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Solvable neural network model for input-output associations: Optimal recall at the onset of chaos
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In neural information processing, inputs modulate neural dynamics to generate desired outputs. To unravel
the dynamics and underlying neural connectivity enabling such input-output association, we propose an exactly
solvable neural-network model with a connectivity matrix explicitly consisting of inputs and required outputs.
An analytic form of the response under the input is derived, while three distinctive types of responses including
chaotic dynamics are obtained as distinctive bifurcations against input strength, depending on the neural
sensitivity and number of inputs. Optimal performance is achieved at the onset of chaos. The relevance of the
results to cognitive dynamics is discussed.
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I. INTRODUCTION

Neural systems exhibit rich dynamics generated by strong
recurrent connections [1]. For performing cognitive tasks in
neural systems, sensory inputs modulate the neural dynamics
to generate specific output patterns resulting in suitable be-
haviors. In the association task between the input signals and
output choices, for instance, the different input deferentially
modifies ongoing (spontaneous) neural dynamics, leading to
the emergence of an appropriate attractor that guides the
correct choice [2,3], as strongly contrasted with input-output
transformation in feed-forward networks [4,5]. Unveiling the
mechanisms behind such modulation and the type of connec-
tivity relevant to it is essential for understanding information
processing in neural systems.

One widespread and powerful approach to understanding
information processing involves recurrent neural networks
trained using machine learning techniques [2,3,6–8]. How-
ever, these trained networks are finely tuned for specific
tasks, which obscures the connectivity relevant to cognitive
functions.

Another approach, the autoassociative memory model,
offers network connectivity explicitly represented by mem-
orized patterns [9–11]. In this approach, a fixed flow struc-
ture in neural dynamics exists, where different fixed-point
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attractors correspond to distinct memorized patterns. A neural
state converges to one of these attractors depending on its
initial state, corresponding to the input. Thus, neural dynamics
themselves are not modulated by the input.

In the present Letter, we explore how the modulation of
neural dynamics by input results in the associated outputs,
based on an alternative view of memory, termed “memories as
bifurcations,” [12,13]. In this view, an input changes the flow
structure in the neural dynamical system itself and multiple
inputs generate distinctive flow structures, which is consistent
with experimental studies [2]. In the case of a successful
memory, for a given flow structure under an input, a unique
attractor as a memory exists. When multiple input-output as-
sociations are successfully embedded, distinct bifurcations to
different memory attractors occur for each input. How such
a system is designed and the analysis of its memory recall
process is focused on in the present study.

We propose a neural network model with a connectivity
matrix that enables such bifurcations in an association task
between inputs and outputs. The connectivity is explicitly
represented on a set of input and output patterns. Bifurcations
against the change in input strength are analytically obtained
regarding fixed points. Besides these fixed points, a chaotic
attractor in the absence of input emerges as the number of
memories and/or the gain parameter increases. Here, fixed
points corresponding to different memorized patterns emerge
from the spontaneous chaos upon the associated inputs. In
contrast, with the further increase in the above parameters, the
chaotic attractor remains even in the presence of the input. We
found that the optimal recall is achieved at the onset of the re-
mained chaos. Finally, computational roles of chaotic internal
dynamics are discussed in possible relation to experimental
observations.
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II. MODEL

We consider a neural network model composed of N neu-
rons. The network is required to generate target patterns ξμ

(μ = 1, 2, …, M) in response to input patterns ημ, where
M = αN , and ημ and ξμ are N-element vertical vectors.
Each element of these vectors takes a binary value (±1) that
is randomly generated according to the probability distribu-
tion P(ξμ

i = ±1) = P(ημ
i = ±1) = 1/2. The neural activity

xi evolves according to the following equation:

ẋi = f
(
� jJi jx j + γ η

μ
i

) − xi, (1)

where β and γ are the gain of the activation function f (x) and
the input strength, respectively. We use f (x) = tanh(βx).

For memorizing input/output associations between η and
ξ, we have designed the connectivity matrix J that is com-
posed of η and ξ, in contrast to the Hopfield network that
incorporates only ξ as follows:

J = X

(
I I

−I −I

)
X +, (2)

X = [ξ1, ξ2, . . . , ξM, η1, η2, . . . , ηM], (3)

where I is an M-dimensional identity matrix, X is an (N, 2M )-
matrix, and X + � (X T X )−1X T is a pseudoinverse matrix of
X , where X T is a transpose matrix of X . The pseudoinverse
matrix X + is introduced in the designed connectivity to mit-
igate the effects of potential interference across memories
that could impair recall performance of the memory pat-
terns [14–16]. Due to the pseudoinverse matrix, Jξμ + γ ημ =
ξμ + (γ − 1)ημ and, consequently, the target ξμ is a fixed
point under ημ with γ = 1 for β → ∞ in Eq. (1). This prop-
erty applies to all μ, indicating that all ξμ are the fixed points
under the corresponding inputs with γ = 1. In other words,
all associations are successfully memorized in this model. To
satisfy the pseudoinverse matrix, however, the number of vec-
tors, 2M, that are linearly independent of each other should be
less than N . As a consequence, at best, M = N/2 associations
are allowed and the memory capacity is bounded by α = 0.5
at a maximum.

III. RESULTS

A. Analytical solution of the response

How does the network respond to the input except for
γ = 1 and β → ∞? We, now, derive an analytical form of a
fixed point of the neural dynamics upon input for any value of
γ with finite β. For it, we consider xfp(γ ) = (a(γ )ξ + b(γ )η)
and derive a(γ ) and b(γ ) such that satisfy the fixed point
condition for any γ as follows. Below, the superscript μ is
omitted for clarity unless otherwise noted since the result is
not dependent on μ. By using Jξ = Jη = ξ − η, we have

Jxfp = (a + b)(ξ − η), (4)

and, subsequently, by substituting xfp to ẋ = 0 in Eq. (1),

aξ + bη = f ((a + b)(ξ − η) + γ η). (5)

Considering ith elements such that ξi equals ηi, a + b = f (γ )
should be satisfied and, similarly, by considering ith elements

(a)

(b)

FIG. 1. Analytically obtained response of the network to input
with increasing the input strength γ . (a) a(γ ) and b(γ ) in Eqs. (6)
and (7), for β = 1. (b) The overlaps of xfp with a target and an input
for increasing γ , plotted for different β in blue and red, respectively.

such that ξi equals −ηi, a − b = f (2(a + b) − γ ) should be
satisfied. Thus, we derive a and b as

a = ( f (γ ) + f (2 f (γ ) − γ ))/2, (6)

b = ( f (γ ) − f (2 f (γ ) − γ ))/2, (7)

where a and b depend solely on γ for a given f (x) [17] while
they are independent of N , α. It is straightforward to check
that Eq. (5) is satisfied for any binary ξ and η. Although not
proven analytically, we have confirmed numerically that xfp is
a unique fixed point for given μ and γ . As γ increases from
zero, a(γ ) increases and takes a peak for γ = 1, while b(γ )
increases more slowly as plotted in Fig. 1(a). For γ less than
two, a(γ ) is larger than b(γ ) and, oppositely, beyond γ = 2,
b(γ ) is larger than a(γ ) [18]. The overlap of xfp with ξ, termed
mξ � �ix

fp
i ξi/N, is also plotted in Fig. 1(b). For a given β,

mξ increases up to γ = 1 and, subsequently, decreases. As
β increases, the curve of mξ is steeper so that xfp nearly
equals one even for the weak input. The overlap of xfp with
η, termed mη � �ix

fp
i ηi/N , slowly increases with γ , followed

by a sharp rise at γ ≈ 2 beyond which it approaches unity, i.e.,
the network just outputs the input as it is [Fig. 1(b)]. Thus, in
the following part, we consider the range of 0 � γ � 2.

B. β dependence of the stability of the analytical solution
and additional chaotic attractor

Although xfp is a fixed point for any value of parameters, it
is necessary to ascertain its stability and the existence of other
attractors, to assess whether the recall of xfp really works from
any initial states. We numerically solved Eq. (1) (N = 2048,
unless otherwise noted), and found another chaotic attractor in
addition to xfp. By varying α and β, three types of response be-
haviors are observed depending on the stability of the chaotic
attractor, which are characterized by the distinct bifurcation
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(a) (b)
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(ii)

(iii)
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FIG. 2. Three response behaviors to η depending on β. (a) The overlaps mξ against the increase in γ are shown for β = 0.8, 4, 4.7 in
panels (i)–(iii), respectively. In each panel, each of the colored dots for a given γ represents the overlap of x with ξ1 averaged over 100 unit
time after the transient period. Magenta and green dots represent convergence into the xfp and the chaotic attractor, respectively. To confirm
the stability of xfp and explore another attractor, we sampled the dynamics from 20 random initial states in addition to an initial state equal
to xfp. The dotted lines represent the overlap of xfp with ξ1. (b) Dynamics of neural activities are shown with their overlap with the target for
β = 0.8, 3.8, and 8 in (i)–(iii) panels, respectively, for γ = 1. Panels (i)–(iii) exhibit the response behavior type (i) and (ii) that is close to (iii)
and (iii), respectively. Different colored lines represent trials starting from different initial states; one from xfp (in cyan) and the others from
states that are uniform randomly chosen from (−1, 1)N . All results are obtained for α = 0.38.

diagrams of mξ against γ . The stability of xfp is not directly
related to these types and is analyzed in detail in Appendix A.

(i) Stable recall of xfp for any strength of the input
[Figs. 2(a), panel (i) and (b), panel (i)]: xfp is a unique attractor
for any γ .

(ii) Stable recall of xfp only for a certain range of γ

[Figs. 2(a), panel (ii) and (b), panel (ii)]: xfp is a unique
attractor for γ ∼ 1, whereas for smaller γ a chaotic attractor
coexists, which exhibits a smaller overlap with ξ compared
with the overlap of xfp [19]. For smaller γ values, the neural
state fails to converge into xfp, and instead, it converges into
the chaotic attractor from most initial states, meaning that the
network fails to recall xfp. Still, for γ ∼ 1, the neural state
from any initial state converges to xfp whose overlap with the
target is close to unity, resulting in the recall of the target.

(iii) No stable recall of xfp for any γ [Figs. 2(a), panel
(iii) and (b), panel (iii)]: the chaotic attractor exists across
all ranges of γ , even though xfp coexists around γ = 1. The
chaotic attractor has a much larger basin of attraction than xfp

even for γ ∼ 1 [Fig. 2(b), panel (iii)]. Consequently, the recall
of xfp is impaired.

To analyze these three behaviors, we explored the stability
of xfp and of the chaotic attractor across a range of β with
a constant α = 0.38. We found that for a small value of β

(β = 0.8), the stable recall (i) is achieved. The neural states
from any initial states for any γ converge rapidly into xfp [as
shown in Fig. 2(b), panel (i)], indicating high robustness in the
successful recall of xfp. However, the degree of overlap with
the target is notably below the unity [20].

As β increases, xfp approaches the target for all ranges of γ .
Beyond the critical β, denoted by βF , xfp turns to be unstable
for a certain range of γ , while the chaotic attractor emerges
(see Appendix B), corresponding to the recall type (ii) as
shown in Fig. 2(a), panel (ii). The overlap of the chaotic at-
tractor with the target is much lower than that of xfp. Although,
for γ = 1, xfp is the unique attractor; there exists long-term

transient chaos before the neural state converges into xfp [see
Fig. 2(b), panel (ii) and “Transient chaos” in the following].

With the further increase in β, the range of γ within which
the chaotic attractor exists expands, eventually, covering all
the range of 0 � γ � 2 at another critical value of β (termed
βI ). Beyond βI , the system exhibits the recall type (iii). Even
for γ = 1, the basin of the chaotic attractor covers the full
state space, and most orbits from random initial conditions
converge into it [Fig. 2(b), panel (iii)]. Thus, the converged
states are far from the target.

To comprehensively understand the recall behavior across
β and γ , we draw the regions where the chaotic attractor is
present in Fig. 3(a). We also investigated the stability of xfp,
which, however, is not directly related to the type of recall
and is shown in Appendix A. In the area above the curve, the
chaotic attractor is present. βF is the minimum value of the

(a) (b)

FIG. 3. (a) The boundary separating the parameter regions in the
presence of and the absence of the chaotic attractor is plotted. The
chaotic attractor is present above the solid line. (b) The overlap at
γ = 1 with the increase in β. Dots represent the overlaps obtained
from 100 randomly chosen initial states, while the solid line exhibits
the overlap averaged over them. The dotted lines represent the over-
lap of xfp with ξ1 as also shown in Fig. 2(a).
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(a) (b) (c) (d)

FIG. 4. Three recall behaviors in response to η depending on α. (a) The overlaps against the increase in γ are shown for α = 0.05, 0.3, 0.4
in panels (i)–(iii), respectively. Colored dots and dotted lines exhibit the neural states and xfp in the same way as in Fig. 2(a). (b) The boundary
separating the parameter regions with or without the chaotic attractor is plotted, similar to Fig. 3(a). The chaotic attractor is present above the
solid line. All results in (a) and (b) are obtained for β = 4. (c) (Upper panel) Bifurcation diagram of the overlap at γ = 1 for β = 4 with the
increase in α is shown in the same way as in (a). (Lower panel) The number of successfully recalled xfp,μ (μ = 1, . . . , αN) normalized by N
is plotted. Filled lines in gray and black show the behavior for β = 4 and 32, respectively. The dotted line represents the maximum number of
possible memories normalized by N (that is α). (d) Three recall behaviors in response to η. A phase diagram of the recall regimes (i, ii, and iii)
against α and β. βF (orange) gives the boundary of the stable xfp, while βI (magenta) shows the border of the impaired recall regime.

curve in β � 1, whereas βI is the maximum value of β on
the curve at γ = 1. These two critical values of β determine
the phase boundary of three recall behaviors (i)–(iii). With
an increase in β, xfp approaches the target, and accordingly,
the final states in all the recall trials overlap almost perfectly
with the target below β = βI at which the chaotic attractor
emerges [Fig. 3(b)]. As β increases beyond βI , the basin of
the xfp attractor shrinks, while that of the chaotic attractor
expands. Consequently, the overlap between the final state
and the target averaged over randomly chosen initial states
significantly decreases, as depicted in Fig. 3(b). Thus, the
recall performance reaches its peak (i.e., at the onset of chaos)
across all ranges of γ .

C. α dependence of the stability of the analytical solution
and additional chaotic attractor

So far, we presented the results with the fixed number
of memories αN (α = 0.38). Note that standard associative
memory models, such as the Hopfield network, recall fails
beyond a critical number of memories. We next analyze the
change in the response process with increasing α and demon-
strate that it exhibits similar behavior with the change with
the increases in β: Three types of response behavior emerge
as α varies, as shown in Fig. 4(a). For small α, xfp is stable
and a unique attractor for any γ [response type (i)]. With
the increase in α, the chaotic attractor emerges [21] within
a certain range of γ [response type (ii)], and this range ex-
pands [Fig. 4(b)]. Finally, the range within which the chaotic
attractor is present covers all the ranges of γ [response type
(iii)]. In contrast to the change with increasing β, the value of
xfp remains unchanged during the increase in α [Fig. 4(c)].

We now explore the number of successfully recalled mem-
ories by focusing on the stability of attractors for γ = 1 in
Fig. 4(c). We found that at α = αC (β ), the chaotic attractors
emerge when any input μ is applied [αC (β ) is the inverse func-
tion of βI (α)]. For α < αC , the fixed points xfp,μ = (aξμ +
bημ) for all μ are stable and successfully recalled, whereas
for α > αC , almost all the recall trials fail for all μ due to the

emergence of the chaotic attractors whose basins of attraction
are much larger than those of xfp,μ [see Fig. 2(b)]. The number
of successfully recalled xfp,μ equals that of embedded patterns
αN below α = αC (β ) and then drops to zero drastically [see
Fig. 4(c)] signifying that αC (β )N is the memory capacity in
this model [e.g., αC (4) = 0.38]. αC (β ) decreases toward a
certain finite value αC (∞) with the increase in β as analyzed
in detail in the following.

By taking these results together, we show the phase dia-
gram of the response process against α and β by identifying
βF (α) and βI (α), as shown in Fig 4(d). As α approaches zero,
βF diverges, meaning that if α is set to a sufficiently small
value, xfp is stable throughout all γ , even for quite large β.
For such a limit, xfp matches ξ for 0 < γ < 2. Consequently,
the network perfectly recalls the target for 0 < γ < 2. Here,
βI increases drastically as α decreases from 0.5 and diverges at
αC (∞). For α below αC (∞), the neural state converges to xfp

for γ = 1 even for β → ∞. The asymptotic analysis demon-
strates that αC (∞) ∼ 0.340 for N → ∞ (See Appendix C),
indicating that the memory capacity is α = 0.340 when β is
sufficiently large.

D. Transient chaos

We finally investigated the transient behavior to reach xfp,
just below the transition point of αC to the chaotic attractor.
Generally, with approaching the transition point to the chaos,
the long-transient chaotic behavior before converging to the
fixed point is observed as is studied as transient chaos [22]. To
analyze the behavior in detail, we computed the transient time
before the neural state converges into xfp for α that approaches
αC .

Figure 5 exhibits the distributions of the transient time for
different α. We found that the distributions show long-tailed
behaviors and these tails are extended as α is increased to-
ward αC (see Fig. 8 in Appendix C for detail). To quantify
the change in these distributions, we fit these distributions
by Weibull distribution W (x; m, λ) = m

λ
( x
λ

)m−1 exp(−( x
λ

)m)
as shown in Fig. 5. The parameters for the fitting are
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FIG. 5. The distributions of the transient time for N = 2048 are
plotted for α = 0.355, 0.36, and 0.365 in red, yellow, and purple,
respectively. Here, αC = 0.37 (see Appendix C). (inset) Expansion
of the distributions for α = 0.355, 0.36.

(m, λ) = (1.44, 258), (1.13, 1080), and (1.06, 8540) for α =
0.355, 0.36, and 0.365, respectively. Note that m = 1 in-
dicates that the distribution is exponential one, which is
typically observed in the transient chaos; it is suggested that
the distribution of the transient time approaches a standard
behavior of the transient chaos as α approaches αC (namely
the onset of chaos), whereas there is a deviation from it given
by the Weibull distribution for smaller α.

IV. SUMMARY AND DISCUSSION

In summary, we present an analytically solvable neural
network model for I/O associations in which each input sta-
bilizes the target pattern as a unique fixed point under the
memory capacity for β → ∞. The network’s connectivity
comprises both target and input patterns with the pseudoin-
verse matrix, which allows for recalls of any (correlated)
targets without interference. This is in contrast to our previous
model [12] in which the interference among targets and inputs
hinders the recall of the target unless the patterns are mutually
orthogonal to each other. The interference also masks the
transition from chaos to the fixed point, which makes the

FIG. 7. The maximum Lyapunov exponent for (α, β ) =
(0.38, 4) is plotted in the lower panel. For reference, the overlap
with xfp is also plotted in the same way as in Fig. 2(a) in the upper
panel. The points in magenta in the upper and lower panels show
the overlaps and the Lyapunov exponent for xfp, respectively, while
those in green show them for the chaotic attractors.

classification of the response behaviors harder. In contrast, in
the present model, by virtue of the elimination of interference,
the analytical expression of the fixed point in the recall of
any memory for any input strength is derived, whereas the re-
sponse dynamics were explored in random networks (without
embedded patterns) [23–25] and low-rank networks [26,27].
We also numerically demonstrate the emergence of the ad-
ditional chaotic attractor. By exploring the stability of these
attractors, we identified three distinct response processes.

Introducing the pseudoinverse matrix [X + in Eq. (3)] into
the connectivity generally requires the global information of
the network, which may be difficult to implement biologically
(see [16] for Hopfield network). In our previous study [13,28],
however, a Hebbian and anti-Hebbian learning that only re-
quires local information can shape the connectivity that is
similar to our current connectivity. Still, further studies need

(a) (b) (c)

FIG. 6. The stability of xfp dependence on β, γ and N . (a) Maximum eigenvalue λmax of the Jacobian matrix of F (x) in Eq. (1) at xfp is
plotted for varying γ and β (N = 2048). (b) Phase diagram of the stability of xfp against γ and β is shown. The blue curve represents the line
at which λmax = 0, while the black line shows the boundary at which the chaotic attractor loses its stability given in Fig. 3(a) for reference.
(c) Dependence of λmax on N is plotted. λmax of ten realizations of networks are computed for β = 1.5 and γ = 0.4 and are plotted as ten
circles. The black solid line is the value averaged over ten networks.
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(a) (b) (c)

FIG. 8. (a) The ratio of trajectories converging into xfp is plotted with the increase in α for different N . We calculated the ratio over ten
initial states in each of the ten realizations of networks for each α. (b) The transient time before convergence into xfp. We calculated the
transient time with the increase in α. The transient time diverges quickly when α approaches the transition point αC . (c) Dependence of αC on
N . (inset) αC (N ) − αC (∞) on the double logarithmic plot.

to fill the gap between the learning-shaped connectivity and
the current connectivity.

Here, we identified three phases of responses, concern-
ing the dominance of the chaotic attractor. Interestingly, the
recall performance of the target is maximized at the on-
set of the chaos for γ = 1. For this parameter range, the
spontaneous chaotic activity is bifurcated to the fixed point
that corresponds to the target output with the increase in
γ . In fact, similar transitions in activities due to stimulus
changes are observed in various cortical areas [29,30]. These
findings are consistent with our findings of the optimal per-
formance under spontaneous chaotic dynamics, whereas the
roles of the chaotic dynamics in the response and learning re-
quire further elucidation. Indeed, the relevance of spontaneous
chaotic (and high-dimensional) dynamics to computational
neuroscience has been discussed in areas such as reservoir
computing [31–34], memories [35], mixed selectivity for effi-
cient separation [36], sampling [37], neural avalanche [38,39],
and learning [40,41]. Our study has demonstrated a new role
of chaotic dynamics in recall performance.

Further, on the regime for the optimal recall, the long
transient from the chaotic state to xfp matching with the target
is observed (Fig. 5). The distribution of the transient time
before reaching the target follows the Weibull distribution
below the transition point αC and the exponential distribution
at the vicinity of the transition point. The Weibull distribution
is also observed in reaction time in human decision-making
tasks [42]. The decision process is usually modeled by a mutu-
ally inhibited cluster network that generates bistable attractors
corresponding to the decision state [43], which is not related
to the chaotic behavior. On the other hand, the exponential
distribution is typical in the transient chaos [22]. Our model,
thus, could shed light on the role of chaotic behavior in the
decision-making process in neural systems.

Although Hopfield networks [9,10] and their vari-
ants [14–16] made significant contributions to associative
memory, the modulation of the neural dynamics by exter-
nal input that is essential for performing cognitive functions
has not been included. Our model presents a prototype con-
nectivity underlying such modulation, which advances our
understanding of neural processing.
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APPENDIX A: DETAILED ANALYSIS
FOR THE STABILITY OF xfp

We analyze the stability of xfp for varying β and γ , while
α is fixed at 0.38. To evaluate the stability quantitatively,
we calculated the maximum eigenvalue λmax of the Jacobian
matrix of F (x) in Eq. (1) at xfp as a function of γ , plotted in
Fig. 6(a). For β = 1, λmax equals −1 at γ = 0 and increases
monotonically as γ increases. Finally, at γ = 1.4, it turns
positive. For the larger value of β, λmax around γ = 0.3 raises
rapidly, which is finally positive, while the interval with the
positive eigenvalues above γ = 1.4 still remains. Thus, for the
higher value of β, xfp is unstable around γ = 0.3 and above
γ = 1.4.

To understand the change of the stability of xfp comprehen-
sively, we exhibit the boundary at which λmax turns positive in
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Fig. 6(b). In the blue-shaded area, xfp is stable, whereas xfp

is unstable in the white area. Either the xfp attractor or the
chaotic attractor exists for any parameter space. Especially,
xfp and the chaotic attractors coexist within the area enclosed
by the green line.

Finally, we investigate the variability of λmax with N
increased, plotted in Fig. 6(c). The variability over differ-
ent networks reduces as N increases, implying that λmax is
determined independent of network realizations and, con-
sequently, the boundary in Fig. 6(b) is also determined
independent of the realization of networks, if N is sufficiently
large.

APPENDIX B: LYAPUNOV EXPONENT ANALYSIS

To quantitatively analyze the chaotic behavior in response
dynamics in Fig. 2, we calculated the maximum Lyapunov
exponent for the neural dynamics on different γ . Figure 7
exhibits the maximum Lyapunov exponent for (α, β ) =
(0.38, 4) as a function of γ . For 0.4 � γ � 0.7, xfp and the
chaotic attractor coexist as in Fig. 6(b).

APPENDIX C: ESTIMATION OF THE CAPACITY αC (∞)

The capacity αC (β )N of the number of successfully re-
called patterns is defined as α above which the chaotic
attractor emerges, namely the transition value of α from the
response type (ii) to (iii). To estimate the capacity, we analyze
the transition from xfp to the chaotic attractor for quite high β,
here β = 32, depending on α with N → ∞. γ is set at one.

First, we numerically computed the ratio of trajectories
converging into xfp by averaging over initial states, as shown
in Fig. 8(a). The ratio that is equal to unity indicates the
response (ii), whereas that equal to zero means that all tra-
jectories converge into the chaotic attractor and consequently
the response (iii). We explored the ratio by increasing α and
found a clear transition from unity to zero at a certain value of
α, αC . Simultaneously, the transient time before convergence
to xfp is increased rapidly as α increases, as shown in Fig. 8(b).
As N increases, αC decreases.

To estimate αC at N → ∞, we calculated αC with in-
creasing N . αC monotonically decreases as the increase in N
as shown in Fig. 8(b). By fitting αC as a function of N by
aN−1/2 + αC (∞), we derived αC (∞) = 0.340 (a = 1.67).
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