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Cluster tomography in percolation
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In cluster tomography, we propose measuring the number of clusters N intersected by a line segment of
length � across a finite sample. As expected, the leading order of N (�) scales as a�, where a depends on
microscopic details of the system. However, at criticality, there is often an additional nonlinearity of the form
b ln(�), originating from the endpoints of the line segment. By performing large scale Monte Carlo simulations
of both two- and three-dimensional percolation, we find that b is universal and depends only on the angles
encountered at the endpoints of the line segment intersecting the sample. Our findings are further supported by
analytic arguments in two dimensions, building on results in conformal field theory. Being broadly applicable,
cluster tomography can be an efficient tool for detecting phase transitions and characterizing the corresponding
universality class in classical or quantum systems with a relevant cluster structure.
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I. INTRODUCTION

Cluster formation is a prevalent feature of complex sys-
tems, including but not restricted to magnetic domains [1],
motility-induced phase separation [2–4], bacteria swarming
[5], cell migration [6,7] and the collective motion of animal
groups [8–11]. As phase transitions often lead to changes in
the characteristics of the emerging clusters, phase transitions
can—in principle—be detected and studied through cluster
statistics. As a realization, let us consider a scenario where
a probe is shot through a complex system consisting of clus-
ters and ask the following question: How many clusters are
encountered by the probe during the measurement? Here we
propose that such measures of “cluster tomography” yield
simple and efficient methods for locating critical points in
a broad range of complex systems, both experimentally and
computationally, while also providing deep universal informa-
tion on the nature of the observed transitions.

Motivated by questions on quantum entanglement in dis-
ordered systems [12–14], previous studies have considered
the number of clusters (magnetic domains), N� , intersecting
a contour, �, focusing on a few select geometries. Cluster
tomography corresponds to the simplest case of skeletal en-
tanglement [15] when � is a line segment. For select line
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configurations of length �, it was found that at criticality

N (�) = a� + b ln(�) + O(1), (1)

in both two and three dimensions (2d and 3d) [12,13,16,17].
The first term represents the expected “area law” scaling of the
number of clusters with the length of the line, with a being
the nonuniversal linear cluster density. The subleading term
b ln(�) is known as the “corner contribution,” which emerges
due to the geometric singularities at the endpoints of the line
segment, akin to a notion of “geometric susceptibility” [18].
This term is present only at criticality and is an elegant mea-
sure of the concavity of the underlying cluster geometry that
encapsulates universal information from correlations in the
cluster shape at all orders, as discussed further in Appendix B.

Here, as an illustration of cluster tomography, we system-
atically address all ten possible line configurations in a 2d
square system [illustrated in Fig. 1(a)]. We focus on Bernoulli
percolation on a square lattice, although the main results are
expected to apply more generally [14] for any system with
a relevant cluster structure. We present analytic results in 2d
backed up by high-precision numerics for the corner contri-
bution of all previously unstudied line segment types (lines
3–10) for critical site and bond percolation on a square lattice.
With the developed high precision numerical techniques we
demonstrate that the corner contribution term is present in
all of these line segment configurations. The corresponding
“cluster count exponent” b is found to be universal, with de-
pendence on the configurations of the line segment endpoints.
In addition, we consider select line configurations in a 3d
cubic system, where only the bulk line has been studied [16].
While there are no analytic predictions for line segments in 3d,
we numerically show that, as in 2d, the corner contribution of
line segments that pass through the bulk is logarithmic, with a
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(b)

FIG. 1. (a) Summary of all line segment types in a 2d square
system with free boundaries. Endpoints of the lines are colored
according to the classification in (b): bulk (green), surface (orange),
and traversing (blue). (c)–(e) Schematics of contributing clusters and
numerical techniques used to access the critical corner contribution
of different line segments for site percolation, illustrated for line
types 2, 6, and 9. Dashed black lines represent periodic boundary
conditions (PBC), solid lines represent free boundary conditions
(FBC), and solid yellow lines represent the measured line segment.
Sites belonging to clusters that are counted by the line segment are
colored while the remaining occupied sites are gray.

universal b that depends on the endpoint configurations. How-
ever, unlike in 2d, we find that the line segments contained
entirely within a surface of the system yield b = 0.

More generally, cluster tomography provides an efficient
way of detecting phase transitions in clustered systems by
tuning the control parameter and looking for the presence
of a corner contribution term. We demonstrate this concep-
tually for percolation, showing how cluster tomography can
be used to both locate the critical point, and determine critical
exponents.

II. ANALYTIC RESULTS FOR THE CORNER
CONTRIBUTION IN 2d

We first develop analytic predictions for the corner con-
tribution of each line segment type in Fig. 1(a) for critical
percolation. Percolation is a fundamental model of critical
phenomena, where sites or bonds of a lattice are inde-
pendently occupied with probability p. Collective behavior
emerges as we are interested in the statistics of clusters of
connected sites [19]. In dimensions d � 2 there is a scale-
invariant critical point at p = pc at which the system is also
believed to be conformally invariant [20]. In the most studied
2d case, there are many exact results available [21–24], in-
cluding correlation functions [25], crossing probabilities [26],
and critical exponents.

In cluster tomography, we expect that the “cluster count
exponent” b is universal for a given line configuration. That
is, b is independent of the microscopic details of the model
at criticality. For sufficiently long lines—i.e., �/L = O(1),
with L being the system size—each endpoint is expected to

contribute to b independently. We conjecture that the contribu-
tion of each endpoint depends on its topology and the angles
encountered by the endpoint, with three distinct cases in 2d:
bulk b, surface s, and traversing t , as illustrated in Fig. 1(b).
Bulk endpoints occur when the endpoint is not on the surface,
and have a characteristic angle γ = 2π . Surface endpoints,
for which the corner contribution depends on the angle ω of
the boundary at the endpoint, occur when the line segment is
along the surface. Traversing endpoints occur when the line
segment crosses the bulk of the system and has its endpoint
on the surface. In this case, the corner contribution depends
on both ω and the angle γ between the line segment and the
boundary. For line types 1–5 this means that the value of b is
expected to be universal, while for lines 6–10 b is expected to
be a universal function of the characteristic angle γ .

Supported by analytic arguments from conformal field
theory (see Appendix A for details), we expect that the con-
tributions of the endpoints consist of linear combinations of a
bulk term B and a surface term S, depending on the configu-
ration. The bulk term

B(γ ) = 5
√

3

96π

(
γ

π
− π

γ

)
(2)

follows from the celebrated Cardy-Peschel formula [27]. This
appears for endpoints in the bulk, with each contributing
B(2π ) to b. Note that for contours with angles 0 < γ < 2π ,
the bulk corner contribution would be the sum of B(γ ) and the
conjugate angle B(2π − γ ) [13,14]. However, for γ = 2π ,
the contribution is just B(2π ), as the singular B(0) is not
sampled by the measurement [13,14].

We conjecture that the surface term

S(γ ) =
√

3

8π

π

γ
(3)

appears whenever there is a change of boundary condition
at the endpoint [28,29]. Such a change of boundary condi-
tion occurs when the line segment along which clusters are
counted (fixed boundary) meets the surface (free boundary)
at an angle, which occurs for type s and t endpoints. Surface
endpoints each contribute S(ω) to b. For line 2, this has been
shown numerically on the square lattice [13], and proven
rigorously on the triangular lattice [30].

Traversing endpoints are more complicated, as multiple an-
gles contribute. These line segments pass through the bulk and
end on the surface, forming angles γ and ω − γ with the free
system boundary, as illustrated in Fig. 1(b). Given that the line
segment crosses the bulk, we expect bulk contributions B(γ )
and B(ω − γ ) from the two angles. Additionally, the change
in boundary conditions from fixed to free at the endpoint
results in S(γ ) and S(ω − γ ) terms contributing. However,
naively taking the sum of these four terms gives the contri-
bution from jointly counting clusters along the free boundary
in addition to the line segment of interest, as illustrated in
Fig. S1 of the Supplemental Material [31]. The contribution of
the additional clusters counted is equivalent to counting along
a contour that follows the edge of the system and has angle
ω. Subtracting the contribution B(ω) of this contour therefore
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TABLE I. Overview of results for 2d percolation on a square lattice. Analytic and numerical values are given for the least acute angle
studied γ (nmin ) in cases where b depends on γ . Parentheses by measured values give the measurement error in the last digit. “G” and “BC”
respectively refer to the geometric and boundary changing methods, * indicates cancellation of lines of type 6 and/or 9 is required to determine
b to high precision numerically. Note that for line 8 there are two equivalent expressions for the formula, depending on which endpoint is chosen
to define γ . The expression given here uses the angle indicated in the schematic figure as γ .

Line Endpointsa Figure Formula γ (nmin ) b expected b measured Technique

1 bb 2B(2π ) 5
√

3
32π

≈ 0.086b 0.086(1)b G

2 ss 2S(π )
√

3
4π

≈ 0.138c 0.138(3)d G

3 scsc 2S( π

2 )
√

3
2π

≈ 0.276 0.27(2) BC

4 ssc S(π ) + S( π

2 ) 3
√

3
8π

≈ 0.207 0.21(1) G & BC

5 tctc 2T ( π

4 , π

2 ) 11
√

3
8π

≈ 0.758 0.76(3) BC

6 tt 2T (γ , π ) π

2
11

√
3

16π
≈ 0.379 0.38(1) BC

7 tt ′ T (γ , π ) + T ( π

2 − γ , π ) π

4
127

√
3

144π
≈ 0.486 0.48(2) BC*

8 ttc T (γ , π

2 ) + T ( π

2 − γ , π ) arctan ( 1
2 ) ≈ 0.649 0.66(3) BC*

9 tb T (γ , π ) + B(2π ) π

2
27

√
3

64π
≈ 0.233 0.24(1) G & BC

10 tcb T (γ , π

2 ) + B(2π ) π

4
49

√
3

64π
≈ 0.422 0.42(2) G & BC*

a(′) for line 7 indicates endpoints are on adjacent edges.
bReference [13].
cReferences [12,13,30,32].
dReference [14].

gives the contribution from the traversing endpoint,

T (γ , ω) = B(γ ) + S(γ ) + B(ω − γ ) + S(ω − γ ) − B(ω).
(4)

Note that since B(π ) = 0, here the −B(ω) contribution to
T (γ , ω) can only be detected if the traversing endpoint is in
the square corner (ω = π/2). Once again, γ = 0 requires spe-
cial care, as T (0, ω) has unmeasured singular contributions,
so S(ω) should be used directly in this case. These arguments
lead to our systematically predicted expressions for the cluster
count exponent bi j listed in Table I, where i, j ∈ {b, s, t} de-
notes the endpoint type, and an additional subscript c is used
on s and t in cases where the endpoint is in the corner of the
square system.

III. NUMERICAL VERIFICATION OF THE CORNER
CONTRIBUTION IN 2d

The analytic predictions for 2d percolation need to be
tested numerically. Moreover, in other systems lacking de-
tailed analytic results, numerical measurements are the only
option for performing cluster tomography. It is, however, not
immediately obvious that the universal logarithmic corner
contribution can be measured to high precision. In practice,
there are multiple difficulties to overcome, including the fact
that the linear term a� is much larger than the nonlinear
term b ln(�), large statistical noise in the overall measurement
∼O(

√
�), and potentially strong finite-size corrections to the

linear term. Strikingly, the area law term can be canceled
out exactly together with its statistical error and finite-size

corrections, leading to precise measurements of the corner
term even in relatively small systems.

For line types 1 and 2, the corner contribution can be
precisely measured using a geometric method [13,16], as
illustrated in Fig. 1(c) for a line segment of length � = L/2
on a free surface with periodic boundary conditions (PBC)
on the other sides of the square. The difference between the
total number of clusters on two contributing segments of
length � = L/2 that together span the system and the number
of clusters on a full periodic line of length L (without any
endpoints) through the same lattice sites gives twice the corner
contribution of the line segment. As the same sites are visited
in both cases, the linear area law term cancels out and the only
remaining contribution must come from the endpoints. The
corner contribution �N is therefore simply half the number of
shared clusters between the two line segments. This approach
has previously been used to numerically calculate bss in 2d
(line 2), as well as bbb in 2d (line 1) and 3d [13,16] for a line
segment in the bulk using PBC all around. These 2d results
are consistent with analytic predictions [13,30].

As the applicability of the geometric method alone is lim-
ited to these two cases, here we propose a boundary changing
method to measure the corner contribution of the remaining
line types with high precision. This method is expected to
be applicable for cluster-based systems with short-range in-
teractions, and is illustrated in Fig. 1(d) for a line segment
with traversing endpoints on opposite sides of the system. By
changing the free boundary conditions (FBC) into PBC, the
same line now forms a closed loop with no endpoints. The
area law term can be canceled by taking the difference �N
between the number of clusters that intersect the line segment
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(a) (b)

FIG. 2. Extrapolation of the cluster count exponent btt for an-
gles γ = arctan (1/n) for a line segment spanning the entire system
(Fig. 1, line 6). As an illustration of universality, the results are shown
for both site (circles) and bond (squares) percolation in (a) 2d and
(b) 3d. Error bars, representing the standard error on each point, are
smaller than the point marker size.

with FBC and PBC. The boundary changing method can be
used alone, or in conjunction with the geometric method [as
illustrated in Fig. 1(e)], to numerically determine the corner
contributions of line types 3–10, including the angle depen-
dence of lines 6–10, as indicated in Table I.

In our large-scale Monte Carlo calculations, we investi-
gate cluster tomography for critical site and bond percolation
on the simple cubic lattice in 2d and 3d. The respective
critical occupancies for site and bond percolation are pc =
0.592746 and pc = 0.5 in 2d [19] and pc = 0.311608 and
pc = 0.2488126 in 3d [33,34]. We studied systems up to
linear size L = 512 in 2d and L = 256 in 3d, with at least
10 000 samples in each case. For each line configuration, we
calculate finite-size estimates of b(L) through two-point fits at
sizes L and 2L. We then estimate b using a linear extrapolation
of the largest sizes against 1/L, as shown in Fig. 2 for a
line segment spanning the entire system (line 6) in 2d and
3d. The extrapolated b values for site and bond percolation
agree within the error, indicating universality. Therefore, all
quoted numerical b values are averaged for site and bond
percolation.

In a 2d square system, line types 1–5 each have universal
b values with no angle dependence. Numerical estimates for
lines 3–5 are listed in Table I along with known results for
lines 1–2 [12–14,30,32]. The angle dependence of lines 6–10
can be explored to high precision for angles γ = arctan(1/n)
for integer nmin � n � 20, where nmin → 0 for lines 6 and
9, nmin = 1 for lines 7 and 10, and nmin = 2 for line 8. For
line 6, we can directly access the γ dependence of b to high
precision using the boundary changing method by starting
with FBC on one opposite pair of system edges and PBC
on the other. This approach can be used in conjunction with
the geometric method for line 9. For lines 7, 8, and 10, the
initial configuration must have FBC on all sides. In these
cases, b values can be determined numerically to high pre-
cision by incorporating lines of type 6 and 9 into the initial
configuration so that a closed loop forms after applying PBC,
then subtracting their contribution from the count to deter-
mine the corner contribution of interest; see Fig. S2 of the
Supplemental Material [31]. Numerical results for lines 6–10
are plotted in Figs. 3(a) and 3(b), along with the predicted
analytic form of the γ dependence, and numerical values for
γ (nmin) for each line type are listed in Table I. In all cases,

(a) (b)

(c) (d)

FIG. 3. (a)–(b) Angle dependence of the cluster count exponent
b in 2d for lines 6–10 in Fig. 1(a). Numerically determined points
and curves showing the analytic predictions given in Table I are
plotted for (a) btt , btt ′ , and btb, and (b) bttc and btcb. (c) btctc (line
5) in a sheared square system with acute angle ω. Inset: Difference
�b between numerical results presented in the main panel and the
predicted analytic expression T (γ , ω) (red circles), and the naive
analytic prediction T (γ , ω) + B(ω) (blue squares). (d) Angle depen-
dence of b in 3d for b(3d )

tt and b(3d )
tb . Plotted lines show a fit of the form

given in Eq. (6). Inset: Estimates of b along a partial line segment
on the surface of a cube (orange up triangles), a full line segment
through the center of the face with γ = π/2 (purple down triangles),
and a full line along the edge of a cube (green pentagons) all tend to
zero at large L.

we observe a good agreement between numerical values and
analytic predictions.

Due to the −B(ω) term in T (γ , ω) contributing only
for type tc endpoints, we further test for the presence of
this term by examining btctc for line 5 as the square system
is sheared with acute angle ω. Our analytic predictions in
this case give btctc = 2T (γ , ω) with the angle γ of the line
across the diagonal of the sheared square system given by
tan(γ ) = tan ω/(1 + tan ω). Numerically, this can be tested
for tan ω = 1/n with tan γ = 1/(n + 1) in a system of size L
by L + n. Figure 3(c) shows numerical results for btctc along
with the analytic prediction. To verify that the numerical
results are closer to the analytic prediction with the presence
of the −B(ω) term in T (γ , ω), we plot the difference between
the numerical results and the analytic formula for T (γ , ω)
with and without the −B(ω) term present in the inset of
Fig. 3(c). This shows better agreement between the numerical
results and analytic prediction when T (γ , ω) takes the form
given in Eq. (4).

IV. CLUSTER TOMOGRAPHY IN 3d

In a 3d cubic system, there are 23 types of line seg-
ment configurations depending on whether the endpoints are
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touching faces, edges, corners, or the bulk, as illustrated in
Fig. S3 of the Supplemental Material [31]. Of these, only
the case where both endpoints of the line segment are in the
bulk has been studied numerically, giving b(3d )

bb = 0.130(3)
[16]. Although there are no known analytic predictions in 3d,
endpoints are still expected to contribute to b independently.
Therefore relations such as

btb = (btt + bbb)/2 (5)

will still hold true in 3d percolation and other clustered
systems. We explore this relation by examining the angle
dependence of a line segment spanning the cube and ending
on opposite faces (b(3d )

tt ), and the case where the line segment
starts on a face and ends in the bulk (b(3d )

tb ), as shown in
Fig. 3(d). Motivated by the expressions for btt and btb in 2d,
we fit a line of the form

b(3d )(γ ) = c1

(
π

γ
+ π

π − γ

)
+ c2, (6)

which gives c1 ∼ 0.06 and c2 ∼ 0.03 for b(3d )
tt and c1 ∼ 0.03

and c2 ∼ 0.08 for b(3d )
tb . Equation (5) is satisfied within the

numerical uncertainty on the data points.
At the same time, some line types might not lead to a finite

b in 3d. In particular, the critical 3d percolation occupancy is
below that in 2d at which the surface alone would lead to a
logarithmic corner contribution. We investigate three cases of
a line segment on a surface of the cube: a partial line segment
in a face, a full line segment along an edge, and a full line
segment through the center of the face parallel to an edge
(lines 1, 3, and 6 in Fig. S3 of the Supplemental Material
[31]). As shown in the inset of Fig. 3(d), these cases suggest
that the cluster count exponent vanishes in 3d for lines fully
on the surface (types 1–10 in Fig. S3 of the Supplemental Ma-
terial [31]). In Appendix B and Fig. S4 of the Supplemental
Material [31], we discuss how this finding is related to the
shape of the clusters.

V. USING CLUSTER TOMOGRAPHY TO LOCATE
THE CRITICAL POINT AND DETECT

THE UNIVERSALITY CLASS

The presence of a corner contribution term at criticality
provides a simple and effective way of pinpointing the critical
point and the corresponding universality class of a clustered
system. As an example, Fig. 4 shows the corner contribution
�N for line 5 as a function of occupation probability p in
2d site percolation, using the boundary changing method.
The sharp peak indicates the critical point p = pc (dashed
line), at which universal information about the system can
be determined. After determining the value of btctc using the
methodology shown in Fig. 2, the correlation length exponent
ν can be extracted from optimal data collapse, as illustrated in
Fig. 4(b).

Similar measurements could be made in a broad range of
clustered systems, providing a simple, computationally effi-
cient method for detecting the critical point as the control
parameter is varied. Cluster tomography with traversing end-
points is especially promising in this regard as it leads to the
strongest signals in both 2d and 3d percolation, even more

(a) (b)

FIG. 4. (a) Corner contribution of a diagonal line (line 5) for site
percolation as the occupation probability p is varied in systems of
linear size L. A sharp peak is observed at the critical occupation
probability pc (dashed line). (b) Rescaling the points in (a) results
in data collapse in the vicinity of the critical point with ν = 4/3.

so at sharper angles, making the nonlinear correction easy to
detect even in small systems or in the presence of noise or
other statistical limitations.

VI. DISCUSSION

We have shown that the critical corner contribution of
line segments in 2d percolation can be predicted using ideas
from conformal field theory and that results in 2d and 3d
can be determined numerically to high precision, making
it possible to locate the critical point and extract univer-
sal information about the system from cluster counts along
line segments. Although our results are presented for per-
colation, which is the Q → 1 limit of the Q-state Potts
model, similar logarithmic terms are expected to exist for
other (not necessary integer) values of Q, such as for the
Ising model with Q = 2, even in the presence of disorder
[17], as long as the transition is continuous [14]. Tech-
niques from conformal field theory are expected to give the
correct analytic formulas also in these cases, at least for
Fortuin-Kasteleyn clusters [35], as explored in 2d for lines
1 and 2 in Ref. [14]. Cluster tomography could also be ex-
plored for percolation in higher dimensions, as well as in the
mean-field limit, although there are clearly no corner contri-
butions on the Bethe lattice. In general, for higher dimensional
systems, or systems lacking conformal invariance, the angle-
dependence could be nontrivial, meaning that different config-
urations of cluster tomography could unveil distinct universal
information.

Our results readily provide the universal term of skeletal
entanglement in the critical bond-diluted transverse-field Ising
model [16,36]. In this application, the natural quantity to study
is the number of crossed clusters, where only those clusters
contribute that are not fully contained by the line. Our numer-
ical findings confirm the expectation that this difference in the
definition is irrelevant at the critical point, therefore yielding
the same asymptotic behavior in the quantum model.

In other cluster-based systems, including experimental
realizations, it may not be possible to implement changes
in the boundary conditions. As such, one or both numerical
cancellation techniques may not apply. However, in many
such cases the nonlinear correction may still be measured
to high precision. In other cases, the nonlinear term can
be accessed through comparison of direct measurements of
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N (�) at different system sizes, which leads to cancellation
of the linear term on average. We examine these cases in
Fig. S5 of the Supplemental Material [31], demonstrating
that the presence of a nonlinear corner contribution and the
corresponding b exponent can be determined even without the
advanced cancellation techniques, suggesting applicability of
this methodology in a broad range of cluster-based systems.

Code to generate the nonlinear contribution to the cluster
number count for the ten line configurations in 2d is available
online [37].
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APPENDIX A: ANALYTIC ARGUMENTS

Bond percolation can be considered as the Q → 1 limit of
the Q-state Potts model [38], defined on a lattice with sites
i = 1, 2, . . . , n and m nearest neighbor bonds. The partition
sum of the Potts model is given by

Z (Q) =
∑

s

∏
〈i j〉

exp
(
Kδsi,s j

)
, (A1)

where δsi,s j is the Kronecker symbol and K is the reduced
coupling, which is the ratio of the pair interaction and the
temperature. Using the identity exp(Kδsi,s j ) = 1 + p

1−pδsi,s j

with p = 1 − e−K , the sum of products in Z is written in terms
of the so-called Fortuin-Kasteleyn clusters [35], denoted by F .
In F an edge of the lattice i, j is occupied if a factor p

1−pδsi,s j

is present and if the spins exist in the same state within any
connected cluster. Up to an irrelevant prefactor, this leads to

Z (Q) ∼
∑

F

QNtot (F ) pM(F )(1 − p)m−M(F ). (A2)

For a given element of F there are Ntot (F ) � n connected
components and M(F ) � m occupied bonds. The mean total
number of clusters is then given by

〈Ntot〉 = Q
∂ ln Z (Q)

∂Q
. (A3)

If we fix all spins on a one-dimensional contour � (in state
1, say), but leave the couplings unchanged, this relation is
modified as

〈Ntot − N�〉 = Q
∂ ln Z� (Q)

∂Q
. (A4)

At the critical point, p = pc, we can write [13]

ln Z (Q) − ln Z� (Q) ∼ fe(Q)L� + fc(Q), (A5)

where L� is the linear extension of �, fe is the edge free-
energy density, which is a nonuniversal quantity, and the term
fc(Q) originates from the corners (or endpoints) of � and is
known as the corner contribution to the free-energy, which is
expected to be universal. The corner contribution to the free
energy can be expressed as [27–29]

fc(Q) =
(

c(Q)A� + π

ω�

h(Q)

)
ln L�. (A6)

The first term is the Cardy-Peschel term [27], which receives
contributions from each γk corner of �, considering both the
interior and exterior sides of the contour. Here c(Q) is the
central charge of the Q-state Potts model, and A� is a purely
geometric factor that is the same for all values of Q and
emerges from the angles γk as

A� =
∑

k

Aγk =
∑

k

1

24

(
γk

π
− π

γk

)
. (A7)

The second term in Eq. (A6) is present each time there are
different boundary conditions along the contour on either
side of the corner, such as a change between fixed and free
boundary conditions when a measuring contour touches a free
surface. The term h(Q) is the scaling dimension of the bound-
ary condition changing operator and ω� includes the corner
angle(s) at the location of the boundary condition change.

In this paper, we focus on a line segment of length L� = �

and determine the corner contribution to the cluster number
count. Using Eqs. (A3) and (A4) we can write

N (�) = Q
dfe(Q)

dQ
� + Q

dfc(Q)

dQ
≡ a� + b ln �, (A8)

with b being the cluster count exponent. Percolation cor-
responds to Q → 1, so using the parametrizations c(k) =
1 − 6/[k(k + 1)] and

√
Q = 2 cos

(
π

k+1

)
[39] gives c′(1) =

5
√

3/(4π ), where prime notation indicates a derivative with
respect to Q. Additionally, changing the boundary condition
from fixed along the line segment to free along a boundary
gives h′(1) = √

3/(8π ) [32]. We conjecture that b receives
contributions from linear combinations of B(γk ) = c′(1)Aγk

and S(γ ) = h′(1)π/γ , corresponding to Eqs. (2) and (3) of
the main text, depending on the endpoint types (surface, bulk,
or traversing) of the line segment of interest, as discussed in
the main text.

APPENDIX B: RELATION BETWEEN
CLUSTER SHAPE AND b

For a system with PBC, the gap-size statistics n(s) consid-
ers the distance s = min[xi+1 − xi, L − (xi+1 − xi )] between
successive occurrences xi of a given cluster along a line
through a clustered system of size L, quantifying the fre-
quency with which a gap of size s occurs. For a convex simply
connected cluster, there are no gaps above size 1. In contrast, a
broad gap-size statistics implies concavity in the shape of the
clusters at all scales. Note that the gap-size statistics captures
higher order correlations in the structure, as a gap of size s
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requires not only that sites xi+1 and xi are part of the cluster,
but also that all s − 1 sites between them are not part of
the same cluster. For lines 1 and 2, the gap-size statistics
is related to the corner contribution along a line segment of
length � � L/2 with PBC through [36]

C(�) = 1

2L

�∑
i=1

L/2∑
s=i

n(s). (B1)

In all previously studied cases, at criticality n(s) ∼ s−ζ with
ζ = 2 [14,16,36]. After approximating the sum as an integral,

this results in the logarithmic corner contribution to the cluster
number count in Eq. (1).

As discussed in the main text, measures of cluster to-
mography on the surface of a 3d cube at criticality suggest
b = 0, indicating that n(s) might decay faster in these cases.
Exploring n(s) of line segments on the face of a cube for site
and bond percolation, shown in Fig. S4 of the Supplemen-
tal Material [31], we find universal behavior with exponent
ζ = 2.30(5). This further confirms the vanishing cluster count
exponent in this case and provides an example of a critical
system for which ζ �= 2.
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