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Pricing financial derivatives, in particular European-style options at different time-maturities and strikes,
means a relevant problem in finance. The dynamics describing the price of vanilla options when constant volatil-
ities and interest rates are assumed is governed by the Black-Scholes model, a linear parabolic partial differential
equation with terminal value given by the payoff of the option contract and no additional boundary conditions.
Here, we present a digital quantum algorithm to solve the Black-Scholes equation on a quantum computer by
mapping it to the Schrödinger equation. The non-Hermitian nature of the resulting Hamiltonian is solved by
embedding its propagator into an enlarged Hilbert space by using only one additional ancillary qubit. Moreover,
due to the choice of periodic boundary conditions, given by the definition of the discretized momentum operator,
we duplicate the initial condition, which substantially improves the stability and performance of the protocol. The
algorithm shows a feasible approach for using efficient Hamiltonian simulation techniques as quantum signal
processing to solve the price dynamics of financial derivatives on a digital quantum computer. Our approach
differs from those based on Monte Carlo integration, exclusively focused on sampling the solution assuming the
dynamics is known. We report expected accuracy levels comparable to classical numerical algorithms by using
nine qubits to simulate its dynamics on a fault-tolerant quantum computer, and an expected success probability
of the post-selection procedure due to the embedding protocol above 60%.
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I. INTRODUCTION

In finance, European-style vanilla options are financial
derivative contracts written on an underlying asset, which give
the holder the right to buy or sell such assets on a specified
future date at a predetermined strike price. One of the fun-
damental tasks of quantitative finance is to calculate a fair
price of such option contracts before its expiration time. This
task is far from being straightforward due to the randomness
associated to the time evolution of both the underlying stock
and the interest rates, whose dynamics can be modeled via
either a stochastic processes or a partial differential equa-
tion (PDE), both connected by the celebrated Feynman-Kac
formula. One of the first successful approaches to this problem
was achieved by Black and Scholes in 1972, who proposed
the celebrated Black-Scholes model [1], in which a lognormal
distribution of the underlying stock price is assumed. Even
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though a closed-form solution exists for this dynamics, the
numerical method proposed in this manuscript relies on the
Black-Scholes model in order to show its properties of con-
vergence and accuracy. Moreover, we show that this method is
also applicable to time-dependent volatility PDEs, for which
a non-closed-form solution exists in general. Additionally, the
scope of this paper is to present an algorithm thought to be
extended to more complex PDEs as a future work. Besides,
numerical solutions also turn out to be fundamental when
hedging a portfolio with a great number of coupled options.
Several classical methods proposed in the literature include
finite differences, finite elements, Monte Carlo methods, and
Fourier spectral methods [2–6].

Quantum technologies have undergone rapid development
in the last decade, paving the way for transformative ad-
vancements in various fields. Quantum technologies have
experienced a rapid development in the last decade. Recently,
Google has achieved quantum advantage, meaning that they
have performed a calculation employing a superconducting
processor faster than the most powerful supercomputers avail-
able today [7]. Among these domains, finance is poised to
experience a profound impact from this emerging technology.
Indeed, the emergence of scalable quantum technologies will
affect forecasting, pricing, and data science, and will undoubt-
edly have an economic impact in the following years [8,9].
Certainly, there already exist several efforts in this direction,

2643-1564/2023/5(4)/043220(11) 043220-1 Published by the American Physical Society

https://orcid.org/0000-0003-3385-7943
https://orcid.org/0000-0002-9703-1043
https://orcid.org/0000-0002-8602-1181
https://orcid.org/0000-0003-1615-9035
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043220&domain=pdf&date_stamp=2023-12-08
https://doi.org/10.1103/PhysRevResearch.5.043220
https://creativecommons.org/licenses/by/4.0/


JAVIER GONZALEZ-CONDE et al. PHYSICAL REVIEW RESEARCH 5, 043220 (2023)

for instance, an attempt to predict financial crashes [10,11],
the application of the principal component analysis to interest-
rate correlation matrices [12], quantum methods for portfolio
optimization [13–18], quantum generative models for finance
[19], a quantum model for pricing collateral debt obligations
[20], a protocol to optimize the exchange of securities and
cash between parties [21], and an application to improve
Monte Carlo methods in risk analysis [22–24], among many
others.

Regarding the option pricing problem, the problem of sam-
pling the solution resulting from the stochastic process of the
Black-Scholes model by employing Monte Carlo methods,
and assuming its dynamics is known at any maturity time, has
been studied. In Ref. [25], the authors proposed a theoretical
approach to sample the solution of the stochastic process
using quantum Monte Carlo integration, reporting a quadratic
speedup versus classical sampling techniques. Afterwards, an
experimental implementation in the IBM Tokyo quantum pro-
cessor was attained in Refs. [26–28], employing a gate-based
methodology to price options and portfolios of options. Ad-
ditionally, several approaches to solve the stochastic process
were proposed in [29–33]. Relevant alternative perspectives to
deal with pricing problems involving linear partial differential
equations consist in adapting quantum algorithms applied to
existing quantum numerical solvers [34–43], or even use vari-
ational and generative approaches [44–46].

In this article, we propose a quantum algorithm for solving
the dynamics of the Black-Scholes partial differential equa-
tion on a quantum computer based on Hamiltonian simulation
techniques [47–70]. In this sense, our manuscript focuses
on the Hamiltonian simulation step as a subroutine to solve
the option pricing problem and does not aim to discuss the
end-to-end process of such a task. In order to achieve this
practical task in an efficient way, one can follow the method-
ology described in [71], where the pricing is obtained by
solving the backwards PDE up to, not the present, but some
future time. In this way, it is possible to evolve the price
curve backwards, which we illustrate in this manuscript via
Hamiltonian simulation, and the underlying stock forwards
(either via SDE or PDE). Finally, it is possible to efficiently
compute the expected value of the price under the distribution
of the stock for obtaining the pricing of the derivative. To this
end, we map the Black-Scholes equation into the Schrödinger
equation, which results in an equivalent problem consisting
of simulating a non-Hermitian Hamiltonian. Additionally, we
impose periodic boundary conditions to achieve an efficient
diagonalization of the discretized momentum operator into a
quantum computer via the discrete Fourier transform. In order
to simulate the nonunitary dynamics into a quantum processor
[56,72–77], we embed the time propagator into an enlarged
Hilbert space, making use of only one ancillary qubit, using
a technique known as unitary dilation. Thanks to this embed-
ding we can postselect the result depending on the outcome of
the ancillary qubit, which allows us to reproduce the dynamics
of the non-Hermitian Black-Scholes Hamiltonian. Moreover,
we use one of the qubits of the spatial discretization to
duplicate the initial boundary condition to fit the periodic
boundary conditions, leading to an improvement of the
performance, accuracy, and stability of the algorithm by miti-
gating edge effects propagation. In comparison with previous

methods, our algorithm presents a Hamiltonian simulation
methodology to solve the Black-Scholes partial differential
equation instead of solving the stochastic differential equa-
tion. The simulations show a precision comparable to classical
algorithms with a quantum circuit comprising nine qubits to
simulate the dynamics of the PDE in a fault-tolerant quantum
computer, and furthermore, an expected success probability of
the postselection protocol above 60%.

The article is structured as follows. First, we briefly re-
view the Black-Scholes model and map it to a Hamiltonian
formulation. We propose an embedding protocol and present
the digitalization of the space used to encode the problem into
a digital quantum computer. Next, we provide the details of
our algorithm and depict its circuit implementation. Finally,
we show the results and discuss the future scopes.

II. BLACK-SCHOLES SCHRÖDINGER EQUATION

Under the assumption of constant interest rate and volatil-
ity, and provided certain ideal market conditions, Black-
Scholes model [1] is based on the possibility of building a
perfect dynamic hedging portfolio strategy, known as delta
hedging, which consists in holding, at each time, a number of
shares equal to the derivative of the option price with respect
to stock price. Therefore, the only risky (random) factor asso-
ciated to portfolio dynamics is eliminated and the value of the
portfolio agrees with the option value at any time. The pricing
problem for a specific derivative contract, i.e., to determinate
its present price V (t = 0, S), is given by the Black-Scholes
PDE,

∂V

∂t
+ rS

∂V

∂S
+ 1

2
σ 2S2 ∂2V

∂S2
= rV, (1)

together with the terminal condition for the price of the op-
tion given by the payoff of the option contract, V (t = T, S),
defined at maturity time, T , for any plausible value of the
underlying stock S � 0 and on the strike price, K . Here, r
represents the constant risk-free interest rate while σ is the
constant volatility of the stock, both assumed to be constant.
In the case of a European put-type option, the pay-off function
reads Vp(T, S) = max{K − S, 0}. Typical solution to these
PDE are shown in Fig. 1.

The Black-Scholes equation has a similar structure to
Schrödinger equation [78], which suggests the possibility of
efficiently simulating such a model on a quantum platform. To
that end, we rewrite the Black-Scholes equation in a Hamil-
tonian form. First, the change of variables S = ex, −∞ <

x < ∞ allows us to recover the unbounded position variable,
leading to the equation

∂V

∂t
+

(
r − σ 2

2

)
∂V

∂x
+ σ 2

2

∂2V

∂x2
= rV. (2)

Note that this equation is a backward parabolic equation.
Thus, we can reverse time t → τ = T − t , obtaining a for-
ward parabolic equation and, consequently, an initial value
problem where Vp(τ = 0, S) = max{K − S, 0}.

Finally, let us also introduce the momentum operator p̂ :=
−i ∂

∂x to rewrite Eq. (1) as

∂V

∂τ
= iĤBSV, (3)
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FIG. 1. Typical solutions of Eq. (1) for a European put-type
option. Simulation parameters: Smax = 150 u, K = 50 u, σ = 0.2 and
r = 0.04.

where we define

ĤBS = i
σ 2

2
p̂2 −

(
σ 2

2
− r

)
p̂ + irI (4)

as the Black-Scholes Hamiltonian. Solutions to Eq. (3) are
given by the time propagator Û (τ ) = eiτ ĤBS acting on the
initial condition. We can observe in Eq. (4) that the Black-
Scholes Hamiltonian is a non-Hermitian operator, i.e., ĤBS �=
Ĥ†

BS , which implies that neither its eigenvalues are necessarily
real, nor is the associated time propagator, Û (τ ), unitary.
The evolution of a closed quantum system is always unitary.
However, this poses a significant challenge when trying to
find a physical system that follows the dynamics of the Black-
Scholes model. To address this issue, we introduce a technique
in Sec. II A where we embed the propagator into a larger space
by utilizing an ancillary qubit. Subsequently, in Sec. III C, a
postselection technique is employed to effectively retrieve the
desired Black-Scholes dynamics.

Therefore, by presenting the efficient mapping from the
partial differential equation (PDE) of the Black-Scholes
equation to its Hamiltonian, we have established that the com-
plexity of solving the Black-Scholes equation is equivalent to
that of the non-Hermitian Hamiltonian simulation problem.
Note that, alternatively, there exists transformations that map
the Black-Scholes equation to a heat equation [3,79]; never-
theless, this does not solve the non Hermitian nature of the
Hamiltonian.

A. Embedding protocol

The Black-Scholes Hamiltonian, Eq. (4), can be decom-
posed into a Hermitian and an anti-Hermitian part, i.e., ĤBS =
ĤBSH + ĤBSA, with

ĤBSH = −
(

σ 2

2
− r

)
p̂, ĤBSA = i

(
σ 2

2
p̂2 + rI

)
. (5)

Additionally, we have that [ĤBSH, ĤBSA] = 0, so via the
Baker–Campbell–Hausdorff formula [80], the propagator can
be written as Û (t ) = eiτ ĤBSA eiτ ĤBSH . Furthermore, notice that
Ô(τ ) = eiτ ĤBSA is a Hermitian operator.

In order to circumvent the problem of dealing with the
non-Hermitian operator, we embed the propagator Ô(τ ) into a
larger unitary operator using a technique from operator theory
called unitary dilation [81]. Indeed, by adding an ancillary
qubit, qE , to our system, we can embed Ô(τ ) into the unitary
operator Ũ (τ ) which can be written as

Ũ (τ ) =
(

Ô
√

1 − Ô2√
1 − Ô2 −Ô

)

= (
σ̂ z

E ⊗ I
)

exp
(
iσ̂ y

E ⊗ H̃ (τ )
)
, (6)

with H̃ (τ ) = arccos(Ô(τ )) the “integrated embedded Hamil-
tonian” and ||Ô(τ )||2 � 1, with || · ||2 the spectral norm. In
case ||Ô(τ )||2 > 1, one just has to renormalize the operator.
In our particular case, as all the eigenvalues of σ 2

2 p̂2 + rI are

positive, then the spectral norm of the exponential e−( σ2

2 p̂2+rI)

is smaller than one.
Starting from the initial state |�0〉 = |0E 〉 ⊗ |Vp〉, with |Vp〉

encoding the pay-off condition of the European Put-type op-
tion, the system evolves according the unitary operator Ũ (t )
to obtain the final state

|�〉 = Ô|0E 〉 ⊗ |Vp〉 +
√

1 − Ô2|1E 〉 ⊗ |Vp〉. (7)

If we apply a postselection technique filtering the outcomes
with the ancillary qubit in the state |0E 〉, we can simulate
the propagator Ô(τ ) into a quantum computer, and in conse-
quence, the whole Black-Scholes Hamiltonian dynamics. We
provide the details of the state preparation and postselection
process in Sec. III.

Note that this methodology based on the unitary dilation
only introduces an additional qubit as an extra computational
resource, so we consider it does not increase the complexity
class of the non-Hermitian Hamiltonian simulation problem.

B. Digitization of the space

In order to perform a digital simulation of the Black-
Scholes equation using a quantum computer, a discretization
of position and momentum spaces based on the number of
qubits employed is required. The possibility of simulating
the Black-Scholes model on a discretized space is guaranteed
by the Nyquist-Shannon sampling theorem [82]. Follow-
ing the work in Ref. [83], a wave function |�〉 such that
|�(x)| < ε when |x| > xmax and whose Fourier transform
|�̂(p)| < ε if |p| � xmax can be sampled in position space
using the basis of sampling vectors {|x j〉} where x j = −xmax +
jδx, with δx � π

xmax
and j = 0, 1, . . . , Nx − 1 such that x j ∈

[−xmax, xmax]. For a given interval, in the limit where δx =
π

xmax
, the minimum Nx is given by the equality 2xmax =

δx(Nx − 1). Hence, the wave function can then be rewritten
as |�〉 = ∑Nx−1

j=0 �(x j )|x j〉. The conjugate momentum basis
is obtained by the discrete Fourier transform of the posi-
tion basis, QFT : |x j〉 �→ |p j〉 = 1√

Nx

∑Nx−1
k=0 ω

jk
Nx

|xk〉, where

ωNx = e
2π i
Nx . We denote the discrete quantum Fourier transform

matrix operator as F̂ . These two sampling basis allow us
to define the following discretized position and momentum
operators acting on their own basis as X̂x|x j〉 = x j |x j〉 and
P̂k|pk〉 = pk|pk〉.
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We consider an equispaced grid of the interval
[−xmax, xmax], thus, the position space is discretized into
the values x = − xmax + δx βx, with δx = 2xmax

Nx−1 and
βx = 0, . . . , Nx − 1. If we consider that the position
x = −xmax is represented by the state |−xmax〉 = |0...0〉,
and the position x = xmax is represented by |xmax〉 = |1...1〉,
the matrix form of this operator in the x basis results is

X̂x = xmax

⎛
⎜⎜⎜⎜⎝

−1 0 . . . 0 0
0 −1 + δx . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 − δx 0
0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎠. (8)

Let us now construct the momentum operator, p̂. By using
the second order of finite differences, we approximate the
derivative of a certain function as

df(x)

dx
≈ f(x + δx ) − f(x − δx )

2δx
. (9)

Consequently, imposing periodic boundary conditions, the
discrete momentum operator in the position basis is given by
the matrix

P̂x = −i

2δx

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 −1
−1 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 . . . −1 0 1
1 0 . . . 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠. (10)

Thanks to the choice of periodic boundary conditions, the mo-
mentum matrix P̂x belongs to the circulant matrix class, and
therefore its diagonal form is obtained by using the discrete
Fourier transform unitary matrix, F̂Nx ,

P̂k = F̂Nx P̂xF̂ †
Nx

. (11)

This transformation can be efficiently implemented in a quan-
tum computer [84]. Otherwise we cannot ensure the efficient
diagonalization of the momentum matrix, incurring into an
exponential cost in the general case. The analytical expression
of the eigenvalues of P̂x is also known and is described by the
equation

pk = sin
(

2πk
Nx

)
δx

, k = 0... Nx − 1. (12)

Alternatively, the derivative operator can be defined ac-
cording to the discrete fourier transform definition, which
implicitly assumes periodic boundary conditions. In its own
basis, the diagonal derivative operator, ∂x, can be defined as

ikmax

⎛
⎜⎜⎜⎜⎝

−1 0 . . . 0 0
0 −1 + δk . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 − 2δk 0
0 0 . . . 0 1 − δk

⎞
⎟⎟⎟⎟⎠, (13)

with kmax = π
δx

, δk = 2π
2nδx . The representation of this operator

in the position space can be obtained by using the discrete
Fourier transform unitary matrix.

FIG. 2. Continuous line: convergence of the solution of the
Black-Scholes put option pricing problem obtained with the finite
differences discretized operator P̂x for a distinct number of qubits,
n = 1, . . . , 8 (excluding the ancillary qubit used to duplicate the
initial condition) and the analytical solution. Dashed line: discretiza-
tion error per point depending on the number of qubits, n = 1 . . . 9
(excluding the ancillary qubit used to duplicate the initial condition).
Simulation parameters: Smax = 150 u, K = 50 u, σ = 0.2, r = 0.04,
T = 1 year. Simulations have made use of the duplication of the
initial condition. For source code of the simulations see [85].

In Fig. 2, we illustrate the convergence of the solution
to the Black-Scholes equation and its relative discretization
error with respect to the analytical solution for different num-
ber of qubits obtained by making use of the momentum
discrete operator given by Eq. (13) to simulate the Hamil-
tonian dynamics. For these simulations we have made use
of the duplication of the initial condition that we explain in
Sec. III A.

III. IMPLEMENTATION ON A QUANTUM COMPUTER

In this section, we show the different subroutines of the cir-
cuit that simulate the price evolution for a put option contract
in a quantum computer: information loading, Hamiltonian
simulation, and postselection. The procedure for a call option
would be similar but initializing the process in the correspond-
ing pay-off state. In the following sections we will assume that
K � 1 and the constraint xmax = log Smax = 2 log(3K ).

A. Boundary conditions and initial state

When solving the Black-Scholes equation Eq. (1) after the
change of variables x = log S, the resulting equation, Eq. (2),
turns out to be a partial differential equation with constant
coefficients. This means that we can displace the initial con-
dition by a given shift and solve the problem, in the sense that
the actual solution of the original problem can be recovered
afterwards by performing the same shift in the opposite di-
rection. Indeed, given a bounded interval for the stock price
S ∈ [1/Smax, Smax], we make use of this property in order to
have a symmetric initial condition with respect to x as follows.
We make a shift in order to translate the initial condition of the
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FIG. 3. Solution to the Black-Scholes equation without duplicat-
ing the initial condition. We can appreciate how it presents a strong
border effect due to periodic boundary conditions. Simulation pa-
rameters: n = 8, Smax = 150 u, K = 50 u, σ = 0.2, r = 0.04, T = 1
year. Scripts for numerical simulations can be found in [85].

put option such that the support of this initial condition is the
interval [0, 2 log Smax] instead of [− log Smax, log Smax] for a
given discretization. After this shift, we make a duplication of
the initial condition via a reflection in order to obtain periodic
boundary conditions.

Moreover, due to time reversion, the Black-Scholes initial
value problem starts from the final payoff as the initial con-
dition. In terms of x, at maturity time, τ = 0, this condition
results in

Vp(τ = 0, x) = max{K − exp(x), 0}. (14)

Assuming that we use n qubits to discretize the position
space x, hence we have Nx = 2n points, i.e., eigenstates |x j〉,
and each one of them corresponds to a discrete value of x j ,

x j = −xmax + δx j j = 0 . . . Nx − 1, (15)

X̂ |x j〉 = x j |x j〉 j = 0 . . . Nx − 1, (16)

with δx = 2xmax
Nx−1 . We use one of the n qubits to duplicate

the initial condition, which mitigates the border effects that
would appear if we do not duplicate the initial condition
when choosing periodic boundary conditions, see Fig. 3. In
order to accomplish this duplication, we impose symmetry
of the wave function with respect to x = 0, hence the co-
efficients of the eigenstates |x j〉 and |xNx−1− j〉 are the same
∀ j = 0, . . . , Nx − 1. Furthermore, this duplication reduces
the size of the real price simulation space to the interval
(−xmax/2, xmax/2), which is shifted to the interval (−xmax, 0),
as we pursue to duplicate the initial condition with respect to
x = 0. We calculate the value Nmax as the largest index i such
that K − exp(x j ) � 0,

K − exp(xNmax ) = 0 → −xmax

2
+ δxNmax = log(K ), (17)

thus

Nmax =
⌊

(Nx − 1)

(
log(K )

2xmax
+ 1

4

)⌋
. (18)

Therefore, except for the normalization of the wave function,
the coefficient of the eigenstate |x j〉 is K − exp(−xmax/2 +
δx j) for j = 0 ... Nmax. Considering that due to the duplication
each coefficient is repeated twice, the norm squared results are

� =
(

2
Nmax∑
m=0

(K − exp(−xmax/2 + δxm))2

)
. (19)

Finally, the normalized wave function reads

|Vp〉 =
Nmax∑
j=0

K − e−xmax/2+δx j

�1/2
(|x j〉 + |xNx−1− j〉). (20)

Moreover, we need an additional ancillary qubit, qE , associ-
ated with the embedding, Eq. (6). Thus, the initial state of the
embedded system results in |�0〉 = |0E 〉 ⊗ |Vp〉.

In the general case, loading an arbitrary state into a
quantum computer requires an exponential quantity of gates
[86–92], which introduces a main drawback for an efficient
simulation of the Hamiltonian dynamics. Nevertheless, for
some specific cases, such as smooth differentiable functions,
the initial state can be efficiently loaded into a gate-based
quantum computer, as detailed in [93–95]. The work pre-
sented in Ref. [93] introduces two algorithms to achieve
the efficient approximated loading of some functions, which
in particular includes the initial state of the European put
options.

B. Efficient simulation of the the Black-Scholes dynamics

As the dynamics of Hamiltonians only depends on func-
tions of the momentum operator P̂x, we can employ the
quantum Fourier transform to simplify the implementation
of the dynamics to the simulation of diagonal Hamiltonians,
a special case of sparsity. Indeed, we aim to simulate the
operators Ô(τ ) and eiτ ĤBSH . By using Eq. (11) and the identity
f (F̂ †

Nx
P̂kF̂Nx ) = F̂ †

Nx
f (P̂k )F̂Nx , where f is an analytic function,

the problem reduces itself to calculate the exponential of oper-
ator functions acting on diagonal momentum matrices. In this
way, an initial quantum Fourier transform on Nx grid points,
F̂Nx , allows us to transform the initial condition encoded in
the positions basis, Eq. (20), into the momentum space. After
applying the diagonal operators, the inverse Fourier transform
F̂ †

Nx
enables us to recover the solution in position space, which

encodes the price information. Note that the quantum Fourier
transform is an efficient subroutine implemented with com-
plexity O(n log n). Therefore, we can assume from now on
that the operators are diagonal and, consequently, sparse.

Currently, quantum signal processing (QSP) techniques
offer the most efficient quantum algorithms for quantum sim-
ulation of sparse Hamiltonians, as mentioned in [70]. This is
formally stated by the subsequent theorem, which establishes
limits on the simulated time, accuracy, and success probability
associated with QSP methods.

Theorem 1. (Optimal sparse Hamiltonian simulation using
quantum signal processing (QSP) [70]). A d-sparse Hamil-
tonian Ĥ on n qubits with matrix elements specified to m
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TABLE I. Algorithms and their costs for solving the Black-Scholes PDE. We compare the costs of different tasks when working with
multivariate functions, from the construction of the state, to the simulation of their evolution. Note that some classical methods also require
the time discretization, which significantly contributes to the overall complexity. ε, desired error bound in the particular task; n, the number
of qubits, equivalent to having 2n degrees of freedom (points in the grid); and Tsteps, the number of time steps.∗ Method only run one time ∗∗

Query complexity.

Problem Algorithm Cost

Information loading Amplitude encoding [93,96] O(poly(n))
” Block encoding [97] O(poly(n))
” Direct classical evaluation∗ O(2n)
PDE simulation Quantum signal processing∗∗ [70] O(td‖Ĥ‖max + log(1/ε)

log log(1/ε) )
” Quantum linear solver∗∗ [98] O(sκ log(1/ε))
” Crank-Nicolson [94,99] O(Tsteps2n)
” Fast fourier transform [94,99] O((n + 1)2n)
” Matrix exponentiation [100] O(2n)
Expected value Amplitude estimation [46,71,101] O(1/ε)
” Classical Monte Carlo [101] O(1/ε2 )

bits of precision can be simulated for time-interval t , error
ε, and success probability at least 1 − 2ε with O(td‖Ĥ‖max +

log(1/ε)
log log(1/ε) ) oracle queries and a factor O(n + m polylog(m))
additional quantum gates. The quantum simulation is valid for
simulated time td‖Ĥ‖max ∼ O( log(1/ε)

log log(1/ε) ).

Given that the Black Scholes Hamiltonian we have derived
from the considered PDE is a fully quantum 1-sparse operator
acting on a Hilbert space, we can conclude that simulations of
the Black-Scholes dynamics are optimal according to Theo-
rem 1. The oracles needed for this QSP methodology provide
a description of the Hamiltonian, i.e., where the sparse ele-
ments are (this is negligible as in this case the Hamiltonian
can be diagonalized via QFT) and what is their value. In this
sense, in order to build the oracle that returns the value of the
Hamiltonian eigenvalues, which are analytically known, one

might use the results in Ref. [102]. Additionally, in Table I
we illustrate a comparison of complexities for solving the
Black-Scholes PDE with different methods.

C. Measurement and postselection

Once the Hamiltonian dynamics have been efficiently sim-
ulated, the outcomes of the measurements in our circuit need
to be postselected to recover the non-Hermitian dynamics of
the Black-Scholes equation, which represents the option price.
The first step is to measure the ancillary embedding qubit. If
the measurement outcome is |0E 〉, we proceed to retrieve the
price information. Otherwise, we discard the measurement.
The probability of successfully recovering the desired dynam-
ics, i.e., obtaining the value |0E 〉 when measuring the ancilla,
depends on the expression

Ps = 〈Vp|F̂ †
Nx

e−2T ( σ2

2 P̂2
k +rI)F̂Nx |Vp〉 = 1

Nx�

Nx−1∑
k=0

⎡
⎣

⎛
⎝Nmax∑

j=0

(
K − e−xmax/2+ jδx

)
e2π ik j/Nx

+
Nx−1∑

j=Nx−1−Nmax

(
K − e−xmax/2+(Nx−1− j)δx

)
e2π ik j/Nx

⎞
⎠

⎛
⎝Nmax∑

j′=0

(K − e−xmax/2+ j′δx )e−2π ik j′/Nx

+
Nx−1∑

j′=Nx−1−Nmax

(
K − e−xmax/2+(Nx−1− j′ )δx

)
e−2π ik j′/Nx

⎞
⎠e−2T ( σ2

2 p2
k+r)

⎤
⎦, (21)

where pk is given by Eq. (12). Considering that all the terms of the sum in k are positive, the largest term corresponds to k = 0.
Thus, considering only this term, the success probability can be lower bounded by

Ps � 1

Nx�
e−2Tr

⎡
⎣ Nmax∑

j, j′=0

(
K − e−δxNx/4+ jδx

)(
K − e−δxNx/4+ j′δx

) +
Nx−1∑

j, j′=N−1−Nx

(
K − e−δxNx/4+(Nx−1− j)δx

)(
K − e−δxNx/4+(Nx−1− j′ )δx

)

×
Nmax,Nx−1∑

j=0, j′=Nx−1−Nmax

(
K − e−δxNx/4+ jδx

)(
K − e−δxNx/4+(Nx−1− j′ )δx

)

+
Nx−1,Nmax∑

j=Nx−1−Nmax, j′=0

(
K − e−δxNx/4+(Nx−1− j)δx

)(
K − e−δxNx/4+ j′δx

)⎤⎦. (22)
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FIG. 4. (a) Success probability in post-selection protocol corresponding to Eq. (21) depending on time to maturity in years and risk-free
interest rate. The probability is above 0.6 for all values in the mesh. (b) Lower bound probability of success γ (Nx, K ). As we can observe, there
exists an asymptotic convergence value for both, number of points and strike. The value of the asymptotic limit is over 0.6, what indicates that
our protocol would be success in more than a half of the realizations. Parameters values: Smax = 150 u, K = 50 u, σ = 0.2, n = 8.

As the four terms of the expression above sum up to the same, we can define

γ0(Nx, K ) =
Nmax∑

j, j′=0

(
K − e−xmax/2+ jδx

)(
K − e−xmax/2+ j′δx

) = e−δxNx/2(1 − eδx (1+Nx ) + eδxNx/4(−1 + eδx K (1 + Nmax))2

(−1 + eδx )2
, (23)

and finally

γ (Nx, K ) = 4γ0

�N
.

As we can observe, the success probability strongly depends
on the maturity time and risk-free interest rate, but for the
usual range of financial parameters, its value is always above
0.6 as depicted in Fig. 4(a). Note that obtaining a probabil-
ity of at least 1/2 + ε with ε > 0 is a necessary ingredient
for the successful deployment of the algorithm. The function
γ (Nx, K ), depicted in Fig. 4(b), shows an asymptotic behavior
when Nx → ∞,

lim
Nx→∞

γ (Nx, K )

= (−1 + K2 − 6K2 log(K ))2

(−1 + 12K2 − 11K4 + 36K4 log(K )) log(3K )
.

(24)

If the system has evolved following the desired dynamic,
we can retrieve the option price corresponding to the spot
|x j〉, which encodes the stock price of interest Sj = exj by
measuring the POVM

{|x j〉〈x j |, I − |x j〉〈x j |}.
This task can be easily attained by using a multicontrol
gate acting on an extra qubit. In order to detail the process,
let us suppose we have measured the state ancillary em-
bedding qubit with probability p(|0E 〉) � 0.6. Therefore, the
system has collapsed into a quantum state of the form |φ f 〉 =√

1 − a2|x⊥
j 〉 ⊗ |0G〉 + a|x j〉 ⊗ |0G〉, where 〈x⊥

j |x j〉 = 0 and
a = p(x j |0E ) is the amplitude probability we desire to

measure. If we apply a multicontrol gate UMCX (|x j〉) =
|x j〉〈x j | ⊗ X + (I − |x j〉〈x j |) ⊗ I acting on the ancillary

qubit, we obtain the state UMCX (|x j〉)|φ f 〉 = √
1 − a2|x⊥

j 〉 ⊗
|0G〉 + a|x j〉 ⊗ |1G〉. Consequently, the estimation can be

done by measuring the ancillary qubit in the computational
basis. If we consider a sampling process to retrieve the am-
plitude of a certain stock price and we want to determine
with a precision error ε̃, then we need O( 1

ε̃2 ) measurements,
which can be quadratically improved by using the quantum
amplitude estimation algorithm (QAE) by straightforwardly
measuring the amplitude of |x j〉 ⊗ |0〉 [46,71,103]. Therefore,
assuming the constraint exmax/2 = 3K , it is possible to obtain a
lower bound Ps � e−2Trγ (Nx, K ).

We would like to remark that typically in an n qubit state
the amplitudes are of the order of

√
1/2n and therefore the

number of rounds of QAE needed might result in an over-
head of resources. A solution for this issue was proposed in
Refs. [46,71].

Finally, the discrete value of the solution for the Black-
Scholes equation at maturity time, T , on the stock price Sj =
exj is given by the expression

Vp(T, S j ) = √
p(x j ∩ 0E )�, (25)

where p(x j ∩ 0E ) = p(x j |0E )p(0E ) � 0.6p(x j |0E ) is the
probability of measuring the eigenstate |x j〉 and the ancillary
embedding qubit in the state |0E 〉, and � is the normalization
factor given by Eq. (19).

IV. STOCK-PRICE-DEPENDENT VOLATILITY

Regarding the case of stock price-dependent volatility,
we assume σ = σ (x̂) and σ (x̂) = σ †(x̂). Therefore, the
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Hamiltonian resulting from the Black-Scholes equation ap-
pears as ĤBS = i σ 2(x̂)

2 p̂2 − ( σ 2(x̂)
2 − r) p̂ + irI upon initial

inspection. To achieve an appropriate quantization, it is nec-
essary to include terms of the form 1

2 (σ 2(x̂)P̂ + P̂σ 2(x̂)).
Additionally, the dynamics of the entire Hamiltonian should
be embedded, which significantly increases the complexity of
the problem. The natural question that arises now is whether
a choice of σ (x̂) can maintain the sparsity of the Hamiltonian
or if the system can be approximated by a controllable sparse
Hamiltonian. It is worth noting that no analytical solution
to the partial differential equation (PDE) exists in this case;
hence, our algorithm would provide a meaningful numerical
solution. Further investigation will be dedicated to studying
this case in detail in subsequent works.

V. CONCLUSIONS

We have introduced a quantum algorithm to solve the
Black-Scholes partial differential equation in a digital quan-
tum computer by mapping it to Schrödinger equation and
then use Hamiltonian simulation techniques to simulate its
dynamics. The non-Hermitian nature of the resulting Hamil-
tonian has been solved by embedding the dynamics into an
enlarged Hilbert space, and by postselecting the outcome
of the simulation. As a consequence of choosing periodic
boundary conditions for the discretized momentum operator,
and in order to improve the stability and performance of our
algorithm, we also used a discretization qubit to duplicate
the initial condition. Indeed, we have obtained a precision
comparable to classical algorithms with a total of nine qubits
to simulate the Black-Scholes dynamics in a fault-tolerant
quantum computer and an expected success probability value
for the post-selection protocol above 60%. Our perspective for
a future work is to introduce errors associated to NISQ devices
in order to analyze the realistic implementation in a near-term

quantum platform. We want to highlight that the embed-
ding techniques introduced may be extended to simulate the
dynamics of the general non-Hermitian Hamiltonians and
imaginary time evolution. This could allow us to introduce
additional degrees of freedom in the model, e.g., spatial-time
dependent volatility (stochastic local volatility) or coupled
options. For instance, we could use the quantum principal
component analysis raised in Ref. [12] together with coupled
Black-Scholes models to address problems with coupled op-
tions. Moreover, the present work has been accomplished for
the European option pricing problem, but it may be carried
through to simulate different kinds of options, considering
American and Asian options [45], for example.
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