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Accurate harmonic vibrational frequencies for diatomic molecules via quantum computing
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During the noisy intermediate-scale quantum (NISQ) era, quantum computational approaches refined to
overcome the challenge of limited quantum resources are highly valuable. A comprehensive benchmark for a
quantum computational approach in this spirit could provide insights toward further improvements. On the other
hand, the accuracy of the molecular properties predicted by most of the quantum computations nowadays is
still far off (not within chemical accuracy) compared to their corresponding experimental data. In this work, we
propose a promising qubit-efficient quantum computational approach and present a comprehensive investigation
by benchmarking quantum computation of the harmonic vibrational frequencies of a large set of neutral
closed-shell diatomic molecules with results in great agreement with their experimental data. To this end, we
construct the accurate Hamiltonian using molecular orbitals, derived from density functional theory to account
for the electron correlation and expanded in the Daubechies wavelet basis set to allow an accurate representation
in real space grid points, where an optimized compact active space is further selected so that only a reduced small
number of qubits is sufficient to yield an accurate result. Typically, calculations achieved with 2 to 12 qubits using
our approach would need 20 to 60 qubits using a traditional cc-pVDZ basis set with frozen core approximation to
achieve similar accuracy. To justify the approach, we benchmark the performance of the Hamiltonians spanned
by the selected molecular orbitals by first transforming the molecular Hamiltonians into qubit Hamiltonians and
then using the exact diagonalization method to calculate the results, regarded as the best results achievable
by quantum computation to compare to the experimental data. Furthermore, using the variational quantum
eigensolver algorithm with the constructed qubit Hamiltonians, we show that the variational quantum circuit
with the chemistry-inspired UCCSD ansatz can achieve the same accuracy as the exact diagonalization method
except for systems whose Mayer bond order indices are larger than 2. For those systems, we then demonstrate
that the heuristic hardware-efficient RealAmplitudes ansatz, even with a substantially shorter circuit depth, can
provide a significant improvement over the UCCSD ansatz, verifying that the harmonic vibrational frequencies
could be calculated accurately by quantum computation in the NISQ era.
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I. INTRODUCTION

Recently, quantum computing has emerged as a promis-
ing way to potentially solve classically intractable problems,
especially in the field of quantum chemistry, whose funda-
mental goal is to solve the Schrödinger equation for chemical
or molecular systems [1–3]. With the quantum nature of
wave functions, quantum computing makes use of superposi-
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tion, entanglement and interference to prepare and manipulate
quantum states, offering the potential for exponential speedup
over classical computing. Along with this quantum advantage,
the unitary coupled cluster with single and double excita-
tions (UCCSD) method [4–6] for quantum computation of
the molecular properties can be realized by mapping the
exponential operators to qubit operators and using trotteriza-
tion to approximate the corresponding quantum circuit. This
circuit can be efficiently implemented on a quantum com-
puter [7–10], making UCCSD a powerful tool for simulating
chemical systems. The number of gates for the UCCSD cir-
cuit, using the Jordan-Wigner transformation [11], scales as
O(N3

q N2
e ), where Nq is the number of qubits and Ne is the

number of electrons [9]. On the other hand, classical imple-
mentation of the UCCSD method is impractical due to the
nontruncated Baker-Campbell-Hausdorff expansion [12]. In
addition, the gold standard method in quantum chemistry by
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classical computation, the coupled cluster with single, double,
and perturbative triple excitations (CCSD(T) [13]), scaling as
O(N7), where N is the number of molecular orbitals (MOs),
is applicable only to small systems. Therefore the UCCSD
method is considered a promising candidate for the quantum
simulation, and its efficient implementation is a major area
of research in the field of quantum computational chemistry.
As quantum computing technology continues to advance, it is
expected that the UCCSD method will play an increasingly
important role in the development of applications of quantum
chemistry.

In the so-called noisy intermediate-scale quantum (NISQ)
era [14], quantum computers have noisy and a limited number
of qubits without error correction implemented. As a result,
the number of consecutive quantum gates that can be reliably
run on the NISQ machines is also restricted. To address this
challenge, a hybrid quantum-classical algorithm called the
variational quantum eigensolver (VQE) [7] has been proposed
and widely used. In this VQE framework, a parameterized
quantum circuit as an ansatz to prepare the trial quantum states
(wave functions) is optimized to find the ground state energy
of the Hamiltonian based on the variational principle. The
VQE algorithm leverages the strengths of quantum and classi-
cal computation, and distributes the computational workload
between quantum and classical computers, with the quantum
computer performing the trial quantum state preparation and
measurement, and the classical computer performing the pa-
rameter optimization. The structure of the circuit ansatz and
the ability of parameter optimization determine the accuracy
of the result obtained from the VQE algorithm.

Reducing the requirement on the number of qubits and thus
the depth of the quantum circuit is one of the major strategies
in the NISQ era. For chemical problems, the chemistry-
inspired UCCSD ansatz is commonly used. However, due to
its complex circuit structure resulting from an exponential
operator, the UCCSD ansatz can give rise to a very deep
quantum circuit, making it difficult to be really implemented
on NISQ devices. In contrast, the heuristic hardware-efficient
ansatz is proposed to take advantage of its shorter circuit depth
than that of the chemistry-inspired ansatz on NISQ devices
[15]. The general construction of a hardware-efficient ansatz
consists of alternating layers of parameterized single-qubit
rotation gates and two-qubit entangling gates. In general, the
true wave function of a quantum system can be expressed as
a unitary transformation of the initial state [12]. Despite it is
not guaranteed that a hardware-efficient ansatz of a unitary
quantum circuit contains the solution of the wave function
or it is optimal, and that it preserves the same properties as
the true wave function [16,17], a hardware-efficient ansatz is
flexible to vary the types and increase the number of layers
of parameterized and entangling gates, allowing it to cover
more of the solution space where the true wave function may
reside. Some reviews about the recent development for the
both kinds of ansatzes could be found in [18,19]. Recently,
an adaptive variational algorithm, called adaptive derivative-
assembled pseudo-Trotter ansatz VQE (ADAPT-VQE) [20],
has been proposed to determine adaptively a quasioptimal
ansatz with the minimal number of excitation operators (e.g.
as in the UCCSD ansatz) for molecular simulations. Al-
though ADAPT-VQE can yield an adaptive ansatz with a

considerably reduced number of parameters, the ansatz circuit
that becomes shallower than the UCCSD ansatz is still too
deep to be implemented successfully on the current NISQ
devices.

Besides the variational ansatz encoded in the trial wave
function, quantum computation of quantum chemistry also
depends on a representation of the molecular Hamiltonian.
A common choice as a first demonstration is the minimal
basis (MB) set like STO-3G [21], but the calculation using
the STO-3G MB set usually does not yield an accurate result.
To improve the predicted results to be comparable with their
experimental data, a larger basis set such as cc-pVDZ [22–25]
is widely adopted in classical computation of quantum chem-
istry. However, even for the simplest H2 molecule, the VQE
calculation with Hamiltonian in the cc-pVDZ basis set re-
quired 20 qubits and the circuit depth estimated by using the
UCCSD ansatz would be over 104. Such a very deep circuit for
H2 is obviously not realizable on the current NISQ devices,
not to mention for larger molecules. In order to represent a
high-quality Hamiltonian in a smaller basis set for the NISQ
devices without losing much of the accuracy, the choice of
the basis set is thus extremely important, which was often
overlooked in the quantum computing community. Different
from traditional basis sets, the basis set constructed from the
real-space numerical grid method, where the MO is expanded
in the set of specific real-space basis functions, could fulfill the
need here. For example, the multiresolution analysis (MRA)
[26–28] method has been used to represent pair-nature orbitals
as an efficient basis-set-free approach to simulate molecular
systems for VQE by Kottmann et al. [29]. Although the qubit
requirements can be significantly reduced, the MRA approach
is treated as a black box, and for the BeH2 molecule, their
approach would not yield a smooth potential energy curve
(PEC). More recently, Hong et al. [30] demonstrated that
a MB set constructed from Daubechies wavelet [31] MOs
calculated from BIGDFT [32–35] can yield accurate results
in harmonic vibrational frequencies for H2, LiH, and BeH2

on quantum simulator with noisy model implemented from
the real devices. The key feature of real-space basis set of,
e.g., Daubechies wavelet MOs is that its accuracy could be
systematically improvable as the number of basis functions is
increased. It was demonstrated in Ref. [30] that VQE quantum
computations for vibrational frequencies using the MB set
of Daubechies wavelet MOs with accuracy comparable with
that of the full configuration interaction (FCI) [36] calculation
using the cc-pVDZ basis set, whereas the computational cost
the same as that of a STO-3G calculation, have been achieved
for this small set of three simple molecules. However, while
further inspecting on the application of Daubechies wavelet
basis set extended to a larger benchmark molecular dataset
considered here (see Sec. II G), we find that the approach of
using the MB set of Daubechies wavelet MOs [30] does not
provide adequate results of vibrational frequencies as it fails
to produce smooth PECs for some molecules, and furthermore
by excluding those unavailable vibrational frequency data,
it also has a significantly larger root-mean-square deviation
(RMSD) value even though the number of active MOs used is
considerably higher than that of wour proposed approach here
(see Ref. [37]). This intrigues a study of active space since
important orbitals may not be inside the MB set.
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Selecting active space that includes most important MOs
participating in physical or chemical reactions is an effec-
tive approach to form compact representations of molecular
orbital spaces of a given basis set. Properly constructed ac-
tive space reduces the number of MOs used, and is critical
for performing quantum computations for large systems in
the NISQ era; however, a comprehensive method that can
select an appropriate active space for correlated molecular
calculations, regardless of the basis sets, is still desirable. For
example, a conventional active space selection scheme based
on the occupation numbers of nature orbitals often identifies
important orbitals successfully, but they are not foolproof and
might falter in specific scenarios [38]. Therefore it remains
worth inspecting suitable ways to choose an active space for
the system under consideration.

In addition, several studies have demonstrated that us-
ing the MOs derived from the Kohn-Sham (KS) density
functional theory (DFT) in correlated wave function theory
calculations could provide improved results. [39–46] For ex-
ample, Bertels et al. [46] have recently benchmarked classical
CCSD(T) calculations with a variety of KS MOs on many
diatomic molecules. In their paper, MOs derived from a hier-
archy of different exchange-correlation (XC) functionals were
compared and an improvement on predicting vibrational fre-
quencies was observed. Their results indicate that the electron
correlation effect could be incorporated into the MOs via the
XC functional, which suggests that a possible further im-
provement on the accuracy of molecular vibrational frequency
calculations could be realized when using KS MOs without
increasing the number of MOs used.

In this work, we propose a quantum computational ap-
proach that adopts the molecular orbitals derived from KS
DFT with XC functionals and expanded in the Daubechies
wavelet basis set, where a reduced active space based on
an energy criterion of a first-order pair energy in the theory
of independent electron pair approximation (IEPA) [47,48],
denoted by IEPA1, is selected to further reduce the required
number of qubits. We perform a VQE quantum computing
benchmark investigation using our proposed approach on the
harmonic vibrational frequencies of 43 neutral, closed-shell
diatomic molecules with results in great agreement with their
corresponding experimental data. We attribute its excellent
performance to three factors: (i) a better description of the
Hamiltonian by the Daubechies wavelets MOs, (ii) better
reference for the electron correlation effect in the MOs via
the XC functional, (iii) an improved selection of active space
by IEPA1 energy criteria. Remarkably, our proposed approach
significantly reduces the number of qubits for the 43 diatomic
molecules from 20 to 60 using the traditional cc-pVDZ basis
set with frozen core approximation to only 2 to 12 but with
similar accuracy for the obtained results. VQE calculations by
our approach with a significantly reduced qubit number imply
that a considerably reduced ansatz circuit depth can reach
the same level of accuracy as those by using the traditional
cc-pVDZ basis set. For example, the VQE calculation of a
H2 molecule using the cc-pVDZ basis set requires 20 qubits
and the circuit depth estimated by using the UCCSD ansatz
would be, as mentioned above, over 104, and even for the case
of using the heuristic ansatz of a RealAmplitudes circuit, to
have a result reaching the same level of accuracy the estimated

circuit depth would be still about a few hundreds. In contrast,
the required circuit depth of our proposed approach to obtain
a result of harmonic vibrational frequency of H2 in great
agreement with the experimental data is only 4. For all the
43 molecules we investigate, the required circuit depths to
reach accurate vibrational frequency results are all less than
100. Thus, VQE quantum computations of these molecules
using our proposed approach are promisingly realizable on
the NISQ devices given the recent advance on quantum utility
demonstration [49] and the projected achievement of the so-
called 100 × 100 Challenge in 2024 [50].

The paper is organized as follows. In Sec. II, we in-
troduce the methods we use to calculate the molecular
vibrational frequencies in our proposed approach. The ac-
tive space selection criterion by IEPA1 will be described
in Sec. II C. In Sec. III A, the performance of the pro-
posed approach is benchmarked against the classical WFT
methods and traditional basis sets on a large dataset of 43
neutral closed-shell diatomic molecules. Moreover, we use
VQE to evaluate the performance of the UCCSD ansatz
with the Hamiltonian represented by the selected Daubechies
wavelet basis set in Sec. III B. The results show that the
UCCSD ansatz can yield accurate results except for sys-
tems whose Mayer bond order indices [51] are larger than
2. For those systems, we then demonstrate that the heuristic
hardware-efficient ansatz even with a substantially shorter
circuit depth can provide significant improvement over the
UCCSD ansatz in Sec. III C. To the best of our knowledge,
our investigation is the first systematical benchmark study to
demonstrate that a heuristic hardware-efficient ansatz could
outperform a chemistry-inspired UCCSD ansatz in predicting
accurate molecular properties by quantum computation. Such
a comprehensive benchmark study enables us to establish
an accurate approach for the vibrational frequencies of di-
atomic molecules, which could be realized on near-term NISQ
computers. A conclusion and the outlook of this work are
presented in Sec. IV.

II. METHODS

A. Daubechies wavelet

In this work, MOs expanded in the Daubechies wavelet
basis set [31] are generated from the BIGDFT package [32–35].
The KS MO is expanded in the Daubechies wavelets of or-
der 16 with one scaling function φ0 and seven augmented
wavelets ψ1, . . . , ψ7 [30,32]:

�KS(r) =
∑

i

si φ0
i (r) +

∑
j

7∑
λ=1

wλ
j ψλ

j (r), (1)

where si,wj are expansion coefficients, and indices i =
{i1, i2, i3} and j = { j1, j2, j3} are summed over the low
(coarse) and high (fine) resolution regions, respectively, in
three-dimensional real space grid points r = {x, y, z} with grid
spacing h. The three-dimensional basis functions φ0

i1,i2,i3 (r)
and φλ

j1, j2, j3 (r) are a tensor product of one-dimensional scaling
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function φ and wavelet ψ , which read as

φ0
i1,i2,i3 (r) = φ(x/h − i1)φ(y/h − i2)φ(z/h − i3),

ψ1
j1, j2, j3 (r) = ψ (x/h − j1)φ(y/h − j2)φ(z/h − j3),

ψ2
j1, j2, j3 (r) = φ(x/h − j1)ψ (y/h − j2)φ(z/h − j3),

ψ3
j1, j2, j3 (r) = ψ (x/h − j1)ψ (y/h − j2)φ(z/h − j3),

ψ4
j1, j2, j3 (r) = φ(x/h − j1)φ(y/h − j2)ψ (z/h − j3),

ψ5
j1, j2, j3 (r) = ψ (x/h − j1)φ(y/h − j2)ψ (z/h − j3),

ψ6
j1, j2, j3 (r) = φ(x/h − j1)ψ (y/h − j2)ψ (z/h − j3),

ψ7
j1, j2, j3 (r) = ψ (x/h − j1)ψ (y/h − j2)ψ (z/h − j3). (2)

The multiresolution of the Daubechies wavelets of order 16 is
featured by the refinement equations

φ(x) =
√

2
8∑

l=−7

hlφ(2x − l ),

(3)

ψ (x) =
√

2
8∑

l=−7

glφ(2x − l ),

which establishes a relation between the scaling functions on a
twice coarser grid and a finer grid. The coefficients hl and gl =
(−1)l h−l are filters that characterizes the scaling function and
wavelet.

In a simulation domain, the chemical bonds are described
in a high resolution region (fine region) which is composed
of one scaling function and seven wavelets, and the exponen-
tially decaying tails of the wave functions are described in a
low resolution region (coarse region) which is only composed
of scaling functions.

The number of virtual orbitals is a parameter and it is
chosen to be equal to the total number of atomic input orbitals
of the system as implemented in the BIGDFT package, while
degenerate orbitals will be considered together. This forms
the initial truncated MO space. The spin treatment does not
involve spin polarization. The XC functionals considered in
this work are Hartree-Fock (HF), Perdew-Burke-Ernzerhof
(PBE) [52], and PBE0 [53]. Other popular XC functionals
which have no suitable pseudopotential in the package, like
B3LYP [54], are excluded. All the three XC functionals use the
same norm-conserving Hartwigsen-Goedeker-Hutter Krack
(HGH-K) [55–57] pseudopotential generated with the PBE
functional.

One caveat needed to be mentioned in this work is about
the grid parameters in BIGDFT. The grid parameters, hgrids
which controls the grid spacing and rmult which controls the
size of simulation space, are determined from the analysis
of the grid convergence for each molecule. However, such
determination is analyzed in the framework of DFT where
virtual orbitals are not used, and thus might not be optimal for
WFT since these grid parameters significantly affect the prop-
erties such as the shapes and energies of the virtual orbitals.
Generally, setting better grid parameters (smaller hgrids and
larger rmult) helps the calculation converge to a lower energy
but with increasing computing cost, so the optimal choice
should consider both accuracy and efficiency. The setting with

better and better grid parameters could generate continuum-
like orbitals, but WFT with continuumlike virtual orbitals
would suffer from the vanishing electron correlation [58].
Therefore to find a better way to determine the grid parameters
for WFT is crucial and will be investigated further in the
future.

B. Second-quantized Hamiltonian

Given a set of KS MOs, the second-quantized Hamiltonian
is constructed as

H =
∑
p,q

hpqa†
paq + 1

2

∑
p,q,r,s

hpqrsa
†
pa†

qaras, (4)

where the one-electron integral

hpq =
∫

dx �KS∗
p (x)

(
−∇2

2
−

∑
A

ZA

|r − RA|

)
�KS

q (x), (5)

the two-electron integral

hpqrs =
∫

dx1dx2
�KS∗

p (x1)�KS∗
q (x2)�KS

r (x2)�KS
s (x1)

|r1 − r2| , (6)

and a†
p and aq are creation and annihilation operators acting on

the pth and qth component of the occupation number vector in
Fock space, respectively. The x = (r, σ ) denotes the position
and the spin of the electron, and RA and ZA denote the position
and the atomic number of the Ath nucleus, respectively. The
values of the integrals hpq and hpars are calculated via BIGDFT

subroutines.
The correlation energy Ecorr defined in WFT with KS MOs

is [43]

Ecorr = Eexact − 〈�KS|H |�KS〉, (7)

where Eexact is the exact energy, |�KS〉 is the single Slater
determinant formed with a set of KS spin orbitals and
〈�KS|H |�KS〉 is the reference value mimicking the HF
energy.

C. Active space

We discuss here how the [MB] active space and [IEPA1]
active space are selected. The [MB] active space selected
from the initial truncated MO space is chosen to imitate the
complete active space constructed from the minimal basis set.
Let us take LiF as an example. The minimal basis set for
this system is constructed from the 1s, 2s, and 2p orbitals of
Li, and the 1s, 2s, and 2p orbitals of F, giving a total of 10
MOs from a linear combination of atomic orbitals (LCAO).
Since this system has 12 electrons resulting in 6 occupied
MOs, one would take the 6 occupied MOs and 4 lowest-
energy unoccupied MOs in the [MB] method to select a total
of 10 MOs in the active space. However, the usual frozen
core approximation is used here for F’s 1s orbital, but we
do not apply this approximation to Li’s 1s orbital since the
pseudopotential used in this work includes that orbital (the
same treatment applied to the alkaline earth metal element Be,
while for Na atom the 1s orbital is frozen). By taking these
considerations into account, the active space of LiF consists
of 10 active electrons and 9 active MOs, denoted as [10,9], in
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our [MB] approach. Note that for group 13 - group 17 atoms in
the periodic table of the elements, the inner-shell frozen core
approximation is used and the total number of minimal-basis
valence orbitals for these atoms is 4.

The active orbitals in the [IEPA1] active space are se-
lected from the initial truncated MO space by calculating
the first-order pair energy in the theory of the independent
electron pair approximation. In the following, we describe
briefly the theory of IEPA and then present an energy criterion
derived from IEPA1 to select active orbitals. The theory of
IEPA considers the correlation energy associated with a pair
of electrons independently of other pairs in a configuration
interaction way. The correlated wave function for the pair i j,
denoted as the pair function |�i j〉, is

|�i j〉 = |�0〉 +
∑
a<b

cab
i j

∣∣�ab
i j

〉
, (8)

where i and j denote the occupied spin orbital indices, a and b
denote the virtual spin orbital indices, and cab

i j is the wave
function coefficient. Here, |�0〉 and |�ab

i j 〉 are ground and
doubly excited Slater determinants formed with a set of HF
spin orbitals. The energy of this correlated wave function,
denoted by E IEPA

i j , is

E IEPA
i j = 〈�i j |H |�i j〉 = E0 + eIEPA

i j , (9)

where E0 is the HF reference energy and eIEPA
i j is the pair

(correlation) energy. Under the first-order approximation to
IEPA, which neglects coupling between excited determinants,
the first-order pair energy [59], denoted by eIEPA1

i j , reads

eIEPA1
i j =

vir∑
a<b

∣∣〈�0|H
∣∣�ab

i j

〉∣∣2

εi + ε j − εa − εb
=

vir∑
a<b

(hi jab − hi jba)2

εi + ε j − εa − εb
,

(10)

where hi jab is the two-electron integral defined in Eq. (6) and
the energy difference in the denominator, 〈�ab

i j |H − E0|�ab
i j 〉,

has been approximated by the difference of orbital energies,
εi + ε j − εa − εb. The total first-order pair energy is then

EIEPA1 =
occ∑
i< j

eIEPA1
i j =

occ∑
i< j

vir∑
a<b

(hi jab − hi jba)2

εi + ε j − εa − εb
(11)

= EMP2, (12)

which is identical to the energy correction by the second-order
Møller-Plesset perturbation theory (MP2), denoted by EMP2

[60].
The pair energy would suggest a selection criterion for

the active space. The active orbitals of the [IEPA1] active
space are selected from the MOs in initial truncated MO space
by using the first-order pair energy. In order to determine
which MO is important, we calculate EIEPA1 of the MO by
considering the sum of all pair energies involved that MO, that
is, the terms in the summation involving only the spin indices
of that MO. For example, the first occupied MO is denoted as
OccMO[0], and its spin-up and spin-down orbitals are labeled
with indices i = 0 and i = 1, respectively; in this case, EIEPA1

of OccMO[0] is

EIEPA1(OccMO[0]) =
⎛
⎝ occ∑

i=0< j

+
occ∑

i=1< j

⎞
⎠eIEPA1

i j

=
⎛
⎝ occ∑

i=0< j

+
occ∑

i=1< j

⎞
⎠ vir∑

a<b

(
hi jab − hi jba

)2

εi + ε j − εa − εb
. (13)

Take each EIEPA1 of the MO divided by the total EIEPA1 as a
percentage, and then with a target of selecting a small number
of MOs, the MOs with relatively large percentages are chosen
into the IEPA1 active space. A different flavor to directly
determine MRA-represented pair-natural orbitals on the level
of MP2 can be found in Refs. [28,29]; the number of active
pair-natural orbitals (approximate nature orbitals), is truncated
based on occupation numbers. Compared to their approach
[28,29], our approach directly analyzes on canonical orbitals
without additional transformation to nature orbitals.

While there is no distinguishable difference between the
energies EIEPA1 and EMP2 for the standard HF orbitals, we
follow by the idea of IEPA to evaluate the first-order pair
energy when the KS orbitals are used. However, in this case
the Brillouin’s theorem, which states that the matrix element
contributed from singly excited Slater determinants formed
with a set of HF spin orbitals is zero, does not hold due to
the fact that the KS MO is not the eigenfunction of the Fock
operator.

D. Quantum computing

Quantum computing in VQE starts from mapping the
second-quantized Hamiltonian to the qubit Hamiltonian, and
in this work the quantum computing package, QISKIT [61],
is used. Common encoding methods to encode the fermionic
operators to qubit operators transform a fermionic system of m
active MOs (2m spin orbitals) into an 2m-qubit system. Here,
the parity encoding scheme [62,63] is chosen to further reduce
the number of qubits by two due to Z2 symmetry reduction
[64], so the number of qubits used is 2m − 2.

The ground state energy of the qubit Hamiltonian is
calculated via different methods. In Sec. III A, the exact di-
agonalization of the qubit Hamiltonian is used and we denote
this approach as the exact diagonalization method of quantum
computing (EDQC). Hence, the results of the EDQC method
could be regarded as the best results achievable by quantum
computation. Consequently, the EDQC method is also used
as the standard to investigate the performance of the VQE
method in Secs. III B and III C, where we demonstrate the
result of the vibrational frequencies obtained by our proposed
approach for VQE quantum computation is as accurate as
those by the EDQC method. At the same time, the state fidelity
between the EDQC ground state and the VQE ground state
calculated via different circuit ansatzes is evaluated as another
verification indicator (see Table III).

The quantum circuit ansatzes used here for VQE are the
UCCSD ansatz and the heuristic hardware-efficient ansatz
of RealAmplitudes from the QISKIT circuit library, where
these VQE approaches are denoted as VQE(UCCSD) and
VQE(RealAmplitudes), respectively. The Hartree-Fock state
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as the initial state is prepended to both the quantum cir-
cuits. The entanglement type for the RealAmplitudes ansatz
is chosen to be the linear entanglement. The optimizers used
are SLSQP and L-BFGS-B of SCIPY [65]. All the VQE cal-
culations are performed in the noiseless situation with the
state-vector simulation method.

E. Classical computing

We use the PYSCF package [66] for the classical compu-
tations. The methods used include CCSD(T) and complete
active space configuration interaction (CASCI) [67], where
the former is chosen since it is the golden standard method in
quantum chemistry and the latter is chosen since it is the FCI
on the active space which corresponds to the exact diagonal-
ization method in this work. The KS MOs with XC functional
of HF or PBE0 are used, and the nature orbital [68] is ad-
ditionally considered in the CASCI method. The traditional
basis set used is the Dunning correlation-consistent basis set,
cc-pVDZ. The spin treatment is spin-restricted Hartree-Fock
method. The number of frozen cores is chosen to be the same
as that of the pseudopotential considered in this work. In
CASCI, for a rapid convergence, the MP2 natural orbitals,
denoted by MP2NO, transformed from the standard HF MOs
are used and then the active space is determined by the natural
orbital occupation number, denoted by NOON.

In the calculation of Mayer bond order indices, we use
PYSCF functions to evaluate the formula. This index between
atoms A and B of a closed-shell molecule is defined as

MAB =
∑
μ∈A

∑
ν∈B

(DS)μν (DS)νμ, (14)

where μ and ν are indices for the basis functions belonged to
the assigned atom, and DS denotes the product the spinless
density matrix D and the overlap matrix S.

F. Harmonic vibrational frequency

The quantity to be calculated in the benchmark is the har-
monic vibrational frequency. For diatomic molecules, there
is only one vibrational mode, the stretching mode. The
corresponding diatomic harmonic vibrational frequency is
calculated by quadratic polynomial curve fitting using five
points around the minimal energy point of the equilibrium
bond length with step size 0.01 Å on the PEC. In order to
put different comparative methods on equal footing, this cal-
culation procedure applies to all the methods considered here.
The equilibrium bond lengths calculated by different methods
are presented in Ref. [37].

G. Dataset

For simplicity, the dataset considered consists of diatomic
molecules that are neutral, closed-shell and formed by atoms
(elements) in row 1 to row 4 of the periodic table, exclud-
ing the transition metal elements, but the diatomic molecules
whose experimental data are not available on the Computa-
tional Chemistry Comparison and Benchmark Database [69]
are also not considered. For comparison, since there is no K
atom in the cc-pVDZ basis set, the molecules involved K atom
are excluded. In BIGDFT, we can not generate smooth PECs

for NaLi, Na2 and NaK, and therefore these three molecules
are excluded. C2 with multireference character and F2 owing
to severe static correlation [70] are taken to be the overall
outliers and then are excluded. In the end, the benchmark
dataset contains 43 neutral closed-shell diatomic molecules.

H. Notations

We use the following notations to denote different ap-
proaches used in this work: “Method[active space selection
method]-XC/Basis Set,” where XC can be HF, PBE, or
PBE0 to keep track of the type of MOs. For exam-
ple, EDQC[IEPA1]-PBE0/Wavelet, denotes using the EDQC
method with PBE0 exchange functional for the Daubechies
Wavelet MO basis set, and the method of the active space se-
lection is IEPA1, where Wavelet is shorthand for Daubechies
Wavelet MO basis set.

The notation [MB] or [IEPA1] indicates how the active
space are selected as we discuss in Sec. II C. The active space
indices [n, m] in Table I denote n active electrons and m active
MOs (2m spin orbitals).

III. RESULTS

A. Performance of the Daubechies wavelet basis set

We evaluate the performance of KS MOs generated from
HF, PBE, and PBE0 XC functionals in the Daubechies wavelet
basis set. To further reduce the qubit number requirement, we
use a reduced active space based on a IEPA1 energy criterion
in our proposed approach. In order to fully reveal the perfor-
mance of the Daubechies wavelet basis set, we adopt the result
of the EDQC method of the qubit Hamiltonian in the given
active space to compare to the experimental value so that the
error is fully attributed to the inadequacy of the basis set.

1. H2, LiH, and HF

To begin with, we choose three simple molecules, H2,
LiH, and HF, from Table I, to benchmark the accuracies of
the different methods and their respective errors in predicting
the harmonic vibrational frequencies when compared to the
experimental values (Fig. 1).

For H2, the approach EDQC[2,2]-XC/Wavelet (exact di-
agonalization method; the active space [2,2] determined
by IEPA1) predicts vibrational frequencies of 4462.40
(61.19) cm−1, 4365.33 (−35.88) cm−1, and 4391.45
(−9.76) cm−1 for XC = HF, PBE, and PBE0 functional,
respectively, where the value inside the parenthesis denotes
the error (difference) with respect to the experimental value
and the same notation will be used in the following text. The
improvement in the predicted vibrational frequency with the
increasing level of the XC functionals is obvious. Notably,
CASCI[2,2]-PBE0/cc-pVDZ (the active space [2,2] imitating
the minimal basis set case), CASCI[2,2]-MP2NO/cc-pVDZ
(using MP2 nature orbital; the active space [2,2] determined
by NOON), and CASCI[2,3]-PBE0/cc-pVDZ (the active
space [2,3] determined by IEPA1), yield vibrational frequen-
cies of 4291.21 (−110.0) cm−1, 4224.68 (−176.53) cm−1,
and 4194.85 (−206.35) cm−1, respectively, and all of which
perform quite poorly. The results indicate that classical meth-
ods with a traditional atom-centered basis set do not perform
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FIG. 1. Errors in the harmonic vibrational frequencies of H2,
LiH, and HF molecules (in cm−1) calculated by a variety of methods.
The errors (differences) are obtained by comparing the results to the
corresponding experimental values.

well with a truncated small active space. The best performance
in classical methods as expected is from CCSD(T)-HF/cc-
pVDZ, which uses 10 MOs to yield a result of 4397.70
(−3.51) cm−1, while the result obtained by CCSD(T)-
PBE0/cc-pVDZ is about the same.

For LiH, EDQC[2,3]-PBE0/Wavelet which gives 1405.36
(−0.14) cm−1 performs best, and furthermore the size of
its active space is the smallest. Similarly, for the HF (hy-
drogen fluoride) molecule, EDQC[2,3]-PBE/Wavelet which
gives 4152.30 (13.91) cm−1 and EDQC[2,3]-PBE0/Wavelet
which gives 4148.44 (10.04) cm−1 both using only 3 MOs
determined by IEPA1 outperform the other methods.

To sum up, for these three cases, the EDQC[IEPA1]-
PBE0/Wavelet approach dominates the performance in both
accuracy and efficiency at the same time. Clearly, the adap-
tation of a Daubechies wavelet basis set and a small number
of selected KS MOs can yield the vibrational frequencies as
accurate as those obtained by the high-level WFT methods
with a much larger number of MOs in the cc-pVDZ basis
set. Therefore the KS Daubechies wavelet MOs in the active
space selected by IEPA1 can provide significant improvement
in describing molecular Hamiltonians in both size and quality.

2. Performance on the overall dataset

To evaluate the overall performance of all the methods,
we present statistical measures of errors of the harmonic
vibrational frequencies including RMSD, mean signed de-
viation (MSD), and mean absolute deviation (MAD) in
Table I. In addition, the RMSD for each method is pre-
sented in Fig. 2. Moreover, Fig. 3 presents the scatter plots
to display the correlation between theoretical predictions
and experimental data in different approaches. As shown
at the bottom of Table I, the EDQC[IEPA1]-XC/Wavelet
approach gives the RMSD values of 60.55, 54.07, and
41.44 cm−1 for XC = HF, PBE, and PBE0 functional, re-
spectively. Overall, the EDQC[IEPA1]-XC/Wavelet approach

FIG. 2. RMSD of the harmonic vibrational frequencies (in cm−1)
obtained by comparing the results to their corresponding experimen-
tal values for a variety of methods.

improves with the increasing level of the XC functionals.
This trend is consistent with that of using the classical
CCSD(T) method with MOs in similar XC functionals for the
pruned closed-shell dataset in Ref. [46]. As clearly seen from
Table I and Fig. 2, the approach with the best performance
among all the methods is EDQC[IEPA1]-PBE0/Wavelet. So
EDQC[IEPA1]-PBE0/Wavelet is the approach proposed in
this work, and it gives results in excellent agreement with
the experimental data. We attribute its great performance to
three factors: (i) a better description of the Hamiltonian by
introducing the Daubechies wavelets MOs, (ii) incorporating
the electron correlation effect into the MOs via the XC func-
tional, (iii) a suitable selection of active space by IEPA1. In the
following, we will discuss and emphasize these points through
the comparison with relevant classical methods.

The Daubechies wavelet MOs clearly outperform conven-
tional cc-pVDZ basis set in our benchmark (see Fig. 2).
For example, EDQC[IEPA1]-HF/Wavelet has a decent per-
formance, and if the HF molecule [the orange point in
Fig. 3(a)] is excluded, its RMSD value can be significantly
improved to 41.06 cm−1. One of the errors for the outliers
of EDQC[IEPA1]-HF/Wavelet might be due to the choice on
the size of the initial truncated MO space, as more virtual
orbitals generated by the HF XC functional outside the initial
truncated MO space should be considered to reduce the error.
On the other hand, if the electron correlation can be incor-
porated into the MOs, as in the EDQC[IEPA1]-XC/Wavelet
method, using the same size of the initial truncated MO space
could produce more accurate results than EDQC[IEPA1]-
HF/Wavelet.

For the KS MOs with XC functional beyond HF, the elec-
tron correlation effect is incorporated into the basis set via
the XC functional. As one can see from Fig. 2, the RMSD
values of EDQC[IEPA1]-XC/Wavelet can be reduced with
the increasing level of the XC functionals from XC = HF
to PBE and then to PBE0. The two outliers, HCl and HBr
[the middle green points in Fig. 3(c)], with errors larger than
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FIG. 3. Scatter plots of the harmonic vibrational frequencies of the diatomic molecules versus their corresponding experimental values for
each benchmark method. The blue, green, and orange dots denote outliers with absolute error deviation (in cm−1) less than 85, between 85 and
150, and larger than 150, respectively.

100 cm−1 for EDQC[IEPA1]-PBE0/Wavelet can be attributed
to the over-corrections resulting in the error noncancella-
tion because DFT-PBE0/Wavelet (presented in Ref. [37])
and EDQC[IEPA1]-HF/Wavelet perform well for these two
molecules.

Finally, it is evident that selecting the active MOs correctly
is essential in order to yield accurate results with minimal
computational cost. It is necessary to reduced the number of
qubits required in order to make a calculation successful in the
NISQ era, and we propose to utilize a IEPA1-based approach
for active MO selection. The success of the EDQC[IEPA1]-
XC/Wavelet approaches demonstrates the effectiveness of the
IEPA1 MO selection method. In contrast, the EDQC[MB]-
XC/Wavelet approaches whose active orbitals are selected
in the order of ascending orbital energies do not pro-
vide adequate results (see the data presented in Ref. [37]).
Compared with the EDQC[IEPA1]-XC/Wavelet approaches,
all the EDQC[MB]-XC/Wavelet approaches have signifi-
cantly larger RMSD values, even though the number of
active MOs used in these [MB] approaches are significantly
higher.

To reveal the advantage of using the Daubechies wavelet
basis set and IEPA1 active space selection, we compare the

accuracy of the best achievable quantum computing method
(EDQC[IEPA1]-PBE0/Wavelet) to that of the gold stan-
dard classical method (CCSD(T)-HF/cc-pVDZ, RMSD =
41.73 cm−1). The accuracies of these two approaches
are comparable; however, the number of orbitals used in
EDQC[IEPA1]-PBE0/Wavelet is much less than those in
CCSD(T)-HF/cc-pVDZ, showing a polynomial advantage in
the number of MOs. In the whole dataset, one can see that
only 2 to 7 MOs are used in EDQC[IEPA1]-PBE0/Wavelet
for quantum computing, whereas the CCSD(T)-HF/cc-pVDZ
methods require 10 to 30 MOs in order to achieve similar
accuracies. This difference in the number of orbitals leads to a
significant change in computational complexity, as measured
by the number of terms in the Hamiltonian that need to be
evaluated. As a result, even in our scenario with a small num-
ber of MOs, the number of evaluations needed for the quantum
computation of the EDQC[IEPA1]-PBE0/Wavelet approach
scales as at most (2 × 7)4 = 144 ≈ 3.84 × 104 while the scal-
ing of CCSD(T) is at most 307 ≈ 2.19 × 1010. This clearly
demonstrates the potential of the quantum computing method
in achieving a quantum advantage.

To display our proposed approach has its uniqueness,
we compare EDQC[IEPA1]-PBE0/Wavelet to the classical

043216-9



CHOU, CHOU, HU, CHENG, AND GOAN PHYSICAL REVIEW RESEARCH 5, 043216 (2023)

corresponding method, CASCI[IEPA1]-PBE0/cc-pVDZ,
where the dramatic difference in RMSD (the latter is
123.68 cm−1) comes from the use of different basis sets,
indicating that the same approach (IEPA1 active space and
XC=PBE0) with the traditional basis sets is quite inaccurate.
Moreover, we observe from Fig. 3(e) that the results of
the same classical approach with active space imitating
the minimal basis set, CASCI[MB]-PBE0/cc-pVDZ, with
RMSD being 98.11 cm−1 are apparently red-shifted (see
also the corresponding MSDs in Table I). On the other hand,
both appreciably red-shifted and blue-shifted behaviors can
be observed in Fig. 3(d) for quite a few molecules for the
CASCI[EPA1]-PBE0/cc-pVDZ approach, showing that the
active space determined by IEPA1 is not even useful for the
traditional basis set.

The appropriate approach for classical CASCI method is to
introduce the nature orbital. The accuracy of CASCI[NOON]-
MP2NO/cc-pVDZ whose RMSD is 46.83 cm−1 [the two
obvious outliers are H2 and HCl, marked by the orange points
in Fig. 3(f)] is significantly better than that of CASCI[MB]-
PBE0/cc-pVDZ or CASCI[IEPA1]-PBE0/cc-pVDZ and is
comparable to that of EDQC[IEPA1]-PBE0/Wavelet. Note
that the size of the active space selected by NOON is slightly
larger than that by IEPA1.

The successful application of the KS MOs in the pro-
posed EDQC[IEPA1]-PBE0/Wavelet approach might not
be duplicated in the traditional basis set. The comparison
between the two classical methods, CCSD(T)-PBE0/cc-
pVDZ (RMSD = 43.74 cm−1) and CCSD(T)-HF/cc-pVDZ
(RMSD = 41.73 cm−1) shows that the use of KS MOs with
traditional basis set does not give much benefit in this closed-
shell dataset (see also the result of 	(CCSD(T):RHF) in [46]).
Nevertheless, we remark that previous studies showed some
kind of improvement for radicals [43] and open-shell systems
[46].

B. VQE(UCCSD) benchmark

For large molecular systems, the exact diagonalization
method would not be feasible anymore. Instead, VQE is an al-
gorithm that will be used practically on the near-term quantum
computers. In Table II, the harmonic vibrational frequencies
obtained by VQE with the chemistry-inspired UCCSD ansatz
and the SLSQP optimizer for the [IEPA1]-PBE0/Wavelet
approach are presented (the equilibrium bond lengths are pre-
sented in Ref. [37]). The results show that the VQE(UCCSD)
approach can be as accurate as the exact diagonalization
method except for the BeO family, the CO family, and some
of the N2 family.

Previous study [71] showed that for systems with strongly
correlated electrons, UCCSD would not give results achieving
chemical accuracy even in the region near the equilibrium
(bond-length) point. In strongly correlated systems, the states
resulting from the action of the UCCSD exponential operators
that include only single and double coupled-cluster excitations
might not encompass all those important configurations where
the strongly correlated electrons would also be present. This
motivates us to investigate the Mayer bond order [51], a good
electron correlation descriptor applicable to multiconfigura-
tional (strongly correlated) systems to quantify the degrees

TABLE II. Harmonic vibrational frequencies (in cm−1) of
neutral closed-shell diatomic molecules for VQE(UCCSD)[IEPA1]-
PBE0/Wavelet. The approach EDQC[IEPA1]-PBE0/Wavelet is
excerpted from Table I for the comparison. The value in the paren-
thesis denotes the difference in the results between VQE(UCCSD)
and EDQC.

EDQC[IEPA1] VQE(UCCSD)[IEPA1]
Mol. -PBE0/Wavelet -PBE0/Wavelet

H2 [2,2]4391.45 [2,2]4391.44 (−0.01)
LiH [2,3]1405.36 [2,3]1405.34 (−0.02)
NaH [2,3]1143.76 [2,3]1143.89 (0.13)
BH [4,7]2386.09 [4,7]2385.96 (−0.13)
AlH [4,7]1709.33 [4,7]1712.38 (3.05)
GaH [4,7]1593.80 [4,7]1594.50 (0.70)
HF [2,3]4148.44 [2,3]4146.67 (−1.77)
HCl [2,3]2874.66 [2,3]2874.69 (0.03)
HBr [2,3]2511.84 [2,3]2511.84 (0.00)
LiF [4,6] 938.00 [4,6] 937.94 (−0.06)
LiCl [4,4] 649.26 [4,4] 649.26 (0.00)
LiBr [6,5] 559.84 [6,5] 559.81 (−0.03)
NaF [6,4] 548.70 [6,4] 548.69 (−0.01)
NaCl [6,4] 362.88 [6,4] 362.89 (0.01)
NaBr [6,4] 292.99 [6,4] 292.99 (0.00)
BeO [6,6]1436.71 [6,6]1508.87 (72.16)
BeS [6,6] 949.56 [6,6] 983.82 (34.26)
BF [8,7]1462.33 [8,7]1460.42 (−1.91)
BCl [8,6] 852.18 [8,6] 849.61 (−2.57)
BBr [8,6] 686.03 [8,6] 683.69 (−2.34)
AlF [8,7] 814.55 [8,7] 814.80 (0.25)
AlCl [4,4] 474.55 [4,4] 474.55 (0.00)
AlBr [4,4] 371.20 [4,4] 371.20 (0.00)
GaF [8,6] 609.27 [8,6] 609.01 (−0.26)
GaCl [4,4] 340.81 [4,4] 340.81 (0.00)
CO [8,6]2248.86 [8,6]2336.76 (87.90)
CS [8,7]1298.67 [8,7]1370.75 (72.08)
CSe [8,7]1010.42 [8,7]1056.19 (45.77)
SiO [8,7]1247.22 [8,7]1316.40 (69.18)
SiS [8,8] 716.80 [8,8] 747.32 (30.52)
SiSe [8,6] 582.23 [8,6] 613.98 (31.75)
GeO [8,6] 999.61 [8,6]1066.79 (67.18)
N2 [4,4]2399.42 [4,4]2402.52 (3.10)
PN [4,4]1375.98 [4,4]1372.77 (−3.21)
P2 [4,4] 778.53 [4,4] 798.40 (19.87)
AsN [4,4]1088.54 [4,4]1055.19 (−33.35)
As2 [4,4] 414.28 [4,4] 414.10 (−0.18)
Li2 [2,5] 315.30 [2,5] 315.30 (0.00)
ClF [10,7] 689.23 [10,7] 689.11 (−0.12)
Cl2 [10,7] 504.52 [10,7] 504.56 (0.04)
BrF [10,7] 625.71 [10,7] 625.79 (0.08)
BrCl [10,7] 400.00 [10,7] 400.03 (0.03)
Br2 [8,6] 288.04 [8,6] 288.16 (0.12)
RMSD 41.44 51.62
MSD −9.75 1.70
MAD 28.53 35.37

of bonding suitable for our analysis. That is, higher Mayer
bond order indices correspond to more strongly correlated
electrons. We calculate and show the Mayer bond order for
the neutral closed-shell diatomic molecules in Ref. [37], and
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FIG. 4. Mayer bond order indices calculated by DFT-PBE0/

cc-pVDZ versus the error (difference) in the harmonic vibra-
tional frequencies (in cm−1) calculated by VQE(UCCSD)[IEPA1]-
PBE0/Wavelet with respect to those by EDQC[IEPA1]-PBE0/

Wavelet for the diatomic molecule in the benchmark dataset.
The orange dots denote the vibrational frequency results for the
specified molecules calculated by VQE(RealAmplitudes)[IEPA1]-
PBE0/Wavelet. The relation between blue and orange dots is from
Table III, and the green arrows point toward the directions of im-
provement from the UCCSD ansatz to the RealAmplitudes ansatz.

the trend of the Mayer bond order is similar for different XC
functionals considered here. We choose the Mayer bond order
indices calculated by DFT-PBE0/cc-pVDZ (to be consistent
with the XC functional and the traditional basis set used in
this work) to present the relation with the harmonic vibrational
frequencies calculated by VQE(UCCSD) in Fig. 4. As clearly
indicated in Fig. 4, systems for which UCCSD does not yield
accurate harmonic vibrational frequencies correspond to those
whose Mayer bond order indices are larger than 2, which are
the CO family, the N2 family, and the BeO family (the blue
points in the region where the Mayer bond order indices >2

FIG. 5. Typical quantum circuit of the hardware-efficient Re-
alAmplitudes ansatz. For simplicity, a four-qubit two-local quantum
circuit with two repeated unit pattern circuits is shown. The unit
pattern circuit consists of a layer of parameterized RY rotational
gates applied on all qubits and a layer of CNOT gates in linear
entanglement. For clarity, the barrier is added to separate the repeated
unit pattern circuits from the final rotation layer and the Hartree-Fock
initial state is skipped to draw. The rotational angles θs in the RY

gates denote the tunable circuit parameters.

in Fig. 4), notably for the BeO family as they are traditionally
thought of as the single-bond molecules. We conclude that
the index of the Mayer bond order larger than 2 is a good
descriptor to indicate that UCC truncated to SD might be
too restricted to describe the harmonic vibrational frequency
accurately.

C. VQE(UCCSD) versus VQE(RealAmplitudes)

For those systems whose Mayer bond order indices are
larger than 2, we then consider a heuristic hardware-efficient
ansatz, the RealAmplitudes ansatz (see Fig. 5) implemented
in QISKIT [61], since it can go beyond the restriction of the
accessible Hilbert space of the chemistry-inspired UCCSD
ansatz. That is, the hardware-efficient ansatz can increase
its expressibility [72] by increasing the number of repeated
unit pattern circuit consisting of a layer of parameterized
RY rotational gates and a layer of entanglement circuit with

TABLE III. Comparisons of the harmonic vibrational frequencies and the relevant circuit information between the VQE(UCCSD) and
VQE(RealAmplitudes) calculations using the Hamiltonian in the [IEPA1]-PBE0/Wavelet approach for the systems whose Mayer bond order
indices are larger than 2 with the required number of qubits up to 10. The value inside the parenthesis in the harmonic vibrational frequency
denotes the difference between VQE and EDQC.

VQE(UCCSD) State VQE(RealAmplitudes) Depa State
Mol. [IEPA1]-PBE0/Wavelet Depa Nθb Fidelityc [IEPA1]-PBE0/Wavelet (Repd ) Nθb Fidelityc

BeO [6,6]1508.87 (72.15) 10914 117 0.98634 [6,6]1435.63 (−1.09) 99(30) 310 0.9990823
BeS [6,6] 983.82 (34.27) 10914 117 0.99086 [6,6] 955.98 (5.39) 99(30) 310 0.9981542
CO [8,6]2336.76 (87.90) 8460 92 0.99729 [8,6]2249.18 (3.49) 84(25) 260 0.9999526
SiSe [8,6] 613.98 (31.75) 8460 92 0.99515 [8,6] 584.19 (1.96) 99(30) 310 0.9996153
GeO [8,6]1066.79 (67.18) 8460 92 0.99068 [8,6]1012.25 (2.59) 84(25) 260 0.9988251
N2 [4,4]2402.52 (3.10) 1480 26 0.99991 [4,4]2400.07 (0.65) 35(10) 66 0.9999982
PN [4,4]1372.77 (−3.21) 1480 26 0.99775 [4,4]1376.12 (0.14) 35(10) 66 0.9999997
P2 [4,4] 798.40 (19.87) 1480 26 0.99988 [4,4] 777.54 (−0.99) 35(10) 66 0.9999974
AsN [4,4]1055.19 (−33.35) 1480 26 0.99785 [4,4]1088.34 (−0.20) 35(10) 66 0.9999982
As2 [4,4] 414.10 (−0.18) 1480 26 0.99971 [4,4] 414.31 (0.03) 35(10) 66 0.9999996

aDep denotes the circuit depths.
bNθ denotes the number of tunable circuit parameters.
cState fidelity denotes the average state fidelity for the molecular distance points employed to calculate the vibrational frequency.
dRep denotes the number of repetitions of the unit pattern circuit.
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two-qubit entangling gates (see Fig. 5). During the procedure
of increasing the number of repetitions, the results from the
circuits with each number of repetitions will be inspected
in order to evaluate and decide what the best circuit depth
and number of tunable parameters for the molecule under
consideration would be. Meanwhile, the performance of such
non-chemistry-inspired ansatz is accomplished through the
heuristic search on the parameter space.

In Table III, the results of the harmonic vibrational fre-
quencies between the UCCSD ansatz and the RealAmplitudes
ansatz with linear entanglement are compared for the sys-
tems whose Mayer bond order indices are larger than 2 and
whose required numbers of qubits are not greater than 10
due to the computational time cost consideration. In order
to accurately measure the degrees of errors and directly dis-
tinguish the accuracies achieved by the UCCSD ansatz and
the RealAmplitudes ansatz in VQE, we calculate the state
fidelity (defined as |〈�1|�2〉|2 for pure states |�1〉 and |�2〉)
to measure how much overlap between the exact wave func-
tion obtained from the exact diagonalization method and the
wave function obtained from the UCCSD ansatz and from the
RealAmplitudes ansatz, respectively. We use 10 repetitions of
the unit pattern circuit for six-qubit molecular systems and
25 or 30 repetitions for ten-qubit systems in the RealAmpli-
tudes ansatz to achieve the desired accuracy. As one of the
superior advantage of the hardware-efficient ansatz, the circuit
depth of the RealAmplitudes ansatz, which is 84 or 99 for
ten-qubit systems, is significantly shallower than the circuit
depth of the UCCSD ansatz, which is 8460 or 10914 for the
corresponding ten-qubit systems. Despite having shallower
circuit depths, the RealAmplitudes ansatz could still achieve
higher state fidelities than the UCCSD ansatz, and for the
cases with a small number of qubits outstanding performance
can be achieved. Note that the energy differences between
the result obtained by the exact diagonalization and that by
the RealAmplitudes ansatz for the molecules are all within
the chemical accuracy, which is not true when the UCCSD
ansatz is used. This is a clear indication that a heuristic
hardware-efficient quantum circuit can span a state space
larger than that spanned by the UCCSD method, a sign of
polynomial quantum advantage. To the best of our knowledge,
our investigation is the first systematical benchmark study to
demonstrate that a heuristic hardware-efficient ansatz could
outperform a chemistry-inspired UCCSD ansatz in predicting
accurate molecular properties by quantum computation.

At this moment, let us recapitulate the performance of
quantum computing compared with gold standard method in
classical computing. VQE(UCCSD)[IEPA1]-PBE0/Wavelet
yields less accurate results compared with CCSD(T)-
HF/cc-pVDZ (see Table II and Table I), showing that
using the UCCSD ansatz in quantum computation might
not be preferable. However, VQE(RealAmplitudes)[IEPA1]-
PBE0/Wavelet yields results basically very close or equiva-
lent to the CCSD(T)-HF/cc-pVDZ method. This is especially
notable for difficult-case molecules with Mayer bond order
indices larger than 2 and whose required numbers of qubits
are not greater than 10. In these cases, the quantum comput-
ing results could be as good as the best achievable accuracy
obtained from the EDQC[IEPA1]-PBE0/Wavelet. Therefore
quantum computation could achieve accuracy comparable

with CCSD(T)-HF/cc-pVDZ, while, in terms of computa-
tional resources, the quantum algorithm benefited from our
approach requires much smaller number of Hamiltonian eval-
uations compared with CCSD(T)-HF/cc-pVDZ.

We, however, note here that for the molecular systems
using the same number of qubits, the number of tunable pa-
rameters for the RealAmplitudes ansatz is more than that for
the UCCSD ansatz. For example, for the ten-qubit systems
shown in Table III, the number of tunable parameters for the
RealAmplitudes ansatz is 260 or 310, while it is 92 or 117
for the UCCSD ansatz. Besides, the state fidelities of the Re-
alAmplitudes ansatz become slightly lower when the number
of qubits becomes larger. For a system using a large number
of qubits for quantum computation, it is necessary to increase
the number of repeated circuit layers of the parameterized and
entanglement gates in order to obtain sufficient expressibility.
This could lead to a circuit with many parameters, making the
optimization difficult as the initial values of the parameters
would potentially critically affect the optimization result. Mc-
Clean et al. [73] have shown that the optimization process of
random initialization would be stuck in the local trap due to
the barren plateaus. Contrarily, the zero initialization (all the
values of the tunable parameters are initialized to zeros) would
give better results in most situations. Specifically for the op-
timization procedure, we apply a combination of the SLSQP
and L-BFGS-B optimizers, where the former converges faster
but less accurate than the latter. In the first stage, we consider
the zero initialization of the tunable parameters and then also
add small random numbers to them for the SLSQP optimizer
to reach the converged parameters. Then, in the second stage,
the converged parameters with relatively high state fidelities
from SLSQP are taken as the initial parameters for L-BFGS-B
to find the optimal parameter values.

Since we aim to calculate the vibrational frequencies de-
rived from the curvature around the equilibrium geometry of
the PEC, we need to calculate the molecular ground state ener-
gies on a set of points (different distances between the atoms)
around the equilibrium (bond-length) point to construct the
PEC. Note that in order to obtain accurate vibrational fre-
quency for a molecule, an extremely high state fidelity might
not be required to obtain a very accurate ground state en-
ergy; instated, the state fidelities or more precisely the ground
state energies should have consistent correlated accuracy on
all the points, which would give a parallel constant energy
shift with respect to the reference PEC. If achieving chem-
ical accuracy is the only requirement, then the circuit could
become even shallower to yield results within it. However,
if the state fidelities are not high enough, one of the draw-
back of the non-chemistry-inspired ansatz is that each point
is optimized independently so the optimized energy points on
the PEC behave like no appreciable correlation. To enhance
the correlation between different molecular distance points,
after the second optimization stage, if the optimization on one
of the molecular distance points yields a distinctively lower
molecular ground state energy, its converged parameters are
taken as the initial parameters for the other points to optimize
further until the variance of the energy for each point is small.
Therefore the decision on the choice of the number of the
repeated circuit layers for the RealAmplitudes ansatz depends
not only on the state fidelity of a single point but also on the
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variances of energies on all the points used to calculate the
vibrational frequency.

We remark here that even for the same size of the Re-
alAmplitudes circuit, different molecular systems (or different
Hamiltonians) yield different degrees of state fidelities. This
comes from the differences in structure and coefficients of the
weighted Pauli terms in the Hamiltonians so that the optimizer
may favor some cases. On the other hand, in addition to the
number of repeated circuit layers, the types of the entangling
gates or/and entanglement circuit structures would also affect
the results. The advantage and disadvantage of more (or less)
entanglement for different Hamiltonians remain to be clari-
fied. The approach we present here is just a way to achieve
high state fidelities, so potentially more efficient methods for
large systems should be studied in the future.

IV. CONCLUSION AND OUTLOOK

We propose a quantum computational approach that com-
bines KS MOs expanded in the Daubechies wavelet basis
set and an optimal active space determined by IEPA1 energy
criterion, resulting in a significantly reduced qubit number
requirement (2 to 12 versus 20 to 60 required by cc-pVDZ
with frozen core approximation) while maintaining excellent
accuracy compared to the experimental data. We validate the
approach by benchmarking its performance on the harmonic
vibrational frequencies of 43 neutral closed-shell diatomic
molecules. The RMSD is small by using the Daubechies
wavelets basis set and the error is further decreased by us-
ing KS MOs with higher-level XC functionals. The best
approach here is EDQC[IEPA1]-PBE0/Wavelet with per-
formance comparable to CASCI[NOON]-MP2NO/cc-pVDZ
and CCSD(T)-HF/cc-pVDZ. The results obtained by this
EDQC[IEPA1]-PBE0/Wavelet approach, considered as the
best achievable results by quantum computation, are in great
agreement with the experimental data. In contrast, for the
traditional basis set on this closed-shell dataset, the same
approach, e.g., CASCI[IEPA1]-PBE0/cc-pVDZ, could not
provide noticeable improvements.

For larger systems, the exact diagonalization method
is unfeasible due to the exponential scaling of the prob-
lem with the system size and thus a quantum computing
approach is required. So we conduct VQE quantum com-
putations of the vibrational frequencies of the 43 neutral
closed-shell diatomic molecules using the Hamiltonians con-
structed from the approach of [IEPA1]-PBE0/Wavelet with
the chemistry-inspired UCCSD ansatz. The results shows that
the VQE(UCCSD) approach can be as accurate as the ex-
act diagonalization method except for systems whose Mayer
bond order indices are larger than 2. Then for those systems,
we demonstrate that a hardware-efficient RealAmplitudes
ansatz can provide significant improvements over the UCCSD
ansatz. This indicates that the hardware-efficient ansatz can
avoid the restriction on the accessible Hilbert space by the
chemistry-inspired UCCSD ansatz. At the same time, the ap-
pealing feature of the shallow circuit of the hardware-efficient
ansatz will make quantum computation of accurate vibrational
frequencies on the near-term NISQ devices realizable.

Based on the improvement of the results with the
increasing hierarchy of the DFT XC functionals in this

work, it is reasonable to expect that more promising results by
quantum computing would be obtained by using higher-level
XC functionals while keeping the number of qubits significant
reduced. On the other hand, it is interesting to note that the
XC functionals used here are developed for DFT and it might
be worth trying to design XC functionals for KS MOs for the
WFT calculation such that the accuracy and the efficiency of
the calculation could be further improved reaching another
level.

In summary, this benchmark study validates novel means
to achieve highly-accurate calculations of molecular proper-
ties on quantum computers with significantly reduced qubit
resources. Furthermore, VQE calculations with chemistry-
inspired UCCSD and heuristic hardware-efficient ansatzes are
compared to demonstrate the advantage of the heuristic ansatz
in complex chemical bonding systems. Our calculations show
that a quantum computer capable of carrying out calcula-
tions on � 10 qubits with circuit depth < 100 can accurately
predict the vibrational frequencies of neutral closed-shell di-
atomic molecules, and these quantum resource requirements
should be able to be achieved on near-term NISQ devices.
In fact, according to the so-called 100 × 100 Challenge in
the announcement of the IBM Quantum Summit 2022, IBM
Quantum plans to offer a tool able to calculate unbiased
(noiseless) observables of circuits with 100 qubits and depth-
100 gate operations in a reasonable runtime in 2024 [50]. Our
benchmark investigation here provides a critical assessment
on the power of quantum computation of molecular properties
and insights on further improvements.
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