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Understanding symmetry breaking in twisted bilayer graphene from cluster constraints
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Twisted bilayer graphene is an exciting platform for exploring correlated quantum phases, extremely
tunable with respect to both the single-particle bands and the interaction profile of electrons. Here, we investigate
the phase diagram of twisted bilayer graphene as described by an extended Hubbard model on the honeycomb
lattice with two fermionic orbitals (valleys) per site. Besides the special extended cluster interaction Q, we
incorporate the effect of gating through an on-site Hubbard-interaction U . Within quantum Monte Carlo, we
find valence-bond solid, Nel-valley antiferromagnetic or charge-density wave phases. Further, we elucidate
the competition of these phases by noticing that the cluster interaction induces an exotic constraint on the
Hilbert space, which we dub the cluster rule, in analogy to the famous pyrochlore spin-ice rule. Formulating
the perturbative Hamiltonian by projecting into the cluster-rule manifold, we perform exact diagonalization and
construct the fixed-point states of the observed phases. Finally, we compute the local electron density patterns
as signatures distinguishing these phases, which could be observed with scanning tunneling microscopy. Our
paper capitalizes on the notion of cluster constraints in the extended Hubbard model of twisted bilayer graphene
and suggests a scheme towards realization of several symmetry-breaking insulating phases in a twisted-bilayer
graphene sheet.
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I. INTRODUCTION

Twisted bilayer graphene (TBlG) has emerged as a versa-
tile platform for studying competing phases in a system with
strong correlations. Experiments have reported correlated in-
sulating phases [1–10]; in other words, insulating phases
where band theory predicts a metal as well as nodal (uncon-
ventional) superconductivity [2,3,7,11,12]. The relationship
between the insulators and the superconducting phases is still
unclear: either the insulator can be viewed as the parent state,
which upon doping becomes superconducting, or the insula-
tor and superconductor are competing phases, with different
underlying mechanisms.

Experiments have addressed this question by studying the
dependence of the phase diagram of TBlG on the electronic
screening. Increasing the screening decreases the range and
strength of the Coulomb interaction. In Ref. [13], the screen-
ing was tuned by varying the electron density in a metal
close to the TBlG, while in Refs. [8,14] distinct devices
with different gate distances were investigated. Strikingly,
the experiments observed that the insulating phases weaken
or disappear, while superconductivity survives even as the
screening is increased. In our paper, we focus on understand-
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ing the effect of the modified screening on the correlated
insulators.

TBlG sits at the intersection of two paradigmatic models
of strongly correlated phases. On the one hand, the flat Chern
bands are reminiscent of the Landau levels of the quantum
Hall effect, an analogy that can be made precise in an idealized
model of TBlG [15]. In this language, the correlated insulators
are generalized quantum Hall ferromagnets that may exhibit
IVC [16–19]. On the other hand, the proximity of correlated
insulating and unconventional superconducting phases as well
as linear-in-T resistivity [20,21] suggests a connection to
the phenomenology of the Hubbard model used to model
cuprate superconductors. In that language, the correlated in-
sulators are valence bond solid (VBS) or quantum valley
Hall phases [22–24]. Aiming at studying a strong coupling
theory with local constraints, in this paper we consider the
Hubbard model of TBlG with realistic extended interactions.
In the phase diagram of this model, we identify the emergent
strongly correlated phases and discuss how to tune the interac-
tions experimentally across the phase diagram. We emphasize
the similarity of these extended interactions’ ground states to
the iconic spin-ice manifold in the pyrochlore lattice [25] and
develop an intuitive perturbation theory for hopping terms.
Finally, we provide possible (scanning tunneling microscope)
STM signatures of these correlated phases.

The special extended interactions emerge due to the char-
acteristic fidget spinner form [26–28] of the maximally
localized Wannier functions. This leads to significant over-
laps between Wannier orbitals on neighboring sites, implying
that longer-range Hubbard interactions need to be included.
The Coulomb interaction leads to the cluster-interaction Q,
where the on-site, nearest-neighbor, next-nearest-neighbor,
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FIG. 1. Phase diagram in the (Q/t,U/t ) plane. The fixed-point states are sketched in the respective regions of the phase diagram. The
(U, Q) pairs mark the phase boundary obtained by extrapolating the QMC data to the thermodynamic limit. The error bars indicate the
direction of a scan in the plane. The uncertainty is �Q/t = 1.0 for horizontal and �U/t = 0.01 for vertical scans. Some transition points in
these phase diagrams are already known from the literature: the U/t = 0 axis at Ns = 2 was studied in Ref. [22], the Q/t = 0 axes at Ns = 1
and 2 were studied in Refs. [30,31]. The squares identify the points of the phase diagram where we later show infinite-volume extrapolations
of susceptibilities within QMC. The dashed violet lines indicate the possible paths in the phase diagrams induced by the dependence of the
interaction parameters on the gate distance d shown in Fig. 2. (a) The spinless Ns = 1 case. (b) The spinful Ns = 2 case. (c), (d) At Ns = 2,
distributions of the complex order parameter 〈M̂KM 〉 = Tr ĜM̂KM for Q/t,U/t = (84.4, 0.24) and (96.6, 0.24), respectively. These parameters
are marked as stars in panel (b). The distributions are characteristic for the (c) cVBS and (d) pVBS Kekuléé orders. (e) Experimental proposal
to measure the STM pattern in TBlG with a single metallic gate and a layer of boron nitride.

and next-to-next-nearest-neighbor interactions satisfy the ra-
tios 3:2:1:1. This interaction can be written as a sum of perfect
squares fixing the total charge per hexagon (cluster), thus the
name. In addition, to mimic the screening we introduce an
on-site interaction U that we tune separately [29].

We consider a model with two orbitals on each moiré
honeycomb lattice site representing the two valleys of the mi-
croscopic graphene lattice. The dynamics of these orbitals is
given by a (nearest-neighbor) hopping with strength t , which
sets the energy scale. We study both the case of a single spin
species Ns = 1 as well as the case of two spin species Ns =
2, relevant to studying phases with a nontrivial pseudospin
structure. We study the model at half filling. The physical
system always has spin, and the case Ns = 2 at half filling
corresponds to studying the charge-neutrality point ν = 0 of
the physical system. The model with Ns = 1 is relevant for
the spin-polarized phases of the physical system at ν = ±1.
A spin-polarized phase at ν = −2 only has one spin species
occupied and the other spin species is at half filling, therefore,
Ns = 1 at half filling is the relevant case to study. On the
other hand, a spin-polarized phase at ν = +2 has one spin
species fully occupied (and therefore inert) while the other
spin species is at half filling. Again, the model with Ns = 1
at half filling is relevant. We observe numerous phases in
the (Q,U ) phase diagram, including the weakly interacting
Dirac semimetal phase (DSM) Kekuléé VBS, Nel, and charge-
density wave (CDW).

Figure 1 summarizes the phase diagram we obtain within
quantum Monte Carlo (QMC) [32]. The DSM phase is char-
acterized by vanishing susceptibilities and single-particle gap.
In the Ns = 1 case, the three valley Nel orders τ v are present,
where τ v are the Pauli matrices with v ∈ {1, 2, 3} denoting
the valley degree of freedom. These order parameters form

the adjoint representation of the SU(2) group and their sus-
ceptibilities are degenerate. The phase diagram is shown in
Fig. 1(a), where we depict the τ 3 order. In turn, in the Kekuléé
state, namely, columnar VBS (cVBS) emerging in the moiré
scale, bond singlets and plaquettes are formed. At the same
time, in the Ns = 2 setup, we do not observe a Nel state, but
rather two Kekuléé states, cVBS, and plaquette VBS (pVBS).
The phase diagram is shown in Fig. 1(b).

In the valley Nel phase, where three degenerate orders are
expected, we consider how the possible perturbations to the
Hamiltonian could break the degeneracy. We find that the
leading perturbation, next-nearest-neighbor hopping, favors
the intervalley orders such as τ v with v ∈ {1, 2}. We also
show that this phase has distinct features in the local electron
density observable in scanning tunneling microscope (STM)
experiments using the setup shown in Fig. 1(e).

Importantly, the strong cluster interaction Q fixes the num-
ber of electrons to 6Ns per each hexagon, which we call
the cluster rule, and the states satisfying this constraint the
cluster-rule manifold. Since the hexagons share corners, the
cluster-rule manifold cannot be decomposed into a product of
simple local Hilbert spaces, similarly to the iconic pyrochlore
spin ice [25], where the total magnetization per a (corner-
sharing) tetrahedron is constrained to zero. This is in contrast
to the case of the strong on-site repulsion U , which limits
the occupation to one fermion per site and turns the Hubbard
model into the Heisenberg model with simple on-site degrees
of freedom. Within this cluster-rule manifold, we develop an
intuitive perturbation theory and supplement the QMC results
with exact diagonalization (ED) for Ns = 1.

The paper is organized as follows. In Sec. II, we intro-
duce the model and the relevant interactions. In Sec. III, we
study the model within several numerical techniques, address
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breaking degeneracy between Nel states and show possible
STM images. Finally, in Sec. IV we discuss the obtained
results.

II. MODEL

The Wannierization of TBlG conducted in Ref. [27] leads
to orbitals centered at the sites of a honeycomb lattice on
the moiré scale. The sites of the honeycomb lattice represent
the AB and BA stacked regions of the bilayer. Similarly to
Ref. [27], we consider the fermionic model on the honeycomb
lattice with two orbitals (valleys) and Ns spins, with Ns = 1
or 2. This model has one band per spin and valley, which is
possible despite the fragile topology of TBlG since the C2zT
symmetry which protects the fragile topology is broken by the
hBN substrate. A model that incorporates all the symmetries
includes more than one band per spin and valley, as shown
in Ref. [28]. However, studying a multiband model with the
additional spin and valley degree of freedom is beyond the
current computational capabilities with QMC.

In the case of TBlG, the orbitals are delocalized, thus an
electron on a site has its wave function density concentrated
in the three blobs located in the centers of the three hexagons
adjacent to the site, which correspond to the AA/BB regions
of the bilayer. For simplicity, we consider a real nearest-
neighbor kinetic term with hopping strength t , which yields
the SU(2Ns)–symmetric Hamiltonian

Ĥ = t
∑
〈i, j〉

∑
σ,τ

ĉ†
iστ ĉ jστ + Q

2

∑
�

(n̂� − 2Ns )2

+ U

2

∑
i

(n̂i − Ns)2, (1)

where 〈i, j〉 denote nearest-neighbor sites, σ enumerates the
Ns spin species, and τ = +,− enumerates the two valleys.
The operator n̂i = ∑

σ, τ ĉ†
iστ ĉiστ measures the full charge at

a site and the hexagon charge operator is given by n̂� =
(1/3)

∑
i∈� n̂i. The factor (1/3) stems from the delocaliza-

tion of Wannierized fermionic orbitals into three peaks.
The estimates for the characteristic Coulomb energy Q =

e2/(0.28LM) ∼ 220 meV (here, LM is the moiré length scale)
and the bandwidth � ∼ 6t ∼ 2 meV given in Ref. [27] for
θ ∼ 1.07◦ suggest that the ratio Q/t can reach hundreds. The
cluster interaction depends on the gate distance d , as shown
in Fig. 2 in agreement with Ref. [8]. We show the results for
both single (dashed lines) and dual (solid lines) gate screened
Coulomb interactions. In both cases, d/2 is the distance be-
tween the TBlG and the gate (such that d is the distance
between both gates in the dual-gated case).

In the absence of the on-site interaction term U , the
cluster interaction can be seen as an extended Hubbard
model with the long-range repulsive contributions decay-
ing as V0/V1/V2/V3 = 3/2/1/1. These ratios are obtained in
Ref. [27], where the interaction strength stems solely from
the number of overlapping wave function density centers. In
the experimental setup with the interaction screened by two
parallel metallic gates placed at distance d to the TBlG sheet,
this cluster-interaction limit corresponds to the case d � LM,
where LM is the TBlG moiré lattice spacing [27,33]. When
the metallic gates are moved away from the TBlG sheet, the

FIG. 2. Left axis: Ratio of the on-site potential correction U to
the cluster interaction Q as a function of d/LM, where d is the
distance to the metallic gates from the TBlG sample. Right axis:
Dependence of the screened cluster interaction Q(d ) on the gate
distance d . The details of both calculations are given in Appendix B.
Solid (dashed) lines correspond to the setups with two (one) metallic
gate(s).

cluster interaction is supplemented with the screened nonlocal
Coloumb interaction between the nonoverlapping blobs. This
modification of the cluster interaction violates the 3/2/1/1
extended interactions ratio, which we mimic by introducing
the on-site interaction U . In Fig. 2, we show the ratio U/Q
as a function of d/LM. Importantly, in an experiment with
metallic gates, both positive and negative values of U/Q can
be realized. In Figs. 1(a) and 1(b), we draw the possible lines
that can be induced by the dependence of Q(d )/Q(d = 0)
and U (d )/Q(d ) on d . The fully screened interaction strength
Q(d = 0)/t depends on the twist angle θ . Notably, these
lines pass through all phases, making the variation of d a
suitable way to access the observed symmetry-broken phases
experimentally.

III. RESULTS

A. Order parameters

In this section, we sketch the order parameters emerging in
the phase diagram of the Hamiltonian Eq. (1).

1. Kekuléé valence-bond solids

In the Kekuléé VBS phase, reported previously in
Ref. [22], the order is given by the operator

M̂±KM = 1√
Nb

∑
ξ,i,ρ j

e±iKMri
(
ĉ†

i,ξ ĉi+ρ j ,ξ e2π i j/3 + H.c.
)
, (2)

where Nb = 3L2 is the number of bonds in the lattice, ρi enu-
merates the nearest neighbors of site i, and ξ ∈ {0, . . . , 2Ns −
1} labels the flavors. This order transforms as the E represen-
tation of the C3 group and has the spatial momenta KM and
K ′

M, the Dirac points in the moiré Brillouin zone.
The matrix representations Mαβ of the ±KM Kekulé or-

ders Eq. (2) are related by complex conjugation and have
degenerate susceptibilities. In Ref. [22], it was shown that
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these two orders condense in two real-valued superpositions
(M̂+KM + M̂−KM )/

√
2 and (M̂+KM − M̂−KM )/(i

√
2), the pVBS

and cVBS, respectively.
The determination of which phase is realized can be done

by plotting the histogram of the 〈M̂+KM〉 measurements within
QMC in the complex plane. The characteristic distributions of
the order parameter 〈M̂+KM〉 are shown in Figs. 1(c) and 1(d).

2. Nel antiferromagnets

In the Nel AFM phase, the symmetry breaking may take
place due to the condensation of the orders

M̂v,s = 1

2
√

2L2

∑
i

(−1)l (i)(ĉ†
i tv,sĉi + H.c.), (3)

where ĉ†
i is the collection of 2Ns creation operators at the site

i, l (i) = 0, 1 is the sublattice index of the site i, and tv,s is
one of the (2Ns)2 − 1 Lie algebra generators of the SU(2Ns)
group. Here, in the Ns = 2 case, we choose the standard
representation

tv,s = σ s ⊗ τ v, (4)

where 0 � v, s < 4 enumerate the Pauli matrices with v +
s > 0. For the Ns = 1 case, tv = τ v with v > 0.

3. Charge-density wave

Lastly, in the CDW the order is described by condensation
of

M̂CDW = 1

L

∑
i

(−1)l (i)n̂i. (5)

The CDW breaks translational symmetry on the moiré
scale. In particular, in this phase one of the sublattices of
the moiré honeycomb lattice has a larger charge density than
the other. The BA and AB stacked regions of the TBlG hence
have different charge densities. However, we emphasize that
this does not imply sublattice polarization on the microscopic
graphene scale, as could be seen with scanning tunneling
microscopy (see Sec. III G).

B. Quantum Monte Carlo study

The Hamiltonian Eq. (1) can be studied within the QMC
approach [22], which is sign-problem free at U, Q > 0. At
U < 0, the approach is only sign-problem free at Q = 0,
which hinders the study of the phase diagram for negative U .

We consider the equilateral L × L clusters with L =
3, 6, 9, 12, and 15 and vary the Trotter step t δτ =
min (0.1, t/Q, t/U ). This choice of δτ allows us to keep the

Trotter errors under control even at strong interaction [34].
The four-valued Hubbard-Stratonovich field is introduced us-
ing the fourth order O(δτ 4) decomposition with the errors
negligible as compared to the Trotterization errors [35].

A generic order parameter has the form

M̂ =
∑
α,β

Mαβ ĉ†
α ĉβ, (6)

where α = (iα, τα, sα ) is the composite site-flavor index. This
operator is normalized as M∗

αβMβα = 1.

The tendency to establish a nonzero value of the or-
der 〈M̂〉 �= 0 can be quantified by the zero-frequency
susceptibility

χM̂ =
∫ β

τ=0
dτ Tr [e−βĤ M̂†(τ )M̂(0)]

=
∑
αβγ δ

M∗
αβ�αβγ δMγ δ, (7)

where we singled-out the four-point particle-hole vertex
operator:

�αβγ δ =
∫ β

τ=0
dτ Tr [e−βĤ ĉ†

β (τ )ĉα (τ )ĉ†
γ (0)ĉδ (0)]. (8)

Treating (γ , δ) and (α, β ) as the composite in and out
indices, we view �(αβ ),(γ δ) as a matrix, whose eigenvectors
are the operators transforming as irreducible representations
of the translation and point-group symmetries and the eigen-
values are the susceptibilities. The irreducible representation
of the eigenvector M̂ with nonzero extrapolated susceptibil-
ity limL→∞ χ (L)/L2 signals the preferred symmetry-breaking
pattern.

For all parameters studied in this paper, we find that
the leading eigenvector is always one of the orders de-
fined in Sec. III A 1. Moreover, we reproduce the expected
((2Ns)2 − 1)fold and twofold degeneracies for the M̂v,s Nel
and the M̂±KM Kekuléé orders, respectively [36].

We perform QMC simulations at βt = 2L and check for
selected parameters that the conclusions are temperature in-
sensitive at βt = 3L. The resulting QMC phase diagrams
are shown in Figs. 1(a) and 1(b). In Fig. 3(a), we show
the susceptibilities’ extrapolations in the Ns = 1 case. Here,
the extrapolated Nel susceptibility is finite for (U/t, Q/t ) =
(2, 80), indicating the valley AFM phase, while the Kekuléé
susceptibility is finite in the cVBS phase for (U/t, Q/t ) =
(0, 100). In the DSM phase at (U/t, Q/t ) = (0, 20), all sus-
ceptibilities extrapolate to zero. In Fig. 3(b), where Ns = 2
is shown, the Kekulé susceptibilities are finite in the pVBS
phase at (U/t, Q/t ) = (0, 60) and in the cVBS phase at
(U/t, Q/t ) = (6, 60), while they extrapolate to zero in the
DSM phase at (U/t, Q/t ) = (0, 40).

C. Perturbation theory

The large Q/t interaction strengths of the phase transitions
in Figs. 1(a) and 1(b) suggest construction of an effective
theory in the limit of the strong cluster interaction (Q � t,U ),
where the low-energy manifold is described by the states
having exactly 6Ns fermions in each hexagon. Notably, unlike
the construction of the t–J model in the regime of strong U ,
here the resulting cluster-rule manifold cannot be written as
a product of Hilbert spaces of some emergent local degrees
of freedom, which is similar to the pyrochlore lattice [25]. At
1/3 filling, these cluster interactions can give rise to insulators
with fractional excitations [37]. Here, we study the cluster-
rule states at half filling.

The cluster-rule manifold is separated by the gap �Q =
Q/9 from the rest of the states in the full Hilbert space. Within
this manifold, the on-site term U is diagonal, while the kinetic

043214-4



UNDERSTANDING SYMMETRY BREAKING IN TWISTED … PHYSICAL REVIEW RESEARCH 5, 043214 (2023)

FIG. 3. (a) Ns = 1, quadratic extrapolations of susceptibilities
in the DSM, cVBS, and valley Nel phases corresponding to the
parameters (U/t, Q/t ) = (0, 20), (0, 100), and (2, 80), respectively.
The Kekuléé susceptibility in the cVBS phase and the Nel suscep-
tibility in the valley Nel phase are divided by 5 at Ns = 1, while
the Kekuléé susceptibility in the cVBS phase as multiplied by 5 at
Ns = 2 for better general visibility. The nonzero extrapolations are
denoted with bold lines. (b) Extrapolations in the Ns = 2 case in
the DSM, cVBS, and pVBS phases corresponding to the parameters
(U/t, Q/t ) = (0, 40), (0, 60) and (6, 60), respectively.

term t can be treated perturbatively,

Ĥpert. = (1 − P̂ )

(
−K̂

P̂
Q̂

K̂ + K̂
P̂
Q̂

K̂
P̂
Q̂

K̂ + . . .

)
(1 − P̂ ),

(9)

where K̂ , Q̂ are the kinetic and cluster terms in Eq. (1), and
P̂ projects onto the orthogonal complement of the cluster-rule
manifold. In this manifold, the effective Hamiltonian reads

Ĥpert. = − t2

�Q
ĥbond + t3

�2
Q

ĥhexagon + U

2

∑
i

(n̂i − Ns )2. (10)

Here, the first term,

ĥbond =
∑
ξ1,ξ2

∑
〈i, j〉

ĉ†
ξ1,i

ĉξ1, j ĉ
†
ξ2, j ĉξ2,i, (11)

FIG. 4. Two moves in the cluster-rule perturbation theory.
(a) Bond flip exchanging fermions of ξ1 and ξ2 on sites i and j.
(b) The hexagon flip process that moves three fermions with ξ1, ξ2, ξ3

over three nonadjacent bonds in a hexagon � in the same direction,
such that the cluster rule is respected. (c) An example of a cluster-rule
configuration for the Ns = 1 case. Left (right) colored semicircles
indicate presence of a spin up (down). Note that in each hexagon,
there are exactly six fermions. The arrows along the bonds indicate
the possible single-particle hops between adjacent sites that are al-
lowed by the Pauli principle. The round arrows in the centers of the
hexagon indicate possible (b) moves, namely, there are two (b) moves
possible in the upper-right hexagon, one (b) move possible in the
lower hexagon, and no moves possible in the upper-left hexagon.

exchanges the fermions with ξ1, ξ2 on the nearest-neighbor
sites i, j, which is shown in Fig. 4(a). The second term,

ĥhexagon =
∑

ξ1,ξ2,ξ3

∑
�

ĉ†
ξ1,1

ĉξ1,2ĉ†
ξ2,3

ĉξ2,4ĉ†
ξ3,5

ĉξ3,6, (12)

moves three fermions with ξ1, ξ2, ξ3 over three nonadjacent
bonds in a hexagon � in the same direction, as shown in
Fig. 4(b). Note that each of these terms preserves the cluster
rule in all hexagons. These terms annihilate a state if a move is
not possible. To illustrate these moves, in Fig. 4(c), we show a
basis element satisfying the cluster rule. The figure illustrates
the dynamics induced by the terms ĥbond and ĥhexagon within
the cluster-rule manifold.

D. Exact diagonalization of Ĥpert

We treat the Hamiltonian Eq. (9) within ED [38] in the
Ns = 1 case on the 3 × 3 hexagonal lattice. The cluster-rule
manifold contains 5 018 802 states, which is a considerable
reduction from the full Hilbert space with 9 + 9 fermions of
the size ∼3 × 109. Unfortunately, the cluster-rule manifold on
the 3 × 3 lattice with Ns = 2 has a size of O(1013) and is out
of reach.

Figure 5(a) shows the low-energy level structure at U/t =
0.2 as a function of Q/t . We determine the phase diagram
on the Q/t axis by considering the quantum numbers of the
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FIG. 5. (a) Spectrum obtained within exact diagonalization of
the Hamiltonian Eq. (9) at U/t = 0.2. Here, we plot the energy
gap between an excitation (and mark its quantum numbers) and a
featureless ground state (with quantum numbers S = 0, k = 0, A1).
The lowest excitations in selected symmetry sectors are connected
with lines, and their quantum numbers are given. Other excitations
are shown as simple black squares. (b) The case U/t = −0.2. (c) The
resulting phase diagram with phase transitions pinned from the cross-
ings of the excited states’ energies.

low-energy excited states, namely, their spin S, momentum k,
and their transformation property under the point group D3. In
the regime of small Q/t , the lowest excitations above the (fea-
tureless) ground state, are singlets S = 0 with k = KM/K ′

M,
transforming as the E representation under the D3 group,
which matches the symmetry-breaking pattern of the Kekuléé
state. In the large–Q/t regime, we observe the magnetic
tower of states signaling breaking of the SU(2) symmetry and

establishing a Nel order [39]. Following Refs. [40,41], we
identify the transition between the magnetic Nel phase at
large Q/t and Kekuléé phase at small Q/t with the crossing
between the lowest-lying triplet and the symmetry-breaking
singlet Kekuléé state.

Negative U/t = −0.2 favors doubly occupied or free sites.
There, the phase transition is pinned by the crossing between
the Kekuléé and the CDW (S = 0, k = 0, A2) excited states,
signaling the k = 0 CDW, as we show in Fig. 5(b). With these
transition criteria, in Fig. 5(c) we show the resulting phase
transition lines between the Kekuléé and the CDW phases.
At U > 0, the results qualitatively agree with the QMC phase
diagram shown in Fig. 1(a). The actual interaction strengths
differ due to the significant finite-size effects present in L = 3
perturbation theory. Importantly, the region of U < 0 is not
accessible for the exact QMC study due to a severe sign
problem.

E. Fixed-point states analysis

The absence of a Nel phase for Ns = 2, which is in contrast
to the Ns = 1 case, can be explained by constructing the fixed-
point states of the orders observed within QMC and ED. The
corresponding orders are depicted in Figs. 1(a) and 1(b). A
fixed-point state is obtained as a ground state of the Hamilto-
nian Ĥ = M̂, where M̂ is one of the order parameters, i.e., the
condensed order dominates the initial Hamiltonian. Finally,
we project this state onto the cluster-rule manifold by remov-
ing the wave-function components violating the cluster rule.

The possible Nel SU(4) state (for simplicity, we consider
the σ 0 ⊗ τ 3 order) reads

|ψNel〉 =
(

L2∏
i=1

2∏
s=1

ĉ†
i,A,s,+ĉ†

i,B,s,−

)
|0〉, (13)

where the first (second) operator creates fermions in the τ =
+1(−1) valley on the A(B) sublattice. In the SU(2) spinless
case, the spin degree of freedom in Eq. (13) is omitted.

For the cVBS phase, the state reads

|ψcVBS〉 = 1

(2Ns)Nb/3

Nb/3∏
b=1

(2Ns
Ns )∑

c=0

∣∣vαb
c

〉 ⊗ ∣∣v̄βb
c

〉
, (14)

where b enumerates the Nb/3 dimerized bonds between sites
(αb, βb), while c enumerates

(2Ns

Ns

)
possible ways to put Ns

fermionic species at the site αb and the remaining Ns species
at the site βb, forming the state |vαb

c 〉 ⊗ |v̄βb
c 〉. This state has

exactly Ns electrons per site and thus satisfies the cluster rule.
We compute the energies of these fixed-point states accord-

ing to Hamiltonian Eq. (9), yielding

ENel�Q/t2 = −2NsNb, (15)

ENs=1
cVBS�Q/t2 = −2Nb, ENs=2

cVBS = − 16
3 Nb. (16)

We see that at Ns = 1, the Nel and cVBS energies are equal,
ENel = ENs=1

cVBS, which opens the prospect to realize the SU(2)
valley Nel state in Fig. 1(a) due to higher-order quantum fluc-
tuations. On the contrary, at Ns = 2, ENel > ENs=2

cVBS, and thus
the SU(4) Nel state in Fig. 1(b) is never a ground state [42].
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FIG. 6. Upper row: Local electron density ρ(r) of the CDW and the τ 1, τ 2, and τ 3 Nel orders, which could be measured using STM. The
images show the local electron density in one of the graphene layers on the microscopic graphene scale. White dots show the positions of the
sites of one of the graphene layers. Bottom row: Fourier transforms ρ(q) of the respective STM images. The central peak at q = 0 is removed
for visibility. The six graphene Bragg peaks are circled; the additional peaks in the Fourier transform for the τ 1 and τ 2 orders are a result of
the

√
3 × √

3 translational symmetry breaking in the presence of intervalley coherence and correspond to momenta K − K ′.

F. Breaking the degeneracy between the Nel states

We observed that in the spinless case Ns = 1, the valley Nel
phase appears in the phase diagram. The three Nel states are
degenerate within the given SU(2)-symmetric model Eq. (1).
However, additional perturbations in the Hamiltonian can
break this symmetry, which may lead to a splitting of the
degeneracy between these Nel orders.

In Eq. (1), we neglected additional long-range hoppings
and longer-range interactions emerging due to the delocal-
ized nature of the Wannier orbitals [27]. The next-to-leading
hopping obtained in Ref. [27] is the fifth-nearest-neighbor
hopping with the respective Hamiltonian

Ĥ5 = t5
∑

〈〈i, j〉〉
ĉ†

i+ĉ j+ + t∗
5

∑
〈〈i, j〉〉

ĉ†
i−ĉ j−, (17)

where 〈〈i, j〉〉 denotes the fifth-nearest-neighbor pairs. Cru-
cially, while the nearest-neighbor hopping t can always be
chosen to be real via an appropriate choice of gauge, t5 is gen-
erally complex [43]. With a complex hopping, the symmetry
of the model is broken down from valley SU(2) symmetry to
U (1) valley charge conservation.

Since this term hops a single particle, there is no contri-
bution in the first-order perturbation theory. The second-order
perturbation theory (including only the imaginary component
of the t5 hopping since this is the piece which breaks the
symmetry) yields

δE (2)
v =

{
− 2|Im t5|2

3�Q
Nb, if v ∈ (1, 2)

0, otherwise.
(18)

Therefore, adding the fifth nearest-neighbor hopping favors
intervalley Nel orders, i.e., the system is an easy-plane valley
antiferromagnet.

G. Graphene scale electron density distribution

STM topography experiments have recently revealed that
the correlated insulating phases in TBlG [44] and twisted
trilayer graphene [45] exhibit a Kekuléé pattern on the mi-
croscopic graphene scale. This is a signature of certain types
of intervalley coherent (IVC) states [46,47] and is consis-
tent with predictions from Hartree-Fock on the continuum
model [17,48,49].

Since STM has been shown to be a powerful tool for iden-
tifying the nature of symmetry breaking in TBlG, we plot in
Fig. 6 for Ns = 1 the potential STM images that would appear
on the microscopic graphene scale of the bilayers, when the
respective orders we found stabilize on the moiré scale. In
particular, we show the local electron density in one of the
layers for the CDW and for three different Nel orders, all
of which break moiré translational symmetry. The τ 1 and τ 2

Nel orders allow for superposition of electrons from the two
microscopic graphene valleys and this leads to a

√
3 × √

3
increase of the size of the microscopic graphene unit cell. In
the Fourier transform of the STM images, the graphene-scale
translational symmetry breaking shows up as additional peaks
besides the graphene Bragg peaks. Using the nomenclature of
Ref. [44], there can be bond as well as site Kekuléé order.
Intrasublattice IVC leads to a site Kekuléé pattern whereas
intersublattice IVC leads to a bond Kekuléé pattern. In addi-
tion, the τ 1 and τ 2 Nel orders both break C3 symmetry. The
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degeneracy between the different Nel orders is lifted by the t5
term which favors the intervalley Nel order (with a Kekuléé
pattern).

IV. DISCUSSION AND OUTLOOK

In this paper, we considered an extended Hubbard model
for TBlG with two valleys and Ns spins on the honeycomb
lattice. The topology of the bands of TBlG leads to delocalized
Wannier orbitals and therefore the on-site Hubbard interaction
U is subdominant. Instead, the dominant interaction term is a
special cluster interaction Q within each hexagonal plaquette
of the honeycomb lattice. Experimentally, the range of the
Coulomb interaction and therefore the competition between
U and Q can be tuned by modifying the distance between the
sample and the gates. While previous works have focused on
this model for U = 0 [22,27], we extend the study to nonzero
U and show that the presence of this term can stabilize another
phase. We studied the phase diagram of this model in U–Q
space using QMC. While the QMC is limited to U > 0 due to
the sign problem, we make progress on the U < 0 side of the
phase diagram by performing ED within the manifold of states
satisfying a cluster rule for large Q. The different competing
phases we find include a Dirac semimetal, as well as three
symmetry-broken phases (CDW, Nel, and VBS). In particular,
the Nel phase is only stabilized for nonzero U .

We explored both Ns = 1 and Ns = 2 and find that the
phase diagrams are different: In particular, the Nel phase
only appears for Ns = 1. For Ns = 1, we find good qualita-
tive agreement between the QMC and the perturbation-theory
approaches in the U > 0 case, where there are solutions from
both methods. However, the perturbation theory is too com-
putationally expensive in the Ns = 2 case and therefore the
U < 0 part of the phase diagram remains unexplored in this
case. This would be an interesting regime to study in fu-
ture work, for example using density-matrix renormalization
group methods.

In addition, the cluster rule of having exactly 6Ns fermions
per hexagon, while the hexagons share corners, appears very
similar to the famous pyrochlore spin-ice rule [25], where the
tetrahedra are also corner sharing. There, this frustrated local
charge conservation allows us to reformulate the model in
terms of a frustrated gauge theory hosting a U (1) algebraic
spin liquid. A similar U (1) gauge theory can possibly be
built in this model with the cluster interaction. However, this
U (1) gauge theory would be confined in two dimensions [50],
in accord with us not finding any spin liquid phases. The
construction of this gauge theory is beyond the scope of this
paper.

Finally, one of the key questions is what symmetry-
breaking phases are realized in the experimental system.
Many of the experiments performed on TBlG perform trans-
port measurements and as such are unable to distinguish
between the different patterns of symmetry breaking: these
states all appear as otherwise featureless insulating states in
transport. However, recently, advances have been made in us-
ing STM to image TBlG [44,45]. This allows one to image the
form of translational symmetry breaking that is characteristic
of the different phases. We computed the STM pattern for the

CDW and Nel phases found in the QMC and showed that they
can indeed be distinguished with such a measurement.

There are two different strong coupling pictures of TBlG:
On the one hand, there is the momentum space Bistritzer-
MacDonald continuum model [51]. In this model, the octet
of flat bands resembles Landau levels and the Coulomb in-
teraction picks out a manifold of degenerate quantum Hall
ferromagnetic ground states. The kinetic energy can be added
perturbatively and selects one of these ground states [16]. On
the other hand, the flat bands can be Wannierized and the
long-range Coulomb interaction can be truncated to obtain the
Hubbard model used in this paper [27]. In our paper, we add
the kinetic energy perturbatively and this selects states such
as the Nel state from the degenerate cluster-rule manifold.
Here, the interactions quench the kinetic energy, unlike in
the momentum space approach. The Hubbard model approach
relies on truncating the Coulomb interaction, which explains
why the results differ from the momentum space approach:
it is known that in other lattice geometries, longer-range
interactions destabilize the Nel state [52]. Our approach is
therefore valid in the regime where the gate-sample distance
is small, such that the interaction range decreases. Access-
ing this regime in experiments and discovering whether the
density patterns measured in STM are different compared
to samples with larger gate-sample separation would be an
interesting future direction.
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APPENDIX A: COMPUTATION OF POTENTIAL
SIGNATURES IN STM

Here, we provide information on computing the STM
images of the different orders obtained in this work. The Wan-
nierized wave functions centered around BA and AB stacking
regions (A and B sublattices in the moiré scale, respectively)
can be projected onto the two layers L = 1, 2 and their sublat-
tices l = A, B. The resulting projections |ψA/B,L,l〉 are given in
the panels of Fig. 3 of Ref. [27] (note that in Ref. [27], |ψA/B〉
are named |ψ1/2〉).

One can see that generally a wave-function contribution to
(L, l ) can be seen as three blobs concentrated around the AA
stacking regions with some phases. To describe a blob con-
centrated around an AA region with the center r0, we consider
a Gaussian contribution φr0 (r) ∝ exp(−|r − r0|2/D2) with
D ∼ LM/3.

Then, the projection amplitude is given by

ψ
r0
A/B,L,l (r) = eiKLr

∑
j

θL,l
A/B( j)φr0+(−1)A/Bδ j (r), (A1)
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where KL is the K–point of the layer L (note that the two
layers’ K points are shifted with respect to each other due
to the relative θ rotation of the layers), δ j are the three
vectors connecting an AB/BA stacking region with the three
AA neighbors, and the phases θL,l

A/B( j) can be read off from
Fig. 3 of Ref. [27]. The factor (−1)A/B is ± for the A/B
sublattices. These phases are given for the τ = + valley, while
the τ = − valley Wannier functions are obtained by complex
conjugation.

For the A sublattice, the phases θL,l
A ( j) are given by

θ1,A
A = {1, ω2, ω}, θ1,B

A = {−1,−1,−1},
θ2,A

A = {1, 1, 1}, θ2,B
A = {1, ω, ω2}, (A2)

where ω = exp(2π i/3), and, similarly,

θ1,A
B = {−1,−1,−1}, θ1,B

B = {−1,−ω,−ω2},
θ2,A

B = {−1,−ω2,−ω}, θ2,B
B = {1, 1, 1}. (A3)

From the outlined procedure, we deduce that the STM
images are independent of the spin component of a Nel or-
der. However, the valley component affects the STM image.
Consider, for instance, the Nel order σ 0 ⊗ τ v with v = 1, 2,
or 3. In the case of the order parameter condensation, the
wave function is a product state of the local ground states
(in the valley space) of the terms (−1)A/Bτ v that alternate
with sublattice index, |ψ〉 = | + − + − . . . + −〉, where |±〉
are the local eigenstates with the eigenvalues ±1. Using this
wave function, we compute the contribution to the individual
sites on the graphene scale in the AA/BB regions:

IL,l (r) =
∑
n,r0

∣∣vn,r0+ ψ
r0
l (r0 ),L,l + v

n,r0−
(
ψ

r0
l (r0 ),L,l

)∗∣∣2
, (A4)

where v
n,r0± are the ±–valley components of the local ground

state of the (−1)A/Bτ v Nel order, the summation r0 runs over
all sites on the moiré scale, and n runs over the orbitals on a
given moiré site, and l (r0) is the sublattice index of site r0.
In this paper, we primarily focus on one of the layers, i.e.,
consider L = 0.

APPENDIX B: INTERACTION TERMS

We consider a setup where the electron-electron Coulomb
interaction is screened by the two metallic gates put at the
distance d from both sides of the moiré sheet.

We use the interaction potential Vi j of electrons placed at
moiré sites Ri, R j as

Vi j =
∫

dridr j

∣∣ψRi
D (ri )

∣∣2∣∣ψR j

D (r j )
∣∣2

V d (ri − r j ), (B1)

where |ψR
D (r)|2 is the amplitude at position ri of a wave

function centered around R, and D is the blob width.
The wave function amplitude, as shown in Appendix A,

could be written as∣∣ψR
D (r)

∣∣2 = βφR
D(r) + 1 − β

3

∑
j

φ
R+(−1)A/Bδ j

D (r), (B2)

φR
D(r) = 1√

2πD2
exp

(
−|r − R|2

2D2

)
, (B3)

where, following Ref. [27], we added an additional central
wave-function density βφR

D(r) controlled by the small param-
eter β.

For the two-gate screening setup, the interaction potential
is given by

V d (r) = e2

ε

+∞∑
n=−∞

(−1)n

√
r2 + d2n2

, (B4)

where ε is the dielectric permittivity and

V d (r) = e2

ε

(
1

r
− 1√

r2 + d2

)
(B5)

in the single-gate screening setup.
We note that at d � D, electrons can only interact on

site. Therefore, the interaction matrix Vi j is given by solely
the number of overlapping blobs, giving rise to the well-
known V0/V1/V2/V3 = 3 : 2 : 1 : 1 ratio which can be written
in terms of the cluster charge interaction Eq. (1). As d grows,
the 3 : 2 : 1 : 1 ratio changes. In Eq. (1), we define U0 =
V0 − 3V3 to indicate the deviation from the 3 : 1 ratio. To
produce Fig. 2 in the main text, we employed D = 0.2LM and
β = 0.15.
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