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Signatures of many-body localization of quasiparticles in a flat band superconductor
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We construct a class of exact eigenstates of the Hamiltonian obtained by projecting the Hubbard interaction
term onto the flat band subspace of a generic lattice model. These exact eigenstates are many-body states in
which an arbitrary number of localized fermionic particles coexist with a sea of mobile Cooper pairs with zero
momentum. By considering the dice lattice as an example, we provide evidence that these exact eigenstates are, in
fact, a manifestation of local integrals of motions of the projected Hamiltonian. In particular, the spin and particle
densities retain memory of the initial state for a very long time if localized unpaired particles are present at the
beginning of the time evolution. This shows that many-body localization of quasiparticles and superfluidity can
coexist even in generic two-dimensional lattice models with flat bands, for which it is not known how to construct
local conserved quantities. Our results open interesting perspectives on the old condensed-matter problem of the
interplay between superconductivity and localization.
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I. INTRODUCTION

Strongly correlated quantum many-body systems remain
a foremost challenge in physics and hold the key to un-
derstand fascinating phenomena such as high-temperature
(high-Tc) superconductivity [1]. The microscopic origin of
high-temperature superconductivity remains a topic of active
research because it is still very difficult to accurately sim-
ulate the model Hamiltonians that are believed to describe
the relevant low-energy degrees of freedom of high-Tc su-
perconducting materials. One of these model Hamiltonians,
the Fermi-Hubbard model [2], which describes copper-based
high-Tc superconductors (so-called cuprates), has become
the favorite test subject in the field of strongly correlated
systems [3,4]. Numerical exact diagonalization is particu-
larly challenging in the case of the Hubbard model with
repulsive interactions, due to many competing orders [5–7].
The type of order that manifests in the ground state is
sensitive to the size of the finite cluster used in exact
diagonalization, making the extrapolation to the thermody-
namic limit problematic. On the other hand, quantum Monte
Carlo suffers from the sign problem in the case of repulsive
interactions [3].

To overcome these difficulties, new approaches have been
developed, such as the quantum simulation of the Hubbard
model using ultracold gases in optical lattices [8,9], in ad-
dition to new advanced numerical methods based on tensor
network states [10,11], for instance. Recent numerical results
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indicate that superconducting long-range order does not seem
to occur in the repulsive Hubbard model on a simple square
lattice with only nearest-neighbor hoppings [12]. Thus, to
properly account for the superconductive properties of copper-
based superconductors it becomes important to consider more
realistic model Hamiltonians, for instance, by augmenting
the pure Hubbard model with next-nearest-neighbor hoppings
[13,14], or by considering a lattice model with more than one
band. In the case of cuprates, a three-band model describing
both the copper d orbitals and the oxygen p orbitals in the
copper-oxide planes of cuprates seems the most appropriate
[15–20].

Multiband lattice models contain more than one orbital per
unit cell, and are therefore more difficult to simulate numer-
ically. On the other hand, they can harbor new qualitative
effects. For instance, in a multiband lattice model, the strongly
correlated regime can be achieved by reducing the bandwidth
of a partially filled band to zero, obtaining a so-called flat
band [21]. Crucially, due to interfering hopping paths that
lead to particle localization, the vanishing of the bandwidth is
not necessarily accompanied by the vanishing of the hopping
amplitudes in the lattice model, as it would in the case of
a single band/orbital lattice model. This means that the Wan-
nier functions that span the flat band subspace can have a
large overlap and by projecting the interaction term on this
subspace one obtains a nontrivial purely quartic Hamiltonian,
that is a linear combination of products of four fermionic field
operators [22,23]. The range of the terms in this Hamiltonian
is determined by how fast the Wannier functions decay with
distance.

The Hubbard interaction term projected on the flat band
subspace of a lattice model, called the projected Hamilto-
nian from here on, is the subject of the present paper. This
class of quartic Hamiltonians essentially poses a many-body
problem and are in general, difficult to study. Nevertheless,
it is possible to derive several interesting exact results. One
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example is provided in this work, in which we derive exact
eigenstates of generic projected Hamiltonians in the spin im-
balanced case, that is for different number of spin up and
down particles N↑ �= N↓. This result builds on previous related
study [23–25].

Recently, there has been a lot of interest on the topic of su-
perconductivity and superfluidity occurring in flat or quasiflat
bands. The original motivation is that the critical temperature
of the superconducting transition is enhanced by the high den-
sity of states of a quasiflat band [26,27] (the density diverges
in the strict flat band limit, nevertheless, the critical tempera-
ture remains finite). Moreover, lattice models with flat bands
have been realized with ultracold gases in optical lattices,
which are a flexible platform for exploring superfluid phe-
nomena. Two notable examples are the Lieb lattice [28,29],
which also describes the atomic structure of the copper-oxide
planes of cuprates, and the kagome lattice [30,31]. Proposals
to realize other lattice models with flat bands, such the dice
lattice, have been put forward [32]. Finally, the discovery
of superconductivity in twisted bilayer graphene [33] has
stimulated a lot of theoretical and experimental efforts in
the new field of moiré materials [34], in which flat bands
and band structures with exotic properties are engineered
through the precise twisting of layers of two-dimensional
materials, such as graphene, with respect to each other.
The same idea has also been implemented in ultracold gas
experiments [35].

Flat bands are rather peculiar, since, in the absence of
interactions they are necessarily insulating regardless of the
filling. Thus, one way to characterize flat bands is as trans-
lationally invariant or disorder-free Anderson insulators. On
the other hand, a partially filled flat band generally becomes
a superconductor with a high critical temperature as soon as
an attractive Hubbard interaction is switched on [36–39]. The
reason being that two-body bound states become delocalized
and their inverse effective mass is proportional to the inter-
action strength, and to the overlap between distinct Wannier
functions of the flat band [23,40–42].

Recent studies [24,25] have pointed out that, even if the
ground state of a partially filled flat band in the presence of
interactions is superconducting/superfluid, the quasiparticle
excitations can be localized, namely they have infinite ef-
fective mass. Quasiparticle excitations carry a nonzero spin
and have fermionic statistics. These localized quasiparticles
coexist with mobile two-body bound states, which are bosons.
In other words, the dispersion of quasiparticles is flat as in the
noninteracting case. Evidence of localization of quasiparticles
in flat band superconductors mainly comes from the analytical
results obtained in Refs. [24,25] and from the quasiparticle
dispersion obtained from the Bogoliubov-de Gennes Hamil-
tonian of mean-field theory, for instance, in the case of the
Lieb lattice [36].

The phenomenon of localization of quasiparticles in flat
band superconductors draws an interesting connection with
many-body localization, a subject, which has attracted consid-
erable interest [43–50], thanks to its observation in ultracold
gas experiments [51–53]. Loosely speaking, many-body lo-
calization is simply Anderson localization in the presence
of interactions. More precisely, it is now established that
the defining property of many-body localization is the

FIG. 1. Schematic of the dice lattice. Sixfold coordinated sites
(hub sites, orbital index α = 1, 2) are denoted by hexagons, while
threefold coordinated sites (rim sites) are denoted by triangles. The
rim sites can be further divided into two triangular sublattices de-
noted by up- (α = 3, 5) and down-pointing triangles (α = 4, 6),
respectively. The bonds denote nearest-neighbour hoppings, which
are all real and have the same absolute value t = 1. The color of
the bond denotes the sign of the hopping amplitude, grey for +t
and red for −t . The rectangular box is the magnetic unit cell, given
by the fundamental vectors a j=1,2 (29). Two Wannier functions of
the two lowest flat bands of the dice lattice Hamiltonian are also
shown. The Wannier function wnl, with n = 1, 2, is centered on the
hub site α = n in unit cell l and is nonzero only on the same hub site
and the adjacent rim sites, therefore it is compactly localized. These
“flower states” form the orthonormal basis used in the expansion of
the projected Hamiltonian (7).

presence of an extensive number of local integrals of mo-
tion that completely block particle transport and prevent
thermalization in a quantum many-body system [47,54–57].
These local integrals of motion generally appear for large
enough disorder; however, examples of disorder-free sys-
tems in which many-body localization occurs are also known
[58–62]. Methods to design lattice models possessing local
integrals of motion from the bottom up have been proposed as
well [63,64].

Interestingly, for some specific one-dimensional lattice
models with flat bands, it is possible to analytically construct
local integrals of motion, also called conserved quantities,
thereby establishing a rigorous connection between the lo-
calization of quasiparticles in flat band superconductors and
many-body localization [24]. The main difference with stan-
dard many-body localization is that the mobile two-body
bound states have ergodic behavior and thermalize, contrary
to the localized quasiparticles. Analogous analytical results
regarding local conserved quantities in the case of lattice
models in two or more dimensions is lacking at present. This
important open question is addressed here with an exact diag-
onalization study of a specific lattice model with flat bands,
the dice lattice [65–72], see Fig. 1. Through the analysis of
the eigenstate spectrum and the time evolution of three- and
four-particle states, we find evidence for the presence of local
conserved quantities in this model.
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The present paper is organized as follows. In Sec. II,
we provide analytic results for the projected Hamiltonian of
generic lattice models with flat bands. In order the keep our
paper self-contained, in Sec. II A we introduce the concept
of projected Hamiltonian for the attractive Hubbard interac-
tion and derive its exact ground state in the spin balanced
case N↑ = N↓ (Nσ is the number of particles with spin σ ).
The method used to obtain this result is slightly different
from the original papers [23,25] and is more suited to de-
rive the exact eigenstates in the spin imbalanced case |N↑ −
N↓| � 1, which are presented in Sec. II B. In these exact
eigenstates, localized quasiparticles are placed at arbitrary
positions on top of a sea of Cooper pairs with zero mo-
mentum. The special case |N↑ − N↓| = 1 has been already
discussed in Ref. [25]. The assumptions under which these
results hold are presented in detail in Sec. II A, particu-
larly, the so-called uniform pairing condition introduced in
Ref. [23].

In Sec. III, a specific lattice model with flat bands, the
two-dimensional dice lattice with a perpendicular magnetic
field [67,68] is introduced. For a specific value of the magnetic
flux per unit cell, the two lowest bands of the dice lattice
are perfectly flat and degenerate. A special property of the
dice lattice is that the flat band subspace is spanned by Wan-
nier functions that can be taken to be compactly localized,
that is, nonvanishing only on a finite number of lattice sites.
This property makes the dice lattice particularly amenable to
analytical and numerical studies. Indeed, in Sec. III A, we
find that the general analytical results presented in Sec. II
remain valid in the case of the dice lattice even if the uniform
paring condition is partially lifted. This is a straightforward
consequence of the compact nature of the Wannier func-
tions. In Sec. III B, we provide a convenient representation of
the projected Hamiltonian of the dice lattice. The projected
Hamiltonian can be written in terms of operators that be-
long to three different classes: (i) localized spins, (ii) on-site
singlets, and (iii) bond singlets. The on-site singlets and the
bond singlets are two-body bound states moving on triangular
and kagome lattices, respectively. The projected Hamiltonian
also contains a term that converts on-site singlets to bond sin-
glets and vice versa. In preparation for the numerical results
presented in the following sections, the two-body problem
for the projected Hamiltonian of the dice lattice is solved in
Appendix.

Section IV presents numerical results obtained by exact
diagonalization of the projected Hamiltonian of the dice lat-
tice for particle number N↑ + N↓ > 2 and N↑ �= N↓. First,
in Sec. IV A the spectrum of the Hamiltonian is investi-
gated. It is found that, while the ground state is perfectly
degenerate, in agreement with the general analytical results
of Sec. II, the excited states form multiplets that are only
quasidegenerate. We interpret this as evidence of local con-
served quantities, with the lifting of the degeneracy possibly
due to finite-size effects. In Sec. IV B, the focus is on
the nonequilibrium dynamics. The main result is that the
spin and particle densities do not thermalize, but rather re-
tain memory of the initial positions of the single unpaired
particles. This is another piece of evidence for the pres-
ence of local conserved quantities enforcing quasiparticle
localization.

Finally, in Sec. V, we summarize and discuss the main
results of this paper and point out interesting directions for
future studies.

II. EXACT MANY-BODY EIGENSTATES IN LATTICE
MODELS WITH FLAT BANDS

A. Flat band projected Hamiltonian

In this section, we introduce the technique of projecting
the Hubbard interaction term of a lattice Hamiltonian onto
the subspace corresponding to a flat band or a group of de-
generate flat bands, which are obtained by diagonalizing the
noninteracting term of the same Hamiltonian. This method
is just the first step in a systematic expansion known as the
Schrieffer-Wolff transformation [23]. The small parameter in
this perturbative expansion is U/Egap � 1, where U is the
coupling constant of the interaction, in our case the Hubbard
interaction, and Egap is the energy gap, that is, the minimal
energy interval separating the group of degenerate flat bands
from all other bands. The projected Hamiltonian provides an
accurate description of the low-energy degrees of freedom
of the many-body system if the parameter U/Egap is small
enough. This is called the isolated band limit.

Using the algebra of projected field operators, it is shown
how to construct exact eigenstates of the projected Hamil-
tonian with an arbitrary number of Cooper pairs with zero
momentum. The derivation of this result, presented originally
in Ref. [23] in the case where the particle number is not
fixed (grand canonical ensemble) and in Ref. [25] for fixed
particle number (canonical ensemble), is repeated here with
some variations since it serves as a starting point for obtaining
a class of exact eigenstates in Sec. II B. The notation used here
is very close to that of Refs. [23,24].

Consider a generic translationally invariant lattice model
with a Hamiltonian of the form Ĥ = Ĥfree + Ĥint, where Ĥfree

is the noninteracting term and Ĥint an Hubbard interaction
term of the form

Ĥint = −
∑
i,α

Uα n̂iα↑n̂iα↓, n̂iασ = ĉ†
iασ ĉiασ , (1)

with ĉiασ fermionic field operators. Here, we focus on the case
of attractive interactions Uα > 0. The vector of integers i =
(i1, i2)T labels the unit cells and α = 1, . . . , Norb labels the
different orbitals inside the unit cell. For instance, the dice
lattice, which is studied in detail in Secs. III and IV, contains
Norb = 6 orbitals in its unit cell, as shown in Fig. 1. For spin-
1/2 fermions, the spin index takes two possible values σ =↑
, ↓. Without loss of generality, we restrict our presentation to
two-dimensional systems for definiteness.

The noninteracting term Ĥfree is quadratic in the field op-
erators and can be diagonalized by solving the corresponding
single-particle problem. If we also assume that the component
σ of the spin is a conserved quantity, then the noninteracting
term can be written in a diagonalized form as

Ĥfree =
∑
n,k

∑
σ=↑,↓

εnkσ f̂ †
nkσ f̂nkσ , (2)

where f̂nkσ are new fermionic operators associated to the
eigenstates ψnkσ (i, α) of the noninteracting (single-particle)
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Hamiltonian. Due to translational invariance, these eigenstates
are Bloch plane waves labeled by the band index n and the
quasimomentum k = (kx, ky)T . We assume that the bands in a
given set F are all degenerate and flat, that is,

εnkσ = ε0 = const. for n ∈ F and σ =↑, ↓ . (3)

We require the Hamiltonian to be time-reversal symmetric,
therefore all the flat bands are spin degenerate. The group of
degenerate flat bands is also isolated, that is, separated from
all other bands by a finite band gap Egap.

Since we are interested in the low-energy properties of the
system when the flat bands in the set F are partially filled and
Uα/Egap � 1, it is useful to introduce projected field operators
[23]

c̄iασ = 1√
Nc

∑
n∈F

∑
k ψnkσ (i, α) f̂nkσ

= ∑
n∈F

∑
l wnσ (i − l, α)d̂nlσ . (4)

The projected field operators are obtained by expanding the
field operators ĉiασ in the basis of Bloch plane waves and
retaining only those terms corresponding to the flat bands in
the set F . An alternative expansion is in terms of the Wannier
functions wnσ (i − l, α) and the associated field operators d̂nlσ .
The Wannier functions are obtained from the Bloch plane
waves as

wnσ (i, α) = 1

Nc

∑
k

ψnkσ (i, α), (5)

with Nc the number of unit cells in the lattice [73]. If, and only
if, the bands are flat, will the Wannier functions be eigenstates
of the noninteracting Hamiltonian. The Wannier functions
provide a convenient basis of local wave functions on which
the projected Hamiltonian can be expanded, as shown be-
low in the case of the dice lattice. An important property of
Wannier functions is that a complete basis for the subspace
of a given band n is obtained by taking the translates of
just a single Wannier function, that is {wnσ (i − l, α) | l ∈ Z2}.
Moreover, this basis is orthonormal since∑

i,α

w∗
n1σ

(i − l1, α)wn2σ (i − l2, α) = δn1,n2δl1,l2 . (6)

A good description of the low-energy properties for small
Uα/Egap is given by the projected Hamiltonian, which in our
case is the Hubbard interaction term projected on the subspace
of the degenerate flat bands. The projected Hamiltonian ex-
panded in the Wannier function basis reads

Hint = −
∑
i,α

Uα n̄iα↑n̄iα↓ = −
∑
i,α

Uα c̄†
iα↑c̄†

iα↓c̄iα↓c̄iα↑

= −
∑

n1,...,n4

∑
l1,...,l4

( ∑
i,α

Uαw∗
n1↑(i − l1, α)w∗

n2↓

× (i − l2, α)wn3↓(i − l3, α)wn4↑(i − l4, α)

)

× d̂†
n1l1↑d̂†

n2l2↓d̂n3l3↓d̂n4l4↑. (7)

Here, the sum over the band indices is restricted to the group
of degenerate flat bands (n1, . . . , n4 ∈ F).

It is important to note that the projected field operators
defined in (4) satisfy modified anticommutation relations

{c̄iασ , c̄jβσ ′ } = {c̄†
iασ , c̄†

jβσ ′ } = 0, (8)

{c̄iασ , c̄†
jβσ ′ } = δσ,σ ′Pσ (i − j, α, β ), (9)

Pσ (i − j, α, β ) =
∑
n,l

wnσ (i − l, α)w∗
nσ (j − l, β ), (10)

where Pσ is the single-particle operator projecting on the F
subspace with spin σ . As a consequence of the above commu-
tation relations, we have the identity

n̄2
iασ = Pσ (0, α, α)n̄iασ , with n̄iασ = c̄†

iασ c̄iασ , (11)

which should be compared with n̂2
j = n̂ j , valid for the usual

fermionic operators ĉ j, ĉ†
j and n̂ = ĉ†

j ĉ j .
In order to construct exact eigenstates of the projected

Hamiltonian, we introduce the creation operator of a Cooper
pair in a zero-momentum state

b̂† =
∑
n∈F

∑
k

f̂ †
nk↑ f̂ †

n,−k,↓ =
∑
n∈F

∑
j

d̂†
nj↑d̂†

nj↓ =
∑
i,α

c̄†
iα↑c̄†

iα↓.

(12)

The equivalence of the three different expansions of the op-
erator b̂† shown above is a consequence of time-reversal
symmetry, which for spin-1/2 particles amounts to the fol-
lowing relations between wave functions with opposite spin

wn↑(i, α) = w∗
n↓(i, α)

def= wn(i, α), (13)

ψnk↑(i, α) = ψ∗
n,−k,↓(i, α)

def= ψnk(i, α), (14)

P↑(i − j, α, β ) = P∗
↓ (i − j, α, β )

def= P(i − j, α, β ). (15)

The following commutation relations are essential for what
follows and are only valid in the case of time-reversal sym-
metry,

[c̄iα↑, b̂†] = c̄†
iα↓, [c̄iα↓, b̂†] = −c̄†

iα↑, (16)

[c̄†
iασ , b̂†] = 0, (17)

[n̄iασ , b̂†] = c̄†
iα↑c̄†

iα↓. (18)

To prove our results, we need an additional assumption,
namely that the following condition, introduced for the first
time in Ref. [23], holds

UαP(0, α, α) = UβP(0, β, β ) = Ep, ∀α, β ∈ S (19)

P(0, α, α) = 0, if α /∈ S. (20)

Here S is the set of orbitals on which the wave functions of
the group of degenerate flat bands F are nonzero. Note that
this condition, called the “uniform pairing condition” [23,25],
can always be met by adjusting the orbital-dependent Hubbard
couplings Uα .

Assuming time-reversal symmetry, conservation of the
spin component σ and the uniform pairing condition, it
is shown that b̂, b̂† are ladder operators for the projected
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Hamiltonian Hint,

[Hint, b̂†] = −
∑
i,α

Uα c̄†
iα↑c̄†

iα↓[c̄iα↓c̄iα↑, b̂†]

= −
∑
i,α

Uα c̄†
iα↑c̄†

iα↓(c̄iα↓c̄†
iα↓ − c̄†

iα↑c̄iα↑)

= −
∑
i,α

UαP(0, α, α)c̄†
iα↑c̄†

iα↓

= −Ep

∑
i,α

c̄†
iα↑c̄†

iα↓ = −Epb̂†. (21)

Here we have used, in order, the commutation relations (16)
and then (8) and (9) and finally the uniform pairing condition
(19). It follows that the states∣∣Np

〉 = (b̂†)Np |∅〉, (22)

with Np Cooper pairs in the same zero-momentum state, are
exact eigenstates of the projected Hamiltonian with energy
−EpNp. We denote by |∅〉 the vacuum, the state with no par-
ticles, while the positive Cooper pair binding energy Ep > 0
has been introduced in (19). A simple argument [23,25], not
repeated here, shows also that these are eigenstates with min-
imal energy for any fixed number of pairs Np.

B. Exact eigenstates with localized quasiparticles

In this section we derive a class of exact eigenstates of
the projected Hamiltonian, characterized by the presence of
unpaired localized particles on top of a sea of Cooper pairs.
The proof is very straightforward and uses the fact that the
Cooper pair creation operator b̂† (12) is a ladder operator, as
shown in (21). The exact eigenstates in (22) are generated by
repeatedly applying the Cooper pair creation operator to the
vacuum |∅〉, which is an eigenstate of Hint. Instead of the
vacuum, one can start from the following eigenstates of the
projected Hamiltonian:

|Iσ 〉 =
( ∏

(n,l)∈Iσ

d̂†
nlσ

)
|∅〉 (23)

Hint|Iσ 〉 = 0, (24)

where Iσ is an arbitrary set of Wannier functions. The sec-
ond equation above follows from the fact that the Hubbard
interaction term is nonzero only if particles with opposite
spins are present. The state |Iσ 〉 corresponds to an arbitrary
arrangement of particles all with the same spin σ , therefore
it is a trivial eigenstate of the projected Hamiltonian with
eigenvalue zero. We can then apply (21) to show that the states
of the form ∣∣Iσ , Np

〉 = (b̂†)Np |Iσ 〉 (25)

are also eigenstates of Hint, that is

Hint|Iσ , Np〉 = −NpEp|Iσ , Np〉. (26)

Note that the energy eigenvalue does not depend on the set
Iσ , only on the number of pairs Np, exactly in the same way
as for the eigenstates in (22). These states are all orthogonal
and their normalization constant can be easily calculated [25].
The case in which Iσ consists of a single element, that is a

single unpaired particle, has already been derived in Ref. [25]
using a different method.

Despite the simplicity of the proof, the result in (26) is
rather nontrivial since the exact eigenstates (25) describe mo-
bile Cooper pairs coexisting with localized particles all with
the same spin, which are arbitrarily arranged in space. These
localized particles are a source of disorder for the Cooper
pairs. Therefore, this result is a promising starting point for
investigations on the interplay of superconductivity and dis-
order from a genuine many-body perspective. However, one
has to first answer the question on whether unpaired particles
remain localized if the Cooper pairs have a finite momentum,
for instance if a supercurrent is present in the system. One
way to address this question is by considering specific lattice
models with flat bands, such as the dice lattice shown if Fig. 1,
which is the subject of the following sections.

III. DICE LATTICE

The goal of this section is to study the Hamiltonian ob-
tained by projecting the Hubbard interaction term on the two
lowest degenerate flat bands of the dice lattice. The dice lat-
tice with its hopping amplitudes shown in Fig. 1 has a band
structure composed of six flat bands, which are two by two
degenerate [24]. A convenient property of the dice lattice is
that the Wannier functions of the two lowest flat bands can
be taken to be compactly localized and not just exponentially
decaying. Compactly localized means that a Wannier function
of a lattice model is nonzero only on a finite number of sites as
shown in Fig. 1. Thus, the projected Hamiltonian (7) contains
only a finite number of nearest-neighbor terms. Due to its
special properties, in particular, the existence of compactly
localized Wannier functions, the dice lattice with the hopping
amplitudes shown in Fig. 1 has been studied in a number of
previous papers [24,65–72], particularly within the context of
superconducting wire networks and Josephson junction arrays
[74–78].

If the sign of the the hopping matrix elements shown in
Fig. 1 is ignored, the underlying Bravais lattice is triangular
with fundamental vectors

v1 =
√

3a

(
1
0

)
, v2 =

√
3a

(
1
2√
3

2

)
, (27)

v3 = v2 − v1 =
√

3a

(− 1
2√
3

2

)
. (28)

Here, a is the length of the edge of an elementary rhombus
in the dice lattice, that is, the distance between two nearest-
neighbor-lattice sites. Any pair of vectors chosen from the
above three is sufficient to generate the triangular lattice.
However, for future calculations, it is convenient to introduce
a third vector v3, which is a linear combination of the other
two.

The magnetic field is encoded in a lattice model by means
of Peierls phases in the hopping amplitudes. In the case of
the dice lattice shown in Fig. 1, the Peierls phases are all
real, that is, they are simply a sign ±1, corresponding to the
bond colors in the figure. Therefore, the magnetic flux through
each elementary rhombus of the lattice is a half-flux quantum.
The uniform magnetic field partially breaks the translational
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symmetry of the dice lattice and the magnetic unit cell has an
area twice as large as the unit cell of the triangular lattice (27).
The underlying Bravais lattice is rectangular and a possible
choice for the fundamental vectors is

a1 = v1 =
√

3a

(
1
0

)
, a2 = 2v2 − v1 =

(
0
3a

)
. (29)

For our calculations, we only need the the Bloch functions
of the two lowest degenerate flat bands [24]

ψnk(i, α) = eik·ri gnk(α), (30)

with ri = i1a1 + i2a2, i = (i1, i2)T , (31)

|g1,k〉 = c(ε0, 0, 1 + eik1 , 1, eik2 , eik2 (eik1 − 1))T ,

|g2,k〉 = c(0, ε0,−1, 1 + e−ik1 , 1 − e−ik1 , 1)T . (32)

We denote with |gnk〉 a vector with components gnk(α), that is,
|gnk〉 = (gnk(1), gnk(2), . . . , gnk(Norb))

T
and we define ki =

k · ai. In the above equations, the normalization factor of the
Bloch functions is given by

c = 1√
ε2

0 + 6
, (33)

where

ε0 = 1

2

(
εh −

√
ε2

h + 24

)
(34)

is the energy of the two lowest flat bands of the dice lat-
tice. The parameter εh is the on-site energy of the hub sites,
while the rim sites have zero on-site energy (see Fig. 1 for
the definition of hub and rim sites). The unit of energy is
the positive hopping between the nearest neighbors in the
dice lattice. Due to the fact that the Bloch functions in
(31) and (32) are polynomials in the coefficients e±iki , the
Wannier functions, obtained from (5), are compactly local-
ized. The Wannier function generated by |gn,k〉 is centered
on hub site α = n = 1, 2 and has nonvanishing weight only
on this hub site and the adjacent rim sites, as shown in
Fig. 1.

A. Uniform pairing condition and exact eigenstates
in the dice lattice

The uniform pairing condition (19)–(20) is required to
show that the Cooper pair operator b̂† is a ladder operator
for the projected Hamiltonian of a generic lattice (21). As a
consequence of the compact localization of the dice lattice
Wannier functions, it is shown here that the uniform pairing
condition can be partially relaxed. Indeed, the commutation
relation in (21) is valid in the case of the dice lattice if
the orbital-dependent Hubbard couplings take the following
form:

Uh = U1 = U2, (35)

Ur = U3 = U4 = U5 = U6. (36)

Here, Ur and Uh are the coupling constants of the Hubbard
interaction on the rim and hub sites, respectively, and can take

arbitrary values. For the dice lattice, the diagonal elements of
the projector P are given by

P(0, α, α) =
{

ε2
0c2 for α = 1, 2,

3c2 for α = 3, 4, 5, 6.
(37)

Therefore, under the conditions (35)–(36), the uniform pairing
condition is satisfied for the sublattices formed by the hub and
rim sites separately, but is not generally satisfied if α = 1, 2
and β = 3, 4, 5, 6 in (19).

The key result that allows us to modify the derivation in
(21) and make it work for arbitrary values of the coupling
constants Ur and Uh is the following:

∑
i

∑
α=1,2

c̄†
iα↑c̄†

iα↓ = ε2
0c2b̂† = ε2

0

ε2
0 + 6

b̂†. (38)

Note how the sum over the orbitals is restricted to the hub
sites only. The above equation is a consequence of the fact that
distinct Wannier functions have zero overlap on the hub sites.
From (38), it is easy to show that the commutation relation
[Hint, b̂†] = −Epb̂† holds with a modified expression for the
Cooper pair binding energy Ep for arbitrary values of Ur and
Uh.

Another consequence of the compact nature of the Wannier
functions of the dice lattice is that it is possible to construct
an even wider class of eigenstates similar to (25) with the
difference being that the localized particles can have both up
or down spins. This is the case since particles with opposite
spin localized on nonoverlapping Wannier functions do not
interact. Thus, the following states are eigenstates with eigen-
value zero of the projected Hamiltonian:

|I↑, I↓〉 =
( ∏

(n,l)∈I↑

d̂†
nl↑

)( ∏
(n′,l′ )∈I↓

d̂†
n′l′↓

)
|∅〉, (39)

under the conditions that all the Wannier functions in the set
I↑ have zero overlap with the Wannier functions in the set
I↓. This is not possible in general for arbitrary lattice models,
since the Wannier functions have usually exponential tails and
particle with opposite spins do interact slightly even if far
apart. We can then apply the ladder operator b̂† to the above
states and obtain the following exact eigenstates of the dice
lattice projected Hamiltonian:∣∣I↑, I↓, Np

〉 = (b̂†)Np |I↑, I↓〉. (40)

The energy eigenvalue of this state is given by −EpNp as in
(26) and is independent from the number, position, and spin
of the localized particles.

B. Projected Hamiltonian of the dice lattice

Here, we provide the projected Hamiltonian of the dice
lattice in a form which is rather compact and convenient
for subsequent considerations and computations. To this end,
we introduce three different sets of operators that are linear
combinations of products of two Wannier function operators
d̂nlσ and d̂†

nlσ . The first is the set of on-site spin operators, that
is, the spin operators relative to a single Wannier function.
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The on-site spin operators of the Wannier function labeled by
nl are defined as

Ŝz
nl = 1

2 (d̂†
nl↑d̂nl↑ − d̂†

nl↓d̂nl↓) = 1
2 (ρ̂nl↑ − ρ̂nl↓), (41)

Ŝ+
nl = d̂†

nl↑d̂nl↓ = (Ŝ−
nl )

†, (42)

Ŝx
nl = 1

2 (Ŝ+
nl + Ŝ−

nl ), Ŝy
nl = 1

2i (Ŝ
+
nl − Ŝ−

nl ). (43)

In the first equation above, we have introduced the spin-
resolved occupation number operator ρ̂nlσ = d̂†

nlσ d̂nlσ of a
Wannier function. For later use, it is convenient to also intro-
duce the occupation number operator summed over the spin
components as ρ̂nl = ρ̂nl↑ + ρ̂nl↓.

The second set is composed of operators that create and
annihilate a pair of particles with opposite spins on the same
Wannier function. These operators have been introduced, for
instance, in Ref. [24] and are defined as

B̂z
nl = 1

2 (ρ̂nl − 1), (44)

B̂+
nl = d̂†

nl↑d̂†
nl↓ = (B̂−

nl)
†, (45)

B̂x
nl = 1

2 (B̂+
nl + B̂−

nl), B̂y
nl = 1

2i (B̂
+
nl − B̂−

nl). (46)

We call these operators the on-site pair operators (or on-site
singlets) and it is easy to check that they obey the same SU(2)
algebra as the on-site spin operators. Moreover, the on-site
spin operators and the on-site pair operators commute with
each other, [Ŝα

nl, B̂β

nl] = 0 for α, β = x, y, z.
The third and final set is composed of operators of the form

B̂+
〈n1l1,n2l2〉 = d̂†

n1l1↑d̂†
n2l2↓ − d̂†

n1l1↓d̂†
n2l2↑

= d̂†
n1l1↑d̂†

n2l2↓ + d̂†
n2l2↑d̂†

n1l1↓ = (B̂−
〈n1l1,n2l2〉)

†. (47)

The Wannier functions are centered on the hub sites of the dice
lattice and thus form a triangular lattice. This triangular lattice
is shown in Fig. 2 as green and red sites, corresponding to
the wn=1,l and wn=2,l Wannier functions, respectively. In (47)
we denote with 〈n1l1, n2l2〉 a pair of nearest-neighbor Wan-
nier functions, that is, two Wannier functions that overlap on
exactly two rim sites. The operator B̂+

〈n1l1,n2l2〉 creates a pair of
particles that are delocalized on these two Wannier functions
and whose total spin [the eigenvalue of (Ŝn1l1 + Ŝn2l2 )2 with
Ŝnl = (Ŝx

nl, Ŝy
nl, Ŝz

nl)
T ] is zero, i.e., they form a singlet state.

Indeed, this is evident from (47), since the state B̂+
〈n1l1,n2l2〉|∅〉

is symmetric under the exchange of the orbital degree of
freedom 1 ↔ 2 and antisymmetric under the exchange of the
spin ↑↔↓.

Using the operators introduced above, we can now provide
the projected Hamiltonian of the dice lattice. For convenience
we break it down into three parts

Hint = Ĥtri. + Ĥkag. + Ĥtri.−kag.. (48)

The Hamiltonian Ĥtri. describes the hopping of the on-site
pairs (singlets) on the triangular lattice formed by the Wannier
function centers, namely the sublattice formed by the hub sites
of the dice lattice, and the spin exchange interaction between
localized particles on neighboring Wannier functions. It is

FIG. 2. Graphical representation of the term Ĥtri. + Ĥkag. in the
projected Hamiltonian Hint (48). The Wannier functions wn=1,l and
wn=2,l are represented by the green and red hexagons, respectively.
One unit cell (shown as the blue rectangle) contains one green site
and one red site, corresponding to the two nonequivalent Wannier
functions. The dashed lines connecting green and red sites with each
other represent the nearest-neighbor interaction and hopping terms of
on-site pairs and on-site spins in Ĥtri. (49). In particular the on-site
pairs hop between nearest neighbors in the triangular lattice com-
posed by green and red sites. The black sites sit on the middle of the
bonds connecting the green and red sites and form a kagome lattice.
The operator B̂+

〈n1l1,n2 l2〉 creates a singlet on the bond 〈n1l1, n2l2〉,
thus the bond singlets live on the kagome lattice formed by the
black dots. The black and red bonds represent terms of the form
B̂+

〈n1l1,n2 l2〉B̂
−
〈n1l1,n3l3〉 in the bond singlet hopping Hamiltonian Ĥkag.

(50). The sign of the hopping amplitude of the bonds connecting the
black sites is given by −s(n1l1|n2l2, n3l3) [see Eq. (51)] and is equal
to −1 for the black bonds and to +1 for the red bonds. The terms
of the form B̂+

n1l1
B̂−

〈n2 l2,n3l3〉 in Ĥtri.−kag. (52) are not represented in this
figure for clarity. See Fig. 9 in Appendix instead.

given by

Ĥtri. = −A
∑
n,l

B̂+
nlB̂

−
nl − 4

∑
〈nl,n′l′〉

[(
B̂z

nl + 1

2

)(
B̂z

n′l′ + 1

2

)

+ 1

2
(B̂+

nlB̂
−
n′l′ + B̂−

nlB̂
+
n′l′ )

]

+ 4
∑

〈nl,n′l′〉

[
Ŝz

nlŜ
z
n′l′ + 1

2
(Ŝ+

nl Ŝ
−
n′l′ + Ŝ−

nl Ŝ
+
n′l′ )

]
. (49)

The first term, proportional to the parameter A = 6 +
Uhε

4
−/Ur , gives the binding energy of an on-site pair. The en-

ergy scale used for the projected Hamiltonian is Urc4 = 1 and
A is the only free parameter. The terms in the second and third
lines describe the nearest-neighbor interaction and the hop-
ping of on-site pairs on the triangular lattice. Taken together,
they can be written as an isotropic Heisenberg exchange term
B̂nl · B̂n′l′ for the pseudospin associated to the on-site pair
operators B̂nl = (B̂x

nl, B̂y
nl, B̂z

nl)
T with additional terms. Finally,

the last line is the antiferromagnetic Heisenberg exchange
interaction of on-site spins, which can be written as Ŝnl · Ŝn′l′ .
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The Hamiltonian Ĥtri. takes the same form as the projected
Hamiltonian of the Creutz ladder [24] with the only difference
being that the Wannier functions in the latter case form a one-
dimensional chain instead of a triangular lattice. As in the case
of the Creutz ladder Ĥtri. possesses an extensive number of lo-
cal integrals of motions given by the operators Ŝ2

nl, which have
eigenvalue 3/4 if exactly one particle is present in the Wannier
function labeled by nl and zero otherwise. This means that
particles can move in the lattice only if they form on-site
pairs and are localized otherwise. However, these integrals of
motion do not commute with the full projected Hamiltonian
due to the additional terms in Ĥkag. + Ĥtri.−kag., as we will
see below. Note that, due to the identity Ŝ2

nl + B̂2
nl = 3

4 1̂, the
operators B̂2

nl do not form a set of independently conserved
quantities.

The second term Ĥkag. in the projected Hamiltonian de-
scribes the hopping of bond singlets and takes the form

Ĥkag. = −
∑

〈1,2,3〉
[s(1|2, 3)(B̂+

〈1,2〉B̂
−
〈1,3〉 + H.c.)

+ cyclic permutations of (1, 2, 3)]. (50)

Here, we have used the abbreviations 1 ≡ n1l1, 2 ≡ n2l2
and 3 ≡ n3l3 and we denote by 〈n1l1, n2l2, n3l3〉 a triplet of
Wannier functions that are two by two nearest neighbors.
Therefore their centers form an equilateral triangle whose
sides are given by the three vectors vi=1,2,3 in (27) and (28).
The sum

∑
〈1,2,3〉 runs over all such triangles in the triangular

lattice. The quantity s(n1l1|n2l2, n3l3) = ±1 depends on the
overlap of the Wannier functions forming a triangle of nearest
neighbors and is defined as

Urc
4s(n1l1|n2l2, n3l3) =

∑
i,α

Uαw2
n1

(i − l1, α)

× wn2 (i − l2, α)wn3 (i − l3, α).
(51)

Note that we have used the fact that the Wannier functions
of the dice lattice are real. The quantity s(n1l1|n2l2, n3l3) is
visualized in Fig. 2 as the color of the bonds connecting the
sites in a kagome lattice, which is the lattice on which the bond
singlets live. Due to the signs of the bond singlet hoppings,
the Hamiltonian Ĥkag. does not have the symmetry of the
triangular lattice as in the case of Ĥtri., but instead has the
same translational symmetry of the original dice lattice given
by the fundamental vectors ai=1,2 (29).

The last term in (48) describes the processes by which on-
site pairs are converted into bond singlets and vice versa,

Ĥtri.−kag. = −
∑

〈1,2,3〉
[s(1|2, 3)(B̂+

1 B̂−
〈2,3〉 + H.c.)

+ cyc. perm. of (1, 2, 3)]. (52)

Due to the sign factor s(1|2, 3), the translational symmetry
of this term is the same as Ĥkag.. By allowing the motions of
bond singlets, in which two neighboring Wannier functions
are occupied each by a single particle, and the conversion
of on-site pairs to bond singlets, the projected Hamiltonian
of the dice lattice does not possess obvious local integrals of
motion as in the case of Ĥtri. discussed above. Our main goal

is to investigate whether some sort of conserved quantities
associated to localized particles are nevertheless present in the
projected Hamiltonian.

An important first step is the solution of the two-particle
problem, which is worked out in Appendix. For three or more
particles, one has to resort to numerical methods. In the next
section, we analyze the energy spectrum and the nonequilib-
rium dynamics of the projected Hamiltonian in the case of
three and four particles.

IV. EXACT DIAGONALIZATION RESULTS
FOR THE DICE LATTICE

In some previous papers [24], it has been established
that unpaired particles are always localized due to the pres-
ence of local conserved quantities in specific one-dimensional
models. These are the same conserved quantities of the Hamil-
tonian term Ĥtri. (49), as discussed in Sec. III B. However,
they are spoiled by the additional terms Ĥkag. + Ĥtri.−kag.

associated with the bond singlets, which are not present in
the one-dimensional case. Therefore, in the case of the dice
lattice, it is not clear if local conserved quantities exist. In
this section, we address this important question using exact
diagonalization.

In Sec. IV A, we provide numerical results for the energy
spectrum of the projected Hamiltonian of the dice lattice in
case of an imbalance between spin up and down particles
(N↑ �= N↓). It is shown that the excited states form well-
separated and almost degenerate groups of states. This is
similar to, but at the same time different from, the perfect
degeneracy of the exact eigenstates derived analytically in
Sec. II B, which are found to form the ground-state manifold
in the case of spin imbalance. It is argued that the lack of
degeneracy in the excited states is a finite-size effect.

In Sec. IV B, we focus on the time evolution from an
initial state that includes both on-site pairs and single unpaired
particles. It is shown that, in the long-time limit, memory
of the initial positions of the unpaired particles persists in
both the particle density and the spin density. This is a clear
signature of nonergodic behavior and many-body localization,
which is a consequence of the presence of the local conserved
quantities in many-body quantum systems.

All of the numerical results shown here have been obtained
using the exact diagonalization package QuSpin [79,80]. Ex-
act diagonalization is performed on a rectangular cluster with
periodic boundary conditions composed of Nc = N1N2 unit
cells, where N1 and N2 are the numbers of unit cells in the
horizontal and vertical directions, respectively. For instance, a
finite cluster with N1 = 4, N2 = 2 is shown in Fig. 2.

A. Energy spectrum

In Fig. 3, the lowest eigenvalues of the projected dice
lattice Hamiltonian with three particles (N↑ = 2, N↓ = 1) are
shown for various system sizes. The lowest

( 2Nc

N↑−N↓

) = 2Nc

eigenstates are exactly degenerate and take the form∣∣Np = 1, I↑ = {(n, l)}〉 = b̂†d̂†
nl↑|∅〉. (53)

These are precisely the exact eigenstates with localized quasi-
particles presented in Sec. II B, see (25). In the balanced
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FIG. 3. Lowest-energy eigenvalues of the projected dice lattice Hamiltonian Hint (48) obtained from exact diagonalization. Different
systems sizes are shown, while the number of particles is fixed to two particles with spin up (N↑ = 2) and one particle with spin down (N↓ = 1).
The system size is determined by a pair of integers, the number of unit cells in the horizontal N1 and vertical N2 directions, respectively. Only
the lowest 16Nc eigenvalues, with Nc = N1N2 the number of unit cells, are shown in each panel. The lowest 2Nc eigenstates are perfectly
degenerate and have energy E0 = −Ep = −22 (the only free parameter in the projected Hamiltonian has been fixed to A = 10). These are
the exact eigenstates with localized quasiparticles presented in Sec. II B, see (25). In this specific case, they take the form |Np = 1,I↑ =
{(n, l)}〉 = b̂†d̂†

nl↑|∅〉. On the other hand, the excited states can be grouped in sets of states with approximately the same energy, which have
been denoted with different colors. The number of states in these sets of quasidegenerate states is the same as the degeneracy of the ground
state. By increasing the system size, the deviation from perfect degeneracy in each set seems to decrease. However, even for the largest system
sizes there is no perfect degeneracy in each set of excited states, as shown in the inset in the lower right panel.

case (N↑ = N↓), it is known [23,25] that the states of the
form (22) have minimal energy and thus are ground states
of the projected Hamiltonian for given number of particles.
No analogous statement exists for the imbalanced case, nev-
ertheless one can reasonably expect states of the form (25)
and (53) to have minimal energy. Our numerical simulations
show that this is indeed the case, at least for some values of
the parameter A in the projected Hamiltonian (48).

In Fig. 3, the most interesting information is contained in
the excited state spectrum for which there are no available
analytical results. The excited states can be grouped into sets
of states with approximately the same energy. Distinct sets
are indicated with different colors in Fig. 3. The number of
states in these quasidegenerate sets is exactly equal to the
degeneracy of the ground state. On increasing the system size,
the deviation from perfect degeneracy in each set of states
seems to decrease. However, it is noted that even for the
largest computed system size, there is no perfect degeneracy
in each set of excited states. For example, for system size
N1 = 14, N2 = 7 the energy width of one of these set of states
is roughly 2 × 10−3 (see inset in Fig. 3).

This peculiar structure in the excited state spectrum is not
entirely surprising and can be understood by comparing with
what one would obtain in the case of the one-dimensional
models in which local integrals of motion are known to ex-
ist [24]. In these models, the eigenvalues snl(snl + 1) of the
operators Ŝ2

nl, that is the total spin on the Wannier function

labeled by nl, are good quantum numbers. The lowest lying
states have snl = 1/2 only for a single Wannier function and
snl = 0 otherwise since there is only a single unpaired particle.
For any given state of this form, one can obtain a distinct
eigenstate with the same energy by applying a translation, due
to the translational invariance of the projected Hamiltonian.
The new eigenstate is distinct since the localized unpaired
particle present in the original state has been moved to a
different Wannier function (snl = 1/2 → sn,l+j = 1/2 for a
translation by j unit cells). Thus the lowest lying states have
degeneracy at least equal to the number of unit cells Nc.

The numerical results shown in Fig. 3 suggest that local
integrals of motion are present in some approximate sense for
the projected Hamiltonian of the dice lattice. The mechanism
behind the lifting of the degeneracy is at the present not
well understood, except for the fact that it is caused by the
motion of the bond singlets and their interaction with localized
single particles. As mentioned above, perfect degeneracy is
approached in each set of excited states on increasing the
system size. Thus, it might by the case that the projected
Hamiltonian of the dice lattice possesses exact local integrals
of motion only in the limit of infinite-system size. We con-
jecture that these encode the localization of quasiparticles in
wave functions that extend over rather large distances. In fact
their range, or localization length, should be comparable to the
largest size shown in Fig. 3 in order to explain the finite-size
effects. On the other hand, in the one-dimensional models
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FIG. 4. Same as in Fig. 3 in the case of three particles with spin up N↑ = 3 and one particle with spin down N↓ = 1. Three different
system sizes are shown: Nc = N1N2 = 8, 18, 32. The lowest 13

(2Nc
2

)
eigenvalues are shown in each panel. The lowest

(2Nc
2

)
eigenstates are

perfectly degenerate and have an energy E0 = −Ep = −22 for A = 10. These are the exact eigenstates in (25), which for the given number
of particles take the form |Np = 1,I↑ = {(n1, l1), (n2, l2)}〉 = b̂†d̂†

n1l1↑d̂†
n2 l2↑|∅〉. On the other hand, the excited states can be grouped in sets of

states separated by energy gaps, which have been denoted with different colors. Both the number of well-separated sets of excited states and
the energy gaps increase with the system size. One such set is visible for N1 = 6, N2 = 3, which is colored in blue. Two such sets are visible
for N1 = 8, N2 = 4. The number of states in these sets is exactly four times larger than the degeneracy of the ground state.

of Ref. [24], the quasiparticle wave functions are compactly
localized since they coincide with the Wannier functions.

It is interesting to explore what happens with increas-
ing imbalance. In Fig. 4, for instance, we show the energy
spectrum for N↑ − N↓ = 2. The ground-state manifold is
composed of states of the form

∣∣Np = 1, I↑ = {(n1, l1), (n2, l2)}〉 = b̂†d̂†
n1l1↑d̂†

n2l2↑|∅〉, (54)

and has degeneracy
( 2Nc

N↑−N↓

) = Nc(2Nc − 1). In the spectra
shown in Fig. 4, the excited states are separated from the
ground-state manifold by a large energy gap. With increasing
system size, sets of excited states well-separated from each
other by energy gaps start to appear. Both their number and the
energy gaps that separates them increase with the system size.
In the figure, one such set is visible for N1 = 6, N2 = 3, but
two such sets are evident for N1 = 8, N2 = 4. In each case, the
number of eigenstates in these sets is exactly four times larger
than the degeneracy of the ground-state manifold. As in the
three particle case, the energy width of the well-separated sets
of states reduces with increasing system size and it is possible
that they approach perfect degeneracy for an infinitely large
system. Alternatively, they could break up in several degener-
ate subsets.

In summary, we observe for N↑ − N↓ �= 0 that the excited
states form almost degenerate multiplets with a degeneracy
that is an integer multiple of the ground-state degeneracy. We
attribute the deviation from perfect degeneracy to finite-size
effects that lead to the breaking of the local integrals of motion
present in an infinite lattice. Some rather strong finite-size
effects also appear in the long time dynamics, as shown in
the next section.

B. Nonequilibrium dynamics

The time evolution of the particle and spin densities ob-
tained by evolving a three-particle initial state of the form

|	(0)〉 = d̂†
nAlA↑d̂†

nAlA↓d̂†
nBlB↑|∅〉, (55)

with the projected Hamiltonian Hint is shown in Figs. 5 and 6.
This initial state can be equivalently described as either an on-
site singlet present at site A with an additional spin-up particle
at site B, or as a bond singlet between sites A and B plus a
spin-up particle at site A, namely

|	(0)〉 = B̂+
nAlA

d̂†
nBlB↑|∅〉 = −B̂+

〈nAlA,nBlB〉d̂
†
nAlA↑|∅〉. (56)

These representations give us insight into the expected be-
havior of the time-evolved system. During the time evolution,
the bond singlet can move away from sites A and B, leaving
behind the particle with spin up at site A. Thus, the spin
density at site A becomes nonzero (in the initial state the spin
density is nonzero only on site B). This differs from when only
two particles are present in the system, in which case the spin
density remains at zero at all sites where it is initialized to
zero. Therefore, no spin transport occurs with two particles,
whereas some form of spin transport takes place with three
particles, as seen in Fig. 5.

In Fig. 5, the time-averaged particle and spin densities are
shown for different system sizes. Here, the time average of an
observable (computed numerically) is defined as

〈〈Ô〉〉 = 1

t1 − t0

∫ t1

t0

〈Ô(t )〉dt, (57)

where 〈Ô(t )〉 is the expectation value of an observable Ô at
time t , t0 is an initial cutoff time, which is sufficiently large to
ensure that the observable is close to its long-time asymptotic
value and t1 is the end time. In the first column of Fig. 5, the
standard deviation of the time average of an observable is also
shown, and is defined as

σÔ =
√

〈〈Ô(t )〉2〉 − 〈〈Ô〉〉2
. (58)

In Fig. 6, it can be seen that, for a cluster of size N1 = 10
N2 = 5, the particle and spin densities approach their respec-
tive equilibrium value at around t = 3000, which is chosen
as initial cutoff time t0. The time scale to reach equilibrium
is extremely long and increases with the system size. For
instance, we take t0 = 1000 for the other system sizes shown
in Fig. 5.
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FIG. 5. Time evolution of the projected dice lattice Hamiltonian for three particles. Different systems sizes are shown in each row (from
top to bottom: N1 × N2 = 4 × 2, 6 × 3, 8 × 4, and 10 × 5), while the number of particles is fixed to N↑ = 2 N↓ = 1. The first panel shows the
time-averaged particle and spin densities at each site averaged from time t0 to t1 = 10 000 according to (57). t0 = 1000 is selected for the first
three system sizes while t0 = 3000 is chosen for N1 × N2 = 10 × 5. The error bars indicate the standard deviation of each quantity over the
same time interval, as given by (58). The panels in the second column show the initial state of the system |	(0)〉 = d̂†

nAlA↑d̂†
nA lA↓d̂†

nB lB↑|∅〉. The
diameter of the circle represents the relative particle density at a site and the spin density is represented by a color scale, with red being up spin
and blue being down spin. The panels in the third column depict the time-averaged particle and spin densities on the lattice. The time-averaged
particle and spin densities are normalized to one at site B. The spin density is nonzero across all sites of the lattice, but remains largest at site
B, where the particle with spin up was initially located.

From Fig. 5, it can be observed that the particle and spin
densities diffuse throughout the system and become nonzero
on all lattice sites. However, at site B where the particle with
spin up is initially placed, the particle and spin densities are
significantly larger than those at the other sites in the lattice,
including site A, the initial position of the on-site pair. This

behavior persists as the system size is increased, as seen in
Fig. 5. As expected, with an increase in system size, the fluc-
tuations of the particle and spin densities in all lattice sites also
decrease, with the exception of site B. A surprising result for
system size N1 = 8, N2 = 4 is the appearance of three other
sites with particle and spin densities comparable to the ones of
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FIG. 6. Time evolution with three particles for system size N1 =
10, N2 = 5. The initial state is shown in the lowest row of Fig. 5.
The upper panel shows the particle density from t = 0 until t = 5000
for three sites denoted as A, B, and C in Fig. 5. The inset shows the
rolling average of the particle density in the same sites from t = 5000
until t = 10 000. The lower panel depicts the spin densities of sites
A, B, and C from t = 0 until t = 5000, with the inset depicting the
rolling average of the spin densities from t = 5000 until t = 10 000.
The rolling average in the insets are taken with a time window of

t = 3.0, to smooth out fluctuations. The rolling averages are used
for the sake of clarity in presentation.

site B. These three sites are obtained by translating site B by
linear combinations of the lattice vectors R1/2 and R2/2, with
R1 = N1a1 and R2 = N2a2 the vectors defining the size and
shape of the finite cluster with periodic boundary conditions.
A similar behavior is observed also for system size N1 = 4,
N2 = 2, but not in the case of the other system sizes shown
in Fig. 5. Thus, the long-time dynamics appears to be very
sensitive to finite-size effects. The origin of this phenomenon
is unclear at present and deserves further investigations.

Analogous results are obtained in the case of four particles
N↑ + N↓ = 4. The two unpaired particles in the initial state
can have either the opposite or same spin. Numerical results
for both initial states are shown in Fig. 7. Again, memory of
the initial positions of the two unpaired particles persists in the
particle and spin densities, which are otherwise approximately
uniform over all remaining sites in the long-time limit.

The results of Figs. 5–7 indicate a peculiar coexistence
of ergodic and nonergodic behavior in the same system. On

one hand, we have that in the long-time limit the spin-density
distribution is highly nonuniform, in particular it peaks at
site B. Thus, memory of the initial position of the particle
with spin up is retained during the time evolution. If the time
evolution were to be completely ergodic, we would expect the
long-time average of the system to coincide with the average
value evaluated on the thermal equilibrium state given by the
usual Gibbs ensemble. This result is known as the ergodic
theorem and is the fundamental postulate of statistical me-
chanics [81]. The equation for the long-time average of an
observable stated in (57) is its usual definition in the context of
the ergodic theorem. The results of Figs. 5–7 do not coincide
with the expected thermal equilibrium average, which for a
translationally invariant system as studied here, would see the
particle density and spin density be uniformly distributed. We
can conclude from this that thermalization does not occur and
the time evolution displays non-ergodic behavior, which we
interpret as a signature of many-body localization [50,82,83].
This characteristic signature of many-body localization has
been observed in ultracold gas experiments [51–53]. On the
other hand, any information regarding the initial position (site
A) of the on-site pair is completely lost after a sufficiently
long time. Therefore, the nonergodic behavior is limited to
fermionic quasiparticles, while two-body bound states behave
ergodically, as one would expect.

Our numerical results also suggest a potential violation
of the eigenstate thermalization hypothesis (ETH), which
asserts that thermalization occurs at the level of individual
many-body eigenstates of an Hamiltonian Ĥ. According to
the fundamental postulate of statistical mechanics, regardless
of the initial state, the long-time average of an observable
(57) converges to the one given by the equilibrium statistical
ensemble. By extension to the quantum realm, this implies
also that expectation values of local observables Ô taken
with respect to any many-body eigenstate |En〉 of Ĥ, for
which the dynamics is trivial since 〈〈Ô〉〉 = 〈En|Ô|En〉, closely
approximate the expectation values evaluated with the many-
body density matrix ρ̂ of the canonical statistical ensemble
at a certain effective temperature T = 1/βkB, that is 〈〈Ô〉〉 ≈
Tr[Ôρ̂] = Tr[Ôe−βĤ]/Tr[e−βĤ] [48]. In our model, the initial
state (55) is a linear combination of highly excited eigenstates
of the system. The absence of complete thermalization of
this initial state suggests that quite likely at least some of
the many-body eigenstates of the system do not satisfy the
ETH. Indeed, we expect that eigenstates in which no unpaired
particles are present do satisfy the ETH, while eigenstates
containing fermionic quasiparticles do not. However, this is
at present only a working hypothesis that requires more work
to be substantiated since, for instance, we do not even know
if it is possible to define an operator that counts the number
of unpaired particles in a given eigenstate. The occurrence
of weak ergodicity breaking, of the kind observed in our
system, is usually associated in the literature to quantum
many-body scars, that is the presence of few isolated ETH-
violating eigenstates in the spectrum [84,85]. Another form of
weak ergodicity breaking is Hilbert space fragmentation [84].
Whether Hilbert space fragmentation or quantum many-body
scars do occur in our case is again an open question and
potentially the subject of future work. We also mention in
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FIG. 7. Same as in Fig. 5 but for four particles N↑ + N↓ = 4 and system size N1 = 6, N2 = 3. The time interval for the time-averaged parti-
cle and spin densities is taken to be between t0 = 100 and t1 = 5000. The initial state for the top row is |	(0)〉 = d̂†

nA lA↑d̂†
nA lA↓d̂†

nB lB↑d̂†
nC lC↓|∅〉 and

includes two unpaired particles with opposite spin in sites B and C. The initial state for the bottom row is |	(0)〉 = d̂†
nA lA↑d̂†

nA lA↓d̂†
nB lB↑d̂†

nC lC↑|∅〉 in
which the unpaired particles have both spin up. As in Fig. 5, the particle and spin densities retain memory of the initial positions of the unpaired
particles (site B and site C) in the long-time limit. On the other hand, the particle and spin densities become almost uniform throughout the
remaining sites. A difference compared to the three particle case is that the time scale required to reach the long-time limit is about ten times
smaller and is given approximately by t0.

passing that the violation of the ETH is an essential feature
of many-body localization [50,82].

Finally, it is interesting to note that the time scale for the
equilibration of the particle and spin densities, which is very
long as shown in Fig. 6, seems to be related to the energy
scale associated to the lifting of the degeneracy in the spectra
shown in Fig. 3 and discussed in Sec. IV A. The time scale
is approximately given by the initial cutoff t0 used for the
time average (57). Indeed, we take t0 = 1000 for N1 = 8,
N2 = 4 and t0 = 3000 for N1 = 10, N2 = 5. Correspondingly,
the energy width of the quasidegenerate set of states is roughly
three times larger for the smaller system size. For instance,
in the case of the sets colored in green in Fig. 3, the energy
widths are 
E = 4.8 × 10−3 and 
E = 1.9 × 10−3, respec-
tively. The orders or magnitude of t0 and 1/
E are also in
good agreement. Thus, a possible explanation is that the long
equilibration times are a manifestation of the local integrals of
motion, which are slightly broken by finite-size effects.

C. Finite-size scaling

In Sec. IV B, we calculate the time evolution of the particle
density and spin density over long times and observe signa-
tures of many-body localization. However, the phenomena of
many-body localization has been debated to be simply a finite-
size effect [86] and that at infinite system size, many-body
localization would cease to exist. To understand the impact
of system size, and as a consequence, finite-size effects on
the signatures observed in our model, we perform a scaling
analysis.

In Fig. 8, we can see the how the asymptotic value of the
particle densities and spin densities scale with system size. By

observing the trends of these quantities as they approach an
infinite system size (N−1

c → 0), we can estimate the impact
of the finite-size effects. We can see that the particle and
spin densities at site A, where the on-site pair was placed,
approaches zero as the lattice size increases. At site B, where
there is initially a single unpaired spin, the particle and spin

FIG. 8. Finite-size scaling of the long-time average of the par-
ticle and spin densities. The long-time average of the particle and
spin densities on sites A and B are shown as a function of the inverse
number of unit cells N−1

c in the finite cluster. The numerical data
shown here are the same as in Fig. 5 and are obtained from the time
evolution of the projected Hamiltonian with three particles (N↑ = 2,
N↓ = 1).
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densities approach a finite nonzero value as the system size
increases. The long-time average of the observables reveal
a continued partial breaking of ergodicity. The asymptotic
distribution of the spin density is not uniform and peaks on
the site in which the unpaired particle was initially located.
This is in contrast with the distribution of the spin density
at thermal equilibrium, which is uniform as a consequence
of translational invariance. The finite-size scaling results indi-
cate that the partial breaking of ergodicity, and memory of
the particle and spin density at site B will both remain in
an infinite system, supporting the case for true many-body
localization in an infinite system. It would be important to
perform a finite-size scaling analysis by also increasing the
particle number, but this is currently beyond reach for exact
diagonalization since even for four particles, the system sizes
for which we can perform the time evolution is very restricted.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have provided strong evidence through
analytic arguments and numerical results obtained with ex-
act diagonalization that propagating bosonic two-body bound
states can coexist with the localization of fermionic quasipar-
ticles in lattice models with flat bands. The analytical results,
namely exact eigenstates of the projected Hamiltonian of the
form (25), are valid for generic lattice models with flat bands
under a few assumptions (spin-rotational and time-reversal
symmetries, uniform pairing condition) and are a simple con-
sequence of the SU(2) symmetry that emerges in the isolated
flat band limit [23]. We have also shown how these analytical
results can be extended in the case of the dice lattice due to
the compact nature of the Wannier functions.

In a previous study [24], local integrals of motion have
been explicitly constructed for a few one-dimensional lattice
models with flat bands. As a consequence, fermionic quasipar-
ticles are strictly localized in these models and spin transport
is completely suppressed. Similar analytical results are not
available for dimension two or higher, therefore we have
focused our numerical investigations on the two-dimensional
dice lattice. The presence of local integrals of motion in
the one-dimensional models of Ref. [24] implies that all the
eigenstates are degenerate in the case of spin imbalance, with
a degeneracy no less than the number of unit cells Nc of the
finite cluster. In the case of the two-dimensional dice lattice,
we have observed from the energy spectrum computed nu-
merically, that the same degeneracy is approximately present
in the excited states. This is in contrast with the ground-state
multiplet, which is composed of states of the form (25) and
is thus perfectly degenerate, see (26). With increasing system
size the degeneracy of the excited states seems to be restored.
We interpret this finding as a signature of the presence of
local integrals of motion in the projected Hamiltonian of the
dice lattice, with the slight breaking of the degeneracy in the
excited states caused by finite-size effects. Further studies
are needed to better understand the nature of these finite-size
effects.

Another clear signature of many-body localization is pro-
vided by the time evolution of the particle density and the spin
density starting from initial states comprising one on-site pair
and one or two unpaired particles. The long-time average of

the observables reveals a partial breaking of ergodicity. For
instance, the asymptotic distribution of the spin density is not
uniform and is peaked on the site in which the unpaired parti-
cle (or particles) was initially located. This is in stark contrast
with the distribution of the spin density at thermal equilib-
rium, which is expected to be uniform as a consequence of
translational invariance. The persisting memory of the initial
state in local observables is a characteristic feature of many-
body localization and has been observed in experiments with
ultracold gases [52,53].

Another interesting observation is that, in the case of the
one-dimensional models of Ref. [24], spin transport is strictly
forbidden as a consequence of the local conserved quantities,
while this is not the case for the dice lattice, since, for initial
states with N↑ + N↓ � 3, the spin density can become finite
at later times even on a Wannier function in which it was
initially zero. A possible explanation is that the localized
states corresponding to the local conserved quantities have an
extension comparable to the size of the system used in the
exact diagonalization.

Besides providing interesting information from a theoret-
ical standpoint, our numerical protocol suggests a possible
experiment that could be performed using ultracold gases
in optical lattices. This might be feasible in the near future
since a practical scheme to implement the dice lattice with a
finite magnetic flux has been suggested [32] and spin-resolved
imaging at the single atom level is nowadays routinely per-
formed. Ultracold gases have the potential to simulate the dice
lattice Hamiltonian for much larger system sizes and particle
numbers than can be done with exact diagonalization or other
currently available numerical methods.

Our study can be extended in several possible directions.
For instance, it would be interesting to consider other lattice
models to confirm that the numerical results obtained in the
case of the dice lattice are generic. Studying other models
is probably more difficult numerically than the dice lattice
because the Wannier functions are, in general, not compactly
localized. This means that the projected Hamiltonian would
contain many more terms than in the case of the dice lat-
tice and would be less sparse. Thus, exact diagonalization
becomes numerically heavier. In this respect, it is interesting
to note that strong finite-size effects are still present even for
the largest system sizes that we are able to reach at present
with exact diagonalization. Thus, improving the efficiency
of numerical simulations is of paramount importance. The
finite-size scaling analysis presented in Sec. IV C provides
some evidence that the signature of many-body localization
that we observe persists in the limit of infinite size; however,
it would be important to perform the same analysis with a
larger particle number. This is currently out of reach for the
numerical methods at our disposal.

From our point of view, the key open question is how to
rigorously prove the existence of local conserved quantities,
or better yet, how to explicitly construct them. In that sense,
it would be interesting to borrow methods from the field
of many-body localization, in which local conserved quanti-
ties have been investigated extensively [47,54–57], and adapt
them to our case. The existence of an extensive number of
local conserved quantities is generally considered the defining
property of many-body localization. However, even in the
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most extensively studied models, such as one-dimensional
spin chains, there is no consensus on whether a many-body
localization transition takes place, precisely because rigor-
ously proving the existence of local integrals of motion in
a many-body system is a highly nontrivial task. Indeed, in
recent papers it has been suggested [87,88] that the critical
disorder strength of the many-body localization transition in-
creases with the system size, meaning no transition takes place
in the thermodynamic limit. These claims were subsequently
criticized [89–91] on the basis that it is difficult to extrapolate
from the information obtained using small systems. The del-
icate issue of the existence of many-body localization in the
thermodynamic limit is still actively debated and no consensus
has been reached yet [86,92].

We believe that lattice models with flat bands provide an
interesting platform to tackle the difficult problem of many-
body localization and that of its fate in the thermodynamic
limit. On one hand, similar to disordered systems, we ob-
serve pronounced finite-size effects; however, localization is
realized in a translationally invariant setting, which allows
us to derive exact analytical results. A particularly important
exact result in the case of the dice lattice is that one term
of the projected Hamiltonian possesses an extensive number
of local integrals of motion, namely [Ĥtri., Ŝ2

nl] = 0. More-
over, the numerical results suggest that these integrals of
motion are not destroyed, but simply deformed by the other
terms of the Hamiltonian Ĥkag. + Ĥtri.−kag., and in fact play
an important role in determining the system dynamics. Our
hope is that the lessons learned in the future in the relatively
controlled setting of translationally invariant lattice models
with flat bands can be subsequently transferred to disordered
systems. Our paper is an initial step in this promising research
direction.

We conclude by noting that the idea of localized supercon-
ductors, that is, superconductors with localized quasiparticle
excitations due to strong enough disorder, has already been
proposed long ago [93,94]. In this paper, we provide evi-
dence that localization of quasiparticles can occur also in
two-dimensional lattice models with flat bands even in the
absence of disorder. Strictly speaking, the localized quasipar-
ticles are themselves a source disorder [64] and an interesting
question is how they affect the supercurrent flow. We be-
lieve that the coexistence of antithetic phenomena, such as
superfluidity and localization, in the same system is a rather
interesting occurrence that deserves further attention. More-
over, superconductors with suppressed quasiparticle transport
have a number of interesting technological applications, see
for instance, Ref. [95].
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FIG. 9. Illustration of the transformation (A4) that results in a
two-body Hamiltonian with the same symmetry as the triangular
lattice (the lattice formed by the green and red sites, ignoring the
site colors). Panels (a) and (c) represent the Hamiltonians Ĥkag. (50)
(bond singlet hopping) and Ĥtri.−kag. (52) (bond singlet/on-site pair
conversion), respectively. According to (A4), the bond singlet states
(A3) corresponding to the blue sites on panel (a) and (c) on the left
acquire a minus sign. Specifically, these are the sites in the kagome
lattice labeled by 〈(1, l), (1, l + e1)〉 and 〈(2, l), (1, l + e2)〉. The
black and red bonds in the upper panels [(a) and (b)] represent the
terms of the form B̂+

〈n1l1,n2 l2〉B̂
−
〈n1l1,n3l3〉 in (50), with the color encoding

the sign of the hopping as in Fig. 2. In the lower panels [(c) and
(d)] the terms of the form B̂+

n1l1
B̂−

〈n2 l2,n3l3〉 in (52) are represented.
After the transformation, all of the amplitudes of the terms of the
form B̂+

〈n1l1,n2 l2〉B̂
−
〈n1l1,n3l3〉 have the same sign [panel (b)]. In the case

of the terms of the form B̂+
n1l1

B̂−
〈n2 l2,n3l3〉 the sign can vary, but the

sign structure respects the symmetry of the triangular lattice after the
transformation [panel (d)].

APPENDIX: TWO-BODY PROBLEM

An important task is to solve the two-body problem and
find the dispersion of two-body bound states. This is a good
first step to understand the many-body physics. Note that the
two-body problem in the case of the dice lattice has been
discussed also in Ref. [68].

Most of the two-particle states of the form

|n1j1σ1, n2j2σ2〉 = d̂†
n1j1σ1

d̂†
n2j2σ2

|∅〉 (A1)

are trivially eigenstates with eigenvalue zero of the projected
Hamiltonian (48). This is the case if σ1 = σ2 or if the Wannier
functions labeled by n1j1 and n2j2 have zero overlap, as dis-
cussed in Sec. III A. The only states that are not eigenstates of
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FIG. 10. The dispersions En(k) of two-body bound states ob-
tained from the diagonalization of (A8) are shown as blue lines for
A = 10. The Brillouin zone corresponding to the triangular lattice
(27) and its high-symmetry points are shown in the inset. A no-
table feature is the presence of a flat band at zero energy, whose
corresponding eigenvector is given in (A9). The dashed red lines are
dispersions obtained by diagonalizing the Hamiltonian that describes
the hopping of the bond singlets between the sites of the kagome
lattice, that is the lower 3 × 3 diagonal block in (A8). The green
dashed line is the dispersion of the on-site singlets, if these are
decoupled from the bond singlets. This dispersion is given by the
top diagonal element of the two-body Hamiltonian [H (2)(k)]1,1 =
−A − 4

∑3
i=1 cos(k · vi ).

the projected Hamiltonian are the ones obtained by applying
the on-site singlet and bond singlet creation operators to the
vacuum

|nl〉 = B̂+
nl|∅〉, (A2)

|n1l1, n2l2〉 = 1√
2

B̂+
〈n1l1,n2l2〉|∅〉. (A3)

The bond singlet states |n1l1, n2l2〉 have been normalized and
are defined only for a pair 〈n1l1, n2l2〉 of nearest-neighbor
Wannier functions. The two-body problem is solved if we
can diagonalize the projected Hamiltonian in the subspace
spanned by the above orthonormal set of two-particle states.

To proceed, one needs to take advantage of translational
symmetry. The two-body Hamiltonian naturally has the same
symmetry of the original dice lattice from which it is derived.
This translational symmetry consists in shifts of the unit-cell
index labeling the Wannier functions, that is, l → l + ei with
e1 = (1, 0)T and e2 = (0, 1)T , and the fundamental vectors of
the lattice are given by (29). We show that, by a suitable re-
definition of the two-particle basis states in (A3), one obtains

a two-body Hamiltonian with the same translational symme-
try as the triangular lattice formed by the Wannier function
centers, which is the Bravais lattice with fundamental vectors
given by (27). The redefinition of the two-particle basis states
consists of a gauge transformation in which the bond singlet
states (A3) are multiplied by a phase factor

|n1l1, n2l2〉 → χ (n1l1, n2l2)|n1l1, n2l2〉, (A4)

where χ (n1l1, n2l2) = −1 for 〈n1l1, n2l2〉 = 〈(1, l), (1, l +
e1)〉 or 〈(2, l), (1, l + e2)〉 and χ (n1l1, n2l2) = +1 otherwise.
The bond singlets that acquire a minus sign (χ〈n1l1,n2l2〉 = −1)
are denoted as blue dots in Figs. 9(a) and 9(c). As illustrated in
this figure, all the terms of the form B̂+

〈n1l1,n2l2〉B̂
−
〈n1l1,n3l3〉 have

the same sign after the gauge transformation. On the other
hand, the signs of the terms of the form B̂+

n1l1
B̂−

〈n2l2,n3l3〉 can still
be positive or negative; however, the sign structure has the
symmetry of the triangular lattice after the redefinition (A4),
as shown in Fig. 9(d).

The triangular symmetry of the two-body Hamiltonian
means that we no longer need to distinguish between the green
and red sites in Fig. 2, which can now be labeled by using the
unit-cell index only, while the band index n, distinguishing
inequivalent Wannier functions, is dropped. Note that the new
unit-cell index has a different meaning compared to the old
one. Indeed, the state B̂+

l |∅〉 denotes an on-site singlet on
the Wannier function centered at the position rl = l1v1 + l2v2,
where the fundamental vectors vi of the triangular lattice have
been introduced in (27). Similarly, the state B̂+

〈l1,l2〉|∅〉 denotes
a singlet that lives on the two Wannier functions centered at
positions rl1 and rl2 in the triangular lattice. For the purpose of
solving the two-body problem, the phase factor χ introduced
above is absorbed in the definition of the new bond singlet
operators B̂+

〈l1,l2〉. Then, we can construct plane-wave linear
combinations

|k; 0〉 = 1√
Nc

∑
l

eik·rl B̂+
l |∅〉, (A5)

|k; j〉 = 1√
2Nc

∑
l

eik·rl B̂+
〈l,(l+j)〉|∅〉, j �= 0. (A6)

We choose the following orthonormal set of plane-wave states
to construct the two-body Hamiltonian:

|k, 1〉 = |k; 0〉, |k, 2〉 = |k; e1〉,
|k, 3〉 = |k; e2〉, |k, 4〉 = |k; e2 − e1〉. (A7)

Then, the momentum space two-body Hamiltonian in this
basis reads

H (2)(k) = −

⎛
⎜⎜⎜⎝

A + 4
∑3

i=1 cos(k · vi )
√

2(eik·v3 − e−ik·v2 )
√

2(e−ik·v3 − e−ik·v1 )
√

2(e−ik·v2 − eik·v1 )√
2(e−ik·v3 − eik·v2 ) 4 2 + 2e−ik·v3 2eik·v1 + 2e−ik·v3√
2(eik·v3 − eik·v1 ) 2 + 2eik·v3 4 2 + 2eik·v1√

2(eik·v2 − e−ik·v1 ) 2e−ik·v1 + 2eik·v3 2 + 2e−ik·v1 4

⎞
⎟⎟⎟⎠. (A8)
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The dispersion of the two-body bound states obtained by the diagonalization of H (2)(k) is shown in Fig. 10. A notable feature is
the presence of a flat band at zero energy. The flat band corresponds to the following eigenvector of the two-body Hamiltonian

|Gf.b.(k)〉 = 1√
2
[
3 − ∑3

i=1 cos(k · vi )]

⎛
⎜⎜⎝

0
1 − eik·v1

−1 + eik·v2

1 − eik·v3

⎞
⎟⎟⎠, (A9)

which is a linear combination of the bond singlets only, that
is, of the states |k, l = 2, 3, 4〉 in (A7) but not of the on-site
singlet states (|k, 1〉). Therefore, the state (A9) is an eigenstate
also of the Hamiltonian that describes the hopping of a bond
singlet between nearest-neighbor sites of the kagome lattice,
that is the lower 3 × 3 diagonal block in (A8). The dispersion
obtained by diagonalizing only this block is shown in Fig. 10
as well. The structure of the states of the kagome lattice flat
band has been studied in detail [96]. As in the case of the dice
lattice, the flat band subspace is spanned by compact wave
functions, but with the essential difference that they are not
orthogonal since they overlap at most on a single site of the
kagome lattice. The presence of the flat band of two-body
states in (A9) is not unexpected since it is a consequence of
the fact that the flat band two-body Hamiltonian has a rank,

which is not larger than the number of orbitals per unit cell
Norb in the original lattice.

For k = 0 the lower 3 × 3 diagonal block in the two-
body Hamiltonian, corresponding to the bond singlets states
|k, l = 2, 3, 4〉, completely decouples from the on-site singlet
state |k, 1〉. This is in agreement with the general exact result
presented in Sec. II A, according to which the two-body state
|Np = 1〉 = b̂†|∅〉 is an exact eigenstate representing a Cooper
pair with zero momentum. It is only in the dice lattice that we
have the freedom of tuning the energy of this state by varying
the parameter A. This is a consequence of the fact that the
uniform pairing condition can be relaxed in the case of the
dice lattice, see Sec. III A. For k �= 0, the two-body bound
states are, in general, linear combinations of on-site and bond
singlets, with the exception of the flat band state (A9).
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[87] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Quantum chaos
challenges many-body localization, Phys. Rev. E 102, 062144
(2020).
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