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Classically optimized variational quantum eigensolver with applications to topological phases
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The variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical
algorithms for near-term quantum computers. Meanwhile, VQE is confronted with a challenge that statistical
error associated with measurement as well as systematic error could significantly hamper the optimization.
To circumvent this issue, we propose the classically optimized VQE (CO-VQE), where the whole process of
optimization is efficiently conducted on a classical computer. The efficacy of the method is guaranteed by
the observation that quantum circuits with up to logarithmic depth are classically tractable via simulations of
local subsystems with up to quasipolynomial cost (polynomial for constant depth). In CO-VQE, we only use
quantum computers to measure nonlocal quantities after the parameters are optimized. As a proof of concept,
we present numerical experiments on quantum spin models with topological phases. After the optimization, we
identify the topological phases by nonlocal order parameters as well as unsupervised machine learning on inner
products between quantum states. The proposed method maximizes the advantage of using quantum computers
while avoiding strenuous optimization on noisy quantum devices. In addition, our paper indicates that clustering
technique combined with the fidelity measured on quantum computers could be useful for phase classification in
condensed-matter physics.
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I. INTRODUCTION

Over the past several years, quantum computers with above
50 or 100 physical qubits have been realized [1,2]. Along
with that, researchers have been focused on how to utilize
those noisy intermediate-scale quantum (NISQ) devices [3] to
solve problems that are hard to tackle on classical computers
[4–7]. They have developed various hybrid quantum-classical
algorithms applicable to quantum many-body problems [8,9],
combinatorial optimization [10], machine learning [11–16],
and so on.

The variational quantum eigensolver (VQE) [8,9] is one
of the most promising hybrid quantum-classical algorithms
to solve quantum many-body problems. VQE, based on the
variational principle, searches for the ground state of the target
Hamiltonian with a parametrized quantum circuit used as
the Ansatz. In VQE, one measures energy or its parameter
derivatives on a quantum computer and accordingly updates
variational parameters on a classical computer. One repeats
this process until the energy converges to a minimum. So far,
benchmark experiments using actual quantum devices have

*These authors contributed equally to this work.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

demonstrated that, with appropriate Ansätze, VQE could yield
approximate solutions with high precision for small quantum
systems, primarily, small molecules [8,17–24]. Meanwhile, it
has been also revealed that the optimization process in VQE
could be significantly affected by statistical error [25–28]
as well as systematic error [29–33]; the former intrinsically
arises from measurement on quantum circuits, whereas the
latter comes from imperfect fidelity of quantum gates and
readout or decoherence of quantum states. Although various
techniques of error mitigation have been proposed [5,34–44],
some of which have been experimentally found effective to
a certain extent [19,20], it still remains an issue how to
minimize adverse effect of error on computation with NISQ
devices.

To alleviate the difficulty/cost in optimization in VQE,
various approaches have been explored to offload parts of the
optimization procedure to classical computers. Rudolph et al.
[45] conducted classical simulation of matrix product states to
obtain better parameter initialization in VQE. Cervera-Lierta
et al. [46] proposed meta-VQE, where, for a Hamiltonian
with parameters, VQE is trained from a few data points and
generates initial circuit parameters fit for other data points.
Similarly, in a recent work by Ceroni et al. [47], neural
networks are trained from a few Hamiltonian parameters to
output optimal variational parameters for VQE. Kottmann and
Aspuru-Guzik [48] developed a class of classically tractable
quantum circuits based on separable-pair approximations,
which could be used as a baseline in VQE Ansätze. Fujii
et al. [49] applied a divide-and-conquer method to VQE to
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reduce the number of necessary qubits. This could also help to
reduce the optimization cost in VQE by replacing the second
stage of VQE for classical simulations such as tensor network
technique.

We propose a variant of VQE that conducts the whole
process of optimization on a classical computer. We term
this method the classically optimized VQE (CO-VQE). By its
nature, CO-VQE is free of the aforementioned errors because
it does not involve a quantum computer in the optimization
process. It is based on an observation that shallow depth
circuits are easy to simulate when we are only interested
in local observables. For Hamiltonians with only local in-
teractions, this allows us to optimize the Ansatz classically
without exponential computational cost. Another important
observation is that, while local observables on shallow circuits
are classically simulatable, nonlocal ones are not in general.
Although a novel classical algorithm has been recently de-
veloped that allows one to efficiently simulate even nonlocal
observables with respect to shallow circuits [50], there are
some cases where quantum computers are still needed (see
the discussion in Sec. II B). Therefore, we may need to run
the optimized circuit on a quantum device if we wish to obtain
information about nonlocal quantities. This kind of situation
occurs very naturally with a quantum system which exhibits
a topological phase transition, where the system Hamiltonian
is local but its order parameters are global [51–53]. Another
useful quantity that may have to be measured on a quantum
device is the inner product between the states, which can be
used for, e.g., the unsupervised clustering of states in different
phases [54].

As numerical demonstrations of CO-VQE, we study two
quantum spin models in which topological orders emerge;
the one-dimensional (1D) cluster model [55,56] and the two-
dimensional (2D) toric code model with transverse field
[57–59]. CO-VQE would be practically important in 2D
systems because in 1D systems, one can often obtain the
ground states with high accuracy as well as evaluate nonlocal
observables efficiently on classical computers using matrix
product states (MPS). After optimization, we characterize the
topological phases by measuring nonlocal order parameters.
Moreover, for the 1D model, we identify the topological phase
via another method, measurement of fidelity combined with
an unsupervised machine learning. We also refer to recent
similar works in Refs. [60,61].

The paper is organized as follows. First, we describe the
principle of CO-VQE in Sec. II. We devote Secs. III and IV
to numerical demonstrations of CO-VQE on the 1D cluster
and 2D toric code models with transverse field, respectively.
Finally, we summarize our results in Sec. V.

II. CLASSICALLY OPTIMIZED VARIATIONAL
QUANTUM EIGENSOLVER

A. Principle of CO-VQE

In this section, we explain the premise and principle of
CO-VQE. In the optimization process of the original VQE,
one evaluates expectation values of operators by measurement
on a quantum computer and accordingly update variational
parameters on a classical computer [Fig. 1(a)]. In CO-VQE,

FIG. 1. Schematic diagram of (a) the original VQE and (b) CO-
VQE. (c) Causal cone (orange area) in a brickwall quantum circuit.

meanwhile, one efficiently calculates the expectation values
with a classical computer instead of using a quantum com-
puter [Fig. 1(b)]. The key to the efficiency is reduction in the
number of simulated qubits, thanks to the locality of causal
cones in shallow-depth quantum circuits [Fig. 1(c)].

As prerequisites for CO-VQE, we suppose the following
constraints on the target problem and Ansatz.

(i) Operators measured in the optimization process are
local.

(ii) The initial state of the quantum circuit is a product state
or more generally a stabilizer state.

(iii) The quantum circuit is only composed of local opera-
tions.

(iv) The quantum circuit has a constant or logarithmic
depth as a function of the system size.

In many systems of interest in condensed-matter physics,
the constraint (i) holds for operators composing the physical
Hamiltonian. In addition, a majority of the circuit Ansätze pro-
posed so far meet the constraints (ii) and (iii). The constraint
(iv) allows for hardware-efficient Ansätze [8,18,20] as well
as the Hamiltonian variational Ansatz [25] in spin models as
we treat them in the paper. Although (iv) restricts depth of
the Ansatz, we remark that, when one increases the system
size up to, e.g., 103 or 104, in the NISQ era, polynomially
scaled circuit depths are not ideal or viable due to exponential
decrease in fidelity.

Under those constraints, one can classically simulate quan-
tum circuits without suffering from exponential increase in
the computational cost. As a simple example, let us con-
sider a 1D brickwall quantum circuit applied to a product
state [Fig. 1(c)]. As indicated in Fig. 1(c), measurement of
a local operator on the circuit only involves a part of the
qubits considering the causal cone. Therefore, it only suf-
fices to simulate a local subsystem rather than the entire
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system. When implementing a causal cone simulator, one
would trace back all the gates in the opposite direction of
time, judging whether or not each gate is relevant to the
measurement results and adding the relevant gates to the
causal cone.

The argument can be generalized to d dimensions (d � 1).
Let N be the number of qubits of the entire system. Suppose
we calculate the expectation value of a local observable O
with respect to a quantum circuit with depth l . Assuming
that O is described as a sum of m k-body Pauli operators,
the maximal number of qubits among the causal cones cor-
responding to m Pauli operators, M, is estimated as M =
O(kld ). Hence, evaluation of the observable O costs O(m2kld

),
whereas it costs O(m2N ) when one simulates the entire sys-
tem. In the case where O is the Hamiltonian, considering
m = O(poly(N )) (O(N ) in typical spin models), the simu-
lation assisted by causal cones can be performed efficiently
as long as the depth l is up to logarithmic with respect to
N . More specifically, the simulation costs polynomial time
when l is constant for any d or logarithmic for d = 1 and
quasipolynomial time when l is logarithmic for d � 2. Im-
portantly, this technique enables us to classically simulate
systems with more qubits than current computers could af-
ford to simulate, e.g., N ≈ 100 as long as M is sufficiently
small.

One might think that the efficient simulatability of low-
depth quantum circuits for local observables is limited to cases
where the initial state is a product state. In fact, however,
it holds as long as the initial state is a stabilizer state. Sup-
posing that U represents the quantum circuit, U †OU can be
decomposed into O(m4kld

) (kld )-body Pauli operators. Since
expectation values of Pauli products with respect to a stabi-
lizer state can be efficiently calculated on classical computers,
one can efficiently simulate the expectation value of the local
observable when l is up to logarithmic. In the numerical
simulations in Secs. III and IV, we use stabilizer states as the
initial state of the Ansatz.

The argument above raises a question; once the entire
optimization is conducted on a classical computer, in what
cases does one benefit from using a quantum computer? The
answer could be in cases where one conducts measurement of
nonlocal quantities [Fig. 1(b)]. One case which necessitates
such measurements could be characterization of topological
orders [51–53] emergent in certain quantum spin models.
Since order parameters of topological phases are nonlocal, it
may be necessary to measure them on a quantum device to
explicitly tract topological orders. Another case that we con-
sider here is measurement of fidelity, the absolute value of the
inner product between two quantum states. Fidelity is useful
to detect quantum phase transitions, especially when one does
not know an apparent form of order parameter [62,63]. We
may also need to evaluate it on a quantum device due to its
globality.

B. Discussion of classical simulatability

In this section, we discuss classical simulatability of
constant-depth quantum circuits in more depth. In the pre-
vious section, we have shown that measurement of nonlocal
operators with respect to constant-depth circuits cannot be

efficiently simulated by the causal cone technique. However,
it does not mean that nonlocal operators with constant-depth
circuits are not classically simulatable.

Recently Bravyi, Gosset, and Movassagh have developed a
classical randomized algorithm that can efficiently simulate
even nonlocal operators for 2D circuits of constant depth
[50]. Since the algorithm is the first one among the three
they introduced in the paper, we call the algorithm BGM1
hereafter. BGM1 simulates a N-body product of single-qubit
observables Oj (‖Oj‖ � 1) with respect to a 2D quantum
circuit with local operations (U ) within an additive error δ.
Here the expectation value 〈0N |U †O1 ⊗ · · · ⊗ ONU |0N 〉 is es-
timated via Monte Carlo sampling. The key procedure is that
the 2D grid of qubits is divided into 1D strips based on causal
cone considerations. On each strip, the amplitudes of the
corresponding parts of sampled bit strings are computed by
state vector simulations on m(r) = 6r2 − r + 1 qubits, with
range r, roughly speaking, the largest radius of N causal cones
with a single qubit at the vertex. In total, the run time scales
as O(Nr2δ−2)2m(r). Therefore, the algorithm takes linear time
for constant depth and quasipolynomial time for logarithmic
depth (assuming r is proportional to circuit depth l). We note
that, for a three-dimensional case, BGM1 takes subexponen-
tial time even for constant depth with the run time scaled as
O(Nr3δ−2)2m(r)N1/3

.
In terms of computational complexity, it seems that BGM1

can replace quantum computers for nonlocal measurement on
2D constant-depth circuits. However, a caveat is that not every
operator can be classically simulated with respect to constant-
depth circuits. To see this, let us consider measurement-based
quantum computation (MBQC) using the cluster state on the
2D square lattice, which is known to be universal [64,65].
The cluster state can be prepared by applying four layers of
CZ gates to the zero state. Then arbitrary quantum compu-
tation can be performed by a certain pattern of single-qubit
measurements on the cluster state. As a result, MBQC on
the cluster state can be described as measurement on the
constant-depth quantum circuit. If the expectation value of an
arbitrary operator with respect to constant-depth circuits were
classically simulatable, MBQC and hence universal quantum
computation could be simulated on classical computers. This
is not supposed to be true obviously. Therefore it is not true
that an arbitrary operator with respect to constant-depth cir-
cuits can be classically computed. Indeed, one can see that
BGM1 cannot be applied to the above case because of the
normalization factors associated with measurement (see the
Appendix).

In Sec. IV, we consider nonlocal measurements on the
states generated by applying constant-depth circuits to the
toric code state after the optimization in CO-VQE. Those
measurements cannot be efficiently simulated by the causal
cone technique presented in Sec. II A. Although we cannot
give a proof that the measurements are not classically simu-
latable, we can at least say that BGM1 is not applicable to the
case considered. This is because the toric code state cannot be
deterministically prepared using quantum circuits of constant
depth. Importantly, local operators can be classically simu-
lated by our causal cone technique since the toric code state
is a stabilizer state (see Sec. II A). Those properties make the
case in Sec. IV suitable to CO-VQE.
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C. Numerical simulations

In Secs. III and IV, we present proof-of-concept demon-
strations of CO-VQE on quantum spin models with topolog-
ical phases. First, in Sec. III, we study the 1D cluster model
with transverse field. However, in 1D systems, one can effi-
ciently evaluate nonlocal observables on a classical computer
if the circuit has a constant or logarithmic depth. In that sense,
CO-VQE is expected to provide practical importance in 2D
systems. In Sec. IV, we treat the 2D toric code model with
transverse field, where classical simulations of nonlocal oper-
ators are not feasible with BGM1 as described in Sec. II B.

We simulate quantum circuits using QULACS [66] and
optimize variational parameters using the BFGS method im-
plemented in the SCIPY library [67]. In Sec. III A, we conduct
optimization sequentially from J = 0 to 2.0 in increments
of �J = 0.1, where we set initial parameters for J = J ′ at
the optimized values for J = J ′ − �J . Here we add a small
random deviation to initial parameters to facilitate a move
from the initial point in the parameter space. In Sec. III C, at
fixed J2, we similarly run optimization from J1 = 0 to 1.6 in
increments of �J while setting initial parameters for J1 = J ′

1
at the optimized values for J1 = J ′

1 − �J with a small ran-
dom deviation added. At J1 = 0, we set initial parameters for
J2 = J ′

2 at the optimized ones for J2 = J ′
2 − sgn(J2)�J with a

small random deviation. In Sec. III C, we tested ten random
deviations and chose the one with the best convergence to the
exact energies. Meanwhile, in Sec. IV, we tested ten (twenty)
runs with different random initial parameters for D = 1, 2, 3
(D = 4, 5) and selected the best one for each hz.

We also perform exact diagonalization (ED) to obtain ref-
erence values. For clustering, we employ SCIKIT-LEARN [68].
We note that our studies are restricted to a classically tractable
number of qubits (N � 25) so that we could simulate nonlocal
measurements, which would be conducted on quantum com-
puters in actual usage of CO-VQE.

III. TRANSVERSE-FIELD CLUSTER MODEL

A. Nonlocal order parameter

In this section, we study the 1D cluster model with trans-
verse field [55]. We consider an N-qubit chain with open
boundary condition, where the Hamiltonian reads

Hcluster = −
N−1∑
i=2

Ki − J
N∑

i=1

Xi. (1)

We define the stabilizer Ki as Ki = Zi−1XiZi+1. For J = 0,
the ground state of the model is in a symmetry-protected
topological (SPT) phase [52,53] and called the cluster state
[64]. The state is characterized with eigenvalues of Ki being
equal to 1 for all i. The model is exactly solvable because
it can be mapped to the transverse-field Ising model via a
nonlocal transformation [55]. The exact solution tells us that
as J increases from zero, the cluster state transitions to a trivial
phase at J = 1. The order parameter characterizing the phase
transition is a product of the stabilizers represented as

� =
〈� N−1

2 	∏
k=1

K2k

〉
. (2)

FIG. 2. (a) Brickwall quantum circuit used as the Ansatz of
CO-VQE for the transverse-field cluster model. The leftmost block
corresponds to a circuit that generates the cluster state. (b) Quantum
operations comprising a single brick in (a).

The cluster state corresponds to � = 1, whereas the trivial
phase has � = 0 [55]. We remark that the order parameter
� is a nonlocal observable.

We study the ground state of Hcluster by CO-VQE. We
use a brickwall quantum circuit applied to the cluster state
[Fig. 2(a)] as the Ansatz. The Ansatz and Hamiltonian meet
four conditions for CO-VQE listed in Sec. II. Note that the
cluster state is a stabilizer state. As shown in Fig. 2(b), each
brick is composed of four single-qubit rotations and one two-
qubit rotation with independent variational parameters. We
define the depth of the circuit l1 as the number of brick layers
[l1 = 4 in Fig. 2(a)]. Importantly, the Ansatz corresponds to
the Hamiltonian variational Ansatz [25]. This guarantees that
the Ansatz can generate the exact solution when l1 → ∞. As
described in Sec. II A, in the optimization process of CO-
VQE, we only simulate relevant qubits dictated by the causal
cone [Fig. 1(c)] to evaluate expectation values of the local
terms in Hcluster.

First, we study the phase transition by explicitly measuring
the nonlocal order parameter �. For each value of J (0�J�2),
we optimize variational parameters and then compute �. In
Figs. 3(a) and 3(b), we show J dependence of the ground
state energy E and �, respectively, for N = 16 and l1 = 4
as well as those calculated by ED. As expected, the order
parameter � of ED [Fig. 3(b)] points to the phase transition
at J ≈ 1. Figures 3(a) and 3(b) show that both the energy and
order parameter of CO-VQE agree well with those of ED. We
note that � of CO-VQE shows a slightly steeper decline at
the phase transition than that of ED [Fig. 3(b)], which might
be attributed to limitation of expressibility in the low-depth
Ansatz. The result implies that the brickwall circuit of even a
low depth [Fig. 2(a)] can capture a broad range of quantum
states including the cluster state and trivial state at the end
points.

B. Clustering on fidelities

Next, as another approach to detect the phase transition,
we use fidelity for unsupervised machine learning. Fidelity
measures similarity between two quantum states |�〉 and |�〉,
and it is defined as

F = |〈�|�〉|. (3)
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FIG. 3. J dependence of (a) the energy E and (b) nonlocal order
parameter � in Eq. (2) of the ground states obtained by CO-VQE
on the transverse-field cluster model with the Hamiltonian Hcluster in
Eq. (1). The blue (orange) points show the data of CO-VQE (ED). In
CO-VQE, we set the depth of the Ansatz as l1 = 4. The calculations
are done for N = 16.

In the last decade and a half, researchers in condensed-matter
physics have found out that fidelity is a useful tool to detect
quantum phase transitions [62,63], especially when one does
not have information of order parameters. This stems from
the property that the fidelity F equals almost 1 between quan-
tum states within the same phase, and zero between states in
different phases. Although in the thermodynamic limit one
should employ other relevant quantities such as fidelity per
site [60,69,70] or fidelity susceptibility [71] to avoid the or-
thogonality catastrophe [72], in the following we can safely
rely on fidelity because we only treat small-size systems.

We compute fidelities between the optimized states for dif-
ferent values of J . In actual usage of quantum computers, one
can evaluate the fidelity by measuring the probability of |0〉⊗N

on the circuit shown in Fig. 4. One can readily see that the
fidelity is a nonlocal quantity because one needs to measure
all the qubits. Figure 5(a) shows the color plot of fidelity
|〈�(J ′)|�(J )〉|. The top row of the color plot in Fig. 5(a)
shows that as J increases, the fidelity |〈�(J ′ = 2.0)|�(J )〉|
steeply arises around J = 1. Therefore one can speculate that
a phase transition seems to take place around J = 1.

To confirm the observation, we conduct clustering on the
data set of fidelity for phase classification [Fig. 5(a)]. Here,

FIG. 4. Quantum circuit for measuring the square of fidelity
F = |〈0|⊗NU †(θ ′)U (θ )|0〉⊗N |.

we apply the spectral clustering method with the number
of clusters fixed at 2 while using the fidelity as affinity be-
tween data points. As a consequence, we obtain two phases
as shown in Fig. 5(b); one corresponds to 0 � J � 0.9 (SPT
phase), and the other to 1 � J � 2 (trivial phase). The result
is consistent with the exact phase diagram. We emphasize that
clustering allows us to detect the phase transition without prior
knowledge of the order parameter �. Our clustering analysis
contrasts with recent studies that have proposed similar meth-
ods for classifying phases based on measurement of fidelity in
conjunction with classical machine learning [60,61], both of
which employ supervised machine learning.

C. Adding Ising interactions

We also study the phase diagram when Ising interactions
are added to Hcluster. The Hamiltonian that we consider here
reads

HIsing cluster = −
N−1∑
i=2

Ki − J1

N∑
i=1

Xi − J2

N−1∑
i=1

XiXi+1. (4)

FIG. 5. (a) Color plot of the fidelity between the states optimized
by CO-VQE for different values of J . (b) Phase classification by
spectral clustering on the data set in (a). Phase 1 corresponds to the
SPT phase and phase 0 corresponds to the trivial phase.
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FIG. 6. Phase classification by clustering on the fidelities com-
puted by (a) ED and (b) CO-VQE with l1 = 4 on the transverse-field
cluster model with Ising interactions of the Hamiltonian HIsing−cluster

in Eq. (4). The dark green, light green, and yellow regions corre-
spond to the ferromagnetic, SPT, and antiferromagnetic phases. The
calculations are done for N = 11. The circles in (a) stand for the
phase boundaries computed by the infinite-size DMRG calculations
in Ref. [56].

For each value of J1 and J2 (0 � J1 � 1.6,−1.6 � J2 � 1.6),
we compute the ground state by ED as well as CO-VQE using
the same Ansatz in the previous sections.

First, we calculate the fidelities between the ground states
obtained by ED for different values of (J1, J2) and conduct
spectral clustering with the number of clusters fixed at 3. As
shown in Fig. 6(a), the whole parameter space is classified
into the SPT phase (light green), ferromagnetic phase (dark
green), and antiferromagnetic phase (yellow). In Fig. 6(a),
the white circles represent the phase boundaries computed
by the infinite-size DMRG calculations in Ref. [56]. We can
observe that our clustering based on ED agrees well with those
calculations. We note that the slight difference in the phase
boundaries between the two results could be attributed to the
small size in our calculations.

We also conducted clustering based on CO-VQE with
l1 = 4 as in Sec. III B. Figure 6(b) indicates that the classi-
fication overall reproduces that for ED, although the phase
boundary deviates from ED [Fig. 6(a)]. This is probably due to
insufficient accuracy of the solutions in CO-VQE. We expect
that the discrepancy would be reduced as l1 increases.

IV. TRANSVERSE-FIELD TORIC CODE MODEL

While we have considered the 1D model in the previous
section, classical approaches using MPS or the multiscale
entanglement renormalization Ansatz (MERA) are in many
cases sufficient for 1D models. In this section, we study the
toric code model with transverse field as a nontrivial example
in two dimensions. The model is defined on a square array
of N = L2 + (L − 1)2 (L: linear dimension) qubits with open
boundary conditions as shown in Fig. 7. The Hamiltonian
reads

Htoric = −
∑

s

As −
∑

p

Bp − hz

N∑
i=1

Zi, (5)

FIG. 7. Square array of qubits (open circle) with L = 4 for the
toric code model.

where As and Bp are stabilizers defined as As = ∏
i∈s Xi and

Bp = ∏
i∈p Zi for each square s and plaquette p (Fig. 7), and

hz represents strength of the transverse field. For hz = 0, the
ground states are toric code states with a nontrivial topology
[51]. They are characterized with eigenvalues of As and Bp

being equal to 1 for all s and p, which are twofold degenerate
in our setting of boundary conditions. These twofold ground
states are distinguished by eigenvalues of a logical operator
LZ , defined as LZ = ∏

i∈γ1
Zi (Fig. 7). With application of hz,

quantum Monte Carlo calculations revealed that the toric code
state undergoes a topological transition at hz = 0.328 474(3)
in the thermodynamic limit [57–59].

Below we study the model by CO-VQE. We use the Hamil-
tonian variational Ansatz [25] in a more explicit form than in
Sec. III. The Ansatz is expressed with variational parameters
βl and γl as

|�〉 =
D∏

l=1

[
e−iβlH0

toric e−iγlH1
toric

]
|�(LZ = 1)〉, (6)

where both H0
toric and H1

toric are parts of Htoric defined
as H0

toric = −∑
s As − ∑

p Bp and H1
toric = −hz

∑N
i=1 Zi. The

initial state |�(LZ = 1)〉 represents the toric code state with
the eigenvalue of LZ being equal to 1, which is the exact
ground state of Htoric with hz = 0. The Hamiltonian and
Ansatz satisfy four constraints for CO-VQE listed in Sec. II.

The reason why we set the toric code state as the ini-
tial state is because topologically ordered states cannot be
generated from a product state with a constant depth cir-
cuit. By doing so, one can study the region belonging to
the same topological phase with a constant-depth quantum
circuit. Furthermore, one could also reach the phase transition
with a logarithmic depth, considering that highly entangled
2D states are generated with the branching MERA with
O(log N ) depth [73]. Indeed, for 1D systems, critical prop-
erties of phase transitions have been discussed with log-depth
MERA. A preparation of the toric code state |�(LZ = 1)〉 has
been discussed in the context of quantum error correction.
More precisely, the syndrome measurements for As project a
product state |0〉 onto the toric code state |�(LZ = 1)〉. The
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FIG. 8. hz dependence of (a) the energy and (b) nonlocal order
parameter W in Eq. (7) of the ground states obtained by CO-VQE on
the transverse-field toric code model with the Hamiltonian Htoric in
Eq. (5). The purple line shows the data of ED. The calculations are
done for L = 4 (N = 25).

randomness of the measurement outcomes can be treated clas-
sically by updating the Pauli frame and rewriting the state and
operations in an appropriate basis.

To tract the topological order, we evaluate the Wilson loop
operator W [74], which we define as (Fig. 7)

W =
∏

s

As =
∏

i∈γ2,γ̃2

Xi. (7)

In Figs. 8(a) and 8(b), we present hz dependence of the energy
E and nonlocal order parameter W , respectively, calculated
by CO-VQE together with those of ED. The calculations are
done for L = 4 (N = 25). The loop operator W computed
by ED [Fig. 8(b)] shows that the toric code state gradu-
ally transitions to a trivial state as hz increases up to 0.5.
Figure 8(a) shows that the energy of CO-VQE becomes lower
as the depth D increases and nearly overlaps with that of ED
for D = 5. With regard to W , the result of CO-VQE almost
replicates that of ED with a lower depth (D = 3) [Fig. 8(b)].
As mentioned earlier, we expect that one could also reach the

phase transition in the thermodynamic limit using a log-depth
circuit.

Our calculations indicate that the Ansatz with the toric
code state as the initial state is effective. It may describe
the ground states for small external field with a constant
depth as well as the phase transition with a logarithmic
depth. Although we restricted ourselves into a simulatable
number of qubits in the calculations above, CO-VQE would
be beneficial for the current scale of NISQ computers, i.e.,
N = 100–200. In the transverse-field toric code model, the
maximal number of qubits among all the causal cones for
evaluation of the energy is represented as M = 4(D + 1)2.
Therefore, classical optimization would be possible up to D =
2 by using supercomputers [1,75] or potentially for D = 3, 4
by tensor network simulations on high performance comput-
ers [76–81]. If one intends to increase the depth even more,
one needs to conduct optimization on quantum computers,
but even in that case, CO-VQE for a smaller depth would
help one to determine the initial parameters for the original
depth and thus reduce the risk of being trapped at suboptimal
solutions.

V. CONCLUSION

In this paper, we propose CO-VQE, a variant of VQE that
is more reliant on classical computers. In CO-VQE, assum-
ing locality of the Hamiltonian and constant (logarithmic)
depth of the Ansatz, the whole process of optimization is
efficiently conducted on a classical computer with a poly-
nomial (up to quasipolynomial) cost. The efficiency of the
classical optimization comes from exponential reduction in
simulation costs by virtue of causal cones in quantum cir-
cuits. Compared to the original version of VQE, CO-VQE
has an advantage that its optimization process is by definition
free of statistical or systematic error inherent in quantum
hardware.

CO-VQE does not exclude opportunities to benefit from
quantum devices; one may need to rely on them to measure
global quantities such as nonlocal order parameter and fidelity
after the optimization. As a proof of concept for our method,
we present numerical simulations on 1D and 2D quantum spin
models with topological phases. First, we solve the 1D cluster
model by CO-VQE. We detect the topological phase transition
by evaluating the nonlocal order parameter. In addition, we
demonstrate that even without prior knowledge of the order
parameter, we could also identify the phases by applying clus-
tering technique to fidelity. Then, given that the ground states
and nonlocal observables in 1D models are often achievable
by classical computers, we also study the 2D toric code model
with CO-VQE. We find that the Ansatz initiated from the toric
code state works well. The important thing is that it may
cover the region within the topological phase with a constant
depth and reach the phase transition with a logarithmic depth.
This leads to an expectation that we may derive advantages
from quantum computers if we conduct CO-VQE using a real
quantum device for larger system sizes.

We expect that because of its error immunity in the op-
timization process, CO-VQE may have more potential than
the original VQE to leverage NISQ devices to solve quan-
tum many-body problems. Our numerical experiments also
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indicate potential usefulness of unsupervised phase classifica-
tion based on the fidelities measured on quantum computers.
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APPENDIX: EXPONENTIAL COST OF SIMULATING
MBQC BY BGM1

In this Appendix, we explain that it takes exponential time
to classically simulate MBQC using the cluster state on the
square lattice [64,65] by employing BGM1 [50].

Let us denote the cluster state on the square lattice as |ψcl〉.
In the scheme of MBQC, as |ψcl〉 is a universal resource state,
arbitrary quantum circuit operation V |0N 〉 can be generated
by adaptive single-qubit measurements on |ψcl〉 [65]. This is

represented by

V |0N 〉 =
√

2M
∏
i∈Sm

Pi|ψcl〉 (A1)

with Pi a projection operator onto an appropriate basis, Sm the
subset of qubits measured, and M the number of elements in
Sm. Then the expectation value of a single-qubit observable
Aj (‖Aj‖ � 1, j /∈ Sm ) with respect to V |0N 〉 is

α = 〈0N |V †AjV |0N 〉 (A2)

= 2M〈ψcl|Aj

∏
i∈Sm

Pi|ψcl〉. (A3)

We consider employing BGM1 to simulate the right-hand
side of Eq. (A3). BGM1 is a sampling-based algorithm that
efficiently simulates 〈0N |U †O1 ⊗ ... ⊗ ONU |0N 〉 with any
single-qubit observable Oj (‖Oj‖ � 1) and any 2D quan-
tum circuit U of range r within an additive error δ [50].
The simulation costs O(Nr2δ−2)2m(r) with m(r) = 6r2−r+1.
Noting that |ψcl〉 is generated by applying four layers of
CZ gates and that ‖Pi‖ = 1, one can approximate β =
〈ψcl|Aj

∏
i∈Sm

Pi|ψcl〉 by utilizing BGM1. The approximate
value β̃ satisfies |β̃ − β| < δ. Since α = 2Mβ holds from
Eq. (A3), α is approximated as α̃ = 2M β̃, leading to |α̃ −
α| < 2Mδ. Combined with M = O(N ), the equation indi-
cates that one would need exponentially small δ with respect
to N to approximate α with an additive error. This means
that it would take exponential time to simulate MBQC by
using BGM1.
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