
PHYSICAL REVIEW RESEARCH 5, 043219 (2023)

Ab initio insights on the fermiology of d1 transition metals on the honeycomb lattice:
Hierarchy of hopping pathways and spin-orbit coupling
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Recently, the physics of J = 3/2 electrons on a honeycomb lattice has received attention with the suggestion
of hosting an SU(8) Dirac semimetallic state. Motivated by this, in this work we provide a systematic study of the
interplay of various hopping pathways and atomic spin-orbit coupling for the low-energy electrons in candidate
d1 transition-metal halides MX3 (M = Ti, Zr, Hf; X = F, Cl, Br). By combining first-principles calculations
and a minimal hopping Hamiltonian, we uncover the role of dominant direct metal-metal hopping on top of
indirect metal-halide-metal hopping. This sets up a hierarchy of hopping pathways that centrally modify the
SU(8) picture for the above materials. These hopping interactions, along with the spin-orbit coupling, lead to
a plethora of exactly compensated metals instead of the SU(8) Dirac semimetal. Remarkably, the same can be
understood as descendants of a topological insulator obtained by gapping out the SU(8) Dirac semimetallic
phase. The resultant compensated metals have varied Fermi surface topology and are separated by Lifshitz phase
transitions. We discuss the implications of the proximate Lifshitz transition, which may be accessed via strain,
in the context of the relevant materials.
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I. INTRODUCTION

Electronic phases of transition-metal compounds with ac-
tive d electrons pose some of the outstanding problems in
condensed matter physics. In addition to the well-known ef-
fect of electron-electron interactions, in recent times it has
been realized that atomic spin-orbit coupling (SOC) plays
an important role in shaping the structure of the low-energy
theory of the 4d and 5d transition-metal compounds [1,2].
This provides the scope to study, design, and engineer newer
platforms of quantum materials supporting novel electronic
phases resulting from the interplay of quantum entanglement
and symmetries as evidenced in spin-orbit-assisted Mott insu-
lators, quantum spin liquids, excitonic magnetism, multipolar
orderings, and correlated topological semimetals [3–13].

In particular, for 4d and 5d transition metals in an octahe-
dral crystal field and with active t2g orbitals, the strong SOC
can split the atomic t2g orbitals into an effective higher-energy
J = 1/2 doublet and a lower-energy J = 3/2 quadruplet [3].
In this regard, the physics of the J = 1/2 orbitals has been
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studied extensively [14–16]. In comparison, the compounds
with active J = 3/2 manifold have received somewhat less
attention in spite of the potential to harbor equally or even
richer low-energy physics.

Potential candidates of expected J = 3/2 physics are the
transition-metal compounds in the d1 electronic state where
the t2g orbitals are at 1/6 filling. At the strong-SOC limit,
this leads to an empty J = 1/2 manifold, while the J = 3/2
orbitals are quarter filled. Among these compounds, of par-
ticular interest to us are layered transition-metal (M) halides
(X ), of the general formula MX3 [17]. The 3+ transition-metal
(M) cations in these compounds, in the octahedral setting of
1−1 halide anions, form a honeycomb lattice by edge sharing
of MX6 octahedra. Yamada et al. [18] proposed ZrCl3, a
member of the honeycomb d1 family, as a candidate mate-
rial exhibiting an SU(4) symmetric spin Hamiltonian in the
strong-coupling limit. Mondal et al. [19] showed that the
same can lead to an SU(8) Dirac semimetal (DSM) in
the noninteracting electron limit.

It is to be noted, though, that the above Hamiltonian(s)
were derived under the assumption of an infinite SOC limit
by projecting to the J = 3/2 orbitals, and by considering only
indirect hopping, i.e., hopping between two M sites via the
X . As expected, both of these assumptions are idealized limits
vis-à-vis the candidate materials. There are other microscopic
energy scales even at the single-electron level—the various
hopping amplitudes and noncubic crystal field splitting—
that can compete and change the low-energy physics, and
hence need to be understood. While the SU(4) or SU(8) may
provide an interesting starting point to capture the strong-
and intermediate-coupling physics in real materials, generally
one expects that these other energy scales would reduce the
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fine-tuned symmetries for the spin model or the free Dirac
theory, respectively. What then are the resultant structure
of the low-energy theory and the possible electronic phases
in this family of materials? More interestingly, the details of
these competing microscopic interactions can change across
the periodic table even within the same class of MX3 mate-
rials, e.g., in moving from 3d to 4d to 5d transition metals
(M = Ti → Zr → Hf) and in moving from 2p to 3p to 4p
halogens (X = F → Cl → Br).

In this paper, we present ab initio density functional theory
(DFT) insights into the estimates of the different hopping
pathways and their effect on the low-energy minimal hopping
models to reveal a rich structure of the possible phases rele-
vant to MX3. Guided by our DFT calculations, we conclude
that the low-energy fermiology of the electrons requires SOC
and a minimal set of four hopping pathways that include
two direct dd hopping, tddσ and tddπ , in addition to two
well-known [20] indirect ones via the intermediate halide ion,
tddm, tddm′ . Across the transition-metal series, the hierarchy
of direct and indirect hopping shows an interesting evolution,
with the fluorides being notably different from the chlorides
and bromides. This results in a marked deviation from the
indirect-hopping-only model at large SOC.

Reference [19] showed that an indirect hopping model for
the J = 3/2 electrons leads to a pair of linear bands touching,
i.e., Dirac points, for fourfold-degenerate orbitals arising from
a nonmanifest SU(4) symmetry [18]. The SU(4) symmetry,
combined with the valley, gives rise to a spin-orbit-coupled
SU(8) DSM [19], which, we show here, provides a controlled
understanding of the effect of the other hopping pathways as
well as finite SOC. Our DFT results suggest that the largest
of the microscopic energy scales is the direct overlap be-
tween the transition-metal ions, tddσ . This, along with finite
SOC (λ), allowing for the mixing among the different t2g

orbitals, provides a natural setting to explore the phase dia-
gram in the (tddσ /tddm)-λ plane around the SU(8) semimetal.
For chlorides and bromides, the effect of both these pertur-
bations can be understood in terms of gapping out of the
SU(8) Dirac fermions. However, while finite tddσ gives a Z2

free fermion symmetry-protected topological (SPT) insulator
[21,22], finite λ leads to a trivial one with an intervening
SU(2) DSM line separating the two. The primary effect of
subleading direct and indirect hopping, tddπ and tddm′ , is to
change the details of the band structure around the Fermi level
to give rise to particle-hole pockets resulting in a plethora
of exactly compensated metals with varied Fermi surface
topology. Two characteristic features of the Fermi surfaces
relevant for the materials, we note, are (a) near nesting of
different sections of the Fermi pockets, and (b) proximity to
Lifshitz transition which leads to the change in the Fermi
surface topology. Remarkably, all these compensated metals
are direct descendants of the topological insulator obtained
in the SU(8) limit and carry a nontrivial Z2 index. Using our
ab initio estimates of the band parameters, we place various
materials (chlorides and bromides) on the relevant part of
the λ-hopping phase diagram. Interestingly, we find that the
chlorides lie close to the phase boundary between the different
compensated metals separated by a Lifshitz transition. This
opens up the possibility of strain-induced Lifshitz transition in
monolayer MCl3.

The rest of the paper is organized as follows. In Sec. II we
introduce the DFT computation details that we use to obtain
the electronic band structure, as well as the construction of
the low-energy Hamiltonian of the compounds. In Sec. III, the
crystal structure of the nine compounds, MX3 where M = Ti,
Zr, Hf and X = F, Cl, Br, is discussed. This is followed by
the discussion of DFT band structure in Sec. IV and the
DFT-derived low-energy tight-binding model in Sec. V. The
phase diagrams of the low-energy hopping model in SOC
strength and hopping space upon systematic introduction of
hopping are discussed in subsequent sections (cfs Sec. VI).
This also includes the phase diagram relevant to the discussed
chloride and bromide compounds and discussion of the pos-
sible Lifshitz transition. We close the result section with a
brief overview on the consequences of parameters relevant for
fluorides in the (tddσ /tddm)-λ phase diagram in Sec. VII. In
Sec. VIII, a summary and outlook are presented. Supporting
technical details are given in the Appendixes.

II. METHODS AND COMPUTATIONAL DETAILS

The first-principles DFT calculations were carried out
using a plane-wave basis and projector augmented-wave po-
tential [23–25], as implemented in the Vienna Ab initio
Simulation package [26–28]. The Perdew-Burke-Ernzerhof
generalized gradient approximation (GGA) [29] was used to
approximate the exchange-correlation functional. To check
the influence of the correlation effect at the transition-metal
site, beyond GGA, GGA + U with supplemented Hubbard U
correction was carried out [30]. Furthermore, to handle the
van der Waals interaction between the layers, a dispersion-
corrected GGA + U + D2 functional was used [31]. The
convergence of energies and forces was ensured by using a
plane-wave energy cutoff of 600 eV and Brillouin zone (BZ)
sampling with 6 × 6 × 6 Monkhorst-Pack grids. During the
structural relaxation, the ions were allowed to move until the
atomic forces became lower than 0.0001 eV/Å.

The construction of a DFT-derived low-energy, few-
band Hamiltonian in the effective t2g Wannier basis of the
transition-metal ions was achieved through the downfold-
ing technique of integrating out degrees of freedom that are
not of interest, starting from the all-orbital DFT band struc-
ture, calculated in the muffin-tin orbital (MTO) basis. The
self-consistent potentials required for these calculations were
generated through the Stuttgart implementation of the linear
MTO (LMTO) package [32], while the downfolding calcula-
tions were performed in N th-order MTO (NMTO) basis [33].
For muffin-tin orbital calculations, the metal-atom-centered
(MT) radii were chosen to be in the ranges 1.30–1.53 Å,
1.47–1.66 Å, and 1.44–1.70 Å for Ti, Zr, and Hf, respectively.
The MT radii of 0.94–0.97 Å, 1.33–1.34 Å, and 1.46–1.48 Å
were chosen for halogen atoms F, Cl, and Br, respectively. The
consistency of the results between plane-wave and muffin-
tin orbital basis was checked in terms of band structure and
density of states.

The phases for the effective tight-binding models are ob-
tained following standard numerical procedures by solving
for the band structure for different values of the parameters,
subject to the 1/6 filling. The details are summarized in
Appendix A.
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FIG. 1. (a) Different possible stacking of the honeycomb layers in MX3 family. The M and X atoms are shown as red and green balls,
respectively. (b) Left: The honeycomb layer of M atoms formed by the edge-sharing of MX6 octahedra. Right: The trigonal distortion of the
MX6 octahedra. (c) The octahedral (�2) and trigonal (�1) crystal field splitting of the d levels of M. (d) The choice of M (marked in red) and
X (marked in green) elements of the compounds under study. The variation of the three primary energy scales of the problem: SOC (λ), orbital
size dictating the direct metal-metal hopping (tddσ ), and Coulomb interaction (U ).

III. CRYSTAL STRUCTURE AND d-LEVEL SPLITTING
OF THE STUDIED COMPOUNDS

The layered structure of MX3 compounds comprises two-
dimensional hexagonal nets of MX3, van der Waals stacked
on each other. Clearly, there can be many variants of the
stacking sequence in these layered materials. Due to the weak
van der Waals interactions between layers, different stack-
ing sequences result only in small energy differences. For
example, TiCl3 is reported to adopt ABA, AAA, and ABC
stacking sequences, as shown in Fig. 1(a), with ABA stacking
resulting in P3̄1c [34], AAA stacking in P3̄1m [35], and ABC
stacking in R3̄ [34] space groups. Though these polymorphs
have different crystal space groups, their in-plane geometry as
well as interlayer distance show little variation, less than 0.2%
for the specific case of TiCl3 [36]. The weak van der Waals
interaction of ∼1 meV between the layers allows the structure
to transform from one stacking type to another, depending
on the synthesis procedure. Since we are primarily interested
in the in-plane physics of the hexagonal net of d1 transition
metals, for simplicity we will assume AAA stacking of the
compounds in the rest of the discussion.

As per the available literature [17] on the layered MX3

compounds, these compounds have been reported to adopt
either in the rhombohedral BiI3 type [37], or the monoclinic
AlCl3 structure type [38]. In the BiI3 structure, the honey-
comb net is regular due to the threefold symmetry, with three
equal-length metal-metal bonds. In the AlCl3 structure, on the
other hand, the honeycomb net can be distorted, and the y
coordinate of the M site determines the degree of distortion.

This results in two unique in-plane M-M distances. Most
compounds report a temperature-driven transition from uni-
form rhombohedral BiI3 type to bond-dimerized monoclinic
AlCl3 structure. The available data [34] show this struc-
tural transition typically happens around 100–200 K for d1

transition-metal trihalides. In the discussion in the following,
we will focus on the AAA stacked high-temperature structure
of a uniform honeycomb net of transition metals possessing C3

symmetry, which would host different possible electronic in-
stabilities. As discussed later, subtle structures in the electron
band structure pave the way to electronically driven charge-
density-wave instabilities including dimerization, to which the
lattice may react.

Although the considered structures hold a uniform hexag-
onal network of metal atoms, the underlying rhombohedral
symmetry allows for the trigonal distortion of the MX6 octahe-
dra, which occurs as the elongation or compression along one
of the four threefold-symmetry axes, as shown in Fig. 1(b).
The elongation (compression) results in a decrease (an in-
crease) of the angle (θ ) between the M-X bond and the
threefold axis from an ideal value of 54.73◦. Figure 1(b) shows
the crystal splitting of the d levels of M atoms. In the presence
of the octahedral splitting, the fivefold-degenerate d levels
split into threefold-degenerate t2g and twofold-degenerate eσ

g .
In the presence of trigonal distortion of the MX6 octahedra, the
t2g levels further split into singly degenerate a1g and doubly
degenerate eπ

g , with �2 and �1 denoting the octahedral and
trigonal splitting, respectively.

As mentioned above, in the present study we focus on the
nine d1 MX3 compounds with M = Ti, Zr, Hf and X = F, Cl,
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TABLE I. In-plane lattice constants (a = b) and trigonal distortion (�θ trig) of the theoretically optimized structures of MX3. Given also is
the information on experimentally synthesized compounds.

TiX3 ZrX3 HfX3

F Cl Br F Cl Br F Cl Br

a = b (Å) 5.202 6.030 6.405 5.487 6.204 6.524 5.320 6.096 6.423
�θ trig (deg) 2.078 −0.550 −0.714 1.568 −1.133 −1.563 0.815 −1.244 −1.563
Expt. synthesis No Yes [35] Yesa [39] No Yesb [40] No No No No

aStructure with space group 148 (ABC stacking) is available.
bBased on misaligned powder x-ray data.

Br, drawn from 3d , 4d , and 5d transition-metal series and
2p, 3p, and 4p series, as shown in Fig. 1(d). The choice of
these compounds allows one to study the interplay of SOC and
hopping, as well as Coulomb interaction. Moving down the
column, the SOC increases due to increase in atomic number,
and the metal-metal hopping increases due to an increase in
the spatial extent of the d orbitals. Out of the nine proposed
compounds, only three compounds, namely, TiCl3 [34,35,35],
TiBr3 [39], and ZrCl3 [40], have been experimentally syn-
thesized. To predict the crystal structure of the remaining
compounds, we use the available experimental structure of
the related compound with either common M or common
X as the template and accordingly substitute the metal or
the halide atom with the desired element. The constructed
structure is subsequently fully relaxed by relaxing the atomic
coordinates and the volume, fixing the symmetry. The influ-
ence of exchange-correlation and van der Waals interactions
were checked in terms calculations within GGA, GGA + U
and GGA + U + D2. Among these, the GGA calculation
consistently was found to reproduce well the experimentally
measured in-plane lattice constants for compounds that have
been synthesized. Since we are primarily interested in in-plane
physics, in subsequent analysis we consider GGA optimized
crystal structures in the P3̄1m space group. The optimized val-
ues of in-plane lattice parameters as well as trigonal distortion
(�θ trig) are given in Table I. The in-plane lattice shows an
expansion in moving from 2p to 3p to 4p, and from 3d to 4d
to 5d . Interestingly, we note the trigonal distortion in fluoride
compounds is opposite that in chloride and bromide.

IV. DFT BAND STRUCTURE

The GGA density of states of the representative compound
ZrCl3, over a broad energy scale of −7 eV below the Fermi
level (EF ) and 4 eV above EF , projected onto Zr d and Cl
p states, is shown in Fig. 2(a). We find a large separation
between the predominantly X p states (beyond ∼3.5 eV below
EF ) and predominantly M d states (around EF and above), as
expected for early transition-metal halides. The corresponding
band structure, plotted along the high-symmetry points of the
hexagonal BZ (cf. inset), is shown in Fig. 2(b). As evident
from the plot, there are ten spin-degenerate bands arising from
the d orbitals of the two M ions in the unit cell that cluster
into three groups of three, three, and four spin-degenerate
bands. While the highest-energy group of four bands belongs
to eσ

g symmetry, the lower two groups of three bands [cf.
Figs. 2(b) and 2(c)], spanning energy ranges of ∼ − 0.3 to
0.5 eV, and ∼1 to 0.7 eV, respectively, are of t2g symmetry.

Since the trigonal crystal field splits three t2g’s into 2 + 1 at
each site, this cannot account for the above splitting of the six
t2g bands into 3 + 3. At any rate, the trigonal splitting arising
from a distortion of 1◦–2◦ (cf Table I) is expected to be much
smaller compared to the splitting between the two groups,
which is about 0.5 eV, as seen in the plot. To resolve this issue,
we compute the charge densities corresponding to the 3 + 3
groups of bands which are shown in Fig. 2(c). As is evident
from the charge density plots, the grouping of six t2g bands
into 3 + 3 arises due to a bonding-antibonding combination
of t2g orbitals resulting from highly directional, direct overlap
of t2g orbitals along the three M-M bonds. The band-structure
plots in Fig. 2(c), zoomed onto two t2g manifolds, show also
the computed band structure including SOC. As is seen, SOC
has a negligible effect on the entire band structure except for
lifting degeneracy at the high-symmetry points, �, K, and M,
which suggests the strength of SOC to be relatively weak, and
far from the assumption of an infinite-SOC limit.

The above-discussed broad features of the electronic struc-
ture are found in other compounds as well, though they differ
in the details. For a comprehensive analysis of the t2g manifold
of band structure of all nine MX3 compounds, see Fig. 3.
Moving along the metal series, we find that while Zr and Hf
share similar band structure features, that of Ti is different in
terms of the individual bandwidths of the bonding and anti-
bonding blocks, as well as in the separation between bonding
and antibonding blocks. The similarity of the band-structure
features of the Zr and Hf series, and their noticeable difference
from the Ti series, arises from lanthanide contraction—the
increase in atomic radius is greater between the 3d and 4d
metals than between the 4d and 5d metals. This contraction
translates into strengthening of the direct metal-metal hopping
and relative weakening of indirect hopping via the halide ion
in Zr and Hf compounds, compared to Ti as is discussed below
in detail. While the bonding-antibonding splitting is decided
by the direct head-on dd overlap, the individual dispersion of
each bonding and antibonding block is given by the lateral
dd overlap. With increase in direct dd overlap in Zr and Hf,
both head-on and lateral, the bonding-antibonding separation
as well as individual widths are enhanced compared to that
of Ti compounds. Figure 3 also presents GGA+SOC band
structures along with GGA band structures. Comparison of
the two establishes the SOC effect to be strongest in Hf, mod-
erate in Zr, and negligible in Ti compounds. Moving along
the halogen series, fluoride compounds exhibit markedly
different dispersion compared to chloride or bromide coun-
terparts, hinting that electronic properties of fluorides are
different from chloride and bromide. A bulk of the discussion,
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FIG. 2. (a) GGA density of states of ZrCl3, projected to Zr d (red) and Cl p (green) states. (b) The corresponding band structure plotted
along the high-symmetry points of the hexagonal BZ (shown as inset). (c) Zoomed-in band structure of bonding and antibonding t2g bands
and the associated charge densities, with isosurface value chosen to be 0.009 e−/Å3. The zoomed-in band-structure plot also includes the
comparison of GGA (black) and GGA+SOC (yellow) bands. The zero of the energy in the density of states and band-structure plots are set at
corresponding Fermi energy.

therefore, will concentrate on the chlorides and bromides
while we summarize briefly the fluorides in Sec. VII.

FIG. 3. The variation in band structure of MX3 (black, GGA;
yellow, GGA+SOC), upon change of metal ion from 3d Ti → 4d
Zr → 5d Hf, along the row, and change of halogen from 2p F → 3p
Cl → 4p Br, calculated within GGA. Fermi energy is set to zero in
the plots.

V. EFFECTIVE LOW-ENERGY TIGHT-BINDING MODEL

With the above DFT results, we now turn to the low-energy
modeling of the above band structure via an effective low-
energy tight-binding Hamiltonian for the t2g orbitals in the
presence of SOC.

According to molecular orbital theory [41], any two t2g

orbitals on adjacent sites can interact to form six levels as σ ∗,
π∗, δ∗, σ , π , and δ, where we rank them from the highest
to the lowest energy. The energy levels σ and σ ∗ are the
consequence of the direct head-on overlap of the d-orbital
lobes called ddσ , whereas direct lateral overlap of d orbitals
known as ddπ and ddδ gives rise to π∗, δ∗, π , and δ levels,
respectively. Among these, δ bonds are weakest and neglected
henceforth. These overlaps, along with indirect overlaps via
the halide ion, dictate the nature of the resultant tight-binding
model in the t2g basis for single-electron kinetic energy, which
is the starting point for our low-energy analysis.

In order to provide realistic estimates of these direct and
indirect overlap mediated hopping integrals, we derived the
low-energy Hamiltonian in the effective transition metal t2g

Wannier basis, starting from the full DFT band structure. For
this purpose, we constructed the effective Wannier functions
by keeping only the metal t2g degrees of freedom in the basis
and integrating out the rest through the NMTO downfolding
technique. Figure 4(a) shows the comparison of the band
structure in the downfolded basis, in comparison to the full
band structure. The good comparison justifies the effective-
ness of the prescription followed in deriving the low-energy
model.

The real-space representation of the downfolded bands
shows nonzero hopping amplitudes up to the fourth-nearest
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FIG. 4. (a) Downfolded t2g bands (in red) of ZrCl3, obtained by
integrating all of the degrees of freedom other than Zr t2g in com-
parison to the DFT band structure (in black). (b) The tight-binding
bands (in red), obtained by restricting the real-space representation
of the downfolded t2g Hamiltonian to only nearest-neighbor Zr-Zr
hopping, in comparison to the DFT band structure (in black). Zero of
the energy is set at Fermi energy in (a) and (b).

neighbor (NN) among metal ions. However, a more amenable
minimal hopping model with only first-NN interaction is suf-
ficient to reproduce most of the qualitative and quantitative
features of the bands, as can be seen in Fig. 4 for ZrCl3. A
similar conclusion holds also for other materials.

The resultant first-NN tight-binding Hamiltonian in the
t2g basis consists of four essential hopping amplitudes: the
direct overlap between neighboring t2g orbitals that forms a
σ bond denoted by tddσ [cf. Fig. 5(a), left panel, shown for
the representative case of ZrCl3]; the direct overlap between
neighboring t2g orbitals that forms a π bond denoted by de-
noted by tddπ [cf. Fig. 5(a), right panel, shown for ZrCl3];
and two indirect overlaps between neighboring t2g orbitals via
the halides in the edge-sharing octahedral geometry denoted
by tddm, tddm′ , illustrated in Fig. 5(b), for ZrCl3. Note that
the d orbitals are defined with respect to the local primed
halogen-based coordinate system (cf. Fig. 5). For details of
transformation between different coordinate systems, see the
Appendixes.

Note that in addition to the above hopping parameters, we
also have the on-site trigonal energy scale. However, we find
that in the presence of the dominant effect of tddσ , which is
responsible for creating the bonding and antibonding orbitals
[cf. Fig. 2(c)], the effect of the trigonal distortion within each
manifold of bonding or antibonding bands is minimal and
hence we disregard it compared to the other hopping parame-

FIG. 5. Overlap of effective t2g Wannier functions in the down-
folded basis of ZrCl3, placed at two neighboring positions of Zr ions.
Lobes of opposite signs are colored blue (yellow) and cyan (violet)
for two different Zr ions. (a) Direct dd overlaps, with the left panel
showing the head-on overlap (ddσ ) and the right panel showing the
lateral overlap (ddπ ). The overlaps are highlighted by lines. The t2g

orbitals are defined with the choice of local primed halogen-based
coordinate systems, shown in the left panel. The X , Y , and Z M-M
connecting bonds are shown in the right panel. The crystallographic
coordinate system in terms of a, b, and c is also shown. (b) Indirect
overlaps via the halogen site, between the same (left) and differently
shaped (right) t2g functions, labeled as ddm and ddm′ in the text.
Overlap region via halogen is encircled.

ters. The results, discussed in the following, are not influenced
by this assumption, as has been explicitly checked.

With this, one can now write the first-NN hopping model
for the t2g orbitals as

Htb =
∑
〈i j〉

∑
α,β

∑
ηη′

�
†
iαη

[
hαβ

i j δηη′
]
� jβη′ . (1)

Here � jαη annihilates electrons at the jth site of the lattice
with spin η (=↑,↓), in the orbital α (= xy, yz, zx). The hi j is
a 3 × 3 Hermitian matrix at the bond connecting the ith and
the jth sites of the lattice as shown in Fig. 5(a).

Keeping in mind the different kinds of overlaps of the t2g

orbitals, we can write the hi j matrix for the Z bond as

hZ =
⎛
⎝ tddσ tddm′ tddm′

tddm′ tddπ tddm

tddm′ tddm tddπ

⎞
⎠

= tddσ hσ + tddπhπ + tddmhm + tddm′hm′ , (2)

where tddσ , tddπ , tddm, and tddm′ are hopping due to direct and
indirect overlaps of the orbitals as discussed before. Also, hσ ,
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TABLE II. DFT estimated hopping terms defined for hz matrix [cf. Eq. (2)] and SOC strength (λ). The last two rows show energy splitting
in the t2g level due to trigonal distortion. Apart from ratios, all the numbers quoted are in units of eV.

TiX3 ZrX3 HfX3

F Cl Br F Cl Br F Cl Br

tddσ −0.167 −0.220 −0.164 −0.546 −0.558 −0.476 −0.708 −0.666 −0.569
tddπ 0.077 0.062 0.046 0.210 0.150 0.126 0.274 0.190 0.157
tddm 0.058 0.078 0.079 −0.061 0.030 0.038 −0.126 0.015 0.031
tddm′ −0.022 −0.030 −0.027 −0.023 −0.020 −0.020 −0.039 −0.022 −0.020
tddπ/tddσ −0.463 −0.281 −0.277 −0.385 −0.269 −0.264 −0.387 −0.285 −0.277
tddm/tddσ −0.351 −0.357 −0.481 0.112 −0.053 −0.081 0.178 −0.022 −0.054
tddm′/tddσ 0.134 0.136 0.163 0.043 0.037 0.042 0.055 0.033 0.035
λ 0.015 0.028 0.040 0.030 0.043 0.043 0.060 0.152 0.152
λ/tddσ −0.089 −0.127 −0.244 −0.055 −0.076 −0.090 −0.085 −0.228 −0.267
� = Eeg − EA1g −0.030 0.050 0.039 −0.178 0.057 0.077 −0.212 0.065 0.088
�/tddσ 0.180 −0.227 −0.236 0.325 −0.103 −0.161 0.300 −0.097 −0.154

hπ , hm, and hm′ are 3 × 3 matrices given by

hσ =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠, hπ =

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠,

hm =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, h′

m =
⎛
⎝0 1 1

1 0 0
1 0 0

⎞
⎠. (3)

The form of the hopping of the X and Y bonds can be obtained
by exploiting the threefold rotation symmetry of the lattice, as
detailed in the Appendixes.

The DFT estimates for the hopping amplitudes, tddσ , etc.,
for different materials are given in Table II. For different
materials, the generic hierarchy of the relative strengths of the
hopping parameters are found to be as follows:

|tddσ | > |tddπ | � |tddm| � |tddm′ |. (4)

The low-energy effective tight-binding model can be ob-
tained by adding atomic SOC to Eq. (1):

H =
∑
〈i j〉

∑
αβ

∑
ηη′

�
†
iαη

[
hαβ

i j δηη′ − λ̃lαβ · sηη′δi j
]
� jβη′ , (5)

where λ(>0) is the strength of SOC and l’s represent the three
l = 1 orbital angular momentum matrices while s are the Pauli
matrices that represent the spin degrees of freedom of the
electrons. To estimate the SOC in the studied materials, we
calculated the band structure within GGA+SOC. The tight-
binding fit of the obtained band structure with DFT-derived
hopping integrals together with a tunable λ was used to extract
the best-fit λ value of a given compound. The estimated λ

values are listed in Table II.
For understanding of the generic structure of the non-

interacting phase diagram in the context of the different
compounds and possibly others, it is useful to scale out
an overall energy scale, E = |tddσ | + |tddm|, and study the
rescaled Hamiltonian in terms of dimensionless coupling con-
stants. To this end, it is useful to rewrite Eq. (5) as

H = E
∑
〈i j〉

∑
αβ

∑
ηη′

�
†
iαη

[
Hαβ

i j δηη′ − λ̃lαβ · sηη′δi j
]
� jβη′ , (6)

such that Hi j can be obtained by rescaling hi j [Eq. (1)] and
in particular its form on the Z bond is obtained by rescaling
Eq. (2) as

HZ = −(1 − τm)hσ + ρτmhm + r(1 − τm)hπ + τ ′
mhm′ (7)

with

tddσ = −E (1 − τm), tddπ = r tddσ , tddm = ρEτm,

tddm′ = Eτ ′
m, λ = E λ̃. (8)

The description of the model Hamiltonian, defined in terms
of E , τm, r, ρ, and τm′ , besides being helpful in providing a
unified description of different compounds, is advantageous
for (i) the ease of interpolating between direct- and indirect-
hopping-dominated situations by varying only τm, and (ii)
arriving at a phase diagram in two-variable λ̃-τm space.

The parameter ρ = ±1 additionally indicates that the indi-
rect hopping amplitude tddm can be of either sign. In particular
we find that (see Table II) ZrF3 and HfF3 have ρ = −1,
making the situation markedly different from that of chlo-
rides and bromides, which was already hinted from the band
structure (see Fig. 3). This distinct difference of the fluorides
arises from the following characteristic features of F: (1) much
smaller ionic radius (147 pm), and (2) much higher elec-
tronegativity (3.98), compared to chlorine and bromine with
ionic radii (electronegativities) of 175 pm (3.16) and 185 pm
(2.96), respectively. Since none of the fluoride compounds
have been so far synthesized, for the rest of this paper, we
are concerned with ρ = +1 and take up the case for fluorides
towards the end in Sec. VII.

VI. SINGLE-ELECTRON PHASE DIAGRAM

The Hamiltonian in Eq. (6) leads to a rich set of pos-
sibilities even at the noninteracting level which crucially
decide the fate of electron-electron interactions and the low-
energy phases. While in actual materials all the parameters
are present, we unfold the story in steps, by following the
hierarchy of different energy scales and introducing them one
by one. This provides understanding at the model level of
the influence of each distinct hopping terms in the result-
ing phases. It is interesting to note though that the phases
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FIG. 6. (a) Phase diagram in the τm-λ̃ plane for r = 0, τ ′
m = 0, and ρ = +1. The two gapped phases are shown with different colors (gray

and cyan). The vertical axis is plotted between λ̃ ∈ [0, 2.0]. For larger values, no new phases appear and this feature for very large λ̃(→ ∞) is
shown through extrapolation as shown by the break lines on the vertical axis. The band structures, plotted along the �, K, and M points of the
BZ at different points on the phase diagram are shown as insets. The blue horizontal lines in insets II, V, and VI show the position of the Fermi
level. In inset II, both the bands are sixfold degenerate as explained in the text. Insets V and VI are for very large values of λ̃ and hence only
the four lower-energy J = 3/2 bands are shown. (b) Band structure in the topological gapped phase (for τm = 0.9, λ̃ = ∞, r = 0, and τ ′

m = 0)
in cylindrical geometry. The edge modes at the Fermi energy are shown by the blue solid line, with Fermi level marked with a dashed line.
(c) A single hexagon showing the origin of molecular orbitals at point P2 of the phase diagram in (a). Different colored dots represent three t2g

orbitals. The six sites of the hexagon are labeled with numbers from 1 to 6. The symmetric linear combination of the orbitals connected by the
green dotted line forms the lowest energy band. Other orbitals are localized on single bonds of the hexagon, shown by black dotted lines. See
text for details.

corresponding to the complex hopping model of actual ma-
terials are connected to the Dirac semimetallic phase of the
idealized SU(8) model, and can be achieved by change of λ̃

and τm.

A. Phase diagram for τm-λ̃ model

Our first-principles calculations show that the major
deviation from the indirect hopping model discussed in
Refs. [18,19] is the direct hopping given by tddσ . The sim-
plest model, therefore, consists of tddσ , tddm, and λ, setting
the other subleading terms, tddπ and tddm′ , to zero. This
gives rise to a phase diagram in the τm-λ̃ plane, such that
τm = 0 (1) corresponds to the purely direct (indirect) hop-
ping limits at different values of SOC with r = τ ′

m = 0.
Having discussed this phase diagram of the minimal pos-
sible model, capturing the interplay of direct and indirect
hopping, we next sequentially turn to tddπ and tddm′ , and
examine the τm-λ̃ phase diagram by first setting r = −0.3,
and then setting τ ′

m = −τm. We note that the importance of
direct metal-metal interaction, over the conventional descrip-
tion of ligand-mediated interaction in the description of the
phenomenology of transition-metal compounds, has been ac-
knowledged recently, in the context of cobaltates [42].

1. τm-λ̃ phase diagram with r = τ ′
m = 0

The phase diagram in the τm-λ̃ plane is shown in Fig. 6(a).
The top right corner, P3(≡ (τm = 1, λ̃ = ∞), corresponds to
infinite SOC in the purely indirect hopping limit with infi-
nite coupling. This, for d1, gives rise to an SU(8) DSM as

discussed in Ref. [19]. At P3, the six t2g orbitals (including
spin degeneracy) split up into four J = 3/2 and two J = 1/2
orbitals, which are separated by an infinite energy gap (∝ λ̃)
with the J = 3/2 orbitals being of lower energy. Hence at
this point we obtain quarter filled J = 3/2 orbitals whose
band structure is shown in inset V of Fig. 6(a). Here, the
lowest band linearly touches the upper band at the � and the
M points of the BZ, giving rise to four 4-component Dirac
fermions sitting at four valleys: the three M points of the BZ
and one at the � point that constitutes the SU(8) DSM [19].
Remarkably, almost the entire phase diagram, except the pink
and green shaded parts along the τm = 0 and λ̃ = 0 axes, can
be understood from this SU(8) limit as we now discuss.

On moving away from the SU(8) point, all the Dirac
fermions get gapped out, generically giving rise to band in-
sulators. However, the nature of these two band insulators
obtained in the two extreme limits of changing τm or λ̃ away
from P3 are different. One of them—that obtained by varying
only τm—is a free fermion SPT phase [22], as is evident
from the gapless edge modes plotted in Fig. 6(b). These
edge modes are protected by time-reversal symmetry. Indeed
out of the 24 distinct ways of gapping out the SU(8) Dirac
fermions discussed in Ref. [19], there are precisely two differ-
ent time-reversal-invariant lattice (Ae

1g) singlet masses where
we have used the notations of Ref. [19] for ready reference.
The above two band insulators correspond to these two sin-
glets as detailed in the Appendixes. The two insulating phases
are separated by a phase transition denoted by the magenta
curve connecting the points P3 and P1 ≡ (τm = 0.67, λ̃ = 0).
On this line, only the Dirac fermions at the � point become
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gapless while those at the three M points remain gapped
across the transition as shown in the band structure (inset
VI) in Fig. 6(a). The resultant theory has an enhanced SU(2)
symmetry as detailed in the Appendixes.

In Fig. 6(a), diametrically opposite to P3 is the point O ≡
(τm = 0, λ̃ = 0), which describes the purely direct hopping
model via tddσ without SOC. Here, the hopping Hamiltonian
[Eq. (6)] reduces to a particularly simple form, given by

H = −E

⎛
⎝ ∑

〈i j〉∈Z-bonds

�
†
i,xy,η� j,xy,η +

∑
〈i j〉∈X-bonds

�
†
i,yz,η� j,yz,η

+
∑

〈i j〉∈Y-bonds

�
†
i,zx,η� j,zx,η

⎞
⎠ + H.c., (9)

such that on the Z , X , and Y bonds [see Fig. 5(a)] respectively
only the xy, yz, and zx orbitals hop. Since each set of bonds
forms a disconnected network of dimers that rotates into itself
under C3, we get bonding and antibonding orbitals of the
respective types on each of the three bonds resulting in two
sets of sixfold-degenerate (including spin η =↑,↓) flat bands
as shown in inset III of Fig. 6(a). This is evident in the form
of the Wannier functions obtained from DFT (cf. Fig. 5). This
kind of separation of the energy bands into two groups of three
bands is also seen in the DFT band structures of ZrCl3 shown
in Fig. 2(c), which is dominated by the direct overlap tddσ as
given in Table II.

The fact that the entire OP1 segment on the λ̃ = 0 line is
gapless is expected on very general grounds and is in fact
dictated by the general structure of the phase diagram starting
from the SU(8) symmetric point, P3. This can be rationalized
based on the fact that on this line there is an enhanced SU(2)
spin rotation symmetry such that this line cannot be a part
of the free fermion SPT phase lying above it for finite λ̃—as
predicted by the SU(8) theory. The trivial insulating phase
[shown in cyan in Fig. 6(a)] of course can be connected to the
spin-rotation-symmetric segment P1P2 continuously. Finally
at the point P2 ≡ (τm = 1, λ̃ = 0), the bands become flat again
with a degeneracy of 2-4-4-2 [inset VII of Fig. 6(a)]. At this
point (P2), the lowest band is made up of spin-degenerate
molecular orbitals of the type shown in Fig. 6(c) at each
hexagon. On deviating from this point, these orbitals acquire
dispersion. Hence the entire gapped trivial insulator [shown in
cyan in Fig. 6(a)] can be understood in terms of these effective
eigenmodes.

On increasing the SOC (λ̃) along the τm = 0 line in
Fig. 6(a), the sixfold symmetry is independently lifted in
the bonding and antibonding sectors without intermixing for
small λ̃ as shown in inset VIII of the figure. The band struc-
ture (inset VIII) is very similar to that of monolayer kagome
band structure [43]—for both the bonding and antibonding
sectors—with the lower dispersing band touching the flat band
quadratically at the � point of the BZ. As one increases the
SOC, the bandwidth of each of the two sectors increases
while they retain their overall shape such that at the point
P4 ≡ (τm = 0, λ̃ = 1.35) the bands touch at the � point lead-
ing to a spin-1 Dirac dispersion [44] at the touching of the
two sectors [inset IV of Fig. 6(a)]. On increasing SOC further,
remarkably the second flat band—previously associated with

the antibonding sector—detaches from it and becomes a part
of the bonding sector, leading to a division of four lower bands
and two higher bands [inset I of Fig. 6(a)], as expected from
the J = 1/2 and J = 3/2 splitting of the atomic orbitals at
large SOC. For d1 materials, however, the above change of
band structure is not important as only the lowest flat band
is filled such that the chemical potential lies at the lowest
quadratic band touching points leading to a very unstable (to
interactions) quadratic band-touching semimetal with one of
the flat bands having divergent effective mass.

The above structure of the phase diagram gives a good
starting point to connect to the DFT band structure by incorpo-
rating the subleading interactions that we now turn to discuss.
Two such important subleading parameters are tddπ and tddm′

representing the subleading direct and indirect hopping, re-
spectively [see Eqs. (2) and (8) as well as Table II]. We study
their effects as a buildup to the material phase diagram.

2. Effect of tddπ

The first subleading hopping that is relevant across all the
compounds is the direct hopping via the π overlap, denoted by
tddπ as shown in Fig. 5 and incorporated via the parameter r =
tddπ/tddσ in our effective tight-binding Hamiltonian [Eq. (6)],
as shown in Eq. (8). However, instead of scanning the entire
phase diagram as a function of r, we confine ourselves to r =
−0.3—a value which is roughly consistent for the different
materials. The resultant phase diagram is shown in Fig. 7.

The P2P3 line of Fig. 7(a) is exactly equivalent to that of
Fig. 6(a) and hence the description of the entire trivial gapped
band insulator in the cyan region remains the same apart from
the quantitative renormalization of the band structure away
from the τm = 1 line. Similarly the physics of the λ̃ = ∞
for τm < 1 holds until the point P7, giving rise to the Z2 free
fermion SPT phase (gray region) with gapless edge modes,
exactly in the case of tddπ = 0 in Fig. 6(a). The intermediate
line, P3P6, hence is associated with a Dirac band touching at
the � point of the BZ giving rise to an SU(2) DSM. However,
the effect of tddπ = r|tddσ | ∝ (1 − τm) drastically rearranges
the band structure for lower τm, as we discuss now.

The tddπ lifts the threefold degeneracy of the flat bands
at the point O = (τm = 0, λ̃ = 0), leading to dispersive bands
that cross the chemical potential, giving rise to a compensated
band metal such that the net Luttinger volume is zero. The
relevant Fermi surface is named F1′ and is shown in Fig. 7(b).
However, this is highly unstable due to the touching of the
hole and particle Fermi pockets and, on increasing both τm and
λ̃, the resultant Fermi surface undergoes topological changes
giving rise to a plethora of compensated band metals denoted
by F1–F11 in Fig. 7(a). The intervening Lifshitz transitions
[45,46] include cases where both separate sheets of Fermi
surfaces merge, e.g., F4 to F5 via van Hove singular necks,
as well as instances where individual sheets of Fermi surfaces
disappear, e.g., F1 to F4. This generic appearance of the com-
pensated band metals with diverse Fermi-surface topology is
particularly relevant to the materials under consideration as
we discuss in the next section in detail along with the relevant
Lifshitz transitions.

We would like to end this discussion about the effect of
tddπ by commenting on the metals F1–F11 [Fig. 7(a)] that

043219-9



MANOJ GUPTA et al. PHYSICAL REVIEW RESEARCH 5, 043219 (2023)

FIG. 7. (a) Phase diagram for ρ = +1, r = −0.3, and τ ′
m = 0. Two gapped phases shown in gray and cyan shading. The different metallic

phases are shown with different colors and labeled as F1, . . . , F11. (b) Fermi surfaces corresponding to different metallic phases. The hole-like
Fermi surfaces are shown with blue dashed lines and the electron-like Fermi surfaces are shown with solid violet lines. The hexagonal BZ
is shown with red solid lines. The F1′ Fermi surface corresponds to the O point of the phase diagram shown in (a). The solid and dotted
regions of F1 differ by the fact that, for the Fermi surface corresponding to the dotted region, one of the Fermi pockets around the K points is
electron-like and the other is hole-like, while both are electron-like for the solid region.

occupy the region that was erstwhile [Fig. 6(a)] a part of
the topological insulator. Interestingly for F8, the electron
bands evolve continuously from the free fermion SPT phase
and hence it inherits a nontrivial Z2 invariant for the bands
crossing the chemical potential. In fact, except on the λ̃ = 0
line, we find that for all the metals in the phase diagram under
consideration, one of the bands crossing the chemical poten-
tial has nontrivial Z2 index, calculated following the method
discussed in Ref. [47]. The method is applicable for systems
with inversion symmetry, as in the present case.

3. Effect of tddm′

We now turn to the effect of the indirect hopping mediated
by tddm′ on the minimal model with phase diagram in Fig. 6(a).
Again we choose a representative value of tddm′ = −tddm—in
the regime relevant to the materials—to indicate its effect. Un-
like tddπ , this indirect hopping now drastically reorganizes the
τm ≈ 1 region of the phase diagram, apparent by contrasting
Fig. 6(a) with Figs. 7(a) and 8.

In particular the line τm = 0 remains unaltered with respect
to the minimal model (Fig. 6). Also the free fermion SPT
phase (in gray in Fig. 8) is stable to finite tddm′ , albeit it does
not extend all the way to the point P3. In fact the SU(8) Dirac
point (P3) now develops into a compensated band metal as
the Dirac cones, at the erstwhile P3 point, move away from the
chemical potential in the opposite direction—the Dirac node
at the � point moves above it and those at the M points move
below it—giving rise to Fermi pockets around these points.
The band structure at the P3 point is shown in inset II of the
phase diagram in Fig. 8. The resultant Fermi surface around
this point is of F8 type given in Fig. 7(b).

As we move away from the P3 point along the λ̃ = ∞ line
by decreasing τm (thus increasing tddσ ), the F8 Fermi surface
continues to exist, although a finite gap at the M and the �

points opens up (away from the chemical potential) between
the lowest and the second lowest band. This gap opening due

FIG. 8. Phase diagram for r = 0, τ ′
m = −τm, and ρ = +1. Inset

I shows a prototypical band structure for a point on the OP9 line
where the lowest band touches the next band linearly at the K points,
while inset II shows the band structure at the P3 point. Since λ̃ = ∞
at P3, only four bands (J = 3/2 bands) are shown in inset II. As in
Fig. 7(a), metallic phases with different Fermi surface topology are
labeled and colored. In addition to F8, F9, and F10, introduced in
Fig. 7(a), three new phases, labeled as F2, F3, and F12, appear. The
Fermi surface topology for F2, F3, and F12 phases are shown on
the right-hand side.
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to the effect of tddσ gives a nontrivial Z2 number to the lowest
band and hence the F8 metal in the phase diagram in Fig. 8 is
a topological metal. On moving further away from the P3 point
along the λ̃ = ∞ line, the size of the Fermi pockets of the F8
metal continuously shrinks and eventually vanishes at the P10

point, after which the system enters into a gapped phase. Since
this transition from the F8 metal to the gapped phase does not
happen through a band touching, the Z2 invariant of the lower
band remains unchanged across this transition and hence the
gapped phase is also a topological insulator—the same free
fermion SPT phase as in Fig. 6.

Turning to low SOC, the P2 point no longer has flat bands
but now gains a dispersion due to τ ′

m leading to a compen-
sated metal of Fermi surface type F2 as shown in Fig. 8.
On moving from the point away from the P2 point along the
τm = 1 line, the F2 Fermi surface transforms into an F8-type
Fermi surface, which is then connected to the P3 point. This
F8-F2 transition does not involve any band touching, but just
a change of the chemical potential, and hence the F2 region of
the phase diagram is also a topological metal. On reducing the
values of τm from the point P2, the system encounters various
other metallic phases which have different Fermi surfaces
(F9, F1, F12, F3, etc.). We find that for all these phases,
the bands crossing the Fermi energy always have a nontrivial
Z2 index. Thus, all the metals in this phase diagram are also
topological metals.

Finally, on the line OP8, τm = τ ′
m = 0 and hence the de-

scription of this line is the same as in the phase diagram
in Fig. 6. On the other hand, along the OP9 line (for which
λ̃ = 0), the lowest band touches the upper band linearly at the
K points. The effect of finite λ̃ opens up a gap at the K points
and the system enters into the topological gapped phase (gray
shaded region).

B. The material phase diagram

Having discussed the minimal tight-binding model and the
effect of the subleading hopping terms resulting in a rich
single-particle phase diagram, we now turn to the regime
that may be most suited to the material parameters, except
for the fluorides. To this end we choose the representative
hyperplane given by ρ = +1, r = 0.3, and τ ′

m = −τm and
vary τm ∈ (0, 1) and λ̃ ∈ (0,∞).

The phase diagram in this parameter regime is shown in
Fig. 9. Due to the complementary effects of the secondary
direct and indirect hopping (tddπ and tddm′ , respectively), the
resultant phase diagram is in a way a superposition of Figs. 8
and 7(a) such that all the phases appearing in this case are
gapless, are perfectly compensated, and have Fermi surfaces
with at least one partially filled band having nontrivial Z2

invariant.
Based on which particular band(s) carry nontrivial Z2, the

phase diagram can be demarcated by red, magenta, and blue
lines (see Fig. 9). The Z2 index for the lowest band is nonzero
for the region of the phase diagram which is on the right-hand
side of the red solid line. On the other hand, the second lowest
band has nontrivial Z2 index for the regions of the phase
diagram which are either left of the red solid line or right of
the magenta solid line. On the red line, the lowest and the
second lowest bands touch at the M point and the Z2 character

FIG. 9. Phase diagram for ρ = +1, r = −0.3, and τ ′
m = −τm

with 0 � τm � 1 and 0 � λ̃ � 2.0. For λ̃ > 2.0, the F8 phase con-
tinues to exist. The six different chloride and bromide compounds are
placed in this phase diagram, according to the estimated parameter
values of the low-energy Hamiltonian (cf. Table II), shown in insets
I, II, and III. The phase diagram is demarcated by the red, blue, and
magenta lines, according to the Z2 characters of the bands. See text
for details.

of the two bands switches. On the magenta line, the second
lowest band touches the third lowest band and thus encounters
another change in Z2 character. The third lowest band, which
crosses the Fermi energy only at the F1 region which is near
the origin O, has nontrivial Z2 index for the region which is
left of the blue solid line in the phase diagram. On this blue
line, the third lowest band touches the fourth lowest band and
encounters a change in Z2 character.

The positioning of the materials ZrX3, TiX3, and HfX3

(X = Cl, Br) in the phase diagram, based on the estimated
parameters given in Table II, is shown in zoomed plots given
in Fig. 9. Due to weaker SOC compared to the strength of
leading hopping interactions, the studied compounds are all
placed towards the bottom of the phase diagram. Given the
fact that tddσ (tddm) is significantly larger (smaller) in Zr and
Hf compounds compared to Ti compounds, as expected, Zr
and Hf compounds are placed to the left of the Ti compounds.
Given the similarity in electronic structure of Zr and Hf com-
pounds (see Fig. 3), it is not surprising that they belong to the
same F4 class, with Hf compounds lying higher in position
compared to Zr, due to stronger SOC. On the other hand,
Ti compounds belong to the distinctly different F5 class.
Systematically, bromine compounds lie higher than and to the
right of chlorine compounds, due to stronger SOC and weaker
direct hopping strength, respectively.

The detailed Fermi surfaces (FSs) of the compensated,
topological metallic phases of the six compounds are shown
in Fig. 10. The F4-type FS of ZrX3 and HfX3 compounds is
characterized by three disjoint Fermi pockets: two electron-
like pockets around the two K points and one hole-like pocket
around the � point. On the other hand, the TiX3 compounds
having F5-type FSs have two Fermi pockets, one electron-like
and one hole-like around the � point.
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FIG. 10. Fermi surfaces for (a) TiCl3, (b) TiBr3, (c) ZrCl3,
(d) ZrBr3, (e) HfCl3, and (f) HfBr3. Diagrams (a) and (b) are F5-
type Fermi surfaces while the rest are of F4 type. The blue dotted
lines show hole-like Fermi surfaces and the solid indigo lines show
electron-like Fermi surfaces. The red line shows the boundary of the
hexagonal BZ.

C. Nesting and Lifshitz transitions

A characteristic feature of some of the FSs in Fig. 10
are the flattish almost nested sections—involving both intra-
and interpockets. This makes them particularly susceptible
to nesting instabilities in the presence of electron-electron
interactions at appropriate wave vectors. Our preliminary
results indeed indicate enhanced susceptibilities in the charge-
density-wave channel due to such nesting. The detailed
characterization of such instabilities though require more ac-
curate study particularly due to the intricate structure of the
FSs involved.

Another feature of the phase diagram is the presence of
a plethora of Lifshitz phase transitions [45,46] between the
variety of compensated metals (Fig. 9). These phase transi-
tions involving a change in the Fermi surface topology can

be classified into two broad categories [45,48]: (1) a pocket
vanishing type, associated with the disappearance of new
segments of Fermi surface, e.g., between F1 and F4 where
the Fermi pockets centered around the BZ corners appear,
possibly relevant for Zr(Hf)Cl3 and Zr(Hf)Br3, and (2) a neck
collapsing type associated with merging of two segments of
Fermi surfaces, e.g., the transition between F4 and F5 where
two particle-like Fermi pockets develop a neck that meets at
the M points, possibly relevant for TiCl3 and TiBr3. These
transitions, accessed in the present case by tuning the band
parameters at a particular filling, occur due to the change of
the band structure at the chemical potential. While the former
leads to a step function in the single-particle density of states,
ρ(ε − εF ) ∼ θ (ε − εF ), the latter has a logarithmic singular-
ity, i.e., ρ(ε − εF ) ∼ − ln |ε − εF | and hence has a van Hove
singularity arising from the vanishing Fermi velocity for the
electrons on the Fermi surface. This singular behavior can be
reflected in thermodynamic measurements such as magnetic
susceptibility [48] as well as scaling of bipartite entanglement
entropy [49]. Interestingly, the tuning of the band parameters
can be achieved through biaxial straining which should be
achievable considering the layered structure of the materials
similar to SrRuO4 [50]. Considering about 2% compressive
strain on ZrCl3, the direct ddσ hopping is found to be en-
hanced by about 20% while the indirect hopping is found to
be heavily suppressed and thereby conducive to triggering an
F4 → F1 transition. This may be even easier for Hf com-
pounds, which are even closer to the F4-F1 boundary. Our
DFT-calculated FS for a 1% strained Hf compound indeed
shows an F1 type. Straining on Ti compounds shows a similar
effect, although the percentage change is found to be much
smaller. Therefore, such straining may be of interest in inves-
tigating the physics of the Lifshitz transition.

VII. ρ = −1: IMPLICATION FOR FLUORIDES

Having discussed the situation with the chlorides and the
bromides, we now turn to fluorides, which as indicated above
(cf. Table II) show markedly different electronic structure.
Furthermore, unlike chlorides and bromides, the tight-binding
parameters for fluorides show diverse behavior even among
the 3d , 4d , and 5d transition metals, the parameters for Ti
being rather different from that of Zr and Hf. This hinders
providing a universal framework to describe the three fluoride
compounds, captured through a common phase diagram, as
was possible for chlorides and bromides. We thus concentrate
on the most striking difference between Zr and Hf chlorides
and bromides, and Zr and Hf fluorides, namely, the change
in sign of the indirect hopping, tddm, captured by the param-
eter ρ in Eq. (8). This affects some of the basic conclusions
stemming from the structure of the minimal phase diagram,
presented in Fig. 6. In the following, we thus confine ourselves
to the τm-λ̃ phase diagram, which determines the nature of the
low-energy single-particle starting point for these materials,
without delving into the complexity of the subleading hopping
like tddπ and tddm. The obtained results are shown in Fig. 11,
which should be contrasted with Fig. 6(a).

First of all, we notice a similarity of the phase diagrams
in Figs. 11 and 6(a), especially for large λ̃. This apparent
similarity, however, hides an important contrast that can be
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FIG. 11. τm-λ̃ phase diagram with ρ = −1, r = 0, and τ ′
m = 0.

The two gapped phases, shaded as gray and cyan, as well as pink
lines in the phase diagram are identical to those in Fig. 6(a). The
band structures on a typical point on the OP11 line are shown in inset
II. Inset I shows the band structure on the transition line between the
two gapped phases. Note that inset I shows only four bands since it
is drawn for a large value of λ̃ where the four lower-energy J = 3/2
orbitals are separated from the higher-energy J = 1/2 orbitals by a
large energy separation. As opposed to Fig. 6(a), this phase diagram
hosts two topological metallic phases, marked in lime green and dark
green. The Fermi surfaces for the two metallic regions are shown by
insets III and IV.

best understood as follows. Starting from the SU(8) limit,
P3 in the present case, is a particle-hole inverted version of
Fig. 6(a) due to the change in sign of tddm. Thus, while P3 still
gives an SU(8) DSM with four 4-component Dirac points at �

and three M points, the associated spinors are not necessarily
the same as in the previous case, but are related to it via a
microscopic particle-hole transformation. In fact this theory is
therefore a particle-hole conjugate version of the SU(8) metal
discussed in Ref. [19] and hence the same mass analysis can
be applied to the present case. It is for this reason we still have
the same two gapped phases—the free fermion topological
and trivial band insulators on deviating away from the SU(8)
semimetal—resulting from the two lattice singlet masses [19].
However, the difference in the eigenmodes due to the change
in sign becomes apparent at the transition between the two
insulators, which now is brought about by closing of the gap
at the three M points on the line P3P14 while that at the �

point remains gapped—unlike the case for the P3P1 line in
Fig. 6(a). This leads to an enlarged SU(6) internal symmetry
for the NF = 3 free Dirac fermions on the P3P14 line (see
Appendix E.4).

Another consequence of the above change in the nature
of the spinors is the appearance of additional compensated
semimetals for lower values of λ̃ around tddσ ∼ tddm. The
corresponding Fermi surfaces are shown in insets III and IV.
The lowest bands of these metals have nonzero Z2 index on
the closed region P11P12P14, while the upper band is Z2 trivial.
On the line P12P14, the lowest band touches the upper band
at the M points and the Z2 indices of these two bands switch.
Thus, one of the bands of these metals always has nonzero Z2

index and these are topological metals. On the P13P14 line,

Fermi pockets of the metals shrink to zero and the system
enters the trivial insulating phase. Hence, the change of sign
of the indirect hopping makes the situation more favorable to
the topological metallic phase, which may be stabilized even
without the inclusion of subleading hopping terms.

VIII. SUMMARY AND OUTLOOK

In summary, following the stimulating proposal of achiev-
ing an SU(8) DSM state in quarter-filled J = 3/2 spin-
orbit-coupled electrons, we critically examine the material
realization of this proposal considering d1 transition-metal
trihalide family of compounds, MX3. Systematic variation of
both the metal site from 3d to 5d (M = Ti, Zr, Hf) as well
as the halide site from 2p to 4p (X = F, Cl, Br) allows to
study the interplay of different microscopic energy scales.
Although only three out of the studied nine compounds have
been synthesized so far, we do hope our study will encourage
synthesis of other compounds too.

Our first-principles electronic structure calculations in
combination with minimal tight-binding models show that a
hierarchy of electron hopping pathways is needed to faithfully
capture the rich low-energy single-electron physics in these
compounds. Importantly, our study uncovers the dominant
role of direct metal-metal hopping. Thus, a minimum of five
band parameters—atomic SOC (λ), two direct metal-metal
hoppings (tddσ , tddπ ), and two indirect metal-halide-metal
hoppings (tddm, tddm′ )—dictate the low-energy fermiology.
Our study further unravels that, while the chlorides and bro-
mides have a generic trend of band parameters, the fluorides
are distinct, due to the drastic difference in the size and
electronegativity of the fluoride ion compared to chloride and
bromide.

Inclusion of this material-specific reality renders the
physics of the above candidate compounds in a domain far
removed from the idealized SU(8) DSM. Instead, a variety
of topologically nontrivial compensated metals get stabilized
upon variation of relative strength of direct versus indirect
hopping and SOC, which differ in their Fermi surface topol-
ogy. Fermi surfaces with different topology are found to be
connected through intervening Lifshitz phase transitions. Re-
markably, though, the ideal SU(8) point serves as a useful
starting point to understand the global structure of the above
phase diagram. In particular, the compensated metallic phases
are found to be asymptotically connected to topological insu-
lating states resulting from gapping out of SU(8) semimetals.
Placing of the compounds, in the emergent (tddσ /tddm)-λ
phase diagram, reveals the chloride compounds are close to
the phase boundary separating two metals with different Fermi
surface topology. Introduction of biaxial strain in these lay-
ered compounds is found to cause a large variation in the
tddσ /tddm, and thereby could be an effective tool to induce
Lifshitz transition in chloride compounds, in particular.

While the above study captures the physics of noninter-
acting electrons in the undimerized lattice, several possible
ordering instabilities can be triggered in these compensated
metallic phases at lower temperatures, as discussed in the
following. For instance, electron-electron-interaction-driven
ordering instabilities are expected to be particularly en-
hanced near the Lifshitz transitions [48,51,52] due to the
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singular nature of single-particle density of states. Akin to
the neck-collapsing Lifshitz transition and associated singular
nature of the density of states found in the present case,
similar phenomena have been discussed in Sr2RuO4, which
reports enhancement of instability near the Lifshitz point [50].
The renormalization group calculations for the short-ranged
four-fermion interactions near the neck collapsing between
two particle-like Fermi pockets indicate an enhancement of
the BCS superconducting instability [53,54]. In particular,
the neck-collapsing transition at the BZ boundary at M
points between F4 and F5 opens up the possibility of finite
momentum instabilities in both the particle-hole and particle-
particle channels. The former can lead to a charge-density
wave insulator generically accompanied by dimerization as
observed in some of the candidate materials [34,55]. The
finite momentum pairing instability leading to a Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO)-like [56,57] phase is equally
interesting. These issues call for further detailed investigation.

Furthermore, the effect of short-ranged Hubbard
interaction U , supplemented with a Hund scale J , relevant for
multiorbital systems, energetically favors, within our GGA +
U + SOC calculations (see Appendix F), a ferromagnetic
metal in all the materials for lower values of U − J , which in
turns gives way to ferromagnetic insulator and/or stripy and
zigzag spin density wave insulators for larger U − J values.
We note that while we considered the magnetic and electronic
properties over a broad range of U − J values, the typical U
value for early transition-metal compounds, especially for 4d
and 5d series like Zr and Hf, is expected to be 1–2 eV [58].
The topology of the Fermi surface upon inclusion of correla-
tion with choice of U − J , ∼1 eV, remains unchanged as has
been explicitly checked. This is, however, true for cases where
the correlation-induced magnetic instability does not break
the real-space symmetry of the lattice. The situation for Ti
compounds, however, is less clear, which may actually show
a metallic-to-insulator transition upon inclusion of U − J .

We further note the metallic state with net moment and
topological character should lead to intrinsic anomalous Hall
conductivity.

Finally, while the present study focuses on d1 honeycomb
compounds, it is straightforward to extend these ideas to ma-
terials with d3 configuration such as MoCl3. Our minimal
tight-binding model suggests a similarly rich fermiology in
such materials including a curious exchange of flat band along
the τm = 0 line in Fig. 6. This will be taken up in the future.
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APPENDIX A: NUMERICAL DETAILS FOR OBTAINING
THE PHASE DIAGRAM

To draw the phase diagrams, we make a grid in the τm-λ̃
plane with the grid separation along both the τm and λ̃ axes
being 10−2. We determine the band structure at each grid point
for the case of 1/6 filling. For band insulators, we determine
the topological Z2 index of the filled band(s) using methods
similar to Ref. [47]. We also plot the band structure with open
boundary condition to check the presence of edge modes in
case the Z2 index is nontrivial (not shown). For band metals,
we determine the shape of the corresponding Fermi surface by
filling up the lowest energy states. The shapes of the different
Fermi surfaces are differentiated based on three aspects: (a)
the number of Fermi pockets, i.e., the number of different
connected components, (b) whether the Fermi pockets are
electron-like or hole-like, and (c) the point in the BZ around
which the Fermi pockets appear.

APPENDIX B: TRANSFORMATION OF BASIS: GLOBAL
TO HALIDE-BASED, PRIMED COORDINATE SYSTEM

In the global coordinate system, the x axis points in the
direction making 30◦ with a, y pointing along b, and z along
c. A local octahedral coordinate system is defined by x′, y′,
and z′ axes, where the corresponding x axis, y axis, and z axis
point along the bonds M-X as shown in Fig. 12.

The transformation matrix rotating the global coordinate
system to the local coordinate system, for ZrCl3, is given by

x′ = (−0.7089)x + (0.4051)y + (−0.5772)z,

y′ = (0.0034)x + (−0.8165)y + (−0.5772)z,

z′ = (−0.7052)x + (−0.4112)y + (0.5774)z.
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FIG. 13. Evolution of band structure along the λ̃ = 0 line of the phase diagram in Fig. 6 of the main text.

It is to be noted that, due to trigonal distortion, the M-X
bonds are not orthogonal to each other in the octahedron but
have a mutual angle of 88.39◦. Thus the above transformation
matrix aligns the x′, y′, and z′ axes, approximately, along the
M-X bonds shown in Fig. 12. The rotation of the coordinate
system, given above, gets reflected on d orbitals via the trans-
formation matrix as

dx′y′ = (0.5802)dxy + (0.2374)dyz + (0.5772)dz2

+ (0.4072)dxz + (0.3283)dx2−y2,

dy′z′ = (0.5744)dxy + (−0.2340)dyz + (−0.5774)dz2

+ (0.4091)dxz + (−0.3382)dx2−y2,

dz′2 = (0.5023)dxy + (−0.4113)dyz + (0.0001)dz2

+ (−0.7053)dxz + (0.2842)dx2−y2,

dx′z′ = (0.0058)dxy + (0.4713)dyz + (−0.5774)dz2

+ (−0.0022)dxz + (0.6666)dx2−y2,

dx′2−y′2 = (−0.2843)dxy + (−0.7052)dyz + (−0.0000)dz2

+ (0.4112)dxz + (0.5025)dx2−y2.

APPENDIX C: DERIVATION OF hX , hY FROM hZ

Since the Hamiltonian, given in Eq. (1) of the main text,
is symmetric under the action of C3 rotation, the hopping
matrices on the Y and the X M-M bonds can be obtained from
that on the Z bonds, by the transformation

hX = R†
3hZR3, (C1)

hY = R†
3hXR3. (C2)

Here, R3 is a 3 × 3 unitary operator that implements C3

rotation about an axis perpendicular to the plane of the hon-
eycomb lattice on the t2g orbitals and is given by

R3 =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (C3)

APPENDIX D: EVOLUTION OF THE BAND STRUCTURES
IN THE τm-λ̃ PHASE DIAGRAM

1. The λ̃ = 0 line

Figure 13 shows the band structures at different points on
the λ = 0 line of the τm-λ̃ phase diagram in Fig. 6(a) of the
main text. At τm = 0 on this line, there are two flat bands,
each of which are sixfold degenerate. As τm is increased, six
twofold-degenerate bands appear. Finally at τm = 1, there are
four bands with the lowest and the top bands being twofold
and the rest being fourfold degenerate.

2. The τm = 0 line

The energy spectrum along the τm = 0 line is shown in
Fig. 14. The band structure for λ̃ = 0 (cf. the λ̃ = 0, τm = 0
line in Fig. 13) has two sixfold-degenerate bands. As λ̃ is
increased, six twofold-degenerate bands appear, two of them
being completely flat.

3. The τm = 1 line

The evolution of the energy spectrum along the τm = 1 line
is shown in Fig. 15. The band structure for λ̃ = 0 on this line
has four bands (cf. λ̃ = 0, τm = 1 in Fig. 13). For large values
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FIG. 14. Evolution of band structure along the τm = 0 line of the
phase diagram in Fig. 6 of the main text.

of λ̃, the J = 3/2 and the J = 1/2 bands are separated. For
λ̃ = 20, τm = 1, only the lowest J = 3/2 bands are shown.

APPENDIX E: PROPERTIES OF GAPPED PHASES

1. SU(8) Dirac theory at the P3 point

At the P3 point of the phase diagram in Figs. 6 and 11 of
the main text, the low-energy effective theory is described by
massless Dirac fermions with internal SU(8) symmetry. Be-
low we sketch the derivation of the Dirac theory. The details
can be found in Ref. [19].

FIG. 15. Band structures along the τm = 1 line of the phase dia-
gram in Fig. 6 of the main text. All the bands are twofold degenerate.
For λ̃ = 20, only four bands are shown, leaving out higher energy
J = 1/2 orbitals.

At the P3 point, the form of the Hamiltonian in Eq. (5)
of the main text, when projected to the low-energy J = 3/2
orbitals, is given by

HP3 = − E√
3

⎛
⎝ ∑

〈i j〉∈X -bonds

ψ
†
i UX ψ j +

∑
〈i j〉∈Y -bonds

ψ
†
i UY ψ j

+
∑

〈i j〉∈Z-bonds

ψ
†
i UZψ j

⎞
⎠. (E1)

Here, ψi is a four-component annihilation operator corre-
sponding to the four J = 3/2 orbitals at site i. The UX , UY ,
and UZ are 4 × 4 Hermitian matrices, which are given by

UX = −ρ�1, (E2)

UY = −ρ�2, (E3)

UZ = −ρ�3. (E4)

Here, ρ = +1 for the phase diagram in Fig. 6(a) and ρ = −1
for Fig. 11. The �i (for i = 1, . . . , 15) are the 15 linearly inde-
pendent 4 × 4 traceless Hermitian matrices which are given in
Appendix C of Ref. [19], which are essentially the generators
of an SU(4) group. Note, the Hamiltonian in Eq. (E1) has an
internal SU(4) symmetry [18].

Projecting this Hamiltonian in Eq. (E1) to the two lowest
two bands which touch linearly at the Fermi energy, we get
the SU(8) symmetric Dirac Hamiltonian given by

HDirac = ρvF

∫
d2r χ†(r)(−iα1∂1 − iα2∂2)χ (r), (E5)

with

α1 = �0 ⊗ τ3 ⊗ σ1, (E6)

α2 = �0 ⊗ τ0 ⊗ σ2. (E7)

Here, vF is the Fermi velocity, which is related to the gradient
of the linearly dispersing bands at the Dirac points. χ (r) is
the 16-component Dirac spinor at the position r. Both τi and σi

(for i = 1, 2, 3) are the Pauli matrices with τ0 and σ0 being the
2 × 2 identity matrix. The generators of the SU(8) symmetry
are the set of 63 matrices given by

{�0, �i} ⊗ {τ3σ0, τ1σ2, τ2σ2}, �i ⊗ τ0σ0, (E8)

for i = 1, . . . , 15.

2. The topological gapped phase

On moving left from the P3 point along the λ̃ = ∞ line
by reducing the value of τm from 1, the effective hopping
Hamiltonian in the J = 3/2 sector is given by

Htop = − E√
3

∑
〈i j〉

ψ
†
i H̃i jψ j, (E9)
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with

H̃X = UX + (1 − τm)
[

1
3�0 + 1

6 (−
√

3�4 + �5)
]
,

H̃Y = UY + (1 − τm)
[

1
3�0 + 1

6 (
√

3�4 + �5)
]
,

H̃Z = UZ + (1 − τm)
[

1
3�0 − 1

3�5
]
. (E10)

On projecting this Hamiltonian to the lowest two bands, we
get the following effective low-energy Hamiltonian:

Htop = HDirac + (1 − τm)H(1)
m + (1 − τm)H′. (E11)

Here, HDirac is given by Eq. (E5). The H(1)
m and H′ are

given by

H(1)
m =

∫
d2r χ†(�1τ1σ0 − �2τ2σ1 + �3τ0σ3)χ (E12)

and

H′ = χ†(−i∂xδαx − i∂yδαy)χ, (E13)

with

δαx = − �3τ3σ1 + 1√
3
�35τ0σ0 +

√
3√
2
�35τ0σ3 (E14)

and

δαy = 1√
6

(�1τ1σ2 − �2τ2σ2)

+
√

3

2
√

2
(�14τ1σ1 − �24τ2σ1)

− 1

2
(�14τ2σ3 − �24τ1σ3)

− 1

2
√

2
(�15τ1σ1 + �25τ2σ1)

+ 1

2
√

3
(�15τ2σ3 + �25τ1σ3). (E15)

The term H(1)
m is the ferroquadrupolar quantum Hall mass

listed in Ref. [19] whose edge modes are protected by time-
reversal (TR) symmetry. Thus, the phase obtained by moving
left from the P3 point in the phase diagram in Fig. 6(a) is a
Z2 topological insulator. The presence of H′ does not change
the topological character of this phase since this term does
not break the TR symmetry and can be tuned to zero without
closing the fermionic energy gap.

3. The nontopological phase

On moving down vertically from the P3 point along the
τm = 1 line, we encounter the nontopological gapped phase.
This can be understood by doing a similar analysis as done
for the previous gapped phase. For very large values of λ̃ and
τm = 1, the effective Hamiltonian is given by

Hnontop = −E

⎛
⎝∑

〈i j〉
ψ

†
i Ui jψ j + 1

λ

∑
〈〈i j〉〉

ψ
†
i

˜̃Hi jψ j + H.c.

⎞
⎠,

(E16)

where the Ui j are the matrices defined in Eq. (E2) and ˜̃Hi j

are the hopping matrices on the next-nearest-neighbor (NNN)

FIG. 16. A single hexagon of a honeycomb lattice showing the
three kinds of next-nearest-neighbor bonds (green bonds). The six
sites are labeled with integers from 1 to 6.

bonds of the lattice. On the three kinds of NNN bonds shown
in Fig. 16, the ˜̃Hi j matrices are given by

˜̃H13 = − 1

2
√

3
�1 + i

6
(−�14 −

√
3�15 − �23),

˜̃H35 = − 1

2
√

3
�2 + i

6
(�13 − �24 +

√
3�25),

˜̃H51 = − 1

2
√

3
�3 + i

6
(−�12 + 2�34). (E17)

On projecting this Hamiltonian to the lowest two bands
near the Dirac points, we get the following low-energy theory:

Hnontop = HDirac + 1

λ
H(2)

m + 1

λ
H′′. (E18)

Here, HDirac is the SU(8) symmetric Dirac Hamiltonian. The
H(2)

m is given by

H(2)
m =

∫
d2x χ† �45τ3σ3χ. (E19)

The H(2)
m is one of the topological masses proximate to the

SU(8) Dirac semimetal. The edge modes of this topological
symmetry are protected by a U(1) symmetry which is gener-
ated by �45. But the term H′′ breaks this U(1) symmetry and
destroys the edge modes. This explains the existence of the
nontopological phase in the phase diagram.

4. Phase transition lines in τm-λ̃ plane with ρ = ± 1

On the phase transition line, the P1P3 line, between the two
gapped phases shown in Fig. 6(a) of the main text, the lowest
two bands touch each other linearly at the � point as shown
in inset VI of the same figure. One can find the low-energy
theory for this point of the phase diagram by projecting the
Hamiltonian to the two lowest bands that touch at the � point.
The resultant theory is given by

H� = −ivF

∫
d2x χ

†
� (τ3σ1∂1 + τ0σ2∂2)χ�. (E20)

Here, χ� is a four-component spinor which comes from the
twofold-degenerate Dirac cone at the � point. This Hamilto-
nian has an emergent SU(2) symmetry which is generated by
{τ3σ0, τ1σ2, τ2σ2}/2.
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TABLE III. Orbital and spin magnetic moments on metal (M)
site for MX3, as calculated within GGA +U + SOC. U − J value
was chosen to be 3 eV for Ti and 2 eV for Zr and Hf.

MX3 Orbital moment (μB) Spin moment (μB)

TiF3 −0.061 0.922
TiCl3 −0.003 0.938
TiBr3 −0.008 0.965
ZrF3 −0.044 0.722
ZrCl3 −0.034 0.661
ZrBr3 −0.026 0.674
HfF3 −0.132 0.806
HfCl3 −0.104 0.626
HfBr3 −0.111 0.728

Similarly, on the P3P14 line of the phase of Fig. 11, the
lower two bands touch each other linearly at the three M
points. The low-energy theory at any point on this line is
given by

HM = i
∫

d2xχ†
MvxI3×3 ⊗ τ3σ1∂1 + vyI3×3 ⊗ τ0σ2∂2)χM .

Here, χM is a 12-component spinor that comes from the three
twofold-degenerate Dirac cones at the three M points. vx and
vy are the Fermi velocities along the two Cartesian directions.
The values of these two numbers depend on the position on
the phase transition line. I3×3 is the three-dimensional identity
matrix that acts on the space of the three M valleys. This
Hamiltonian has an internal SU(6) symmetry which is gen-
erated by the set of Hermitian matrices given by

{I3×3,�i} ⊗ {τ3σ0, τ1σ2, τ2σ2}, �i ⊗ τ0σ0, (E21)

where the �i are the eight 3 × 3 Gell-Mann matrices that
generate an SU(3).

APPENDIX F: DFT COMPUTED MAGNETIC
GROUND STATES

As discussed in main text, one of the possible conse-
quences of inclusion of Coulomb correlation is to stabilize
magnetism. To identify the magnetic ground states of the
undimerized MX3 compounds, DFT total energies for mag-
netic configurations, e.g., nonmagnetic (NM), ferromagnetic
(FM), Néel antiferromagnetic (AFM), zigzag AFM (ZAFM),
and stripe AFM (SAFM), were calculated within the GGA +
U + SOC formulation to take into account of the Coulomb
correlation in a mean-field way along with SOC, and
compared. The Coulomb correlation is modeled through sup-
plemented Hubbard U correction and the Hund coupling J to
account for the multiorbital nature of the problem.

FIG. 17. Magnetic ground states for MX3 for various different
choices of U − J (in eV).

The calculated spin and orbital magnetic moments of the
nine compounds are tabulated in Table III. As expected, the
orbital moment shows an increasing trend in moving from
Ti to Zr to Hf compounds, while the spin moment shows
a decreasing trend. This is justified by increase of SOC in
moving from 3d to 4d to 5d in the transition-metal series,
and the extended nature of the wavefunction in moving from
3d to 4d and 5d .

The computed magnetic phase diagram is shown in Fig. 17
in the plane of compounds versus choice of U − J parameter.
Marked are the lowest-energy magnetic states according to
DFT total energy, their conducting properties estimated from
density of states plots. The metal-insulator transitions as well
as magnetic transitions are marked by boundaries.

First of all, we notice in a large part of the phase diagram
that the FM state is stabilized, with the exception of SAFM
or ZAFM phases at large value of U − J for Ti and Zr com-
pounds. Although the U − J is varied over a large range in
the plot, the realistic estimates of U value for early transition
metals like 3d Ti will be 3–4 eV, while that for 4d and 5d Zr
and Hf will be 1–2 eV. With estimated J value of 1 eV for 3d
transition metals and 0.4 eV for 4d and 5d transition metals,
this amounts to a U − J value of 2–3 eV for Ti compounds,
and 0.6–1.6 eV for Zr and Hf compounds. With this choice,
undimerized TiF3 turns out to be FM metal, while TiCl3 and
TiBr3 may exhibit stabilization of a ZAFM phase. For 4d and
5d Zr and Hf compounds, in undimerized structure, the FM
metallic phase wins over the AFM phases.
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