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Probing vacuum field fluctuations and source radiation separately in space and time
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Source radiation (radiation reaction) and vacuum field fluctuations can be seen as two inseparable contribu-
tions to processes such as spontaneous emission, the Lamb shift, or the Casimir force. Here, we propose how
they can be individually probed and their space-time structure revealed in electro-optic sampling experiments.
This allows us to experimentally study causality at the single-photon level and to reveal space- and timelike cor-
relations in the quantum vacuum. A connection to the time-domain fluctuation-dissipation theorem is also made.
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I. INTRODUCTION

Analyzing the physical mechanisms behind the structure
and dynamical properties of an atom interacting with the
electromagnetic vacuum, e.g., the Lamb shift and sponta-
neous emission, one finds two inseparable contributions [1]:
(i) Fluctuations of the atom’s charged constituents lead to
the emission of source radiation which can act back on the
atom (radiation reaction) [2–5], (ii) the atom can interact with
vacuum fluctuations of the electromagnetic field [2]. It is
the intricate interplay between these two contributions which
leads to the stability of ground-state atoms: The loss of energy
due to the emission of source radiation by the fluctuating
charges is canceled by the process in which the atom absorbs
energy from the vacuum [1].

These “two sides of the same quantum-mechanical coin”
[6] also play the pivotal roles in Fermi’s two-atom Gedanken-
experiment [7,8], in which two atoms are placed at a distance
R in empty space and interact with the vacuum electromag-
netic field for a finite time τ , see Figs. 1(b) and 1(c). When
considering the generation of correlations between the two
atoms [9] one finds that the atoms become correlated since
atom A interacts with the source radiation emitted by atom
B (or vice versa), i.e., the two atoms exchange photons, or
they can individually interact with vacuum field fluctuations
and thereby correlations pre-existing in the vacuum field are
swapped to the atoms [8].

The influence of source radiation and vacuum field fluc-
tuations onto the dynamics of atoms, however, can not be
uniquely identified in general, since their relative contribu-
tions depend on the chosen initial operator ordering in the
Hamiltonian [6,10], see Fig. 1(a). This indetermination can be
removed by the requirements that (i) the source and vacuum
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field contributions must be individually Hermitian and (ii)
expressed in terms of Hermitian field and atomic operators.
This is known as the DDC (Dalibard, Dupont-Roc, Cohen-
Tannoudji) procedure [11,12].

Here, in Sec II, we revisit Fermi’s two-atom setup and show
that to lift the indetermination of the relative contributions
of source radiation and vacuum field fluctuations one can
replace (ii) in the DDC procedure by the following equivalent
causality requirement: The source field should not lead to
correlations between spacelike separated atoms. This leads to
the same unique operator ordering as in the DDC formalism
and implies that any other operator ordering suffers from the
complication that either the source and vacuum field contri-
butions are in general not real numbers or the source field
mediates correlations faster than the speed of light.

The interpretation of the resulting unique source and vac-
uum field contributions are in-line with previous results,
discussing how fundamental features of quantum field theory
can be revealed in Fermi’s two-atom setup: (a) Existence of
space- and timelike correlations in vacuum [9,13–17]: Space-
like separated atoms, so atoms which are completely causally
disconnected from each other, can become correlated, only
because they can harvest spacelike correlations existing in the
quantum vacuum [9,13,18]. As no information is transferred
between the atoms via this process, this result is in accor-
dance with special relativity [9]. Similarly, if the separation
of the two atoms is purely timelike, then they also cannot
exchange a photon traveling at the speed of light. Still they
can become correlated by extracting so-called past–future
correlations from the quantum vacuum [17,19]. (b) Causality:
The two atoms can infer information about each other via the
exchange of source radiation. According to special relativity,
its contribution must therefore vanish, when the atoms re-
main spacelike separated (R > cτ , c: Speed of light). Whether
this is strictly true in a quantum mechanical treatment, had
led to a debate in the past [7,9,20,21], which was eventu-
ally settled theoretically in favor of strict causality [22,23].
An experimental verification [24] is, however, still missing.
(c) Time-domain fluctuation-dissipation theorem (FDT) [25]:
The FDT is usually considered in frequency space. Here, we
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FIG. 1. Source radiation vs vacuum field fluctuations for single-atom dynamics or the Fermi two-atom setup. (a) The structure and
dynamical properties of a single atom coupled to the electromagnetic field in vacuum is influenced by vacuum field fluctuations (green)
and radiation reaction (red), i.e., the back action of the source field emitted by the atom onto itself. Although the sum of these effects remains
independent of the chosen operator orderings, their individual contributions differ, e.g., the vacuum field contribution to spontaneous emission
vanishes using normal ordering while it does not vanish for symmetric or antinormal ordering. (b, c) Fermi’s two-atom setup: Two atoms at a
distance R apart from each other interact for a finite time τ with the electromagnetic vacuum field. (b) The influence of atom B onto atom A
is always (independent on the chosen operator ordering) described by the fully retarded source radiation of atom B, Ês,B. As Ês,B vanishes for
spacelike separated atoms, there is no faster-than-light signaling. (c) Correlations between the two atoms arise either due to an exchange of
source radiation or since correlations from the vacuum field are swapped to the atoms. Only for symmetric operator ordering (as in the DDC
formalism) the former contribution vanishes for spacelike separated atoms, as illustrated above.

find a direct implication of its time-domain form: It relates
correlations arising from source radiation or vacuum field
fluctuations in Fermi’s two-atom problem. This also allows
for an experimental verification of the time-domain FDT.

The experimental implementation [24,26] of the Fermi
two-atom setup is challenging, especially since the interac-
tion with the vacuum has to be switched on and off on very
short timescales. Recently, an analog version has been intro-
duced [27] based on electro-optic sampling (EOS) [28–36],
leading to the first observation of spacelike correlations in
the quantum vacuum [27]: Two tightly focused laser pulses,
separated in space and time by δr and δt , respectively, prop-
agate through a nonlinear crystal. They effectively induce an
interaction between the THz quantum-vacuum field and two
near-infrared (NIR) field modes (replacing the atoms) via the
nonlinear coupling of the crystal (laser pulses entering and
leaving the crystal switches the interaction on and off); see
Fig. 2(b).

In Sec III, we analyze the potential of EOS experiments
and find that source-radiation and vacuum field contributions
can be accessed individually. This is achieved by simply ex-
changing two wave plates in the detection scheme. We then
show how this allows one to probe (a)–(c) experimentally
with state-of-the-art EOS setups.

II. VACUUM AND SOURCE FIELDS IN FERMI’S
TWO-ATOM SETUP

We consider Fermi’s two-atom setup [7] consisting of two
two-level atoms interacting for a finite time τ with the quan-
tized electromagnetic field initially in its vacuum state. The

interaction Hamiltonian reads

Ĥ (F )
I (t ) = −

∑
i=A,B

η(t )
∫

d3rF (r − ri )Ê (r, t )d̂ (i)(t ). (1)

FIG. 2. EOS analog of Fermi’s two-atom setup. (a) Two atoms
interacting with the quantized electromagnetic field in its vacuum
state can either become correlated by exchanging source radiation
or by “harvesting” correlations existing in the vacuum field Êvac;
see also Fig. 1. (b) EOS setup: Analogously, correlations between
two probe-field modes Ê (1,2) can arise, which copropagate with two
coherent laser pulses E (1,2) through a nonlinear crystal (gray), in
which they can effectively interact with the THz electric field Ê .
These correlations can be accessed via a balanced detection scheme
for each laser pulse consisting of a wave plate with angles θ1,2, a
Wollaston prism (WP) and two balanced photodiodes (PD). (c) For
certain θ1,2 the EOS signal Gθ1θ2 is only sensitive to correlations
stemming from source radiation or vacuum field fluctuations, given
by the response (R) and correlation (C) function, respectively.
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Here, d̂ (A) and d̂ (B) are the dipole operators of atom A and
B, respectively, Ê is the electric field operator, rA and rB are
the center of mass positions of the smeared out atoms with
smearing function F , and η(t ) is a switching function, which
switches the interaction between field and atoms on and off
on a timescale τ . For simplicity, we assumed a unidirectional
dipole moment of the two atoms, requiring consideration of
only one field polarization direction.

Note, that all conclusions of this section qualitatively also
apply to the more generic setting, in which two quantum sys-
tems (here the atoms) are interacting linearly and weakly with
a joint bath (here the electromagnetic field); cf. Refs. [11,12].

A. Source and vacuum field contributions
to single-atom dynamics and causality

We follow Refs. [1,11] to identify source and vacuum
field contributions to single-atom dynamics. As the interaction
Hamiltonian in Eq. (1) is linear in the electric field operator,
the solution to Heisenberg’s equation of motion for the field is
given by [1]

Ê (r, t ) = Êvac(r, t ) + Ês,A(r, t ) + Ês,B(r, t ), (2)

where Êvac is just the vacuum electric field in absence of the
two atoms, and Ês,i is the source radiation emitted by atom i.

To identify the influence of source radiation and vacuum
field fluctuations onto the atoms’ dynamics, we insert the
field in Eq. (2) into the equation of motion for the atomic
observable of interest Ô. The terms proportional to Êvac(r, t )
and to Ês,A(r, t ) + Ês,B(r, t ) are then identified as the vacuum
and source field contributions, respectively, see Refs. [11,12]
and also Appendix B 1. In the former contribution, the atoms
respond to fluctuations in the field, while in the latter, fluc-
tuations of the atomic dipoles induce a response in the field,
which acts back on the atoms.

In the equation of motion of Ô, the total electric field Ê and
d̂ (i) commute, such that we can write them in any order. The
overall dynamics are, of course, independent of the chosen
operator ordering. The vacuum and source-field contribu-
tions, however, individually depend on the chosen operator
ordering [6,10,11], since Êvac and Ês,i do not commute with
d̂ (i), respectively. For example, it has been shown that using
normal operator ordering (all positive [negative] frequency
components of the field ordered to the right [left]) sponta-
neous emission arises only due to source-radiation (radiation
reaction), whereas using symmetric operator ordering vacuum
field effects also contribute [1,2]; see Figs. 1(a) and 1(b).
We thus find an indetermination in the separation into source
and vacuum field contributions, which can only be lifted by
an additional constraint. References [11,12] suggest to use a
symmetric ordering, as only in this case source and vacuum
field contributions remain individually Hermitian and are ex-
pressed in terms of Hermitian field and atomic operators. This
procedure is known as the DDC formalism, which has been
used to identify source and vacuum field contributions for a
variety of different processes; see, e.g., Refs. [1,11,12,37–43].

This indetermination is not present when it comes to
the question of causality in Fermi’s two-atom problem, i.e.,
whether faster-than-light signaling is possible; see Fig. 1(b).
Atom A only interacts with atom B via the field in Eq. (2).

Thus, atom A can only infer the presence of atom B by
interacting with Ês,B. As we show in Appendix B 1, this con-
tribution is independent of the chosen operator ordering. As
pointed out in Refs. [1,22], Ês,i is fully retarded, which en-
sures that no-faster-then-light signaling is possible in Fermi’s
two-atom setup.

B. Correlations

We quantify correlations between an observable of atom
A and atom B, Ô(A) and Ô(B), respectively, via the correlation
function

G(AB)(t ) = 〈Ô(A)Ô(B)〉 − 〈Ô(A)〉〈Ô(B)〉. (3)

Analogous to the case of single-atom observables discussed
in the last section, we find that again both “sides of the
same quantum-mechanical coin” [6], source radiation and the
vacuum field, contribute to the dynamics of the correlation
function in Eq. (3). So far, to the best of our knowledge, for
Fermi’s two-atom setup these contributions have only been
identified in Ref. [8]. However, in the interaction picture cal-
culation employed in Ref. [8], the connection to the above
results on single-atom observables, including the issue of the
initial operator ordering, could not be clarified.

Identifying source and vacuum field contributions to the
dynamics of the correlation function in Eq. (3) follows along
similar lines as for the single-atom observables and is de-
scribed in detail in Appendix B 2. The resulting expression
for the source and vacuum field contributions again depend
on the operator ordering. For symmetric ordering, as used in
the DDC procedure, and assuming that the atoms are initially
uncorrelated such that G(AB)(t0) = 0, we find the following
vacuum and source-field contributions to the two-point cor-
relation function:

G(AB)(t )|vac =
∫

d3r′′
∫ t

t0

dt ′′
∫

d3r′
∫ t

t0

dt ′

× L(A)(r′, t ′, t )L(B)(r′′, t ′′, t )C(r′, r′′, t ′ − t ′′),

(4)

and

G(AB)(t )|s =
∫

d3r′′
∫ t

t0

dt ′′
∫

d3r′
∫ t

t0

dt ′L(A)(r′, t ′, t )

× L̃(B)(r′′, t ′′, t )R(r′, r′′, t ′ − t ′′) + A ↔ B.

(5)

Here, +A ↔ B means adding the previous term subject to the
replacement A ↔ B, and we defined

L(i)(r′, t ′, t ) = i

h̄
η(t ′)F (�r′

i )
〈[

d̂ (i)
vac(t ′), Ô(i)

vac(t )
]〉
, (6)

and

L̃(i)(r′, t ′, t ) = 1
2η(t ′)F (�r′

i )
(〈{

d̂ (i)
vac(t ′), Ô(i)

vac(t )
}〉

− 2
〈
d̂ (i)

vac(t ′)
〉〈

Ô(i)
vac(t )

〉)
, (7)

with �r′
i = r′ − ri, and {·, ·} denotes the anticommutator. The

electric field operator enters Eqs. (4) and (5) via its correlation
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and response function, which are given by

C(ρρρ, τ ) = 1
2 〈{Êvac(r, t ), Êvac(r′, t ′)}〉, (8)

R(ρρρ, τ ) = i

h̄
θ (τ )[Êvac(r, t ), Êvac(r′, t ′)]. (9)

Here, τ = t − t ′, ρρρ = r − r′, and θ (τ ) is the Heaviside step
function. C and R are well-known quantities from linear re-
sponse theory; see Appendix A for a brief summary of their
main characteristics. In free space they read

C(ρρρ, τ ) = μ0 h̄

8π2
� 1

ρ

(
P

ρ

c − τ
+ P

ρ

c + τ

)
, (10)

R(ρρρ, τ ) = μ0

4π
� 1

ρ
δ

(
ρ

c
− τ

)
, (11)

with � = ∂2

∂t∂t ′ − c2 ∂2

∂x∂x′ and P the Cauchy principal value.
We see from Eqs. (10) and (11) that the response function R
only has support along the light-cone, i.e., if ρ ≡ |r − r′| =
cτ , whereas the correlation function does not vanish for space-
or timelike separations. Equations (4) and (5) thus give the
expected result, which is in line with the discussion of Fermi’s
two-atom setup found in previous works [8,9,16,22]: Either
the two atoms get correlated due to an exchange of source
radiation, propagating at the speed of light from one atom
to the other (source-field contribution), or they individually
interact with the vacuum field and thereby correlations in
the vacuum field are swapped to the atoms (vacuum field
contribution), see Fig. 1(c). Thus, correlations between space-
or timelike separated atoms can only arise due to vacuum field
contributions.

The particular separation into source-radiation and vacuum
field contributions in Eqs. (4) and (5), however, is only found
using symmetric operator ordering, see Appendix B 2. For all
other orderings, either the source-radiation contribution leads
to correlations between space- and timelike separated atoms,
or the source and vacuum field contributions are not given
by real numbers, see Appendix B 2. For example, in case of
normal ordering we find that the vacuum field contribution
vanishes, i.e., G(AB)(t )|vac = 0, whereas G(AB)(t )|s is given by
the sum of the right-hand sides of Eqs. (4) and (5).

To conclude this discussion, for single-atom observables,
the DDC procedure is motivated by the requirements that (i)
the individual contributions from the source and vacuum field
should be individually Hermitian and (ii) expressed in terms
of Hermitian field and atomic operators. Considering corre-
lations in the Fermi two-atom setup, one finds that (ii) can
also be replaced by the physical requirement that the source
radiation contribution does not induce correlations between
space- or timelike separated emitters, allowing one to interpret
this contribution as mediated by a field propagating at the
speed of light from one atom to the other.

Interestingly, using the symmetric operator ordering, there
are certain choices of Ô(A) and Ô(B) for which the source-
radiation contribution vanishes while the vacuum field one
does not, and vice versa: We find that G(AB)(t )|vac = 0
and G(AB)(t )|s �= 0 if Ô(A) = σ̂ (A)

x and Ô(B) = σ̂ (B)
y , while

G(AB)(t )|vac �= 0 and G(AB)(t )|s = 0 if Ô(A) = σ̂ (A)
y , Ô(B) =

σ̂ (B)
y , and each atom is initially either in the ground or the

excited state (σ̂x and σ̂y are Pauli matrices, see Appendix B).
This implies that only source radiation leads to correlations
between σ̂ (A)

x and σ̂ (B)
y , while only the vacuum field correlates

σ̂ (A)
y and σ̂ (B)

y . This allows one to access these two ‘insepa-
rable two sides of the same coin’ [6], i.e., source radiation
and vacuum field effects, individually by probing correlations
between specific single-atom observables. Changing the time
interval and points in space at which the atoms interact with
the electromagnetic field further allows one to individually
probe the space-time structure of these two contributions [8].
We analyze how this can be experimentally achieved in the
EOS analog of Fermi’s two-atom setup in Sec. III.

Note that the correlation and response function of the
field in Eqs. (10) and (11) are connected via the fluctuation-
dissipation theorem. This also connects the source and
vacuum field contributions in Eqs. (4) and (5), which is again
further discussed in Sec. III E for the EOS analog of Fermi’s
two-atom setup.

III. ELECTRO-OPTIC SAMPLING

In the following, we analyze how source radiation and
vacuum field fluctuations lead to correlations in the two-
beam EOS setup, which has been experimentally realized in
Refs. [27,32], and which can be seen as an analog of Fermi’s
two-atom setup discussed in the last section [27].

A. Experimental setup

We consider the two-beam EOS setup in Fig. 2(b): Two
tightly focused, uncorrelated, near-infrared coherent probe
pulses E (1) and E (2), linearly polarized into y direction, are
propagating along the [110] axis (z axis) through a zinc-
blende-type nonlinear crystal. Inside the crystal they can
effectively interact via the nonlinear coupling of the crystal
with the x-polarized THz quantum field Ê (parallel to [110]),
which is initially in its vacuum state Êvac [31,44,45]. The
interaction is given by the Hamiltonian [34]

ĤI (t ) = 2χ (2)
∑
i=1,2

∫
VC

d3rE (i)(r, t )Ê (r, t )Ê (i)(r, t ), (12)

where VC is the crystal volume and χ (2) the nonlinear suscep-
tibility. The interaction of the laser pulses with the quantum
field Ê leads to x-polarized NIR signal fields Ê (1), Ê (2)

emerging from the crystal, which are co-propagating with the
coherent fields E (1), E (2), respectively, due to phase-matching
constraints.

Comparing Eqs. (1) and (12), we see the close similarity
between the two-beam EOS and Fermi’s two-atom setup,
as has been already discussed in Refs. [27,34]. In Fermi’s
two-atom problem, two two-level systems are coupled to
the electromagnetic field Ê via their dipoles. The effective
space-time volume in which the interaction takes place, is
determined by their spatial smearing and the switching func-
tion F and η, respectively. In the EOS analog, the two atoms
are replaced by two paraxial field modes Ê (i), which are
co-propagating with the focused laser pulse E (i) and cou-
ple to the vacuum field via the nonlinear coupling in the
crystal. Here, the interaction takes place in the space-time
volume of the ultrashort laser pulses inside the crystal given
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by
∫

VC
d3rE (i)(r, t ) in Eq. (12). Note, that Ê (1) and Ê (2) are

initially in their vacuum state, corresponding to two ground-
state atoms in the Fermi two-atom setup. As we show below,
in close analogy to the atoms in Fermi’s two-atom setup,
Ê (1) and Ê (2) become correlated either because they exchange
source radiation or because correlations from the quantum-
vacuum field Êvac are swapped to Ê (1) and Ê (2). To measure
these correlations we consider the EOS signal Gθ1θ2 which
probes correlations between the signal fields Ê (1), Ê (2) via
the correlations between two ellipsommetry measurements
Ŝ(1)(θ1) and Ŝ(2)(θ2) of the fields emerging from the crystal
[46], i.e.,

Gθ1θ2 = 1

C
[〈Ŝ(1)(θ1)Ŝ(2)(θ2)〉 − 〈Ŝ(1)(θ1)〉〈Ŝ(2)(θ2)〉], (13)

with the detection efficiency C defined in Eq. (C25), and
[31,47]

Ŝ(i)(θi ) = 4πε0cnc

∫
d2r‖

∫ ∞

0
dω

1

h̄ω

× [P(θi )E (i)∗(r‖, ω)Ê (i)(r‖, ω) + H.c.]. (14)

Here, ε0 is the vacuum permittivity and nc the refractive
index at the central frequency of the laser pulses. P(θi ) =√−cos(θi ) + i

√
2cos(θi/2) accounts for the influence of wave

plates in the detection setup, which induce phase shifts θi ∈
[π/2, 3π/2] between the signal fields (Ê (i)) and the laser
pulses (E (i)) after emerging from the crystal, see Fig. 2(b).
Such a detection scheme was recently considered in the
single-beam EOS setup [34,35,47,48], whereas previous ex-
perimental [27,32] and theoretical [44,45] works on the
two-beam EOS setup only considered θ1,2 = π/2. As we will
discuss below, tuning the two different angles θ1,2 allows one
to individually probe contributions from vacuum fluctuations
and source radiation.

To obtain the EOS signal, we solve Heisenbergs equa-
tions of motion for the quantum and signal fields Ê and Ê (i)

perturbatively in orders of χ (2). This follows along the same
lines as the calculation of the correlations in Fermi’s two-atom
setup discussed in Sec. II B, see Appendix C for details. Em-
ploying a symmetric operator ordering as motivated in Sec. II,
we find that up to second order in χ (2) there are two different
processes which lead to correlations between Ê (1) and Ê (2),
and, thus, to an EOS signal Gθ1θ2 [see Fig. 2(b)]: Either the
two laser pulses individually mix with the vacuum fluctuations
Êvac, thereby harvesting correlations from the latter, or one
of the laser pulses generates THz source radiation Ês which
propagates to and then interacts via the nonlinear coupling
with the other laser pulse.

B. Vacuum field contribution

We start discussing the former process. The mixing of the
laser pulses with the vacuum field via one nonlinear pro-
cess (sum- or difference-frequency generation processes [49])
leads to a contribution to the signal field Ê (i) which is linear
in χ (2):

Ê (i)
s (r, t ) = −2χ (2)

∫
r′,t ′

R(i)(ρρρ, τ )E (i)(r′, t ′)Êvac(r′, t ′).

(15)

Here,
∫

r′,t ′ = ∫
VC

d3r′ ∫∞
−∞ dt ′, and R(i)(ρρρ, τ ) is the linear re-

sponse function of the signal field, i.e., the classical Green
tensor that propagates the field from a source at r′, t ′ to an-
other space-time point r, t , see also Eq. (9) and Appendix A.
The generated NIR signal fields Ê (1)

s and Ê (2)
s are correlated

only because there exist correlations in the quantum vacuum
field Êvac. Inserting Eq. (15) for both i = 1, 2 into Eq. (14)
thus leads to the EOS signal stemming from vacuum field
correlations:

Gθ1θ2

∣∣
vac = Pvac

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′)CTHz(ρρρ, τ ). (16)

Here, Pvac = Im[P(θ1)]Im[P(θ2)]. Equation (16) has the same
structure as the vacuum field contribution to G(AB) in Fermi’s
two-atom setup, compare Eq. (4), and shows that Gθ1θ2 |vac is
obtained by averaging the vacuum two-point correlation func-
tion of the vacuum field C over the spatio-temporal profiles of
the two laser pulses Li. For θ1 = θ2 = π/2 this result has also
been obtained in Ref. [27].

C. Source-radiation contribution

In the second process which correlates Ê (1) and Ê (2), the
broadband laser pulses generate source radiation Ês via, e.g.,
difference-frequency generation. In close analogy to Eq. (15),
Ês is given by

Ês(r, t ) = −2χ (2)
∫

r′,t ′
R(ρρρ, τ )E (i)(r′, t ′)Ê (i)

vac(r′, t ′), (17)

where R is the response function of the field Ê defined in
Eq. (9). The source field Ês can propagate to the other laser
pulse ī where it can interact with it via the nonlinear coupling.
This process thus relies on the exchange of source radiation
between the two laser pulses and leads to the following con-
tribution to the EOS signal (see Appendix C for details)

Gθ1θ2 |s = − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′)

× [P′
SRR′(ρρρ, τ ) + P′′

SRR′′(ρρρ, τ )], (18)

with P′
s = Im[P(θ1)P(θ2)], P′′

s = Im[P(θ1)P∗(θ2)] and we
introduced the symmetric (reactive) R′(ρρρ, τ ) = [R(ρρρ, τ ) +
R(ρρρ,−τ )]/2 and antisymmetric (dissipative) R′′(ρρρ, τ ) =
[R(ρρρ, τ ) − R(ρρρ,−τ )]/2 part of the response function.

D. Individually probing source and vacuum fields
in space and time

We find that up to second order in χ (2) the vacuum
field and source-radiation contributions in Eqs. (16) and
(18), respectively, are the only ones such that Gθ1θ2 =
Gθ1θ2 |vac + Gθ1θ2 |s. Tuning θ1 and θ2, all three contributions
G π

2
π
2

= G π
2

π
2
|vac ≡ Gvac (only vacuum correlations [Eq. (16)

with Pvac = 1]), G 2π
3

2π
3

− G 4π
3

4π
3

≡ 2GR′ , and G π
2 π − Gπ π

2
≡

2GR′′ (only source radiation described by the symmetric and
antisymmetric part of the response function [first and second
term in Eq. (18)], respectively) can be individually probed.
Note that GR′ and GR′′ are obtained via the difference be-
tween two different measurements. For θ1 = π/2 and θ2 = π

one can also probe the full response function corresponding
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to source radiation propagating from mode 2 to mode 1, i.e.,
G π

2 π ≡ Gs with

Gs = − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′)R(ρρρ, τ ). (19)

The combinations of θ1 and θ2 which allow one to access
the different contributions individually, are summarized in
Fig. 2(c).

Equations (16) and (19) show that using EOS one can indi-
vidually probe source and vacuum field contributions, which
are given by the correlation and response functions C and R
averaged over space-time regions defined by the envelopes of
the two laser pulses L1,2, respectively. We next use this result
to show how EOS experiments can reveal causality at the
single-photon level and space- and timelike correlations in the
quantum vacuum field. The former implies that source radia-
tion (and with it information transfer via a single photon) can
only propagate at the finite speed of light inside the medium
cn. This is ensured by the fact that R(ρρρ, τ ) is strictly zero
if ρ > cnτ , i.e., only connects causally connected space-time
points. The existence of correlations in the quantum vacuum
between space- and timelike separated space-time regions im-
plies C(ρρρ, τ ) �= 0 even if ρ > cnτ or ρ < cnτ , which leads
to an EOS signal even if the two laser pulses are completely
space- or timelike separated.

We first consider the idealized scenario in which the laser
pulses have a rectangular shape and we can neglect disper-
sion and absorption inside the nonlinear crystal by assuming
that the refractive index of the crystal in the THz n(�) is
constant and real. We use n(�) = n = 3.33 similar to the
one in GaP [50]; see Appendix D for details. In this case
we find that the correlation and response functions are still
given by Eqs. (10) and (11) subject to the replacement c →
cn. Clearly, if ρ ≷ cnτ , then we find R(ρρρ, τ ) = 0, whereas
C(ρρρ, τ ) �= 0. We assume that the rectangular laser pulses have
a beam waist w = 10 µm and duration τp = 185 fs, as in the
experiment in Ref. [27], and we set the length of the crystal
to L = 0.1 mm [see Fig. 2(b)]. Using these parameters we
can identify three different regimes [see Fig. 3(a)]: During
the time the laser pulses are inside the crystal, they can (I)
remain completely spacelike separated (for large δr > δrI/II ),
(II) be causally connected, i.e., a signal can propagate in
the crystal with the speed of light from one to the other
(δrII/III > δr > δrI/II ), (III) remain completely timelike sep-
arated (for large delays δt or δr < δrII/III ). We identify these
three regions numerically in Fig. 3(a) (color code) and find
that they are all within reach of current experimental setups
[27]. The boundaries between the three regions can also be
found analytically: If δr � w, then we have δrI/II = w +√

(cn[δt + τp] + Lng/n)2 − L2, and for cnδt � w and δr > w

we find δrII/III = −w +√
(cn[δt − τp] − L2ng/n)2 − L2; see

black solid lines in Fig. 3(a).
In Figs. 3(b) and 3(c) we show the vacuum field and source-

radiation contribution to the EOS signal Gvac and Gs, obtained
via Eqs. (16) and (19), respectively, as a function of δt for
δr = 200 µm, see Appendix C 8 for details. As expected, in re-
gions (I) and (III) the source-radiation contribution is exactly
zero, i.e., Gs = 0, whereas in region (II) we find Gs �= 0 indi-
cating that the two laser pulses can exchange source radiation.

FIG. 3. Source radiation vs vacuum fluctuations contributions
to the EOS signal: (a) For THz refractive index n = 3.33, NIR
group refractive index ng = 3.556, crystal length L = 0.1 mm, and
rectangular pulses with duration τp = 185 fs and width w = 10 µm,
we identify numerically (shaded areas) and analytically (black lines)
the three different regions I (completely spacelike), II (causal com-
munication possible), and III (completely timelike) depending on
the spatial distance δr and delay δt between the center of the
pulses. (b) EOS signal from vacuum field fluctuations Gvac (green) or
source radiation Gs (red) with rectangular (solid) or Gaussian shaped
(dashed) pulses for δr = 200 µm [pink dashed line in panel (a)].
For the rectangular pulses we used the same parameters as in panel
(a), for the Gaussian pulses we included dispersion and absorption
effects, see main text. (c) Absolute values of the signals in panel
(b) on a logarithmic scale.

The contribution from vacuum fluctuations Gvac, however, is
nonzero in all three regions (I)–(III). This shows that the two
laser pulses can become correlated although they remain com-
pletely space- or timelike separated and thus cannot exchange
source radiation.

In a next step, we turn to the more realistic scenario of
two Gaussian laser pulses with the same beam waist w and
duration τp as used for the rectangular pulses above. Also,
we account for dispersion and (linear) absorption effects,
by considering the complex valued, dispersive permittivity
of GaP in the THz frequency range ε(ω) as measured in
Ref. [50]. Using macroscopic QED [51] we find the response
and correlation function accounting for the full polaritonic
quantum vacuum in the presence of absorption and dispersion
[44,45], see Appendix A and C 9. As can be seen in Figs. 3(b)
and 3(c), we find a very similar result for the EOS signal
compared to the dispersion- and absorptionless case with two
rectangular pulses considered above. The main features are
slightly washed out by the frequency dependence of the speed
of light due to the dispersive refractive index. Furthermore, the
exponentially decaying tails of the Gaussian pulses cause the
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FIG. 4. Time-domain fluctuation-dissipation theorem: For the
same parameters as the dashed lines in Figs. 3(b) and 3(c), the EOS
signals stemming from vacuum fluctuations Gvac (green dashed) and
from the dissipative part of the response function 2GR′′ (solid red)
are shown for spatial separations of the pulses of (a) δr = 0 and
(b) δr = 200 µm. According to the time-domain FDT 2GR′′ (δt ) is
the Hilbert transform of Gvac(δt ); compare Eq. (22).

source radiation contribution to also decrease exponentially
in regions I and III which is in sharp contrast to the algebraic
decay of the vacuum fluctuation contribution. Thus, also for
Gaussian pulses and including dispersion and absorption ef-
fects, one can identify the regions (I) and (III) in which the
two pulses become correlated due to harvesting of correlations
from the quantum vacuum, although their ability to exchange
source radiation is exponentially suppressed.

E. Fluctuation-dissipation theorem

The fluctuation-dissipation theorem (FDT) in frequency
domain connects the dissipative part of the response function
to the correlation function and reads (at zero temperature)

iC(ρρρ, ω) = h̄sgn(ω)R′′(ρρρ, ω), (20)

where sgn[x] is the sign function. In time domain it reads [25]

C(τ ) = − h̄

π
P
∫ ∞

−∞
dτ ′R′′(τ ′)

τ − τ ′ = −h̄H{R′′(τ )}. (21)

Here, H denotes the Hilbert transform. For the EOS signal this
implies (see Appendix C 6)

Gvac(δt ) = 2

π
P
∫ ∞

−∞
dδt ′ GR′′ (δt ′)

δt − δt ′ . (22)

We thus find a direct and somewhat surprising implication of
the time-domain FDT for two-beam EOS: The correlations
harvested from vacuum field fluctuations for a given time
delay δt can be obtained via a Hilbert transformation from
the distribution of correlations for different δt due to the anti-
symmetric part of the response function, and vice versa. This
also means that EOS can be used to probe the FDT inherently
in time domain. Equation (22) is illustrated in Fig. 4, where
we display GR′′ (δt ) and Gvac(δt ) for two different values of
δr.

Being able to probe the FDT locally in time, i.e., as a func-
tion of δt , implies that it is probed over a broad range of fre-
quencies at once. As discussed in previous works [32,44,45],
Fourier transforming the EOS signal with respect to δt gives
access to the correlation and response function in frequency
domain. Defining Gi(�) ≡ 1

2π

∫∞
−∞ dδt ei�δt Gi(δt ), with i =

vac, s,R′′, the frequency-domain fluctuation-dissipation the-
orem in Eq. (20) implies

sgn(�)Gvac(�) = 2i GR′′ (�) = −2ImGs(�). (23)

By obtaining GR′′ (�) or Gs(�) and Gvac(�) from the ex-
perimental data for GR′′ (δt ) or Gs(δt ) and Gvac(δt ), one
can thus also use EOS experiments for a broadband test of
the frequency-domain fluctuation-dissipation theorem. The
resolved spectral range in the THz is mainly determined
by the temporal extent τp of the lasers. For laser pulses
with τp = 185 fs as in Ref. [27] this range is roughly
� ∈ [0, 4] THz.

IV. CONCLUSION AND OUTLOOK

We have identified the contributions of the source and
vacuum field in generating correlations in Fermi’s two-atom
setup. Our analysis revealed that these quantities can be
uniquely identified by the constraint that they are individ-
ually Hermitian and that the source-radiation contribution
vanishes for spacelike separated atoms. We further determined
source and vacuum field contributions in the EOS analog of
Fermi’s two-atom setup. We have discussed the potential to
use state-of-the-art EOS experiments to probe the causal na-
ture of source radiation at the single-photon level, as originally
proposed by Fermi in 1932 [7], the existence of space- and
timelike correlations in the quantum vacuum, and the time do-
main FDT. By expressing the EOS signal in terms of general
correlation and response functions of the THz field, our find-
ings can be extended to investigate the influence of complex
environments such as cavities [52], thermal fluctuations, or
material resonances. This approach also enables the analysis
of how the space-time structure of correlations, present in THz
quantum fields other than the quantum vacuum, can be probed
in EOS experiments. In the future, it may be possible to create
an analog of Fermi’s two-atom setup in curved space-times by
introducing an additional strong laser pulse to the nonlinear
crystal, along with the two probe beams [53–55].
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APPENDIX A: CORRELATION AND RESPONSE
FUNCTIONS OF THE POLARITONIC QUANTUM VACUUM

We review some basic definitions from macroscopic quan-
tum electrodynamics and linear response theory.

1. Electric field operator and the Green tensor

Using the framework of macroscopic quantum electrody-
namics [51,56], the electric field operator in general dispersive
and absorptive environments, described by a complex permit-
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tivity ε(ω), is given by

Êvac(r, t ) =
∫ ∞

0
dωe−iωt Êvac(r, ω) + H.c., (A1a)

Êvac(r, ω) = i
ω2

c2

√
h̄

πε0
Im[ε(ω)]

×
∫

d3r′D(r, r′, ω) · f̂ (r′, ω). (A1b)

Here, H.c. denotes the Hermitian conjugate and f̂ and f̂† are
polaritonic annihilation and creation operators, respectively,
satisfying the commutation relations

[f̂ (r, ω), f̂ (r′, ω′)] = [f̂†(r, ω), f̂†(r′, ω′)] = 0, (A2)

[f̂ (r, ω), f̂†(r′, ω′)] = δδδ(r − r′)δ(ω − ω′). (A3)

Also, we made use of the classical Green tensor D of the
vector Helmholtz equation defined via

(
∇ × ∇ × −ω2

c2
ε(ω)

)
D(r, r′, ω) = δδδ(r − r′), (A4)

and the boundary condition D(r, r′, ω) → 0 for |r − r′| →
∞. A useful relation connects the two-point correlation func-
tion of the frequency domain field operator to the imaginary
part of the Green tensor [51,56]

〈Êvac(r′,�)Ê†
vac(r′′,�′)〉

= h̄μ0

π
�2δ(� − �′)Im[D(r′, r′′,�)]. (A5)

In the following, we only require the xx component of the
Green tensor Dxx ≡ D. In a general dispersive and absorptive
bulk medium, D can be expressed as [51,56]

D(r, r′, ω) = i

8π2

∫
d2k‖

eik‖·(r‖−r‖ )

kz

(
1 − k2

x

k2

)
eikz |z−z′ |.

(A6)

In the case that the field propagates only in the positive z
direction, one can use the paraxial approximation by assuming
k‖ � k [57], which leads to

D(r, r′, ω) = i

2k
δ(r‖ − r′

‖)eik(z−z′ ). (A7)

For the case of lossless and dispersionless media, i.e.,
media with a real-valued constant permittivity ε(ω) = ε ∈ R,
one can find an expansion of the x-polarized electric field in

normal modes [58,59]

Êvac(r, t ) = i
∫

d3k

√
h̄ωk

16π3ε0n2

×
⎛
⎝∑

λ=1,2

ex(k, λ)â(k, λ)e−iωkt+ik·r + H.c.

⎞
⎠,

(A8)

where e(k, 1) and e(k, 2) are two transverse polarization vec-
tors, n = √

ε is the constant refractive index, and ωk = cnk ≡
ck/n.

2. Response function

The response function R(r, r′, t − t ′) of one polarization
direction (given by a unit basis vector ei) of the electric field
operator Ê · ei ≡ Ê is given in Eq. (9) of the main text. The
Fourier transform of this quantity is proportional to the classi-
cal Green tensor defined in Eq. (A4):

R(r, r′, ω) = 1

2π

∫
dτ eiωτR(r, r′, τ ) (A9)

= μ0ω
2

2π
D(r, r′ω), (A10)

or

R(r, r′, τ ) =
∫

dω e−iωτ μ0ω
2

2π
D(r, r′ω). (A11)

These relations can be derived by inserting Eq. (A1) into
Eq. (9). The response function describes the response of the
field at time t and position r to a source at time t ′ and position
r′. One thus finds R(r, r′, t − t ′) = 0 for τ ≡ t − t ′ < |r −
r′|/c as required by special relativity. As R is not symmetric
under τ → −τ , one can divide it into symmetric (reactive) R′
and antisymmetric (dissipative) R′′ parts:

R′′(τ ) = 1
2 [R(τ ) − R(−τ )] (A12)

= i

2h̄
[Ê (r, t ), Ê (r′, t ′)], (A13)

R′(τ ) = 1
2 [R(τ ) + R(−τ )]. (A14)

In frequency domain one finds R′′(ω) = iIm[R(ω)] and
R′(ω) = Re[R(ω)].

3. Correlation function

The correlation function of one polarization direction of
the electric field operator is defined in Eq. (8). In frequency
space it can be evaluated via Eq. (A5) and one obtains

C(r′, r′′, ω) = h̄μ0

2π
sgn[ω]ω2Im[D(r′, r′′, ω)], (A15)

where sgn[x] ≡ 2θ (x) − 1 is the sign function. The correla-
tion function has the following symmetry properties: C(τ ) =
C(−τ ), C(ω) = C∗(−ω).

From Eqs. (8) and (A13) one finds the useful relation

〈Êvac(r, t )Êvac(r′, t ′)〉 = C(ρρρ, τ ) − ih̄R′′(ρρρ, τ ). (A16)
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4. Normal mode QED

In an absorptionless and dispersionless medium, i.e., in
case the refractive index is constant and real, we can use
the normal-mode expression for the quantized electric field in
Eq. (A8). This can be used to find the response and correlation
functions via Eqs. (9) and (8):

R(ρρρ, τ ) = μ0

4π
�n

1

ρ
δ

(
ρ

cn
− τ

)
, (A17)

C(ρρρ, τ ) = μ0 h̄

8π2
�n

1

ρ

(
P

ρ

cn
− τ

+ P
ρ

cn
+ τ

)
, (A18)

where we have also defined �n ≡ ∂2

∂t∂t ′ − c2
n

∂2

∂x∂x′ . In case
n = 1 they reduce to the free-space response and correlation
functions of the electric field operator, which can be found in
standard quantum optics textbooks, see, e.g., Ref. [60], and
Eqs. (11) and (10) of the main text. The space-time structure
of R and C in Eqs. (A17) and (A18) is apparent: For τ < ρ/cn,
R is strictly zero whereas C is not. Also, the response and
correlation functions in Eqs. (A17) and (A18) satisfy the time-
domain fluctuation dissipation theorem in Eq. (21) as can be
verified by using that H[δ(τ )] = P/(πτ ).

APPENDIX B: DETAILS ON FERMI’S
TWO-ATOM PROBLEM

In Appendix B 1, we consider the equations of motion
of single-atom observables in Fermi’s two-atom setup and,
following Refs. [11,12], discuss how contributions from the
source and vacuum field can be identified. In Appendix B 2
we determine source radiation and vacuum field contributions
to the generation of correlations between the two atoms as dis-
cussed in Sec. II B of the main text. This includes a derivation
of Eqs. (4) and (5).

1. Single-atom observables

We consider the Hamiltonian of the Fermi two-atom setup,
which reads

Ĥ = ĤA + ĤF + Ĥ (F )
I , (B1)

with ĤF is the free-field Hamiltonian, and ĤA the free atomic
Hamiltonian, which reads

ĤA = h̄

2
ω0

∑
i=A,B

σ̂ (i)
z . (B2)

Furthermore, ω0 is the transition frequency of the two atoms,
and σ̂ (i)

z = σ̂
(i)
+ σ̂

(i)
− − σ̂

(i)
− σ̂

(i)
+ with the raising and lowering

operator σ̂
(i)
+ and σ̂

(i)
− of atom i, respectively. H (F )

I is given
in Eq. (1) with the dipole moment for a two-level system
d̂ (i) = d σ̂ (i)

x with σ̂ (i)
x = σ̂

(i)
− + σ̂

(i)
+ . Before considering the

equation of motion for a generic observable of atom A, we
first solve the Heisenberg equations of motion of Ê and d̂ (i)

up to first order in the interaction Hamiltonian and find

Ê (r, t ) ≈ Êvac(r, t ) + Ês,A(r, t ) + Ês,B(r, t ), (B3)

d̂ (i)(t ) ≈ d̂ (i)
vac(t ) + d̂ (i)

s (t ). (B4)

The solution in lowest order in Ĥ (F )
I , denoted by the subscript

vac, are just the solutions of the uncoupled field and dipole
operator. The first-order corrections are the source terms given
by

Ês,i(r, t ) =
∫

d3r′F (r′ − ri )
∫ ∞

t0

dt ′η(t ′)

× R(r, r′, t − t ′)d̂ (i)(t ′), (B5)

and

d̂ (i)
s (t ) =

∫
d3rF (r − ri )

∫ ∞

t0

dt ′η(t ′)

× R(i)
d (t − t ′)Ê (r, t ′). (B6)

Here, we defined the linear response function of the dipole
operator

R(i)
d (t − t ′) = i

h̄
θ (t − t ′)[d̂ (i)(t ), d̂ (i)(t ′)]. (B7)

Next, we consider the Heisenberg equation of motion for a
general observable of atom A, Ô(A), which reads

∂

∂t
Ô(A)(t ) = i

h̄
[ĤA, Ô(A)(t )] − i

h̄
η(t )

∫
d3r

× F (r − rA)O{Ê (r, t ), [d̂ (A)(t ), Ô(A)(t )]}.
(B8)

Note that as Ê (r, t ) and [d̂ (i)(t ), Ô(A)(t )] commute, one can
continue the calculation with different orderings of these ex-
pressions in Eq. (B8). To account for that, we introduced an
operator ordering function O. For symmetric operator order-
ing, for example, it is given by

O{Ê (r, t ), Ô(A)(t )} = 1
2 {Ê (r, t )Ô(A)(t ) + Ô(A)(t )Ê (r, t )},

(B9)

and for normal operator ordering by

O{Ê (r, t ), Ô(A)(t )} = Ê (+)(r, t )Ô(A)(t ) + Ô(A)(t )Ê (−)(r, t ).

(B10)

Here, Ê (+) and Ê (−) are the positive- and negative-frequency-
field components. To obtain the equation of motion of Ô(A)

up to second order in the interaction Hamiltonian, we insert
Eqs. (B3) and (B4) into Eq. (B8) and only keep terms up to
second order to find

∂

∂t
Ô(A)(t ) ≈ i

h̄
[ĤA, Ô(A)(t )] − i

h̄
η(t )

∫
d3rF (r − rA)O

{
Êvac(r, t ),

[
d̂ (A)

vac (t ), Ô(A)
vac(t )

]}+ ∂

∂t
Ô(A)(t )

∣∣∣∣
vac

+ ∂

∂t
Ô(A)(t )

∣∣∣∣
s

.

(B11)
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Here, we identified second-order terms proportional to the vacuum field Êvac and source field Ês, which read

∂

∂t
Ô(A)(t )

∣∣∣∣
vac

= − i

h̄
η(t )

∫
d3rF (r − rA)O

{
Êvac(r, t ),

[
d̂ (A)

s (t ), Ô(A)
vac(t )

]+ [
d̂ (A)

vac (t ), Ô(A)
s (t )

]}
, (B12)

∂

∂t
Ô(A)(t )

∣∣∣∣
s

= − i

h̄
η(t )

∫
d3rF (r − rA)

∑
i=A,B

O
{
Ês,i (r, t ),

[
d̂ (A)

vac (t ), Ô(A)
vac(t )

]}
, (B13)

respectively. In Eqs. (B12) and (B13) we also introduced the zeroth and first-order contribution of the observable Ô(A)(t ), i.e.,
Ô(A)

vac(t ) and Ô(A)
s (t ), respectively. In case that [ĤA, Ô(A)] = −h̄ω̃Ô(A), with some frequency ω̃, we find Ô(A)

vac(t ) = e−iω̃(t−t0 )Ô(A)
vac(t0)

and

Ô(A)
s (t ) = − i

h̄

∫
d3rF (r − rA)

∫ t

t0

dt ′η(t ′)
[
d̂ (A)

vac (t ′), Ô(A)
vac(t )

]
Êvac(r, t ′). (B14)

We integrate Eq. (B11) assuming [ĤA, Ô(A)] = −h̄ω̃Ô(A) and we also take the vacuum expectation value with respect to the
field degree of freedom 〈·〉E and obtain

〈Ô(A)(t )〉E = 〈
Ô(A)

vac(t )
〉
E + 〈Ô(A)(t )〉E

∣∣
s + 〈Ô(A)(t )〉E

∣∣
vac, (B15)

with

〈Ô(A)(t )〉E |vac = − i

h̄

∫ t

t0

dt ′e−iω̃(t−t0 )η(t ′)
∫

d3rF (r − rA)
〈
O
{
Êvac(r, t ′),

[
d̂ (A)

s (t ′), Ô(A)
vac(t ′)

]+ [
d̂ (A)

vac (t ′), Ô(A)
s (t ′)

]}〉
E , (B16)

and

〈Ô(A)(t )〉E |s = − i

h̄

∫ t

t0

dt ′e−iω̃(t−t0 )η(t ′)
∫

d3rF (r − rA)
∑

i=A,B

〈
O
{
Ês,i (r, t ′),

[
d̂ (A)

vac (t ′), Ô(A)
vac(t ′)

]}〉
E . (B17)

Equations (B16) and (B17) are the vacuum and source-field
contribution to the atoms dynamics, respectively. One can
analyze the above equations for different observables Ô(A)

and initial states of the atom to find the vacuum field and
source-radiation contribution to different physical processes.
For example, spontaneous emission can be analyzed if the
atom is initially excited and using Ô(A) = σ̂ (A)

z [11]. The only
term in Eq. (B15), which depends on the state of atom B, is the
term proportional to Ês,B in the source radiation contribution
in Eq. (B17). As also discussed in the main text, atom A
thus only notices the presence of atom B through the source
radiation emitted by atom B. As Ês,B(r, t ′) is independent
of the state of atom A, it commutes with [d̂ (A)

vac (t ′), Ô(A)
vac(t ′)],

making this contribution independent of the chosen operator
ordering.

2. Correlations

In this section we obtain the source-radiation and vacuum
field contribution to the two-point correlation function G(AB).
The calculation follows along similar lines as the one for
single-atom observables in the last section. For simplicity,
we assume that the two atoms are initially uncorrelated, i.e.,
G(AB)(t0) = 0.

We consider the Heisenberg equation of motions of the
two-point correlation function G(AB)(t ) defined in Eq. (3).

The first term on the right-hand side of Eq. (3) evolves
according to

∂

∂t
Ô(AB)(t ) = i

h̄
[ĤA, Ô(AB)(t )] − i

h̄
η(t )

∫
d3r

×
∑

i=A,B

F (r − ri )O{Ê (r, t ), [d̂ (i)(t ), Ô(AB)(t )]}.

(B18)

Here, we introduced the shorthand notation Ô(AB)(t ) =
Ô(A)(t )Ô(B)(t ). We insert Eqs. (B3) and (B4) into Eq. (B18)
and only keep terms up to second order in the interaction
Hamiltonian to find

∂

∂t
Ô(AB)(t ) = i

h̄
[ĤA, Ô(AB)(t )] − i

h̄
η(t )

∫
d3r

×
∑

i=A,B

F (r − ri )O
{
Êvac(r, t ),

[
d̂ (i)

vac(t ),

× Ô(AB)
vac (t )

]}+ ∂

∂t
Ô(AB)(t )

∣∣∣∣
vac

+ ∂

∂t
Ô(AB)(t )

∣∣∣∣
s

.

(B19)

We have again identified vacuum field and source-radiation
contributions as before, which read

∂

∂t
Ô(AB)(t )

∣∣∣∣
vac

= − i

h̄
η(t )

∫
d3r

∑
i=A,B

F (r − ri )O
{
Êvac(r, t ),

[
d̂ (i)

s (t ), Ô(AB)
vac (t )

]+ [
d̂ (i)

vac(t ), Ô(AB)
s (t )

]}
, (B20)

∂

∂t
Ô(AB)(t )

∣∣∣∣
s

= − i

h̄
η(t )

∫
d3r

∑
i=A,B

F (r − ri )O
{
Ês(r, t ),

[
d̂ (i)

vac(t ), Ô(AB)
vac (t )

]}
. (B21)

043207-10



PROBING VACUUM FIELD FLUCTUATIONS AND SOURCE … PHYSICAL REVIEW RESEARCH 5, 043207 (2023)

Here, assuming that

[ĤA, Ô(A)Ô(B)] = −h̄(ω̃(A) + ω̃(B) )Ô(A)Ô(B), (B22)

we find Ô(AB)
vac (t ) = Ô(A)

vac(t )Ô(B)
vac(t ) and Ô(AB)

s (t ) = Ô(A)
s (t )Ô(B)

vac(t ) + Ô(A)
vac(t )Ô(B)

s (t ) with Ô(A)
s (t ) given in Eq. (B14) and Ô(B)

s (t )
can be obtained by replacing A ↔ B in Eq. (B14). Using Eq. (B22), we integrate Eq. (B19) and average over the field degree of
freedom to find

〈Ô(AB)(t )〉E = Ô(AB)
vac (t ) + 〈Ô(AB)(t )〉E |vac + 〈Ô(AB)(t )〉E |s, (B23)

with

Ô(AB)(t )|vac = − i

h̄

∫ t

t0

dt ′e−i(ω̃(A)+ω̃(B) )(t−t ′ )η(t ′)
∫

d3r
∑

i=A,B

F (r − ri )O
{
Êvac(r, t ′),

[
d̂ (i)

s (t ′), Ô(AB)
vac (t ′)

]+ [
d̂ (i)

vac(t ′), Ô(AB)
s (t ′)

]}
,

(B24)

and

Ô(AB)(t )|s = − i

h̄

∫ t

t0

dt ′e−i(ω̃(A)+ω̃(B) )(t−t ′ )η(t ′)
∫

d3r
∑

i, j=A,B

F (r − ri )O
{
Ês,jr, t ′),

[
d̂ (i)

vac(t ′), Ô(AB)
vac (t ′)

]}
. (B25)

The second term on the right-hand side of Eq. (3) reads 〈Ô(A)〉〈Ô(B)〉 and can be obtained by using the solution for Ô(A) found in
Eq. (B15). An equivalent expression for 〈Ô(B)〉 is obtained by exchanging A ↔ B in Eq. (B15). Using this together with the result
in Eq. (B23) and remembering that the two atoms are initially uncorrelated, which also implies 〈Ô(AB)

vac (t )〉 − 〈Ô(A)
vac(t )〉〈Ô(B)

vac(t )〉 =
0, we find for the two-point correlation function

G(AB)(t ) = G(AB)(t )|vac + G(AB)(t )|s, (B26)

with the vacuum and source-field contribution

G(AB)(t )|vac = − i

h̄

∫ t

t0

dt ′e−i(ω̃(A)+ω̃(B) )(t−t ′ )η(t ′)
∫

d3r
∑

i=A,B

F (r − ri )
〈
O
{
Êvac(r, t ′),

[
d̂ (i)

vac(t ′), Ô(i)
vac(t ′)

]
Ô(i)

s (t ′)
}〉

, (B27)

and

G(AB)(t )|s = − i

h̄

∫ t

t0

dt ′η(t ′)
∫

d3r
∑

i=A,B

F (r − ri )
[
d̂ (i)

vac(t ′), Ô(i)
vac(t )

](〈
O
{
Ês,i (r, t ′), Ô(i)

vac(t )
}〉− 〈Ês,i (r, t ′)〉〈Ô(i)

vac(t )
〉)
. (B28)

Here, we defined A = B and B = A. Choosing different
operator orderings in Eqs. (B27) and (B28) leads to dif-
ferent relative contributions to the two-point correlation
function stemming from source radiation and vacuum field
fluctuations.

a. Symmetric ordering

Using the symmetric operator ordering defined in Eq. (B9)
in Eqs. (B27) and (B28), we obtain the vacuum field and
source-radiation contributions to the two-point correlation
function given in Eqs. (4) and (5), respectively. Equations (4)
and (5) can also be written as

G(AB)(t )|vac = 1
2

〈{
Ô(A)

s (t ), Ô(B)
s (t )

}〉
, (B29)

and

G(AB)(t )|s = 1

2

∑
i=A,B

[〈{
Ô(i)

2 (t ), Ô(i)
vac(t )

}〉
− 〈

Ô(i)
2 (t )

〉〈
Ô(i)

vac(t )
〉]
. (B30)

We see from Eq. (B29) that the vacuum contribution is given
by the correlations between the source terms Ô(A)

s and Ô(B)
s .

Ô(A)
s and Ô(B)

s describe the individual interaction of atom A
and atom B with the vacuum field, compare Eq. (B14). The
source radiation contribution in Eq. (B30) is given by the

correlations between the free space atomic operator Ô(i)
vac and

Ô(i)
2 (t ). Ô(i)

2 (t ) is the contribution to Ô(i) stemming from the
process in which atom i interacts with the source radiation
emitted by atom i. It is obtained by replacing Êvac in Eq. (B14)
by Ê (i)

s . This is in line with the interpretation that the vacuum
field contribution arises due to the individual interaction of
the atoms with the vacuum field and thereby swapping cor-
relations present in the vacuum to the atoms, whereas the
source-radiation contribution arises in case one atom interacts
with the source radiation emitted by the other atom.

b. Normal ordering

Using the normal operator ordering defined in Eq. (B10) in
Eqs. (B27) and (B28), we obtain the following vacuum field
and source-radiation contributions to the two-point correlation
function:

G(AB)(t )|vac = 0 (B31)

and

G(AB)(t )|s = 1

2

〈{
Ô(A)

s (t ), Ô(B)
s (t )

}〉+ 1

2

∑
i=A,B

× [〈{
Ô(i)

2 (t ), Ô(i)
vac(t )

}〉− 〈
Ô(i)

2 (t )
〉〈

Ô(i)
vac(t )

〉]
.

(B32)
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As expected, the sum of the vacuum and source field contri-
bution using normal operator ordering [Eqs. (B31) and (B32)]
is the same as in the case of symmetric operator ordering
[Eqs. (B29) and (B30)]. However, the individual vacuum
and source field contributions in Eqs. (B29) and (B31) and
in Eqs. (B30) and (B32), respectively, differ. While using

symmetric operator ordering one obtains that correlations
between the atoms arise due to source and vacuum field con-
tributions, they only arise due to source radiation if one uses a
normal operator ordering.

To obtain Eq. (B32) we used that using normal ordering we
find

〈
O
{
Ês,i (r, t ′), Ô(i)

vac(t )
}〉 = ∫

d3r′F (r′ − ri )
∫ t ′

0
dt ′′η(t ′′)

(
R(+)(r, r′, t ′ − t ′′)

〈
d̂ (i)(t ′′)Ô(i)

vac(t )
〉

+ R(−)(r, r′, t ′ − t ′′)
〈
Ô(i)

vac(t )d̂ (i)(t ′′)
〉)
, (B33)

where we defined

R(±)(r, r′, t − t ′) = i

h̄
θ (t − t ′)[Ê (±)

vac (r, t ), Êvac(r′, t ′)]. (B34)

R(±) satisfy the following relations to the response and correlation function

Re[R(±)(r, r′, t − t ′)] = 1
2R(r, r′, t − t ′), (B35)

Im[R(+)(r, r′, t − t ′)] = −Im[R(−)(r, r′, t − t ′)] = 1

h̄
θ (t − t ′)C(r, r′, t − t ′). (B36)

To obtain the last equality, we made use of the fluctuation-dissipation theorem in Eq. (21). To obtain Eq. (B32), we use Eqs. (B35)
and (B36) in Eq. (B33) and insert the resulting expression into Eq. (B28).

c. Other operator orderings

We consider more generic operator orderings and find that in all cases other than the symmetric one, either the source-radiation
contribution does not vanish for spacelike separated atoms or the vacuum and source-radiation contributions are not real. First,
we consider operator orderings of the form

O{Ê (r, t ), Ô(A)(t )} = {λÊ (r, t )Ô(A)(t ) + (1 − λ)Ô(A)(t )Ê (r, t )}, (B37)

with λ ∈ [0, 1]. For λ = 1/2 we recover the symmetric operator ordering. Using Eq. (B37) in Eq. (B27) we find using Eq. (A16):

G(AB)(t )|vac =
∫

d3r′′
∫ t

t0

dt ′′
∫

d3r′
∫ t

t0

dt ′L(A)(r′, t ′, t )L(B)(r′′, t ′′, t ){C(r′, r′′, t ′ − t ′′)

+ i[λR′′(r′, r′′, t ′ − t ′′) − (1 − λ)R′′(r′, r′′, t ′ − t ′′)]}. (B38)

The second row vanishes if λ = 1/2, i.e., in case of symmetric operator ordering. For all other values of λ, it does not vanish in
general and leads to a purely complex contribution to G(AB)(t )|vac.

Another type of operator orderings is

O{Ê (r, t ), Ô(A)(t )} = {λ[Ê (+)(r, t )Ô(A)(t ) + Ô(A)(t )Ê (−)(r, t )] + (1 − λ)[Ê (−)(r, t )Ô(A)(t ) + Ô(A)(t )Ê (+)(r, t )]}, (B39)

Here, again λ ∈ [0, 1] and we we recover the symmetric (nor-
mal) operator ordering for λ = 1/2 (λ = 1). In this case we
find that

G(AB)(t )|s = λ
[
G(AB)(t )

∣∣Sym

s
+ G(AB)(t )

∣∣Sym

vac

]
− (1 − λ)

[
G(AB)(t )

∣∣Sym

s − G(AB)(t )
∣∣Sym

vac

]
.

(B40)

Here, G(AB)(t )|Sym
vac and G(AB)(t )|Sym

s are the vacuum and
source-field contribution in Eqs. (4) and (5), respectively,
obtained using symmetric operator ordering. For space-
like separated atoms, we found that G(AB)(t )|Sym

vac �= 0 and

G(AB)(t )|Sym
s = 0. Thus, the source-radiation contribution in

Eq. (B40) only vanishes in general for spacelike separated
atoms if λ = 1/2.

APPENDIX C: ELECTRO-OPTIC SAMPLING SIGNAL

In this Appendix we include a detailed derivation of the
EOS signal by perturbatively solving the equations of motion
for the electric field operator emerging from the crystal. We
further identify the contributions from source radiation and
from vacuum field fluctuations using a symmetric operator
ordering.

1. Preliminaries

a. Electric field contributions

As discussed in the main text, there are three different con-
tributions to the electric field, which are relevant for the EOS
signal. First, there are the two y-polarized, near infrared (NIR)
probe pulses E (1) and E (2) which will be treated classically
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[61] and are given by

E (i)(r, t ) =
∫ ∞

−∞
dω gi(r‖)E (i)(ω)eiω( n(ω)z

c −t ). (C1)

Here, we have defined the transverse mode function of the
two laser pulses g1 and g2, respectively, which we assume to
be equal but shifted by the spatial distance in transverse direc-
tion between the laser pulses δr‖, i.e., g1(r‖) = g2(r‖ − δr‖).
Furthermore, E (1)(ω) and E (2)(ω) have the form E (i)(ω) =
E (ω)e−iδtiω, with the normalized, real laser spectrum E (ω).
Note that E (ω) = E (−ω). Also, we assume that the spec-
tra are symmetric around the central laser frequency, i.e.,
E (ω − ωc) = E (ω + ωc), and that the width of the spectrum is
much smaller then the central frequency of the laser pulses ωc.
We approximate the wave vector k(ω) = n(ω)ω/c of the laser
pulse using a Tailor expansion around the central frequency
of the laser pulse ±ωc by assuming that the real refractive
index n(ω) in the NIR is sufficiently flat in the spectral range
of the laser pulse. Introducing the group refractive index ng =
c∂kω/∂ω|ωc and defining n(ωc) ≡ nc we obtain

E (i)(r, t ) = 2cos

[
ωc

(
nc

z

c
− t

)]
gi(r‖)

×
∫ ∞

−∞
dω E (ω − ωc)e−iω(t+δti− ngz

c )

︸ ︷︷ ︸
E(t+δti− ngz

c )

. (C2)

This can be used to find the time-domain expression for the
laser pulse

E (i)(r, t ) =
√

2πL Li(r, t )2cos

[
ωc

(
nc

z

c
− t − δti

)]
, (C3)

Li = 1

2πL
E2

(
t + δti − ngz

c

)
g2

i (r‖). (C4)

Here, L is the crystal length, and Li are the pulse envelopes
normalized such that∫

VC

d3r
∫ ∞

−∞
dtL1(r, t ) = 1, (C5)

where VC is the crystal volume, i.e.,
∫

VC
d3r =∫∞

−∞ dx
∫∞
−∞ dy

∫ L/2
−L/2 dz.

The second and third relevant part of the electric field are
the x-polarized, quantized electric fields Êx which we split
into a component in the THz (Ê ) and NIR (Ê (i)) frequency
ranges, i.e., Êx = Ê + Ê (i). Without the nonlinear coupling,
these fields can be expressed by their vacuum expressions

Êvac(r, t ) =
∫ �

−�

d� e−i�t Êvac(r,�), (C6)

Ê (i)
vac(r, t ) =

∫
|ω|>�

dω e−iωt Ê (i)
vac(r, ω). (C7)

Êvac(r,�) is given in Eq. (A1b), and we have introduced the
transition frequency � which separates THz frequencies from
NIR ones. The NIR field Ê (i) is, as the pulses, given in the
paraxial approximation [57] such that Ê (i)

vac(r, ω) is given by
Eq. (A1b) with the Green tensor in the paraxial approxima-

tion; see Eq. (A7). This can be used to find

Ê (i)
vac(r, ω) = − ω

2cnc

√
h̄

πε0
Imε(ω)

×
∫

dz′ eik(z−z′ ) f̂ (i)
x (r‖, z′, ω). (C8)

Note that the bosonic creation and annihilation operators
in the NIR and in the THz, f̂ (i)

x (r, ω) and f̂x(r,�), re-
spectively, commute. Furthermore, the field operators of the
two modes are uncorrelated, i.e., f̂ (1)

x (r, ω), f̂ (1)†
x (r, ω) and

f̂ (2)
x (r, ω), f̂ (2)†

x (r, ω) commute. This is assured in the two-
beam experimental setup by generating the two laser pulses
via a beam splitter from a single pulse; see Appendix C of
Ref. [62].

b. Interaction Hamiltonian

The nonlinear coupling inside the nonlinear crystal in-
troduces an effective coupling between the three different
field components which is given by the following interaction
Hamiltonian [34]:

ĤI (t ) = χ (2)
∑
i=1,2

∫
VC

d3rÊy(r, t )Êx (r, t )Êx(r, t ) (C9)

= 2χ (2)
∑
i=1,2

∫
VC

d3rE (i)(r, t )Ê (r, t )Ê (i)(r, t ).

(C10)

Here, we used Êx = Ê +∑
i Ê (i), and the fact that Ê and

Ê (i) commute. Furthermore, we have neglected contributions
which are proportional to Ê2 or Ê (i)2, since they will be
rapidly oscillating and are thus assumed to average to zero
[63]. We also have neglected terms proportional to E (1)Ê (2)

or E (2)Ê (1). If the two pulses are well separated in space,
then these terms do not contribute as there is no spatial
overlap between E (2) and Ê (1) or E (1) and Ê (2), respectively.
But also, if there is spatial overlap between the two pulses,
then these terms can be neglected, as in the experimental
setup the two pulses propagate into slightly different direc-
tions and pulse i can only efficiently couple to NIR fields
which are co-propagating with it due to phase-matching
constraints.

2. Heisenberg equation of motions for the fields

To eventually obtain the EOS signal, we solve Heisenbergs
equations of motion for the quantized fields Ê (i) and Ê up to
second order in the interaction Hamitlonian in Eq. (C10). We
use this approach instead of the Dyson series approach em-
ployed in Refs. [44,45,52] to highlight the similarities to the
calculation of source radiation and vacuum field contributions
to the dynamics of atoms discussed in Appendix B.

Solving the Heisenberg equations of motion for Ê (i) and
Ê up to first-order perturbation theory, we find Ê ≈ Êvac +
Ês with the free fields defined in Eqs. (C6) and (C7),
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and the source fields

Ê (i)
s (r, t ) = −2χ (2)

∫
VC

d3r′
∫ ∞

−∞
dt ′R(i)(r, r′, t − t ′) E (i)(r′, t ′)Êvac(r′, t ′), (C11)

Ês(r, t ) = −2χ (2)
∑
i=1,2

∫
VC

d3r′
∫ ∞

−∞
dt ′R(r, r′, t − t ′) E (i)r′, t ′)Ê (i)

vac(r′, t ′). (C12)

We used that Ê (1) and Ê (2) commute and defined the response functions of the fields Ê (i) and Ê , namely R(i) and R, according
to Eq. (9). Transforming Eqs. (C11) and (C12) to frequency space and using Eq. (A9) we find

Ê (i)
s (r, ω) = −2χ (2)μ0ω

2
∫

VC

d3r′D(r, r′, ω)
∫

|�|<�

d� E (i)(r′, ω − �)Êvac(r′,�), (C13)

Ês(r,�) = −2χ (2)μ0�
2
∑
i=1,2

∫
VC

d3r′D(r, r′,�)
∫

|ω|>�

dω E (i)(r′,� − ω)Ê (i)
vac(r′, ω). (C14)

We will also need the second-order expression for the field Ê (i) which is given by

Ê (i)
2 (r, t ) = −2χ (2)

∫
VC

d3r′
∫ ∞

−∞
dt ′R(i)(r, r′, t − t ′) E (i)(r′, t ′)Ês(r′, t ′). (C15)

The three different fields contributing to Ê (i) up to second or-
der in the interaction Hamiltonian have a clear interpretation:
Ê (i)

vac is the vacuum field also present without the nonlinear
coupling or the laser pulses; Ê (i)

s is the field generated by the
mixing of the laser pulse E (i) with the THz vacuum field Ê ;
Ê (i)

2 is the field generated by the mixing of laser pulse i with
the THz source radiation Ês.

3. Identifying source and vacuum field contributions

In this section we identify source and vacuum field contri-
butions to the EOS signal using symmetric operator ordering.
To do so, we solve Heisenbergs equations of motions for the
EOS signal operator Ĝθ1θ2 up to second order in χ (2) using
symmetric operator ordering between Ê and Ê (i). This cal-
culation follows along very similar lines as finding G(AB) in
Appendix B 2. We thus skip the details and give the resulting
expressions, which are just the equivalent of Eqs. (B29) and
(B30) in case of Fermi’s two-atom setup.

As Ê (1)
vac and Ê (2)

vac are uncorrelated there is no contribution
to the EOS signal in zeroth order in χ (2). The lowest-order
nonvanishing contributions are of second order in χ (2).

We obtain

Gθ1θ2 = Gθ1θ2 |vac + Gθ1θ2 |s. (C16)

Here, the vacuum field contribution to the EOS signal is given
by

Gθ1θ2 |vac = 1

2C

〈{
Ŝ(1)

s , Ŝ(2)
s

}〉
, (C17)

with

Ŝ(i)
s = 4πε0cnc

∫
d2r‖

∫ ∞

0
dω

1

h̄ω

× [
P(θi )E (i)∗(r‖, ω)Ê (i)

s (r‖, ω) + H.c.
]
. (C18)

The fields at position r‖ are understood as fields evaluated
at position r = (r‖, L/2)T , i.e., in the plane of the backside
of the nonlinear crystal. Gθ1θ2 |vac probes correlations between

Ê (1)
s and Ê (2)

s . As Ê (1)
s and Ê (2)

s are generated via the individual
mixing of each of the two uncorrelated laser pulses with the
quantum vacuum, respectively, correlations between Ê (1)

s and
Ê (2)

s only arise due to correlations present in the quantum
vacuum.

The source radiation contribution in Eq. (C16) is given by

Gθ1θ2 |s = 1

2C

(〈{
Ŝ(1)

vac, Ŝ(2)
2

}〉+ 〈{
Ŝ(1)

2 , Ŝ(2)
vac

}〉)
, (C19)

with

Ŝ(i)
2 = 4πε0cnc

∫
d2r‖

∫ ∞

0
dω

1

h̄ω

× [
P(θi )E (1)∗(r‖, ω)Ê (i)

2 (r‖, ω) + H.c.
]
, (C20)

and

Ŝ(i)
vac = 4πε0cnc

∫
d2r‖

∫ ∞

0
dω

1

h̄ω

× [
P(θi )E (1)∗(r‖, ω)Ê (i)

vac(r‖, ω) + H.c.
]
. (C21)

Ê (i)
2 given in Eq. (C15) is the field generated by the mixing

of laser pulse i with the THz source radiation Ês. Ês can in
turn be generated either by the mixing of E (1) with Ê (1)

vac or
E (2) with Ê (2)

vac. Only the process in which laser pulse 1 (2)
interacts with the source radiation generated by the mixing of
E (2) with Ê (2)

vac (of E (1) with Ê (1)
vac) leads to correlations between

the two modes Ê (1) and Ê (2), and, thus, to a contribution to the
EOS signal. In this case Ê (1)

2 (Ê (2)
2 ) is correlated with the NIR

vacuum field in the other mode Ê (2)
vac (Ê (1)

vac) and thus with the
shot noise contribution in the other detector.

Note that if we would have used a different operator or-
dering, we would have obtained a different splitting of the
EOS signal into source and vacuum field contributions. In the
following we find explicit expressions for the vacuum field
and source-radiation contributions in Eqs. (C17) and (C19),
respectively.
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4. Vacuum field contribution

To evaluate Eq. (C17) we first insert the first-order solution for Ê (i)
s (r, ω) in Eq. (C13) into the expression for Ŝ(i)

s in Eq. (C18)
and find

Ŝ(i)
s = −8πε0cncχ

(2)μ0

∫
d2r‖

∫ ∞

0
dω

ω

h̄

∫
VC

d3r′
∫ ∞

−∞
d�[P(θi )E (i)∗(r‖, ω)D(r‖, r′, ω) E (i)(r′, ω − �)Êvac(r′,�) + H.c.].

(C22)

To simplify this expression we first insert the Green tensor in the paraxial approximation found in Eq. (A7) and use

k(ω) ≈ n(ωc)

c
ωc + ng

c
(ω − ωc), (C23)

which gives

S(i)
s = −

√
C

2L

∫ ∞

0
dω

∫
VC

d3r′g2
i (r′

‖)
∫ ∞

0
d�

{
Êvac(r′,�) ei�δti−ing�z′/c[iP(θi ) f (−�) − iP∗(θi ) f (�)]︸ ︷︷ ︸

≡Ai (�,z′ )

+ Ê†
vac(r′,�) e−i�δti+ing�z′/c[iP(θi ) f (�) − iP∗(θi ) f (−�)]︸ ︷︷ ︸

≡Ai (−�,z′ )

}
. (C24)

Here, we also defined the total number of detected photons N , the average detected frequency ωp, the normalized spectral
autocorrelation function f (�), and the detector efficiency C [32] via

ωp =
∫∞

0 dωE (i)2(ω)∫∞
0 dω 1

ω
E (i)2(ω)

, N = 4πε0cnc

∫ ∞

0
dω

1

h̄ω
E (i)2(ω),

f (�) =
∫∞

0 dωE (i)(ω)E (i)(ω + �)∫∞
0 dωE (i)2(ω)

,
√

C = 2Lχ (2)Nωp

ε0cnc
. (C25)

Inserting Eq. (C24) into Eq. (C17) for both Ŝ(1)
s and Ŝ(2)

s we find the EOS signal stemming from vacuum fluctuations

Gθ1θ2 |vac = 1

8L2

∫
VC

d3r′
∫

VC

d3r′′
∫ ∞

0
d�

∫ ∞

0
d�′ 〈Êvac(r′,�)Ê†

vac(r′′,�′)〉{g2
1(r′

‖)g2
2(r′′

‖ )A1(�, z′)A2(−�′, z′′)

+ g2
2(r′

‖)g2
1(r′′

‖ )A1(−�′, z′′)A2(�, z′)
}
. (C26)

We can take the vacuum expectation value using Eq. (A5), use the Onsager reciprocity relation D(r′, r,�) = D(r, r′,�) [56],
and Schwartz reflection principle, i.e., D(−�) = D∗(�) [56] to find

Gθ1θ2 |vac = 1

4L2

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ )
∫ ∞

−∞
d�A1(�, z′)A2(−�, z′′)C(r′, r′′,�). (C27)

Here we have identified the correlation function in frequency domain C(r′, r′′,�) = h̄μ0

2π
sgn[�]�2Im[D(r′, r′′,�)], see

Eq. (A15). We use f1(�) = f2(�) ≡ f (�) and f (−�) = f (�), and set δt1 = 0, and δt2 = δt , such that Eq. (C27) reduces
to

Gθ1θ2 |vac = Im[P(θ1)]Im[P(θ2)]
∫

VC

d3r′
∫

VC

d3r′′
∫ ∞

−∞
d�F (r′, r′′,�)C(r′, r′′,�), (C28)

with

F (r′, r′′,�) = 1

L2
g2

1(r′
‖)g2

2(r′′
‖ )e−ing�(z′−z′′ )/ce−iδt� f 2(�). (C29)

In case P(θ1) = P(θ2) = i this result has been previously obtained in Refs. [44,45]. In time domain, we use Eq. (C27) and

g2
1(r‖)

∫ ∞

−∞
d�e−i�t A1(�, z′) = −4πL L1(r, t )Im[P(θ1)], (C30a)

g2
2(r‖)

∫ ∞

−∞
d�ei�t A2(−�, z′) = −4πL L2(r, t )Im[P(θ2)], (C30b)

to find

Gθ1θ2 |vac = Im[P(θ1)]Im[P(θ2)]
∫

VC

d3r′
∫

VC

d3r′′
∫ ∞

−∞
dt
∫ ∞

−∞
dt ′L1(r′, t )L2(r′′, t ′)C(ρρρ, τ ). (C31)
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This is Eq. (4) of the main text. Equation (C31) has been previously obtained in Ref. [27] in case both modes are detected using
quarter wave plates so that P(θ1) = P(θ2) = i in which case

Gvac ≡ G π
2

π
2

∣∣
vac =

∫
VC

d3r′
∫

VC

d3r′′
∫ ∞

−∞
dt
∫ ∞

−∞
dt ′L1(r′, t )L2(r′′, t ′)C(ρρρ, τ ). (C32)

5. Source-radiation contribution

To evaluate the source radiation contribution to the EOS signal in Eq. (C19). We start with simplifying the expression for Ê (i)
2

by Fourier transforming Eq. (C15):

Ê (i)
2 (r, ω) = −2χ (2)μ0ω

2
∫

VC

d3r′
∫ ∞

−∞
d�D(r, r′, ω) E (i)(r′, ω − �)Ês(r′,�). (C33)

Inserting Eq. (C14) into Eq. (C33) we find

Ê (i)
2 (r, ω) = 4χ (2)2μ2

0ω
2
∫

VC

d3r′
∫

VC

d3r′′
∫ ∞

−∞
d��2

∫ ∞

0
dω′D(r, r′, ω)D(r′, r′′,�) E (i)(r′, ω − �)

× [
E (ī)(r′′,� − ω′)Ê (ī)

vac(r′′, ω′) + E (ī)(r′′,� + ω′)Ê (ī)†
vac (r′′, ω′)

]
. (C34)

Here, ī = 2, 1 if i = 1, 2. Note that we have only included source terms of the THz field stemming from the other laser pulse,
since otherwise the expectation value in Eq. (C19) would vanish as 〈Ê (i)Ê (ī)〉 = 0. Physically, this is also clear: To generate
correlations between Ê (i) and Ê (ī), we have to consider the influence of the source radiation from mode i onto Ê (ī) and vice
versa. Eventually, we need to evaluate {Ŝ(i)

2 , Ŝ(ī)
vac} which can be written in terms of Ê (i)

2 as

{
Ŝ(i)

2 , Ŝ(ī)
vac

} = 16π2ε2
0 c2n2

c

∫
d2r‖

∫
d2r′

‖

∫ ∞

0
dω

∫ ∞

0
dω′ 1

h̄2ωω′
(
P(θī )E (ī)∗(r′

‖, ω
′)Ê (ī)

vac(r′
‖, ω

′)

× [
P(θi )E (i)∗(r‖, ω)Ê (i)

2 (r‖, ω) + H.c.
]+ [

P(θi )E (i)∗(r‖, ω)Ê (i)
2 (r‖, ω) + H.c.

]
P∗(θī )E (ī)(r′

‖, ω
′)Ê (ī)†

vac (r′
‖, ω

′)
)
,

(C35)

where we also used Ê (i)
vac|0〉 = 0 and 〈0|Ê (i)†

vac = 0. We thus encounter terms of the form 〈Ê (i)
2 (r‖, ω)Ê (ī)†

vac (r‖, ω)〉 into which we
insert Eq. (C34) and use Eq. (A5) to find

〈
Ê (i)

2 (r‖, ω)Ê (ī)†
vac (r‖, ω)

〉 = 4χ (2)2h̄μ3
0ω

2ω2

π

∫
VC

d3r′
∫

VC

d3r′′
∫ ∞

−∞
d��2D(r‖, r′, ω)

× D(r′, r′′,�) E (i)(r′, ω − �)E (ī)(r′′,� − ω)ImD(r′′, r‖, ω). (C36)

We use the paraxial form of the Green tensors in the NIR frequency range in Eq. (A7) to further simplify this expression:

〈
Ê (i)

2 (r‖, ω)Ê (ī)†
vac (r‖, ω)

〉 = iχ (2)2h̄μ3
0ωωc2

2πn2
c

∫ L/2

−L/2
dz′

∫ L/2

−L/2
dz′′

∫ ∞

−∞
d��2E (i)(ω − �)E (ī)(� − ω)gi(r‖)gī(r‖)

× e−ing�(z′−z′′ )/cD({r‖, z′}, {r‖, z′′},�). (C37)

Similar expressions can be obtained for the other terms in Eq. (C35) and we eventually find

〈{
Ŝ(i)

2 , Ŝ(ī)
vac

}〉 = 2Ch̄μ0

16L2π

∫
VC

d3r′
∫

VC

d3r′′g2
i (r′

‖)g2
ī (r′′

‖ )
∫ ∞

−∞
d��2e−ing�(z′−z′′ )/c+i(δti−δtī )�D(r′, r′′,�)

× i[P(θi )P
∗(θī) f 2(−�) − P∗(θi )P

∗(θī ) f (�) f (−�) − P∗(θi)P(θī ) f 2(�) + P(θi )P(θī ) f (�) f (−�)]. (C38)

Using R(r′, r′′,�) = �2 μ0

2π
D(r′, r′′,�) as well as f (−�) = f (�) and f1(�) = f2(�) ≡ f (�), Eq. (C38) simplifies to

〈{
Ŝ(i)

2 , Ŝ(ī)
vac

}〉 = −2Ch̄

4L2

∫
VC

d3r′
∫

VC

d3r′′g2
i (r′

‖)g2
ī (r′′

‖ )
∫ ∞

−∞
d� f 2(�)e−ing�(z′−z′′ )/c+i(δti−δtī )�R(r′, r′′,�)

× Im[P(θi )P
∗(θī ) + P(θi )P(θī )]. (C39)

Summing over i and multiplying by 1/2C, we find the source radiation contribution to the EOS signal [compare Eq. (C19)]

Gθ1θ2 |s = − h̄

2L2

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ )
∫ ∞

−∞
d� f 2(�)ei��{iIm[R(r′, r′′,�)]Im[P(θ1)P∗(θ2)] + Re[R(r′, r′′,�)]

× Im[P(θ1)P(θ2)]}. (C40)
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Here, we have defined � = −ng(z′ − z′′)/c + (δt1 − δt2). Shifting to positive frequencies, we get

Gθ1θ2

∣∣
s = h̄

L2

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ )
∫ ∞

0
d� f 2(�){Im[R(r′, r′′,�)]sin[��]Im[P(θ1)P∗(θ2)]

− Re[R(r′, r′′,�)]cos[��]Im[P(θ1)P(θ2)]}. (C41)

Note that Re[R(�)] = R′(�) and iIm[R(�)] = R′′(�). To find the source radiation contribution to the EOS signal as a function
of the time-domain response function, we Fourier transform the reactive and dissipative part of the response function and find

Gθ1θ2

∣∣
s
= − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′){Im[P(θ1)P(θ2)]R′(ρρρ, τ ) + Im[P(θ1)P∗(θ2)]R′′(ρρρ, τ )}. (C42)

This is Eq. (7) in the main text.
For a quarter and half wave plate for modes 1 and 2, respectively, we find P(θ1 = π/2) = i and P(θ2 = π ) = 1 such that

G π
2 π

∣∣
s ≡ G(1)

s = − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′){R′(ρρρ, τ ) + R′′(ρρρ, τ )} = − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′)R(ρρρ, τ ). (C43)

This is Eq. (8) of the main text. We see that for this arrangement of the detection scheme the setup is sensitive to detect source
radiation propagating from mode 2 to mode 1.

Furthermore, we find P(2π/3) = (1 + i)/
√

2 = P∗(4π/3) such that

GR′ ≡ 1

2

(
G 2π

3
2π
3

− G 4π
3

4π
3

) = − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′)R′(ρρρ, τ ), (C44)

GR′′ ≡ 1

2

(
G π

2 π − Gπ π
2

) = − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′)R′′(ρρρ, τ ). (C45)

6. Fluctuation-dissipation theorem

The implication of the time-domain fluctuation-dissipation theorem in Eq. (21) onto the EOS signal can be found by
calculating the Hilbert transform of GR′′ with respect to δt :

HGR′′ (δt ) = − h̄

2
H
∫

r,r′,t,t ′
L1(r, t )L2(r′, t ′)R′′(ρ, τ ) (C46a)

= − h̄

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′ − δt )HR′′(ρ, τ + δt ) (C46b)

= 1

2

∫
r,r′,t,t ′

L1(r, t )L2(r′, t ′)C(ρ, τ ) = 1

2
Gvac(δt ). (C46c)

Note that L2(r′, t ′ − δt ) is independent of δt and in the last line we used the time-domain fluctuation-dissipation theorem in
Eq. (21). Equation (C46) gives Eq. (22) of the main text.

By Fourier transforming the different contributions to the EOS signal with respect to δt one obtains the frequency domain
EOS signals (remember Gi(�) ≡ 1

2π

∫∞
−∞ dδt ei�δt Gi(δt ), with i = vac, s,R′′)

Gvac(�) = 1

L2

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ ) f 2(�)e−ing�(z′−z′′ )/cC(r′, r′′,�), (C47)

Gs(�) = − h̄

2L2

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ ) f 2(�)e−ing�(z′−z′′ )/cR(r′, r′′,�), (C48)

GR′′ (�) = − h̄

2L2

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ ) f 2(�)e−ing�(z′−z′′ )/cR′′(r′, r′′,�) = iImGs(�). (C49)

These expressions can be verified by using Eqs. (C28) and (C40) for Gvac and Gs, respectively. The last equality sign in Eq. (C49)
can be seen from iImR(�) = R′′(�).

7. Energy conservation

Here, we add a discussion on the issue of energy conservation in EOS experiments. In close analogy to the stability of
ground-state atoms and energy conservation in the atom’s dynamics, where the loss of energy due to the emission of source
radiation by the fluctuating charges is canceled by the process in which the atom absorbs energy from the vacuum [1], we find
that the individual source radiation and vacuum field fluctuation contributions include terms in which energy is extracted from
the quantum vacuum. These contributions only cancel when adding the two contributions.
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To see this, we sum over i in Eq. (C38) to find the source radiation contribution in its most general form (not assuming that
the spectral autocorrelation function f (�) is symmetric)

Gθ1θ2 |s = h̄μ0

4L2π

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ )
∫ ∞

0
d��2{Im[D(r′, r′′,�)]( f 2(�)Re[ei��P∗(θ1)P(θ2)]

− f 2(−�)Re[e−i��P∗(θ1)P(θ2)]) − Re[D(r′, r′′,�)] f (�) f (−�)Im[ei��P(θ1)P(θ2) + e−i��P(θ1)P(θ2)]}. (C50)

This expression can be compared to the vacuum field contribution in its most general form, which can be obtained from
Eq. (C27):

Gθ1θ2 |vac = h̄μ0

4L2π

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ )
∫ ∞

0
d��2Im[D(r′, r′′,�)]{ f 2(�)Re[ei��P∗(θ1)P(θ2)]

+ f 2(−�)Re[e−i��P∗(θ1)P(θ2)] − 2 f (−�) f (�)Re[P(θ1)P(θ2)]cos[��]}. (C51)

In the source-radiation and in the vacuum field contribution to the signal in Eqs. (C50) and (C51), respectively, we find energy
nonconserving contributions which are proportional to f 2(−�). As f (−�) ∝ E (ω − �). These terms correspond to generating
two photons with energy h̄ω by absorbing photons from the laser pulse which have the lower energy h̄(ω − �), e.g., by sum-
frequency generation of a laser and a vacuum photon. These terms lead to nonvanishing contributions to Gθ1θ2 |vac and Gθ1θ2 |s.
However, when adding both contributions we find that these terms cancel for any values of θ1 and θ2, such that there are no energy
nonconserving terms contributing to the experimental accessible full EOS signal Gθ1θ2 , which is given by adding Eqs. (C51) and
(C50)

Gθ1θ2 = h̄μ0

2L2π

∫
VC

d3r′
∫

VC

d3r′′g2
1(r′

‖)g2
2(r′′

‖ )
∫ ∞

0
d��2{Im[D(r′, r′′,�)] f 2(�)Re[ei��P∗(θ1)P(θ2)]

− f (�) f (−�)cos[��]Im[P(θ1)P(θ2)D(r′, r′′,�)]}. (C52)

This illustrates once more the necessity of including both ‘sides of the same quantum-mechanical coin’ [6], vacuum field
fluctuation and source radiation, to ensure energy conservation. It is in close analogy to the stability of ground state atoms
in vacuum, which arises because the process where the atom is excited by a vacuum photon is compensated for by the energy
loss due to the emission of source radiation of the fluctuating charges in the ground-state atom [1].

8. Rectangular pulses

In this section, we derive simplified expressions for the EOS signal stemming from source radiation Gs and from vacuum
field fluctuations Gvac in case of negligible absorption and dispersion effects in the crystal, i.e., we assume that n(�) ≈ n ∈ R.
We further assume that the laser pulses have a rectangular shape given by

L1(r, t ) = L2(r − δr‖, t − δt )
1

Lτσ w2
H

[
x

w

]
H

[
y

w

]
H

[
t − ngz/c

τp

]
. (C53)

Here, H[x] is a rectangular function, i.e., H[x] = 1 if x ∈ [−0.5, 0.5] and H[x] = 0 otherwise. The results found in this
section have been used to generate the solid lines in Fig. 3 of the main text.

a. Source radiation contribution

Since we assume the refractive index to be constant in this section we can use the response function in Eq. (A17). Inserting
Eq. (A17) into Eq. (C43) we find

Gs = − h̄

8πε0cn

∫
dt
∫

VC

d3r
∫

dt ′
∫

VC

d3r′L1(r, t )L2(r′, t ′)
(

∂2

∂t∂t ′ − c2
n

∂2

∂x∂x′

)
1

ρ
δ(ρ − cnτ ). (C54)

Next, we insert Eq. (C53) into Eq. (C54), use integration by parts to shift the derivatives to the pulse envelopes, and substitute
the integration variables to τ = t − t ′ and ρρρ = r − r′ and obtain

Gs = − h̄

8Lw2τ 2
p πε0cn

{∫
d3ρ�

[
ρx − δx

w

]
�

[
ρy − δy

w

]
�

[
ρz

L

]
1

ρ
δ(ρ − cnτ )

∣∣∣∣t=ng
z
c + τp

2

t=ng
z
c − τp

2

∣∣∣∣t
′=ng

z′
c −δt+ τp

2

t ′=ng
z′
c −δt− τp

2

− τpcn

w

∫
dρz

∫
dρy�

[
ρz

L

]�
[ ρy−δy

w

]
�
[ nρ−ngρz−cδt

cτp

]
ρ

∣∣∣∣x=
w
2

x=− w
2

∣∣∣∣x
′=−δx+ w

2

x′=− w
2 −δx

}
. (C55)

Here, �[x] ≡ max{1 − |x|, 0} is the triangular function and we have used∫ L/2

−L/2
dz′

∫ L/2−z′

−L/2−z′
dρz f (ρz ) = L

∫ ∞

−∞
dρz �

[
ρz

L

]
f (ρz ). (C56)
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To simplify the first line of Eq. (C55), we introduce spherical coordinates and use the delta distribution to carry out the ρ integral.
This way, Eq. (C55) reduces to

Gs = − h̄

8Lw2τ 2
p πε0cn

4∑
i=1

(−1)i

{∫ 1

−1
dcos[θ ]

∫ 2π

0
dφ

ρ∣∣1 − ng

n cos(θ )
∣∣�
[
ρx − δx

w

]
�

[
ρy − δy

w

]
�

[
ρz

L

]∣∣∣∣
ρ=ρmax

− τpcn

w

∫
dρz

∫
dρy�

[
ρz

L

]�
[ ρy−δy

w
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Here, we have introduced ρmax = max{ cn

1− ng
n cos(θ )

τ̄i, 0}, τ̄2 = τ̄4 = δt , τ̄3 = δt − τp and τ̄4 = δt + τp, as well as ρ (2)
x = ρ (4)

x = δx,

ρ (1)
x = δx + w, and ρ (3)

x = δx − w.
We can simplify Eq. (C57) further, by setting δx = 0 and assuming δy = δr � w. In this limit, the second row vanishes and

the first becomes

Gs = − h̄

8Lwτ 2
p πε0cn

4∑
i=1

(−1)i
∫ 1

−1
dcos[θ ]

ρ

sin(θ )
∣∣1 − ng

n cos(θ )
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[
δy − ρsin(θ )

w

]
�

[
ρcos(θ )

L

]∣∣∣∣
ρ=max{ cn

1− ng
n cos(θ )

τ̄i,0}
. (C58)

This expression was numerically integrated to obtain the solid red line in Fig. 3 of the main text.

b. Vacuum field contribution

We use the expression for the correlation function in Eq. (A18), which is valid for a real, constant refractive index, and insert
it into Eq. (C32) to find the signal from vacuum field fluctuations

Gvac = μ0 h̄

8π2

∫
VC

d3r′
∫

VC

d3r′′
∫ ∞

−∞
dt
∫ ∞

−∞
dt ′L1(r′, t )L2(r′′, t ′)

(
∂2

∂t∂t ′ − c2
n

∂2

∂x∂x′

)
1

ρ

(
P

ρ

cn
− τ

+ P
ρ

cn
+ τ

)
. (C59)

As in the last paragraph we integrate by parts to shift the derivatives to the pulse envelopes and introduce the coordinates τ and
ρρρ:

Gvac = h̄

8Lw2τ 2
p π2ε0cn
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. (C60)

As before, we use δx = 0 and set δy = δr � w and find that the second row of Eq. (C60) vanishes and the first reduces to

Gvac = h̄

8Lwτ 2
p π2ε0cn
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(C61)

This expression was numerically integrated to obtain the solid green line in Fig. 3 of the main text.

9. Gaussian pulses

Apart from rectangular pulses, we also consider Gaussian pulses which have been used in the experiments in Refs. [27,32].
They have a Gaussian shape in the xy plane given by

g1(r‖) = g2(r‖ − δr‖) =
√

2

π

1

w
e−r2

‖/w2
. (C62)

Also the normalized spectrum is assumed to be Gaussian and given by

E (1)(ω) = E (2)(ω)eiωδt =
(

τ 2
σ

2π

)1/4

e−τ 2
σ (|ω|−ωc )2/4, (C63)

leading to the following spectral autocorrelation function:

f 2(�) = e−�2τ 2
σ /4 = e−�2τ 2

p /8ln(2). (C64)
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τσ is connected to the full width half maximum of the Gaussian pulse τp via τp = τσ /2ln(2). Equations (C62) and (C63) can be
used to find space-time envelope of the laser pulses

L1 =
(

2

π

)3/2 1

τσw2L
e−2(ng

z
c −t )2/τ 2

σ e−2r2
‖/w2

. (C65)

L2 can be obtained via L2(r, t ) = L1(r + δr‖, t + δt ).

a. Vacuum fluctuations

The signal from vacuum fluctuations in case of Gaussian pulses has been considered before [44,52] and is given by

Gvac = μ0 h̄

8π3

∫ ∞

0
d��2e−�2τ 2

σ /4
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where we have defined the phase-matching function

�(kz,�) = 1
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⎢⎣ i
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�ng
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(

�ng
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⎤
⎥⎦+ (ng → −ng). (C67)

Here, +(ng → −ng) denotes adding the preceding expression subject to the replacement ng → −ng. Equation (C66) can also
be obtained from Eq. (C28) without any further approximations. It is valid for a general complex refractive index in the THz
frequency range n(�) and thus includes absorption and dispersion effects. Equation (C66) was numerically integrated to obtain
the dashed green lines in Figs. 3 and 4 of the main text.

b. Source radiation

To obtain the signal stemming from source radiation, we insert the Green tensor in Eq. (A6) into Eq. (C40) and find

Gθ1θ2

∣∣
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]
sin[�φ]

}
. (C68)

Introducing polar coordinates kx = k‖sin(φ) and ky = k‖cos(φ), and performing the r‖, z, and φ integrals, we find

Gθ1θ2

∣∣
s = μ0 h̄

16π3

∫ ∞

0
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σ /4
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0
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Here, we have defined

1

2π
β(k‖, δr‖) =

⎧⎨
⎩J0[k‖δy] − k‖
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)
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k2δx J1[k‖δx] if δr‖ = δxex

, (C70)

where Jn denotes the Bessel functions of the first kind. If P(θ1) = i and P(θ2) = 1 [64], then we find

Gs = μ0 h̄

16π3

∫ ∞

0
d��2e−�2τ 2

σ /4
∫ ∞

0
dk‖ k‖e−k2

‖w2/4β(k‖, δr‖)(Im[�(kz,�)] cos[�δt] − Re[�(kz,�)] sin[�δt]). (C71)

This expression was numerically integrated with δr‖ = δrey to obtain the dashed red curve in Fig. 3 in the main text. The signal
stemming from the dissipative part of the response function GR′′ shown in Fig. 4 can be obtained similarly from Eq. (C69):

GR′′ = − μ0 h̄

16π3

∫ ∞

0
d��2e−�2τ 2

σ /4
∫ ∞

0
dk‖ k‖e−k2

‖w2/4β(k‖, δr‖)Re[�(kz,�)] sin[�δt]. (C72)

APPENDIX D: REFRACTIVE INDEX

The refractive index used to simulate the EOS signal dis-
played in Figs. 3 (only dashed lines) and 4 in the main text, is
the one measured in Ref. [50] for GaP. The group refractive
index for the NIR laser pulses is given by ng = 3.556 at a

central wave-length of the laser pulse of 835 nm. In the THz
we use the complex valued, dispersive refractive index for
GaP given in Ref. [50]. For the solid lines in Fig. 3 in the
main text we used ng = 3.556 and n(�) ≈ n = 3.33 as also
stated in the main text.
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i=1,2 E (i) + Êi,vac, where the scalar functions E (i) are the
coherent, classical field amplitudes and Êi,vac is the contribution
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