approximated using
low-dimensional variables along with phenotypic constraint
coordinates. In particular, when a P-dimensional phenotypic
constraint exists, the cross-fitness and cross-resistance that are
desired from it are approximately described by a function of
P variables. Then the cross-fitness as a result of evolution is
predicted by the correlation in transcriptome changes upon
environmental stresses. In Sec. V the approximate form of
cross-fitness in Sec. IV is derived by assuming that fitness
is given by a potential function of low-dimensional envi-
ronmental and genetic coordinates. In Sec. VI we apply the
present theory to experimental data of evolution of resistance
to antibiotics in E. coli. The experimental data well reproduce
the predicted correlation between the cross-fitness and tran-
scriptome changes. In Sec. VII we summarize the result and
discuss its relevance to cross-resistance observed in experi-
ments of bacterial evolution of antibiotic resistance.

II. MODEL

A. Cell model

We adopted a GRN as a model for the cellular state. The
GRN is composed of N genes whose expression is represented
by the N-dimensional vector x = (x1, x2, . . . , xN ), and the cell
state is given by this vector. The time evolution of the state
follows the rate equation:

ẋi = f (yi ) − xi, (1a)

f (yi ) = 1

1 + exp(−yi )
, (1b)

yi = 1√
N

N∑
j=1

Gi jx j + 1

NI

NI∑
j=1

Ii jη j + Ei. (1c)
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G is an N × N matrix representing the interactions
between genes, satisfying Gi j ∈ {−1, 1} (i �= j), Gi j = 0
(i = j). Gi j > 0 indicates that the product of jth gene
positively regulates the ith gene, that is, it accelerates its
transcription. Gi j < 0 represents negative regulation.

η is an NI -dimensional vector that represents the input
signal from the external environment to the cell, satisfying
ηi ∈ {−1, 1}. The strength of the interactions between the
input signal and the GRN is represented by the N × NI ma-
trix I, satisfying Ii j ∈ {−1, 1}. E is an N-dimensional vector
representing the environmental stress. In the parametric region
used in this study, cellular states always reach a unique fixed
point x∗ = (x∗

1, x∗
2, . . . , x∗

N ) as a result of time evolution using
the rate equation [Eq. (1a)]. In this study we refer to the fixed
point x∗ of Eq. (1a) as the phenotype. The phenotype x∗ is
uniquely determined for genotype I, G and environment η, E.

Both terms Iη and E represent the interactions between
the external environment and the GRN, but their biological
meanings are different. Iη represents the signal inputs from
the external environment. Such input from the environment
appears frequently over long-term, evolutionary timescales,
allowing cells to adapt to these environments through evolu-
tion. For such evolved cells, we applied environmental stress
E for a laboratory timescale, much smaller than the long-term
evolutionary timescale (consider, for instance, the application
of antibiotics to wild-type bacteria). Against such inputs, cells
may be required to evolve by transient adaptations, which are
lost in the long-term evolutionary time scale.

In this model the fitness of a cell is determined by
the expression of the output genes, that is, the vector o =
(o1, o2, . . . , oNO ). The stationary expression of the output
genes is given by o∗

i = f (
∑N

j=1 Oi jx∗
j /

√
N ), where O is an

NO × N matrix of interactions between the genes in GRN and
the target gene, satisfying Oi j ∈ {−1, 1}. Here we postulate
that the fitness for each condition η(n) is defined by the nega-
tive distance −|o∗ − t (n)|2 between the output gene expression
and the optimal gene pattern t (n) corresponding to each input
signal η(n), that is, the fitness takes a maximum value of
zero if the expression pattern of the output genes o matches
the optimal gene pattern t (n) (n = 0, 1, . . . , P − 1). Now, we
consider P different environmental conditions with input sig-
nal η(n) (n = 0, 1, 2, . . . , P − 1) and an optimal gene pattern
t (n). In this study we consistently use N = 100, NI = 8, and
NO = 8 [34]

B. Evolution

Evolutionary simulations were performed using the fol-
lowing procedure. In each generation, M mutant cells were
created from L mother cells. The total population was ML.
Mutant cells were generated by reversing the sign of each
matrix element of the genotype I, G, O of the mother cell
with probability ρ. In this study, ρ = 1/N2 = 0.0001 was

used. The fitness of each mutant cell was then calculated as
follows: We calculated the fixed points x∗ and o∗ using the
rate equation (1a) using the four-degree adaptive Runge-Kutta
method [35] and used this to calculate the fitness. Initial states
for the calculation of the fixed point were randomly chosen
from the uniform distribution 0 < xi < 1 (i = 1, 2, . . . , N ).
However, because the model adopted in the present study has
only one fixed point in the parameter region, the choice of
initial values does not affect the results. Finally, the top L fitted
cells were selected for the next generation of mother cells. In
this study we use M = 4 and L = 25.

III. EVOLUTIONARY DIMENSION REDUCTION IN THE
GENE REGULATORY NETWORK

A. Fitness

First, we performed evolution from randomly generated
cells with given matrices Iini, Gini and Oini. Iini, Gini, and
Oini are randomly generated with probability p to take ±1 as
follows:

p
(
I ini
i j = ±1

) = 1
2 , (2a)

p
(
Gini

i j = ±1
) = 1

2 , (2b)

p
(
T ini

i j = ±1
) = 1

2 , (2c)

whereas Gii is set to 0.
As mentioned, we assumed that cells need to respond ap-

propriately to external inputs to survive; as such, output genes
should take the appropriate expression pattern t (n) upon input
signal η(n). Fitness for a input-output pair (η(n), t (n)) under
environmental stress E is given as follows:

μn(E ) = −
NO∑
i=1

(
o∗

i |η(n),E − t∗(n)
i

)2
, (3)

where o∗|η(n) is stationary expression pattern of output genes
with input signal η(n) and environmental stress E. Note that
μn(E ) � 0 and μn(E ) takes 0 only if the stationary expression
pattern of output genes agrees with the target pattern.

In this section, by considering P input-output relationships
without environmental stress, that is, E = 0, we used the
following fitness function μ̄:

μ̄ =
P∑

n=1

μn(E = 0). (4)

μ̄ takes a maximum value of 0 only when the output gene
expression pattern agrees with the target pattern t (n) for each
of the input signals η(n) (n = 0, 1, . . . , P − 1) from the en-
vironment. In this study we used a nonsignal condition and
the following P̃ pairs of signals and expression patterns of the
output genes (i.e., P = 2P̃ + 1):

η
(0)
i = 0, t (0)

i = 1/2, (5a)

η
(2m−1)
i ∈ {−1, 1}, t (2m−1)

i ∈
{

1 − 2α

2
,

1 + 2α

2

}
, (5b)

η
(2m)
i = −η

(2m−1)
i , t (2m)

i = 1 − t (2m−1)
i , (5c)
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FIG. 1. The evolutionary increase of the given fitness μ̄ aver-
aged over population. Solid lines correspond to the average over 10
independent strains, using different random seed, and the shadows
in the background correspond to the range of maximum and min-
imum values among the 10 strains. The cases (P̃ = 0, α = 0.45),
(P̃ = 1, α = 0.45), (P̃ = 2, α = 0.35), and (P̃ = 3, α = 0.3) are
plotted.

where m = 1, 2, . . . , P̃. Here α is a parameter that repre-
sents the strength of the required output gene response, and
we define α(m) (m = 1, 2, . . . , P̃) which satisfies t (2m)

i = (1 +
2α

(m)
i )/2. The first signal-target relationship (η(0), t (0)) re-

quires that there is no response to output genes when there are
no environmental signals. For P̃ � 1, we set a pair of patterns
2P̃ − 1 and 2P̃ is symmetric from the case with no input
signal. In addition, each input pattern η(2m) (m = 1, 2, . . . , P̃)
is chosen to be linearly independent. That is, (η(2m) · η(2m′ )) =
0 (m �= m′). The α(m) (m = 1, 2, . . . , P̃) is equally linearly
independent; (α(m) · α(m′ )) = 0 (m �= m′). When a set of
(η(n), t (n)) (n = 0, 1, . . . , 2P̃) is given by the above methods,
there are linearly independent P̃ signal-target relationships.
The purpose of the above pairwise signal-target relationship
is to ensure that the symmetry of the phenotypic constraints
is obtained as a result of evolution. However, the pheno-
typic constraints discussed below are obtained even when
the signal-target relationship is randomly assigned, without
the above symmetry. As a result of evolution, the fitness ap-
proached maximum μ̄ ∼ 0, with μn(E = 0) ∼ 0 for n � 2P̃,
as long as P̃ and α are not so large (Fig. 1). In the following
sections, we study the behavior of such evolved networks.

B. Evolutionary dimension reduction

The phenotype of cell x∗ changes when environmental
stress E is imposed. We denote the phenotypic change in
response to environmental stress as δx∗(E ) = x∗(E ) − x∗(0),
where x∗(E ) represents the phenotype of the cell under
environmental stress E, calculated using the environmental
signal η(0). We calculated phenotypic changes δx∗(E ) for
cells evolved under various P̃ and α, subjected to 10 000
randomly generated environmental stresses E. These envi-
ronmental stresses E were generated such that each element
followed a normal distribution with a mean of 0 and a variance
of 1. We investigated the change in phenotype with environ-
mental stress δx∗(E ) in the N-dimensional phenotypic space.
However, as it is too high-dimensional, we performed prin-

cipal component analysis (PCA) of over 10,000 phenotypic
changes δx∗(E ) and examined if the variance was explained
by a few components. The dependence of the explained vari-
ance on P̃ and α is illustrated in Fig. 2.

To study the validity of dimension reduction, we examined
the dependence of the explained variance ratio (EVR) on P̃
and α. As shown in Fig. 2(a), the contribution of the top
P̃ PCs are large, whereas the components beyond P̃ remain
small. Recall that α is a parameter that represents the strength
of the required target gene response; the larger α, the larger
the response. The top P̃ PCs account for a larger portion
of the phenotypic change δx∗(E ) than other PCs do. This
result implies that P̃, which represents the number of indepen-
dent signal-target relationships, determines the dimension of
the phenotypic constraint. In contrast to the one-dimensional
constraint studied earlier [21,25,36], the constraint to P̃(>
1)-dimensional constraint is generated, corresponding to the
degree of freedom of environmental conditions in which the
adaptive evolution progressed [37].

In summary, the dimension of the phenotypic constraint
agrees with the degrees of freedom P̃ of the signal-target
relationship, and the magnitude of the variance in these direc-
tions is correlated with the magnitude of the required target
response. Note that the environmental stresses adopted to
compute phenotypic variations are not included in the en-
vironment where evolution has taken place. However, the
response to novel environmental changes is restricted to P̃-
dimensional space after evolution. We also observed this in
phenotypic changes caused by genetic mutations in the high-
dimensional gene expression space and the corresponding
dynamical system analysis for an origin of phenotypic con-
straint in the dynamical system (see Secs. S1, S2, and S3 in the
Supplemental Material [38]). These phenotypic changes due
to environmental stresses and genetic mutation are restricted
to a common low-dimensional space. This will be impor-
tant for the correspondence between phenotypic changes in
response to environmental stresses and due to adaptive evolu-
tion, to be studied in the following sections, including for the
formulation of the potential theory in Sec. V.

IV. PREDICTION OF CROSS-RESISTANCE
BY PHENOTYPIC CONSTRAINT

A. Fitness

In the previous section, we numerically evolved cells to
realize the appropriate target pattern t (n) (n = 0, 1, . . . , 2P̃)
in response to each input signal η(n) (n = 0, 1, . . . , 2P̃). As a
result, phenotypic changes δx∗ in response to environmental
stress E and mutation to genotype G were constrained to the
same subspace with P̃ dimensions.

In this section we adopt cells that have already evolved as
in the previous section, achieved the phenotypic constraint,
and then studied the evolution of adaptation to novel environ-
mental stresses. This corresponds to the short-term adaptive
evolution in laboratory experiments. Using this setup, we
computed the cross-fitness, that is, the fitness of a cell that
has evolved to adapt to an environmental stress E (1), exposed
to another environmental stress E (2), and we show that the
cross-fitness can be predicted by phenotypic constraints in a
low-dimensional subspace.
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FIG. 2. Explained variance ratio (EVR) of phenotypic changes for the first five principal components (PCs) when random environmental
stresses E generated by Ei ∼ N (0, 1) were applied. The changes in x∗ for the evolved gene regulatory network were computed. The
phenotypic changes δx∗(E ) were obtained for 10 000 independent environmental stresses, from which PCs were computed. (a) The explained
variance ratios (EVR) of the PCs of the phenotypic changes of the cell which evolved under different P̃ input-target relationships are
plotted. Each explained variance ratio was calculated for the cell with the top fitness value in the population that evolved for (P̃, α) =
(0, 0.45), (1, 0.45), (2, 0.35), (3, 0.3). (b) The explained variance ratios are plotted against the strength of the required target gene response
α. Each explained variance ratio was calculated for the cell with the top fitness value in the population that evolved for P̃ = 1. The error bars
represent the standard deviation of the 10 independent strains. Also see Fig. S1 for the cases P̃ = 0, 1, 2, 3 in the Supplemental Material [38].

In this section, we used the fitness μ0(E ) [see Eq. (3)]
in the evolutionary simulations. Evolution with this fitness
requires that the appropriate target pattern t (0) be realized
in response to the input signal η(0) in the presence of envi-
ronmental stress E. Although η(0) and t (0) were used here,
the qualitative results did not change when the other pairs of
input signals and target gene response patterns were adopted.
We calculated the fitness with one input-target relationship,
assuming evolution under a constant environment over a short
period, such as laboratory evolution.

B. Cross-fitness

Now we introduce the cross-fitness μcross(E (1), E (2)),
which is defined as the fitness of genotype G∗(E (1) ), that
is, the fitness when the cell, which has evolved to adapt to
environmental stress E (1), is exposed to environmental stress
E (2). Thus, it is represented as

μcross(E (1), E (2)) = μ0(E (2))G=G∗(E (1) ). (6)

In other words, the cross-fitness μcross(E (1), E (2)) repre-
sents the degree of adaptation under environmental stress E (2)

of the cells that evolved to adapt to a different environmental
stress E (1).

In Fig. 3, μcross(E (1), E (2)) is plotted as a heat map with
the evolved environment E (2) as the horizontal axis and the
environment E (1) used to measure the fitness as the vertical
axis. From the figure, it is difficult to obtain information
from the heat map in which the environmental stresses E are
randomly ordered.

To predict cross-fitness, we must find an appropriate fea-
ture variable y(E ) that captures the effective internal state
corresponding to environmental stress E. y(E ) is a quantity
determined by the cellular state before evolution to adapt to
the stress.

Here, as a possible candidate for y(E ), we adopted the
PCs of the phenotypic changes δx∗(E ) against environmen-
tal stress E for the cells before the evolution because the
dominant P̃ PCs capture the phenotypic change under the
phenotypic constraint, to which δx∗(E ) under environmen-
tal stress is restricted. The PC space was calculated using
10 000 random environmental stresses E, whose elements
followed a normal distribution with a mean of 0 and vari-
ance of 1. The value yi(E ) is the ith principal component

FIG. 3. Fitness when cells evolved under given stress types and
are exposed to different stress types. One hundred environmental
stress types (E (1), E (2), . . . , E (100)) were randomly generated. The
vertical axis represents the environmental stress used to measure
adaptation, and the horizontal axis represents the environmental
stress used for evolution. Stresses are ordered by the number of
random seeds used to generate environmental stress. Here y1((i)) is
the phenotypic change of δx∗((i) ) when environmental stress E (i) is
applied to the cells before evolution.
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FIG. 4. Cross-fitness μcross(E (1), E (2)) is plotted against the difference between the feature values y(E (1) ) − y(E (2) ) of environmental stress.
The feature value y(E ) is the principal component vector of principal component analysis. (a) P̃ = 1. The solid lines represent the second-order
approximation curve predicted from the theory. The second-order coefficient of the blue line is calculated by the least-squares method from
the data on phenotypic changes under 10 000 randomly chosen environmental stresses. The second-order coefficient of the orange line is
the (∂2μ0/∂y2

1 ), calculated using the information for the pre-evolutionary genotypes as given in Sec. V B. (b) P̃ = 2. When two-dimensional
phenotypic constraints exist, we cannot approximate the cross-fitness with the function of a one-dimensional feature value. (c) P̃ = 2. The pair
of environments (E (1), E (2)) used to measure adaptive evolution and cross-adaptation degree is transformed into a two-dimensional feature
value space (y1(E (1)) − y1(E (2)), y2(E (1)) − y2(E (2))), plotted with colors coded according to the cross-adaptation μcross(E (1), E (2)). It can be
seen that the pairs of environments corresponding to different adaptations are distributed in a doughnut shape. This is because the cross-
fitness μcross(E (1), E (2)) at P̃ = 2 can be approximated by a monotone univalent function whose arguments are (y1(E (1)) − y1(E (2)), y2(E (1)) −
y2(E (2)).

value for the phenotypic change δx∗(E ). In Fig. 4(a) the
cross-fitness μcross(E (1), E (2)) across 10 000 random environ-
ments is plotted as a function of y1(E (1)) − y1(E (2)) by red
dots. It can be seen that the cross-fitness μcross(E (1), E (2))
can be approximated by a single curve; that is, the cross-
fitness μcross(E (1), E (2)) is approximately represented by a
single function μ̃cross(δy1(E (1), E (2))) with δy1(E (1), E (2)) =
y1(E (1)) − y1(E (2)), This is possible because of the existence
of a one-dimensional phenotypic constraint, as we adopted
P̃ = 1 in this case.

Then, how can cross-fitness be represented for P̃ = 2,
where the constraint is two-dimensional? Here we show the
results for ancestor cells that evolved with P̃ = 2 and α =
0.4. In Fig. 4(b) we plotted the cross-fitness μcross(E (1), E (2))
against δy1(E (1), E (2)), similar to Fig. 4(a). In this case, cross-
fitness μcross(E (1), E (2)) cannot be approximated by a function
with a single argument δy1(E (1), E (2)). Because the dimension
of the phenotype constraint has been increased from 1 to 2,

the cross-fitness μcross(E (1), E (2)) is estimated as a function
of a two-dimensional PC plane in Fig. 4(c). The difference
in the colors of the dots in the figure corresponds to the
cross-fitness values. It can be observed that the points with
the same cross-fitness are distributed in a doughnut shape in
the two-dimensional PC plane. Cross-fitness μcross(E (1), E (2))
is represented by a function of two-dimensional arguments
(δy1(E (1), E (2)), δy2(E (1), E (2))). It is suggested that when
a D-dimensional phenotypic constraint exists, the cross-
fitness μcross(E (1), E (2)) can be approximated as a function
μ̃cross(δy1, . . . , δyD).

In this section, we demonstrate the existence of an approx-
imation function for the cross-fitness. These results suggest
that the response of cells to environmental changes and evo-
lution can be linked by phenotypic constraints, from which
we can predict the cross-fitness in terms of a few, that is,
P̃, PCs of the phenotypic change before evolution to novel
environmental stresses.
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FIG. 5. Cross-fitness is plotted against cosine-similarity. (a) P̃ = 3 case with three-dimensional phenotypic constraint. Red dots correspond
to the data between pairs of stress environments, under which the magnitude of fitness change was larger than 0.1, whereas gray dots include
those smaller than 0.1. The correlation coefficient across all data is 0.57, and that across red dots only is 0.79. (b) P̃ = 0 case with no phenotypic
constraint. The correlation coefficient is 0.25.

C. Prediction of cross-resistance by cosine similarity

So far we have shown that cross-fitness can be approxi-
mated by a single curved surface using the information on the
phenotypic constraints of the cell. To obtain this approxima-
tion function, information regarding phenotypic constraints,
as represented by PCs, is required in advance. However, in a
real cell, it may not be easy to determine this information:
a large number of PCs are required to provide phenotypic
constraints. Here we propose a simpler alternative measure for
predicting cross-fitness and demonstrate its reliability using
P̃ = 3 conditions.

Instead of the difference between the PCs of phenotypic
changes in response to environmental stresses, we adopted a
simple measure between two phenotypic responses to envi-
ronmental stresses: cosine similarity for phenotypic change
δx∗(E ) in response to the stress environment E (1), E (2) de-
fined as follows:

Sc(E (1), E (2)) =
[
δx∗(E (1) ) · δx∗(E (2) )

]
‖δx∗(E (1) )‖‖δx∗(E (2) )‖ . (7)

This is a quantity characterizing orientations between phe-
notypic changes δx∗(E (1) ) and δx∗(E (2) ); it takes 1 if they are
oriented in the same direction, −1 if they are oriented in the
exact opposite direction, and 0 if they are uncorrelated [39].
The cosine similarity is symmetric for the stress environments
E (1) and E (2).

In Fig. 5(a) the cross-fitness is plotted against cosine-
similarity across the pairs of randomly generated environ-
ments (both red and gray points). For P̃ = 3, one can see the
correlation between cross-fitness and cosine similarity (corre-
lation coefficient 0.57). However, the correlation might not be
significant, as shown in Fig. 5(a). The main reason for this is
that for some stresses E, the response is rather small, so the
cosine similarity and fitness change are small. To eliminate
such “nonresponse” cases, we replotted the data across only
the environment pairs under which the fitness decrease was
larger than 0.1 [red dots in Fig. 5(a)], for which the corre-
lation coefficient was 0.79. It should be noted that, in this

case, it is difficult to see clearly discernible few-dimensional
structure as in Figs. 4(a) and 4(b) [also see Supplemental
figure Fig. S5(a) [38] for the case P̃ = 3]. Still, we get the
correlation as in Fig. 5(a).

The prediction of cross-fitness using cosine similarity
does not require direct information on phenotypic constraints.
However, such constraints are necessary for the correlation
between cross-fitness and cosine similarity. Owing to the low-
dimensional constraint, the environmental and evolutionary
responses are correlated in the low-dimensional space, which
reflects the cosine similarity (see also the discussion in the
next section). For P̃ = 0, in which no phenotypic constraints
evolved as no input-output relationship was postulated, such a
correlation was not observed [Fig. 5(b), correlation coefficient
0.25].

V. REPRESENTATION OF CROSS-FITNESS BY FITNESS
POTENTIAL FUNCTION

A. Potential approximation of cross-fitness in low-dimensional
phenotype space

In the previous section, we showed that cross-fitness can
be approximated based on the information that the phenotypic
response of cells to environmental stresses is constrained in
low-dimensional space. In this section we describe a po-
tential theory that characterizes the phenotypic response by
representing fitness as a function of environmental and ge-
netic changes. This theory demonstrates that the result on the
cross-resistance does not depend on the specific choice of the
models, but is universal as long as the phenotypic changes are
constrained into a much lower dimensional manifold than an
original degree of freedom N .

For this, we consider a fitness function u(X ) of D-
dimensional variable X = (X1, X2, . . . , XD). X is given as a
function of genotype G and environment E. When phenotypic
constraints exist, the phenotypic changes caused by environ-
mental stress and genotypic mutations are restricted to a low,
D-dimensional submanifold within the total N-dimensional
phenotypic space. Here D is not necessarily one or few, but
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the assumption that D is o(N ) is necessary for macroscopic
potential description.

We assume that the fitness function u(X (G, E )) has a
maximum value at G(0), E (0). This means that the cell with
genotype G(0) is adapted to environment E (0). By expanding
the fitness function u(X (G, E )) around G = G(0), E = E (0)

up to the second order, we obtain the following:

u 	 u0 + δu(2), (8a)

u0 = u(X (G(0), E (0))), (8b)

δu(2)(δX ) = 1

2

D∑
i, j=1

∂2u

∂Xi∂Xj
δXiδXj, (8c)

δXi(δG, δE|G(0), E (0)) = δX G
i (δG|G(0), E (0))

+ δX E
i (δE|G(0), E (0)), (8d)

where δX G
i (δG|G(0), E (0)) = [∂Xi/∂G]G=G(0)

E=E (0) · δG with

δG = G − G(0) and δX E
i (δE|G(0), E (0)) = [∂Xi/∂E]G=G(0)

E=E (0) ·
δE with δE = E − E (0). Unless otherwise noted,
δXi(δG, δE|G(0), E (0)) will be denoted as δXi(δG, δE )
without (G(0), E (0)); similarly for other variables. Recall that
the condition E in Secs. III and IV denotes the environmental
changes from the original state and thus corresponds to δE in
this section.

Note that the first-order derivatives (∂u/∂X ) is equal to
0, because the fitness function reaches a (local) maximum
at X (G(0), E (0) ). Fitness generally decreases with an environ-
mental change δE; however, it is recovered by the changes in
the genotype G with the evolution. At the end of the evolution,
the fitness reaches a local maximum at X (G∗(E ), E ). Hence,
G∗(E ) should satisfy the following conditio [40]:

G∗(E ) ∈ argmaxG[u(X (G, E ))]. (9)

Rewriting Eq. (9) using the potential approximation of the
fitness function [Eq. (8c)], we get δĜ∗(δE ) = Ĝ∗(E ) − G(0),
where Ĝ∗(E ) is second-order approximation for G∗(E ), as

δĜ∗(δE ) ∈ argmaxδG

⎡
⎣ D∑

i, j=1

∂2u

∂Xi∂Xj
δXiδXj

⎤
⎦. (10)

Because the fitness function takes the maximum value
at G(0), E (0), all eigenvalues of the matrix H = {Hi j =
(∂2u/∂Xi∂Xj )G(0),E (0)} are negative, and H satisfies xT Hx �
0 for any vector x, and xT Hx takes 0 and only under the
condition x = 0 [we assume that the change by stress is
not so large, and remains within the range of the linear ap-
proximation in Eq. (8a) is valid]. Therefore, when fitness is
completely recovered by the genotype change G(0) → Ĝ∗(E ),
δX (δĜ∗(δE ), δE ) should be a zero vector. Then the following
relationship holds:

δX G
i (δĜ∗(δE )) = −δX E

i (δE ) (i = 1, 2, . . . , D). (11)

The conditions Eq. (11) indicate that the phenotypic
changes caused by environmental change E (0) → E are can-
celed out by genetic changes G(0) → Ĝ∗(E ) [justification of
Eq. (11) in the evolution simulation is discussed in the Ap-
pendix].

When the conditions Eq. (11) are satisfied, then Eq. (8c)
with Ĝ∗(E (1) ) and E (2) can be written as follows:

δu(2) = 1

2

∑
i, j

∂2u

∂Xi∂Xj
δX ′

i δX ′
j, (12a)

δX ′
i (δE (1), δE (2)) = δX E

i (δE (1)) − δX E
i (δE (2)). (12b)

This equation implies that the fitness of the cell that has
evolved under environment E (1), placed in environment E (2),
is given as a function of the difference between the pheno-
typic changes δXE (δE ) under environment changes δE (1) and
δE (2). In Sec. IV B, the change δXE in Eq. (12a) is given by
the changes in the PCs. Then cross-fitness μcross(E (1), E (2) ) =
μ0(E (2)) with G = G∗(E (1) )) can be approximated as a func-
tion of y(E (1) ) − y(E (2) ); the difference in the PC changes in
the phenotypes between E (1) and E (2).

B. Application of potential theory to the result
of evolution simulation

Following the argument in the last section, we esti-
mate the coefficient of the second term of the cross-fitness
(∂2μcross/∂y2

1 ) (y1 is the first PC of the phenotypic change δx∗)
from the change in μcross against the change in y1. The solid
lines in Fig. 4 are predicted curves according to the above
theory for P̃ = 1 and α = 0.45. The coefficient of the blue one
is calculated by the least-squares method with μcross = −cy2

1
changing c. This curve approximates cross-fitness well, espe-
cially in regions where phenotypic changes are not too large.

Next, we interpret the relationship between cosine similar-
ity and cross-fitness in Fig. 5(a) with the potential theory. By
expanding δX ′

i , Eq. (12a) can be rewritten as

δu(2) = 1

2

∑
i, j

∂2u

∂Xi∂Xj
δX E

i (δE (1))δX E
j (δE (1))

+ 1

2

∑
i, j

∂2u

∂Xi∂Xj
δX E

i (δE (2))δX E
j (δE (2))

−
∑
i, j

∂2u

∂Xi∂Xj
δX E

i (δE (1))δX E
j (δE (2)). (13)

The first and second terms in the above equation can
then be interpreted as second-order approximations of fitness
changes under stress environments E (1) and E (2). The third
term represents the interaction between stress environments
E (1) and E (2), that is, the fitness change in E (2) owing to
adaptive evolution under E (1). This term is proportional to
the inner product of the phenotypic changes δXE (δE (1) ) and
δXE (δE (2) ) under the metric H = {∂2u/∂Xi∂Xj |G(0),E (0)}. In
other words, the third term corresponds to the difference in
the orientation of phenotypic changes in E (1) and E (2), the
similarity between the environments. In particular, when the
first and second terms take the same value (fitness changes in
E (1) and E (2) are the same), the cross-fitness is proportional to
the cosine similarity under the metric H . This proportional re-
lationship between cross-fitness and cosine similarity supports
the results presented in Sec. IV C. Note that this relationship
is obtained because the Hessian matrix of the cross-fitness can
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be approximated well by a constant multiple of the unit matrix
in the present model.

VI. APPLICATION FOR LABORATORY EVOLUTION OF
RESISTANCE TO ANTIBIOTICS

In this section we apply the present theory to the experi-
mental evolution of antibiotic resistance in E. coli, to confirm
the prediction of cross-fitness by transcriptome changes. For
details of the experiment evolution, see Sec. VIII and [8].

Here six antibiotics—cefoperazone (CPZ), cefixime
(CFIX), amikacin (AMK), neomycin (NM), enoxacin (ENX),
and ciprofloxacin (CPFX)—were used for the experimen-
tal evolution, which is below denoted as A(1), A(2), . . . , A(6),
respectively. In this experiment, the condition without the
addition of antibiotics corresponds to E (0) in Sec. V, and the
addition of antibiotics corresponds to environmental change
δE. First, each antibiotic A(k) was added to the parental strain
up to the level as long as the growth is sustained. This level is
called the minimum inhibitory concentration (MIC), which is
the lowest concentration of an antibiotic that prevents visible
bacterial growth and is used as a measure to quantify antibiotic
resistance, which corresponds to the fitness here. As a measure
of phenotypic changes, we used log-transformed transcrip-
tome responses, following our previous study [21], because
changes in gene expression typically occur on the logarithmic
scale. Namely, the phenotypic change was measured by the
transcriptome change as δXi(A(k) ) = log2[xi(A(k) )/xi(ND)],
where x(A(k) ) is the transcriptome data when an antibi-
otic A(k) is added near the MIC to the parent strain before
evolution and x(ND) is the geometric mean of three indepen-
dently measured transcriptome data under no-drug condition.
As the fitness measure, we used log-transformed MIC val-
ues [log2(μg/ml] based on the previous study [8], which
showed a linear correlation between log-transformed tran-
scriptome changes and log-transformed MIC values. As MIC
is larger, the fitness under the antibiotic is larger, so the
former can be used as a measure of fitness. Assuming that
the laboratory evolution results in complete adaptation to an-
tibiotics, we computed the relative MIC RMIC (A(k), A(l ) ) =
MIC(A(k), A(l ) ) − MIC(A(l ), A(l ) ), where MIC(A(k), A(l ) ) is
the log-transformed MIC for A(l ) of the strain that evolved
to be resistant to A(k), and used it as the measure of cross-
fitness [41]. This quantity is nonpositive, which takes zero
when A(k) and A(l ) are the same antibiotics.

Next, similarly to Sec. IV C, we computed the differences
y1(A(k) ) − y1(A(l ) ) of the first principal component for an
antibiotic A(k) used for the evolution of resistance and an-
tibiotics A(l ) used to measure the resistance of the evolved
strain. In Fig. S5(b) [38], we plotted the measure of cross-
fitness RMIC (A(k), A(l ) ) against y1(A(k) ) − y1(A(l ) ). A clear
one-dimensional curve was not observed as in Fig. S5(a) [38].
Hence, the phenotypic changes were not constrained in a
one-dimensional space.

Note, however, that the potential theory does not require
the reduction to one or two or three dimensions, but postulated
only the reduction to O(1) (i.e., much smaller than N , say,
10 [8]). Accordingly, it will be legitimate to compare the
experimental data with the prediction of the theory. Hence,
we then plotted the correlation between RMIC (A(k), A(l ) ) and

FIG. 6. Relative MIC RMIC (A(k), A(l ) ) [log2(μg/ml)] are plotted
against cosine similarity Sc(A(k), A(l ) ). Sc(A(k), A(l ) ) is defined as
Sc(A(k), A(l ) ) = (δX (A(k) ) · δX (A(l ) ))/|δX (A(k) )||δX (A(l ) )|. Pearson’s
correlation coefficient is 0.70, and the p value is 1.5 × 10−5.

the cosine similarity Sc(A(k), A(l ) ) (Fig. 6), which corresponds
to Fig. 5(a). The data showed a significant correlation between
them (Pearson’s correlation coefficient is 0.70 with a p value
of 1.5 × 10−5). Recalling that the gene expression dynamics
involve hundreds of genes, this value is remarkable. Indeed, it
is about a similarly high value as obtained from the simulation
for P̃ = 3. This result indicates that the present theory applies
to the laboratory evolution of resistance to antibiotics.

VII. DISCUSSION

In the present study, we first evolved the gene regulatory
network to be capable of multiple input-output relationships,
to demonstrate that phenotypic changes due to environ-
mental stress and genetic mutations are constrained to a
lower-dimensional subspace, whose dimension corresponds
to the degrees of freedom of the input-output relationship
required for fitness. Phenotypic changes due to environmental
stress and genotypic mutation are constrained to the com-
mon subspace, as formulated by dynamical system theory
(see also [24,26,36,42–47] for the relevance of dimensional
reduction in biological systems).

In the present GRN model, phenotypic constraints were
caused by the separation of P̃ eigenvalues. The dominant phe-
notypic changes owing to environmental changes and genetic
mutations are constrained in the directions of the eigenvec-
tors of these eigenvalues. Then we conducted evolutionary
simulations under stress environments E (k) using the evolved
GRN exhibiting phenotypic constraints as the ancestor cell.
We defined the cross-fitness μcross(E (1), E (2)) as fitness of
the cells evolved in the stress environment E (1) in the stress
environment E (2). We then demonstrated that this cross-fitness
is represented by the P̃-dimensional PC of the phenotypic
change δx∗(E (1) ) and δx∗(E (2) ), cellular state changes to each
stress E, before the evolution to stress. Thus, the cross-fitness
μcross(E (1), E (2)) can be well represented by low-dimensional
(P̃) phenotypic variables. This indicates that the fitness of the
stress environment can be predicted by measuring the pheno-
typic changes in pre-evolutionary cells by the application of
environmental stress.
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To quantitatively formulate the cross-fitness observed in
evolutionary simulations, we introduced the fitness potential.
The decrease in fitness due to stress is recovered when the
phenotypic change in evolution completely cancels out the
phenotypic change due to the stressful environment. By us-
ing the potential theory, cross-fitness can be approximated
by the difference in phenotypic responses to the stress used
for the evolution and that applied later for the test. Note that
the potential theory works as long as the phenotypic changes
are constrained to a low-dimensional manifold compared
to the number of protein/mRNA species. Thus, simulation
results are supported, but furthermore the theory demonstrated
the generality of the results, independent of the details of the
model.

In this potential approximation, the cross-fitness is sym-
metric against E (1) and E (2), that is, μcross(E (1), E (2)) =
μcross(E (2), E (1)). Note that this is obtained by expanding the
fitness up to the second order of phenotypic changes due to en-
vironmental changes and genetic mutations by assuming that
these are not very large. If perturbations are much larger, the
third- or higher-order effects are not negligible, and the above
symmetry no longer holds. However, even if the cross-fitness
is not symmetric, it is expected to correlate with the cosine
similarity (which is symmetric by definition) to a sufficient
degree.

The potential theory considered in this paper assumes the
existence of a low-dimensional structure in which phenotypic
changes due to environmental responses and mutations are
constrained. If such a low-dimensional structure did not exist,
phenotypic changes in evolution would be extremely random,
and it would not be possible to make the predictions of evolu-
tion discussed in this paper.

Notably, in the model in the present study, the Euclidian
distance between the expression pattern of the output gene
and the target pattern is used as the fitness function, which
is symmetric for the input-output relationship (η(0), t (0)). This
symmetry eliminates the third-(or odd-) order terms in the
potential form. Hence, the symmetry could be violated to
some degree, depending on the choice of the input-output
relationship and fitness function.

Finally, we discuss the applications of our theory to ex-
perimental studies on laboratory evolution. In the present
study, we first discuss the prediction of cross-fitness using
the PCs of phenotypic changes in response to environmental
change. To do this, information on the representation of the
fitness by the PCs is needed in addition to information on
phenotypic constraints, which may not be obtained directly
from experimental data. Later, however, we demonstrated
the correlation between cross-fitness and cosine similarity in
phenotypic changes in response to the stressful environment.
Indeed, the previous experimental data [8] suggest that tran-
scriptome changes of laboratory evolution of E. coli were
not constrained to one or two dimensions, but still restricted
at low dimension at around 10. Hence, it is valid to apply
the potential theory, and accordingly the cross-fitness after
evolution could be predicted by the transcriptome changes due
to antibiotics before evolution (Sec. VI).

In the potential theory in the present study, we focused
only on the full recovery of fitness via adaptive evolution in
a stressful environment. However, in actual evolution, fitness

FIG. 7. Cross-resistance is plotted against cosine similarity for
P̃ = 3 case with three-dimensional phenotypic constraint. Red dots
represent the data from the stress environment, under which fitness
change is larger than −0.1. Gray dots represent data with smaller
fitness changes. The correlation coefficient across all data is 0.69,
and that across only red dots is 0.85.

may not be fully restored. We expect that our study will still
provide relevant information in such cases, as long as pheno-
typic constraint exists and evolution occurs along it under a
given fitness landscape. However, when a single mutation in-
troduces drastic phenotypic changes or strong epistasis occurs
during evolution, the correlation between cross-fitness and
transcriptome cosine similarity may not be clearly observed.

In the present study, long-term evolution provided a phe-
notypic constraint to the cellular state, and later adaptive
evolution of such cells to a stress environment follows the
already created constraint. This implicitly assumes that there
is a timescale gap between the evolution of the present cells
and their laboratory evolution to gain stress tolerance. The
phenotypic constraint itself was shaped by the former evolu-
tionary process but was not altered by the later, shorter-term
evolutionary process.

Thus far, we have discussed cross-fitness in the presence of
phenotypic constraints. Another commonly adopted measure
of relative changes by evolution and adaptation is cross-
resistance r(E (1), E (2)), given by

r(E (1), E (2)) = μcross(E (1), E (2)) − μcross(0, E (2)). (14)

It is defined as cross-fitness between E (1) and E (2) minus the
fitness of the pre-evolutionary cell because we are mostly con-
cerned with the relative fitness changes as a result of adaptive
evolution. Therefore, even if the cross-fitness is symmetric, as
in the present model, cross-resistance is not. We should note
this point when applying the present theory to cross-resistance
using Eq. (14). Still, the present theory can be used to pre-
dict the cross-resistance (see Fig. 7) for an example of the
correlation between cross-resistance and transcriptome cosine
similarity. This quantity is usually used as a measure to quan-
tify antibiotic resistance. This will be useful for experimental
verification of the present theory.

VIII. MATERIALS AND METHODS

We describe the method of laboratory evolution and
the acquisition of data used in Sec. VI. The insertion
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sequence-free Escherichia coli strain MDS42 [48] was pur-
chased from Scarab Genomics. The cells were cultured in
200 μl modified M9 medium [49] in 96-well microplates
with shaking at 900 strokes min−1 at 34 ◦C. We prepared
precultures by shaking −80 ◦C glycerol stocked MDS42
strains for 23 h without antibiotics. The cells precultured
were diluted to an OD600 nm of 1 × 10−4 into 200 μl of
fresh modified M9 medium in 96-well microplates with
and without antibiotics. The final concentrations of antibi-
otics used in this study were as follows; 3.9 × 10−3 μg/ml
for cefoperazone (CPZ), 1.2 × 10−2 μg/ml for Ceficime
(CFIX), 4.0 μg/ml for amikacin, 2.0 μg/ml for neomycin
(NM), 3.1 × 10−2 μg/ml for enoxacin (ENX), and 2.0 ×
10−3 μg/ml for ciprofloxacin (CPFX), respectively. The cul-
tures were grown to an OD600 nm in the 0.072–0.135 range
(the equivalent of 10 generations). Next 180 μl of exponential
cultures were withdrawn rapidly, and cells were killed imme-
diately by the addition of an equal volume of ice-cold ethanol
that contained 10% (w/v) phenol. The cells were collected by
centrifugation at 20 000 × g at 4 ◦C for 5 min, and the pelleted
cells were stored at −80 ◦C prior to RNA extraction. Total
RNA was isolated and purified from cells using RNeasy micro
Kit with on-column DNA digestion (Qiagen) in accordance
with the manufacturer’s instructions.

Transcriptome analysis was performed as in a previous
study [8] using a custom-designed Agilent 8 × 60 K array
for E. coli W3110. Briefly, 100 ng of each purified total
RNA sample was labeled using the Low Input Quick Amp
WT Labeling kit (Agilent Technologies) with cyanine3 (Cy3)
according to the manufacturer’s instructions. Cy3-labeled cR-
NAs were fragmented and hybridized to the microarray for
17 h at 65 ◦C in a hybridization oven. Washing and scan-
ning of microarrays were performed in accordance with the
manufacturer’s instructions. Microarray image analysis was
performed using Feature Extraction version 10.7.3.1 (Agilent
Technologies).

The MIC values of evolved E. coli strains for the aforemen-
tioned six antibiotics were obtained in the previous study [8].
The transcriptome data and MIC values are available upon
request.

In the data analysis, the intensity values were normalized
using the quantile normalization method. We then excluded
the following genes which the parent strain lacks: fhuA, yagE,
yagF, yagG, yagM,yagX, appY, ycdR, ymfD, ymfI, ycgG, paaJ,
ydbD, cheW, yfjL, yqiG, yqiI, yhhZ, yrhA, intB, yjhI, fimD, hsdR,
and yjiY. Furthermore, we excluded genes with low expression
levels (� 100 a.u. in any strain) and with relatively small ex-
pression change in response to all six antibiotics (δXi(A(k) ) =
log2[xi(A(k) )/xi(ND)] � 1 for all A(k)), since the expression
changes of such low expression or relatively unchanged genes
were dominated by the experimental errors.

Source codes for the evolutionary simulations are openly
available from the GitHub [50].
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APPENDIX: COSINE SIMILARITY BETWEEN
PHENOTYPIC CHANGES DUE TO ENVIRONMENTAL

STRESS AND GENETIC CHANGES THROUGH ADAPTIVE
EVOLUTION

In Sec. V we assumed that phenotypic changes due to
environmental changes would be completely canceled out
by phenotypic changes due to genotypic changes through
evolution. To test that this assumption held in the evolution-
ary simulations, we measured the cosine similarity between
phenotypic changes against environmental stress and the evo-
lution under it:

Sc(E ) = [δx∗
env (E ) · δx∗

evo(E )]
‖δx∗

env (E )‖‖δx∗
evo(E )‖ , (A1)

where δx∗
evo(E ) is the phenotypic change in response to en-

vironmental stress E and δx∗
evo(E ) is the phenotypic change

from evolution with environmental stress E.
The potential theory discussed in this section assumes

the ideal limit in which the phenotypic change δx∗
evo(E )

due to genotypic change will completely cancel out the
phenotypic change δx∗

env (E ) due to environmental change,
thereby recovering the fitness. The histogram shown in
blue in Fig. 8(a) represents the genotypes that evolved at
P̃ = 0, α = 0.45. In this case there are no phenotypic con-
straints, and the histogram does not deviate from the peak
at similarity ∼0. In contrast, the histogram plotted in or-
ange represents the data examined for adaptive evolution
from genotypes that evolved at P̃ = 1, α = 0.45, where a
one-dimensional phenotypic constraint is achieved. The dis-
tribution of cosine similarity is extended into negative regions,
as shown in Fig. 8(a). This implies that, when pheno-
typic constraints are present, the increased proportion of
evolved cells has a cosine similarity closer to −1. The closer
the cosine similarity is to −1, the more the phenotypic
change δx∗

evo(E ) in adaptive evolution is correlated with the
phenotypic change δx∗

env (E ) in response to environmental
change.

To investigate how a larger proportion of evolution leads to
cosine similarity close to −1, the histograms in the presence
of one-dimensional phenotypic constraints were computed
separately according to fitness when the pre-evolutionary
cells were subjected to environmental stresses. As plotted
in Fig. 8(b), the cosine similarity, as a result of evolution
against environmental stresses, shifted to a negative value,
heading towards −1 as the reduction in fitness inflicted on
the pre-evolutionary cells was greater than that observed in
the post-evolutionary cells. This tendency was not observed
in the absence of phenotypic constraints [Fig. 8(c)].

In this model, the phenotypic space is 100-dimensional,
whereas the number of output genes is eight. Moreover, for
genotypes evolved with P̃ = 1, the interaction matrix O be-
tween the gene regulatory network and the output gene is
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FIG. 8. (a) Histogram of cosine similarity Sc(E ) = (δx∗
env (E ) · δx∗

evo(E ))/‖δx∗
env (E )‖‖δx∗

evo(E )‖. The blue histogram represents the data of
the genotypes evolved under P̃ = 0. The orange histogram represents the data for the genotypes that evolved under P̃ = 1, and we can see that
the distribution shifts more negatively when there is a one-dimensional phenotypic constraint. (c) Histograms of (a) are divided into several
parts according to the degree of fitness. (b) When P̃ = 0, the shape and position of the distribution do not change even if the fitness changes,
but when P̃ = 1, the larger the change in fitness, the more the distribution shifts in the negative direction.

effectively a rank 1 matrix as a result of the evolution, with
each row vector approximately 80% correlated. This implies
that a large number of phenotypic patterns capable of realizing
a given target pattern exist. Accordingly, there is a huge vari-
ety of phenotypic changes that cancel out changes in fitness
caused by environmental stress. When phenotypic constraints

are present, phenotypic changes due to adaptive evolution are
more likely to occur along these constraints in the direction
opposite to that of the response to environmental stress. In
fact, in Fig. 8, the distribution of the cosine-similarity ex-
tends to the negative region in the presence of phenotypic
constraints.
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