
PHYSICAL REVIEW RESEARCH 5, 043202 (2023)

Context-aware fidelity estimation

Dripto M. Debroy,1,*,† Élie Genois ,1,2,*,‡ Jonathan A. Gross,1,*,§ Wojciech Mruczkiewicz ,1 Kenny Lee,1

Sabrina Hong,1 Zijun Chen,1 Vadim Smelyanskiy,1 and Zhang Jiang1

1Google Quantum AI, Venice, California 90291, USA
2Institut quantique & Département de Physique, Université de Sherbrooke, Québec, Canada J1K 2R1

(Received 12 April 2023; accepted 5 November 2023; published 5 December 2023)

We present context-aware fidelity estimation (CAFE), a framework for benchmarking quantum operations that
offers several practical advantages over existing methods such as randomized benchmarking (RB) and cross-
entropy benchmarking. In CAFE, a gate or a subcircuit from some target experiment is repeated n times before
being measured. By using a subcircuit, we account for effects from the spatial and temporal circuit context.
Since coherent errors accumulate quadratically while incoherent errors grow linearly, we can separate them by
fitting the measured fidelity as a function of n. One can additionally interleave the subcircuit with dynamical
decoupling sequences to remove certain coherent error sources from the characterization when desired. We have
used CAFE to experimentally validate our single- and two-qubit unitary characterizations by measuring fidelity
against estimated unitaries. In numerical simulations, we find that CAFE produces fidelity estimates at least as
accurate as interleaved RB while using significantly fewer resources. We also introduce a compact formulation
for preparing an arbitrary two-qubit state with a single entangling operation and use it to present a concrete
example using CAFE to study controlled-Z gates in parallel on a Sycamore processor.
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I. INTRODUCTION

Reliably understanding the structure of noise in quantum
processors is vital for advancing quantum computation. There
are a variety of characterization methods available to quantify
and validate the performance of individual quantum opera-
tions such as state preparation, single- and two-qubit gates,
measurement, and reset [1]. Amongst these techniques, some
use randomness to estimate gate fidelities efficiently, such as
randomized benchmarking (RB) [2–7], cross-entropy bench-
marking (XEB) [8,9], channel spectrum benchmarking [10],
and direct fidelity estimation [11–13], while others use com-
plete sets of input states, such as unitary tomography [14,15],
quantum process tomography [16,17], and gate set tomogra-
phy [18,19]. These methods all have upsides and downsides
in terms of speed, scalability, and the amount of information
provided [1].

An important problem that many existing techniques face
is that as quantum computers scale, complex intercompo-
nent interactions arise, such as control cross talk or temporal
correlations caused by residual pulse tails. For example, ex-
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periments may use amplifiers with temperature-dependent
gain profiles, which could be linked to pulse duty cycle and
cause circuit-dependent errors. These effects can make the
performance of a quantum operation highly context dependent
[9,20–22], and there is a growing need for characterization
methods which account for them.

In this paper, we describe a characterization method called
context-aware fidelity estimation (CAFE) which measures the
fidelity between an experimentally implemented quantum op-
eration and a reference unitary. In CAFE, we repeat a gate
or a subcircuit from a target experiment n times and measure
the average gate fidelity against the reference unitary raised
to the nth power. For example, the subcircuit can be part
of a stabilizer extraction circuit in a quantum error correc-
tion experiment, as demonstrated experimentally in Sec. VI.
This procedure allows us to capture context-related errors
which isolated characterizations do not capture [23,24]. Since
coherent errors accumulate quadratically as a function of n
while incoherent errors grow linearly, we can separate their
contributions to the infidelity. This is in contrast with RB and
XEB, where random compiling is used to twirl coherent errors
into incoherent ones.

Throughout the main text of this paper, we focus on us-
ing CAFE to study the performance of controlled-Z (CZ)
gates implemented in parallel, as two-qubit operations have
been shown to be a dominant error source across recent
large-scale experiments on a number of experimental plat-
forms, especially in the presence of stray interactions [25–27].
We also discuss CAFE for a subcircuit of a stabilizer
extraction circuit. In the Appendixes, we present results
from CAFE experiments characterizing parallel single-qubit
operations.

2643-1564/2023/5(4)/043202(14) 043202-1 Published by the American Physical Society

https://orcid.org/0000-0002-2226-1813
https://orcid.org/0000-0002-8497-6363
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043202&domain=pdf&date_stamp=2023-12-05
https://doi.org/10.1103/PhysRevResearch.5.043202
https://creativecommons.org/licenses/by/4.0/


DRIPTO M. DEBROY et al. PHYSICAL REVIEW RESEARCH 5, 043202 (2023)

FIG. 1. A schematic of the circuits used to measure the fidelity of n repetitions of the cycle circuit, which is selected to be a subcircuit from
some target experiment. First, a state pulled from an m-qubit 2-design, {ψi}, is prepared (blue). Second, the cycle circuit being characterized is
applied n times (pink). Third, we undo the combined action of the previous circuit in a single step, similar to the inversion step in randomized
benchmarking, and measure the resulting state in the computational basis (green). The fidelity between n repetitions of the applied operation
and the nth power of the reference unitary can be found by averaging the probability of getting |0〉⊗m over all 4m initial states. The faded
operations represent the spatial context of the cycle circuit being characterized. Meas, measurement; Prep, preparation.

II. CONTEXT-AWARE FIDELITY ESTIMATION

A typical CAFE experiment is performed in three steps,
schematically shown in Fig. 1. First, a state |ψ〉 is prepared
from an m-qubit 2-design {ψi} [28–31]. These ensembles
match the Haar random distribution up to second moments,
allowing us to measure fidelity. In Appendix B, we present
a method to construct shallow circuits that prepare arbitrary
two-qubit entangled states for this purpose. The method uses
a single entangling operation to prepare a two-qubit state with
the desired entanglement signature, followed by single-qubit
operations to reach the desired state.

Next, the m-qubit circuit of interest, referred to as the cycle
circuit, is repeated n times, along with operations on neighbor-
ing uninvolved qubits. The cycle circuit can include multiple
operations, allowing close matching to the circuit context
found in the target experiment. As an example, an experiment
which includes dynamical decoupling (DD) would be robust
in the presence of certain coherent errors, and including these
DD gates in the cycle circuit allows CAFE to neglect contribu-
tions from these coherent errors, focusing on the errors which
impact performance. Inserting DD gates is one of several ways
for CAFE to separate coherent and incoherent contributions to
gate errors, which we discuss further in Sec. IV.

Lastly, we apply a circuit that maps the state back to |0〉⊗m,
assuming that the cycle circuit implements the desired “fidu-
cial unitary,” before measuring the qubits in the computational
basis. This final step is analogous to the inversion step of
RB, used to undo the action of the total applied circuit before
measurement. Moreover in CAFE, this final step allows us to
validate the performance of different unitary characterization
methods, as discussed further in Sec. V. The average gate
fidelity of the operation, which we refer to as fidelity in the
following, can be found by averaging over the experiments
for all 2-design states {ψi} [14]:

F (Ucycle,Ufiducial ) = 〈P0···0〉{ψi}. (1)

We note that in the m = 2 case, the preparation and mea-
surement stages only use a single entangling gate, so their
contribution to the total error rate is far smaller than the circuit
being characterized for most values of n. In general, since
the information we extract from CAFE comes from fitting the

fidelity over different values of n, reasonable state preparation
and measurement (SPAM) errors do not significantly impact
the characterization results, as they only cause a constant
offset in the fidelity curve. While the number of 2-design
states scales exponentially with qubit count, random circuits
can approximate these states in polynomial depth [29], which
could be used for performing CAFE on m > 2 qubits.

III. COMPARING CAFE WITH RANDOMIZED
BENCHMARKING

In this section, we compare our CAFE approach to the
widely used interleaved randomized benchmarking (IRB) pro-
tocol for estimating the fidelity of noisy CZ gates. The error

FIG. 2. Simulations comparing the CAFE and interleaved ran-
domized benchmarking (IRB) techniques for characterizing the
average gate infidelity of noisy CZ gates with amplitude and phase
damping noise in addition to coherent errors. For CAFE (blue), we
use depths n ∈ [0, 2, 4, 6, 8], whereas for IRB (gray) we use depths
n ∈ [5, 10, 15, 20, 25, 30, 35] for obtaining both the reference RB
curve and the acquisition with interleaved CZ gates. Both approaches
use 2000 shots per circuit. Labels presents the median absolute
errors (MAEs) of IRB and CAFE over N = 1000 different noisy
CZ gates. MAE = median(|F̃1 − F1|, . . . , |F̃N − FN |). We note that
MAE scales with the true error of the gates being considered.
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model for these gates, which is fully described in Appendix E,
contains coherent errors together with amplitude and phase
damping as incoherent noise. In Fig. 2, we show that for
this model, and using realistic error rates, CAFE yields a
more accurate average gate fidelity estimation than IRB, while
requiring significantly fewer experimental resources.

More concretely, the randomized benchmarking protocol
uses 20 different circuits for seven depths 5 � n � 35 of ran-
dom two-qubit Clifford gates (which often require two CZ’s
together with single-qubit gates once compiled), in addition
to repeating these same circuits interleaved with a CZ at ev-
ery depth in order to obtain the CZ gate fidelity estimate.
In contrast, CAFE uses only 16 different circuits and five
depths 0 � n � 8 of CZ’s (with at most two additional CZ

layers for state preparation and measurement). Moreover, the
single-qubit gates used by IRB to create the random Clifford
gates introduce unwanted error sources from decoherence and
systematic errors, a problem that CAFE alleviates altogether
by only repeating the cycle circuit of interest. Note that, unlike
CAFE, RB additionally provides an estimate of the average
gate fidelity of all two-qubit Clifford gates, which can be of
independent interest. We also want to point out that using
additional depths n and sampling shots can improve both
approaches, and that considering a different range of noise
parameters can change the resulting median absolute errors
significantly. However, we have found that the conclusion
remains that CAFE allows one to do a gate characterization
at least as accurate as IRB, while requiring significantly less
run time in experiment.

IV. BUDGETING COHERENT
AND INCOHERENT ERRORS

Using CAFE, one can accurately estimate the fidelity of
any unitary operation and report this single number as a
performance metric, which is useful for validation and for es-
timating the performance of different quantum algorithms [1].
However, such a metric alone provides very little information
as to how to improve the gate fidelity in practice. A central
feature of CAFE is that one can extract actionable information
about the origins of gate error by budgeting the coherent and
incoherent contributions. To do so, one can fit the fidelity
decay curve to a physical model or modify the cycle circuit
to echo out different parts of the gate errors, for example, by
leveraging dynamical decoupling (DD) pulses. We note that
such budgeting is helpful for directing the research focus, as
the interventions required to mitigate coherent and incoherent
errors tend to be different.

A. Separating coherent and incoherent errors
through fitting to a model

One way to obtain an error budget from CAFE is to fit the
experimental data to a model. Although the CAFE experiment
and resulting error budget are valid for any m-qubit unitary,
we will again focus on the two-qubit CZ case to simplify
the discussion in the main text. A more general derivation is
presented in Appendix C. We assume that the cycle unitary is
an excitation-preserving two-qubit gate close to a CZ

Ũ (�θ,�γ ,�φ) =

⎛
⎜⎜⎝

1 0 0 0
0 e−i�γ cos(�θ ) −ie−i�γ sin(�θ ) 0
0 −ie−i�γ sin(�θ ) e−i�γ cos(�θ ) 0
0 0 0 −e−i(�φ+2�γ )

⎞
⎟⎟⎠, (2)

where Ũ (0, 0, 0) = CZ, and the swap, single-qubit phase, and
controlled-phased miscalibration angles are assumed to be
small, such that �θ, �γ , �φ � 1. To simplify further the
expressions here, we also assume that the noisy quantum
channel implementing the cycle circuit can be described by
a two-qubit depolarizing channel

E (ρ) =(1 − pdepol ) Ũρ Ũ † + pdepol Id/d, (3)

which outputs a totally mixed state with probability pdepol and
otherwise applies the cycle unitary Ũ . With such a channel,
the average gate fidelity for n repetitions of the cycle circuit is
given by

Fn = 1
4 − εSPAM − 1

20 (1 − pdepol )
n

× (1 − |1 + 2e−in�γ cos(n�θ ) + e−in(2�γ+�φ)|2),

(4)

where we have explicitly included the SPAM errors εSPAM,
which are assumed to vary slowly over the timescale of an
experiment. We note that in this model we made a steady-
state assumption about the gates in our system, but modeling
transient behavior could be achieved with a more advanced
fit. Using the expression in Eq. (4), we can model the

experimental data to obtain the gate fidelity F , in addition
to the incoherent errors εincoh and coherent errors εcoh of the
quantum operation. To get these parameters in a way that is
robust in the presence of SPAM errors, we use

1 − F = 1 − F1

(1 − εSPAM)
, (5)

εincoh = 1 − F1(pdepol = 0)

(1 − εSPAM)
, (6)

εcoh = 1 − F1(�θ = �γ = �φ = 0)

(1 − εSPAM)
. (7)

In numerical simulations, which are presented in Appendix E,
this analysis procedure was shown to be valid and robust in the
presence of different unitary errors, as well as amplitude and
phase damping channels. We use this method to budget errors
in Figs. 2–5. A similar budgeting approach for single-qubit
X(π ) gates, together with experimental results acquired on a
Sycamore chip, are presented in Appendix D.

As shown in Fig. 3, the simple model of Eq. (4) allows
us to accurately fit the CAFE curves spanning a wide range
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FIG. 3. Experimental characterization of CZ gates performed in
parallel using CAFE. (a) Structure of the 16 circuits used to charac-
terize the fidelity of a CZ gate for a given depth. The angles {α, β}
and single-qubit unitaries Uj are found using the method described
in Appendix B. Here the cycle circuit is a single CZ gate. (b) Data
representing the cycle circuit fidelity compared with the ideal CZ

unitary for different cycle repetitions, along with fits using the model
presented in Eq. (4) and resulting gate budgets in the inset table.
We plot the data for three specific gates—at the 10th, 50th, and
90th percentiles on a Sycamore device in terms of average gate
infidelity—to illustrate the accuracy of the modeling over a wide
range of data. Error bars represent the standard deviation of binomial
distributions scaled by a factor of 5 to be visible.

of CZ gate fidelities executed in parallel on a Sycamore chip.
Additional data showing the consistency of the resulting error
budget with XEB are presented in Appendix H.

A useful and intuitive picture to analyze the CAFE data
is to consider the incoherent and coherent errors as linear
and quadratic contributions to the gate infidelity, respectively.
This can be seen directly by expanding Eq. (4) up to terms
O((�θ )4, (�γ )4, (�φ)4, pdepol

2):

Fn ≈ 1 − εSPAM − εlin n − εquad n2, (8)

εlin = 3pdepol

4
n, (9)

εquad = 8[(�θ )2 + (�γ )2 + �γ�φ] + 3(�φ)2

20
n2. (10)

This approximate quadratic form can be found for different
cycle unitaries under similar noise channels and could be used
directly in the budgeting procedure given low gate infidelities
and shallow cycle repetitions n or in cases lacking an accurate
analytical model for the quantum channel. Note that the fit
model and resulting CAFE error budgeting can be straight-
forwardly extended to another platform or experiment. For
example, the quantum channel describing the cycle circuit can
be parametrized by a set of Kraus operators and computed
numerically to fit the CAFE fidelities at different depths n.
However, since CAFE performs only the minimal set of cir-

FIG. 4. CAFE combined with dynamical decoupling (DECAF).
(a) Structure of the 16 DECAF circuits for characterizing a CZ gate
at a given depth. Only the cycle circuit highlighted in orange differs
from the CAFE circuits of Fig. 3(a). (b) Experimental results on char-
acterizing CZ gates in parallel when dynamical decoupling gates are
part of the cycle circuit (orange), alongside the standard CAFE data
presented in Fig. 3 (blue). Interleaving the CZ gates with X gates on
both qubits echoes out low-frequency Z noise, which contributes to
εincoh, and removes the sensitivity to single-qubit phase unitary errors,
which contribute to εcoh. Performing the simple DECAF experiment
thus provides valuable information about the error mechanisms in CZ

gates. Error bars are scaled by a factor of 5 to be visible.

cuits needed to extract the average gate fidelity, the data will
not contain enough information to fully characterize generic
quantum channels, and additional experiments or other char-
acterization tools should be considered if that is the goal.

We also note that the quantity εincoh estimates the average
gate infidelity when no coherent control errors are present.
This useful characterization metric is defined as R(E ) in
Ref. [32], where the authors show that it bounds the unitarity
of the channel u(E ):

d − 1

d
(1 −

√
u(E )) � R(E ). (11)

As such, we can also relate our incoherent error estimate to
unitarity. For instance, in the case of depolarizing noise, the
unitarity is

u(Edepol ) = (1 − pdepol )
2, (12)

and the incoherent error obtained from CAFE is, as derived in
Appendix C,

1 − εincoh = 1

d
+ d − 1

d
(1 − pdepol ) (13)

= 1

d
+ d − 1

d

√
u(Edepol ). (14)

B. Isolating coherent channels using dynamical decoupling

Exploiting the versatility of CAFE, a second method for
error budgeting is to modify the cycle circuit in order to isolate
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FIG. 5. Using CAFE to validate different unitary characteriza-
tions of a CZ gate with 50th percentile infidelity. (a) Only the three
single-qubit gates {U3,U4,Y (β )} highlighted in green need to be
modified to compare the fidelity of the experimental CZ gate with
an arbitrary unitary. (b) The different curves represent the fidelity
between the experimental gate and an ideal CZ unitary (blue), a
unitary extracted from an XEB experiment (green), and a unitary
characterized with a newly introduced method called MEADD [35].
Since only the premeasurement circuit changes in the three different
CAFE experiments, the improvement in fidelity can entirely be at-
tributed to considering a gate unitary that is closer to the experimental
CZ implementation. Error bars are scaled by a factor of 5 to be visible.

specific error channels. In particular, this is viable when the
impact of the modifications is insignificant relative to the
error channels being isolated. As a relevant example, we can
leverage the fact that the cycle circuit is repeated n times by
inserting dynamical decoupling gates in between repetitions.
This approach of combining DD and CAFE, which we re-
fer to as DECAF, is particularly useful to characterize the
amount of certain coherent error present in the cycle circuit
without necessitating full unitary tomography. We note that
this is somewhat similar to the work in Ref. [5], with a single
repetition of the cycle circuit, and the randomized unitaries
replaced with specific DD pulses.

In the case of a CZ gate, adding an X gate to both
qubits in the CAFE cycle circuit echoes out the single-qubit
phase errors, in addition to mitigating low-frequency noise, as
demonstrated in Appendix F [33,34]. As shown in Fig. 4, the
DECAF data have higher fidelities and decrease more linearly
than the CAFE data in practice. Looking at the resulting fits
over all characterized CZ gates, we see a significant decrease
in the median coherent error from 5.5×10−4 to 9.4×10−5,
which highlights single-qubit phase miscalibrations, along-
side a decrease of the median incoherent error from 7.2×10−3

to 6.7×10−3, which indicates the level of low-frequency noise
in the device.

V. VALIDATING UNITARY CHARACTERIZATIONS

One key difference between CAFE and other methods for
extracting error rates is the final unentangling step before
measurement. By doing all of the inversion in a single step,
similar to RB, but using an arbitrary characterized reference
unitary for the inversion, we can validate different unitary
characterizations while respecting the non-Clifford nature of
most coherent error models. As such, we can use CAFE to
benchmark unitary characterizations, simply by changing the
final measurement step and seeing which predictions most
accurately map the final state back to |0〉⊗m, in conjunction
with the methods presented in Sec. IV A. As illustrated in
Fig. 5(a), for a two-qubit cycle circuit, this change corre-
sponds to modifying three single-qubit gates in the last step
of the CAFE protocol.

In Fig. 5(b), we compare the CZ unitary extracted by XEB
to the one extracted using a unitary characterization method
called matrix-element amplification by dynamical decoupling
(MEADD) [35], which is a characterization technique that
we have developed based on Floquet characterization [36,37].
MEADD allows us to isolate and precisely measure the dif-
ferent unitary parameters in any phased fermionic simulation
(FSIM) gate (a general excitation-number-preserving two-qubit
gate). We can see very clearly that the unitary predicted by
MEADD is significantly better at predicting the coherent error
than the unitary extracted by XEB. By increasing the amount
of context around the gate, for example, including some
microwave operations or measurements on the surrounding
qubits to include cross talk or measurement-induced dephas-
ing effects, we can see which characterizations break down in
other contexts (see Sec. VI) and build trust that the structures
seen in our characterizations are the dominant effects impact-
ing algorithm performance on the processor.

VI. CHARACTERIZING MULTILAYER
CIRCUITS USING CAFE

Here, we provide an example of a CAFE experiment that
includes both spatial and temporal context by characterizing
a cycle circuit containing multiple layers. As illustrated in
Fig. 6(a), we consider a portion of the stabilizer extraction cir-
cuit for a distance-3 surface code experiment used in Ref. [26].
In Fig. 6(b), we show how this section of the circuit can be
considered on its own and broken down into qubit groups.
We can then run a parallel CAFE experiment on these qubit
groups which uses the highlighted section as the cycle circuit.
The resulting experimental data are shown in Fig. 6(c). We can
see that one of the m = 1 qubit groups experiences significant
error, despite its individual single-qubit X and Hadamard (H)
gates showing good fidelities when characterized in isolation.
This highlights the importance of context-aware characteriza-
tion, as the error mode being experienced was only visible
when the gates were run in conjunction. This experiment also
highlights the flexibility of CAFE in being able to character-
ize multioperation circuits simultaneously on qubit groups of
varying size.
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FIG. 6. (a) The stabilizer extraction circuit for a distance-3 surface code, with the section to be characterized boxed in orange. (b) A layout
for the CAFE experiment along with the qubit groups characterized. (c) CAFE data for repetitions of the cycle circuit from (a) on the qubit
groups in (b), with the m = 2 groups in green and the m = 1 groups in red. CAFE allows us to see that q11 (red dashed curve) is experiencing
a significant context-dependent error.

VII. CONCLUSION

CAFE separates itself from other gate characterization
methods due to its simplicity, efficiency, and flexibility, most
notably as a complementary tool to other gate characteriza-
tions that provide more granular output. We have found its
ability to split coherent and incoherent errors to be more
reliable than that of other methods, and the ability to ex-
perimentally test unitary characterizations has allowed us to
design and evaluate novel characterization methods more ef-
fectively.

Overall, our results demonstrate that CAFE yields accurate
fidelity and error budget estimates using significantly less time
in practice than complementary characterization protocols.
This approach is thus particularly useful to quickly identify
the worst performing individual quantum operations, typically
single- and two-qubit gates, directly in the context of the larger
quantum circuit in which they are found. Moreover, CAFE
yields actionable information about the origins of the gate
errors, namely the contributions of incoherent and coherent
noise, which allows one to calibrate the quantum device to
optimize performance on the experiment of interest. This use-
fulness of CAFE is demonstrated in Sec. VI for characterizing
and recalibrating a portion of the stabilizer extraction circuit
of a distance-3 surface code experiment.

The flexibility of CAFE allows for many other as-of-yet
unexplored variations, from creating fits which include the
impact of leakage, to changing the cycle circuit round-by-
round to echo out components in different ways, to analyzing

the different input bases separately to extract details about the
error structure. Our hope is that other researchers will be able
to create their own modifications of the CAFE framework to
study the errors facing their own systems.
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APPENDIX A: DEVICE SPECIFICS

All experimental data presented here were collected on a
subset of a Sycamore device with 72 transmon qubits and 121
tunable couplers, where each qubit is coupled to up to four
neighbors. In Fig. 7 we present median error rates for mi-
crowave single-qubit gates, CZ gates, and measurements over
the time frame during which data were acquired for this paper,
and in Fig. 8 we show the cumulative density functions for
these errors. All errors reported are measured simultaneously.
For more information on the architecture, see Refs. [9,38], and
for more information on the implementation of the gates, see
Ref. [39].
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FIG. 7. Heat maps for per-qubit and per-pair median error rates for single-qubit randomized benchmarking, CZ XEB, and average readout
identification error.

APPENDIX B: PREPARING AND MEASURING
TWO-QUBIT STATES

We describe a method to prepare or measure an arbitrary
two-qubit state with a single maximally entangling operation.
We start by considering a general two-qubit target state

|ψ〉 = A|00〉 + B|01〉 + C|10〉 + D|11〉,
|A|2 + |B|2 + |C|2 + |D|2 = 1. (B1)

We can then write a matrix with the amplitudes of this state,

Mψ =
[

A B
C D

]
, (B2)

and perform the singular value decomposition (SVD) Mψ =
UψSψV †

ψ . Considering the initial singular value, S00
ψ , we can

quantify the level of entanglement in the targeted state. The
first step to generate this state is to prepare a state with a
matching entanglement signature.

In the case where we intend to use a CZ gate, this can be
done by putting one qubit in |+〉, and applying a Y rotation to
the other qubit with an angle of α = 2 arccos(S00

ψ ). This state,
labeled as |CZ〉 in Fig. 9, is equivalent to the final state up
to single-qubit rotations. To find these rotations, we take the
SVD of the 2×2 matrix corresponding to this intermediate
state, UCZSCZV

†
CZ. The single-qubit unitary required for the

first qubit is given by U1 = UψU −1
CZ , and the unitary for the

second qubit is U2 = VψV −1
CZ . The resulting circuit is shown

in Fig. 9. Constructions for CZ and
√

ISWAP are implemented
as the methods prepare_two_qubit_state_with_cz and
prepare_two_qubit_state_with_iswap in the open-
source software CIRQ [40].

APPENDIX C: DERIVATION OF EQUATION (4)

In this Appendix, we derive Eq. (4) as an example of how
one could do the same for other unitaries and error models of
interest. Given a general quantum channel described by a set

FIG. 8. Cumulative density functions for single-qubit (SQ) RB, CZ XEB, and readout errors.
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FIG. 9. A simple circuit that maps |00〉 to an arbitrary two-
qubit state |ψ〉 using only one CZ operation. The overlap of any
two-qubit state with the state |ψ〉 can be obtained by executing the
inverse of this circuit and reporting the probability of measuring |00〉
afterwards.

of Kraus operators Kα ,

E (ρ) =
∑

α

KαρK†
α , (C1)

the average fidelity of the quantum operation E with respect
to a unitary operation U is

F (E,U ) =
∫

〈ψ (x)|U †E
( |ψ (x)〉 〈ψ (x)| )U |ψ (x)〉 dμ(x)

(C2)

=
∑

α

∫
| 〈ψ (x)|U †Kα |ψ (x)〉 |2 dμ(x), (C3)

where x is a parametrization of pure quantum states and μ(x)
is the Haar measure. To evaluate F , we introduce the projector
on the symmetric subspace of the system and its replica, which
is expressed as

PS = d (d + 1)

2

∫
|ψ (x)〉 〈ψ (x)| ⊗ |ψ (x)〉 〈ψ (x)| dμ(x),

(C4)

where d = 2m is the dimension of the m-qubit Hilbert space.
Using this projector, the fidelity takes the form

F (E,U ) = 2

d (d + 1)
tr

(
PS

∑
α

K†
αU ⊗ U †Kα

)
(C5)

= 1

d (d + 1)

∑
α

trK†
αKα + |tr(U †Kα )|2 (C6)

= 1

d + 1
+ 1

d (d + 1)

∑
α

|tr(U †Kα )|2. (C7)

In order to compute the fidelity expression in Eq. (C7), one
computes the eigenvalues of U †Kα and sums them up directly
to get tr(U †Kα ). For example, we consider the case where the
operation of interest can be described by a quantum channel
that either applies the unitary Ũ or totally depolarizes the
qubits with probability pdepol

E (ρ) = (1 − pdepol ) Ũρ Ũ † + pdepol Id/d, (C8)

where Id is the d-dimensional identity operator. The fidelity
of this channel after n consecutive applications is given by

Fn = (1 − pdepol )
n d + |tr[(U †)nŨ n]|2

d (d + 1)

+ [1 − (1 − pdepol )
n]

1

d
. (C9)

After subtracting εSPAM from the right-hand side to account
for experimental SPAM errors, the expression in Eq. (C9) can
be used to fit the CAFE data of any m-qubit unitary Ũ , subject
to symmetric depolarizing noise, with respect to a reference
unitary U . Note that in the case where the quantum operation
under characterization, Ũ , corresponds exactly with the ref-
erence unitary U , the CAFE data should obey the following
single-exponential decay:

Fn = 1

d
+ d − 1

d
(1 − pdepol )

n. (C10)

Otherwise, when Ũ 	= U , coherent errors are present, and the
first term of (C9) will introduce errors that scale quadratically
with n to first order.

In the case we are interested in, we want to use CAFE to
characterize a two-qubit gate, where d = 4, U = CZ, and Ũ is
a number-preserving FSIM gate close to a CZ gate:

Ũ (�θ,�γ ,�φ) =

⎛
⎜⎜⎝

1 0 0 0
0 e−i�γ cos(�θ ) −ie−i�γ sin(�θ ) 0
0 −ie−i�γ sin(�θ ) e−i�γ cos(�θ ) 0
0 0 0 −e−i(2�γ+�φ)

⎞
⎟⎟⎠, (C11)

with some residual SWAP-like error captured by the angle �θ , single-qubit phase error captured by �γ , and controlled-phase
(CPHASE)-like error captured by �φ, with �θ, �γ , �φ � 1. Since CZ is diagonal, we can show that the eigenvalues of (U †)nŨ n

are

λ = (
1 e−in(�γ−�θ ) e−in(�γ+�θ ) e−in(2�γ+�φ)

)
, (C12)

for n ∈ N. As such, tr[(U †)nŨ n] = sum(λ), and substituting into Eq. (C9) gives

Fn = 1

4
− (1 − pdepol )

n

(
1 − ∣∣1 + 2e−in�γ cos(n�θ ) + e−in(2�γ+�φ)

∣∣2

20

)
(C13)

= 1 − 3pdepol

4
n − 8(�θ )2 + 8(�γ )2 + 8(�γ�φ) + 3(�φ)2

20
n2 (C14)

+O((�θ )4, (�γ )4, (�φ)4, pdepol
2), (C15)
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FIG. 10. Single-qubit parallel CAFE results for three X gates close to the 10th (left), 50th (center), and 90th (right) percentiles of infidelity,
from a total of 68 parallel X gates on a Sycamore device. The data in blue compute the fidelity with an ideal U = X unitary, whereas the CAFE
data in red use a characterized unitary. Note that in these data, the characterized single-qubit unitaries were not used to optimize the gate
parameters, thus the imperfect calibration.

which is the expression in Eq. (4) of the main text, after
subtracting the SPAM errors εSPAM from the right-hand side
to account for experimental imperfections.

APPENDIX D: SINGLE-QUBIT CAFE

In order to give an additional example of how to deploy
the CAFE characterization framework, we present an exper-
iment characterizing 68 single-qubit X gates in parallel on
a Sycamore processor. The results are presented in Fig. 10,
showing the fidelity of the experimental gate with both an
ideal unitary (in blue) and a characterized one (in red), in ad-
dition to fits using an analytical model derived below, for three
example gates. In the single-qubit case, the minimal 2-design
contains only four states which can all be prepared with a
single gate, which significantly speeds up the characterization.
We have used cycle repetitions n up to 32 here, showing how
one can modify the experiment when studying especially high
fidelity operations to maintain good fit robustness.

Assuming that the incoherent noise of the experimental
gate can be described by a totally depolarizing channel, our
model to fit the single-qubit CAFE data can again be derived
from Eq. (C9). For this case where U = Rx(π ) and d = 2, we
can parametrize a single-qubit unitary

Ũ (�μ) =
( − sin(�μ/2) −i cos(�μ/2)

−i cos(�μ/2) − sin(�μ/2)

)
, (D1)

where Ũ (0) = Rx(π ). One can easily show that the eigenval-
ues of (U †)nŨ n are

λn =
{

(inein�μ/2 ine−in�μ/2), for n even

(ein�μ/2 e−in�μ/2), for n odd,
(D2)

where n ∈ N. As such,

|tr[(U †)nŨ n]|2 = |sum(λn)|2 = 4 cos2(n�μ/2), (D3)

and Eq. (C9) becomes

Fn = 1
2 − εSPAM + (1 − pdepol )

n
(

2
3 cos2(n�μ/2) − 1

6

)
,

(D4)

where, as before, we have explicitly included the SPAM errors
εSPAM to account for experimental imperfections. The error
budget in terms of the fidelity F , incoherent error contribution
εincoh, and coherent error contribution εcoh is obtained the
same way as in Eqs. (5)–(7) of the main text, i.e., by fitting the
data with this expression, evaluating it at n = 1 with different
noise parameters set to zero, and normalizing by the SPAM
errors. Figure 10 shows that such a model allows us to accu-
rately reproduce the CAFE data obtained in the experiment.

APPENDIX E: NUMERICAL CAFE SIMULATIONS

In this Appendix, we present numerical simulations where
we characterize a CZ gate using the CAFE approach pre-
sented in the main text. We simulate the same 24 = 16 circuits
executed on the Sycamore device with noisy two-qubit uni-
taries, together with either depolarizing noise in Appendix E 1
or amplitude and phase damping noise in Appendix E 2.
We also used the same low numbers of cycle repetitions
n ∈ [0, 2, 4, 6, 8] which make the CAFE experiment have
especially low execution time relative to other two-qubit
benchmarking techniques. In Sec. III we showed that using
CAFE to characterize a CZ gate can allow for a more ac-
curate fidelity estimation than the widely used randomized
benchmarking (RB) protocol while using significantly fewer
experimental resources. Note that we also simulate the sam-
pling of 2000 shots used experimentally, which places an
upper bound on the standard deviation of all the CAFE data
points presented in Figs. 3–5 of

σF � 1

8
√

Nshots
≈ 0.0028, (E1)

which is smaller than all the markers used in the plots of the
main text.

Importantly, these simulations allow us to confirm the
validity of the CAFE experiment and the following fitting
procedure to obtain accurate estimates of the following: the
average gate fidelity of the quantum operation with regard to
any reference unitary, the incoherent error contribution to the
infidelity, and the coherent error contribution.
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FIG. 11. Simulating the CAFE experiment for characterizing 1000 different CZ gates with realistically small coherent errors and depolar-
izing incoherent noise. Two error budgeting techniques obtained by fitting these CAFE data are presented: in blue, using a quadratic fit for the
fidelity at depths n ∈ [0, 2, 4], and in orange using the analytical expression of Eq. (4) for depths n ∈ [0, 2, 4, 6, 8]. In each panel we show
the median absolute errors (MAEs) of the two error budgeting techniques from the true values inserted into the simulation. We note that MAE
scales with the true error of the gates being considered. The true incoherent (coherent) errors are obtained from the channel’s average gate
infidelity when only depolarizing errors (unitary errors) are present in the simulation.

The simulations were performed using the open-source
software CIRQ [40].

1. Depolarizing noise

In a first case, we consider that the noisy CZ gate
we are trying to characterize is described by the quantum

channel

E (ρ) =(1 − pdepol ) Ṽ ρ Ṽ † + pdepol Id/d, (E2)

which outputs a totally depolarized state with probability
pdepol, and otherwise applies the excitation-preserving unitary

Ṽ (θ, ζ , χ, γ , φ) =

⎛
⎜⎜⎝

1 0 0 0
0 e−i(γ+ζ ) cos θ −i e−i(γ−χ ) sin θ 0
0 −i e−i(γ+χ ) sin θ e−i(γ−ζ ) cos θ 0
0 0 0 −e−i(2γ+φ)

⎞
⎟⎟⎠, (E3)

where we allow for miscalibrations in all of the five angles
that parametrize this gate, where Ṽ (0, 0, 0, 0, 0) = CZ. For
the simulation, we then sample the depolarizing probability
uniformly in the range from 0 to 0.05 and sample the miscal-
ibrated angles from a normal distribution with zero mean and
standard deviation of 0.05 rad such that

pdepol ∝ U (0, 0.05), (E4)

{θ, ζ , χ, γ , φ} ∝ N (0, 0.052). (E5)

Using this model, we can simulate the noisy CAFE experi-
ment for different cycle repetitions n and then fit these data
points to obtain an error budgeting of the noisy CZ gate, which
we can compare directly with the true parameter values that
were drawn for the simulation.

In Fig. 11, we present the average gate infidelity (1 − F ),
incoherent error contribution εincoh, and coherent error contri-
bution εcoh to this infidelity for 1000 independently sampled
unitaries and depolarizing probabilities. We present two valid
gate error budgeting approaches: one which fits the CAFE
data with the analytical expression in Eq. (4) (orange points)
and one which uses the simple quadratic form of Eq. (8) (blue
points). These scatterplots demonstrate the validity of CAFE

to characterize the fidelity of a quantum operation and budget
its coherent and incoherent contributions with an imprecision
smaller than or equal to 0.001 on median for realistic gate fi-
delities. Note that the reported median absolute errors depend
on the specific range of gate fidelities considered. For exam-
ple, the MAE values decrease significantly when considering
only gate infidelities <1% in the ensemble.

The quadratic fit results shown in blue in Fig. 11 are an
indication of how the CAFE framework can be deployed in
order to estimate the fidelity of an operation in context. How-
ever, this simplest approach gives slightly biased results for
εincoh and εcoh, which is understood from the breakdown of the
npdepol � 1 approximation and/or the nα � 1 approximation,
where α here stands for any of the five miscalibrated CZ

angles. Consequently, a quadratic fit should be used carefully,
for operations with high fidelity (>99%) and using shallow
cycle repetitions n. In fact, for these simulations, we have
found that using larger depths than n = 4 for the quadratic fit
decreased the accuracy of the resulting error budgets. How-
ever, if the fidelity of the operation of interest is very high,
for example, with single-qubit gates, using a quadratic fit be-
comes an attractive strategy when lacking a proper analytical
model of the error origins.
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FIG. 12. Similar simulations as presented in Fig. 11, now implementing realistic amplitude and phase damping incoherent noise instead
of a depolarizing channel. The analytical fit, which still uses Eq. (4) that effectively lumps the incoherent noise into a pdepol probability, works
remarkably well even under this different noise channel.

On the other hand, the analytical fit performs well for larger
depths n since it does not rely on any approximation. Here, we
have only used the depths n ∈ [0, 2, 4, 6, 8] to be consistent
with the experiment results of the main text. These results are
an important validation for CAFE but not necessarily surpris-
ing since we are using the same error model to simulate the
experiment and to fit the resulting data. In the next section, we
show that this model also holds very well for different noise
models such as amplitude and phase damping, provided they
cause realistic gate infidelities of a few percent or less.

2. Amplitude and phase damping noise

To verify the robustness of the CAFE framework in the
presence of different incoherent noise processes, we have also
simulated a two-qubit CAFE experiment where the quantum
channel is described by the same unitary Ṽ with randomly
sampled angles as before, but now followed by a single-qubit
amplitude and phase damping channel on both qubits. The
total decay and phase-flip probabilities for both qubits were

sampled from a normal distribution with a standard deviation
of 0.03, before taking the absolute value

{pdecay,total, pphaseflip,total} ∝ |N (0, 0.032)|, (E6)

and the individual decay and phase-flip probabilities of the
two qubits were splitting these total probabilities with a ra-
tio drawn from a normal distribution with mean of 0.5 and
standard deviation of 0.1, such that the qubits have similar but
distinct coherence properties.

In Fig. 12, we show that the CAFE framework we de-
veloped again gives very accurate CZ characterizations and
error budgets. In particular, using the analytical expression of
Eq. (4) to fit these CAFE data works remarkably well given
that the noise present in the gate cannot be fully described
by the assumed depolarizing channel. Since the incoherent
noise is small, but in the realistic range of creating about
0.1–4% gate infidelity, the fit is able to approximate well the
incoherent error contribution to the single exponential of the
model. This gives us confidence that we can leverage this

FIG. 13. Example of fitting the CAFE curve obtained in simulations with the depolarizing noise channel used in Appendix E 1 (left) and
the amplitude and phase damping noise channel used in Appendix E 2 (right). In blue, we show simulations including both incoherent errors
of strength εincoh = 0.005 and coherent errors of εcoh = 0.002, and the dashed curves show the fits of these data using Eq. (4). As in the main
text, only the even depths are used in the fit; the odd-depth points are presented with crosses simply to show their consistency with the model.
Note that the green data are the same in both panels as we fix the incoherent errors to be zero.
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model in realistic gate characterization scenarios. Moreover,
the simulations show that the accuracy of using this model
increases with increasing gate fidelities, which is a great in-
dication for the continued usefulness of this method as gates
and qubit coherences keep improving.

3. Fitting CAFE data

In Fig. 13, we present examples of the CAFE data together
with fits to the model of Eq. (4) realized on the simulation
data to obtain the CZ error budgets presented in Figs. 11 and
12. We see that the model of Eq. (4) fits the CAFE data
very well for realistic noise of strength εincoh = 0.005 and
εcoh = 0.002, even when the incoherent noise comes from an
amplitude and phase damping channel. In Fig. 13, we also
show simulation data using the same noise channel but an
ideal unitary (εcoh = 0) in red, and using the same unitary
without any incoherent noise (εincoh = 0) in green. The linear
and purely quadratic behaviors of these curves, respectively,
can be easily understood from the quadratic form of Eq. (8)
where the incoherent errors build up linearly with n, whereas
the coherent errors build up quadratically.

Since we simulate the actual 16 circuits used to obtain
the average gate fidelity at different depths, we capture some

depth-dependent behaviors that are due to coherent effects in
the single- and two-qubit unitaries (see, for example, the green
cross at n = 1 in Fig. 13, which is actually higher than the
point at n = 0). This is not an artifact of the finite sampling,
but is due to the fact that the preparation and measurement cir-
cuits both require an imperfect CZ gate, which can coherently
map the state closer to or further away from the desired state
|00〉, depending on the specific imperfect unitaries. Similarly,
part of the incoherent noise channel can anticommute with
the CZ unitary and produce back-and-forth behaviors between
the odd and even depths n. We have found in simulation that
using only the even depths avoids this issue, while performing
similarly or better in terms of accuracy in error budgeting,
compared with using all the even and odd depths.

APPENDIX F: DYNAMICAL DECOUPLING IN CAFE

In this Appendix, we show how applying an X gate to both
qubits after the CZ in the cycle circuit decouples the FSIM

unitary from both of its single-qubit phases. First, we can
show that interleaving a pair of FSIM gates with parallel X

gates gives a cycle unitary that also corresponds to an FSIM

gate. To see this, consider what happens when conjugating an
FSIM unitary by parallel X’s:

(X ⊗ X )FSIM(X ⊗ X ) =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0 0

0 e−iγ u11 e−iγ u12 0

0 e−iγ u21 e−iγ u22 0

0 0 0 e−i(2γ+φ)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎠ (F1)

=

⎛
⎜⎜⎜⎝

e−i(2γ+φ) 0 0 0

0 e−iγ u22 e−iγ u21 0

0 e−iγ u12 e−iγ u11 0

0 0 0 1

⎞
⎟⎟⎟⎠, (F2)

where we have factored the FSIM unitary into phases between the particle-number subspaces and a special unitary U in the
single-excitation subspace

U =
(

u11 u12

u21 u22

)
=

(
e−iζ cos θ −ieiχ sin θ

−ie−iχ sin θ eiζ cos θ

)
. (F3)

Following this with a second FSIM gate gives

FSIM(X ⊗ X )FSIM(X ⊗ X ) = e−i2γ

⎛
⎜⎜⎜⎝

e−iφ 0 0 0

0 ũ11 ũ12 0

0 ũ21 ũ22 0

0 0 0 e−iφ

⎞
⎟⎟⎟⎠, (F4)

UXUX = Ũ =
(

ũ11 ũ12

ũ21 ũ22

)
=

(
u11u22 + u2

12 u11(u21 + u12)

u22(u21 + u12) u11u22 + u2
21

)
. (F5)

Here, the common phase γ has been eliminated (only appearing as a global phase), and the controlled phase φ is a relative
phase between the even- and odd-parity subspaces. For the case of something close to a CZ gate (small swap angle θ and small
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FIG. 14. Error budgets of parallel CZ gates on a Sycamore processor. Data in blue are obtained from the CAFE experiment using the
procedure detailed in the main text, where three samples of these data are shown in Fig. 3. For reference, we present similar gate error budget
information as obtained from standard XEB in gray, where the incoherent error is extracted from the speckle purity and the coherent error is
obtained from the difference with the total gate error. The data show 103 different two-qubit gates.

differential phase ζ ), the single-excitation unitary simplifies
to

U = I − i(θ cos χX − θ sin χY + ζZ ) + O(ζ 2) + O(θ2),

(F6)

XUX = I − i(θ cos χX + θ sin χY − ζZ ) + O(ζ 2) + O(θ2),

(F7)

UXUX = I − i2θ cos χX + O(ζ 2) + O(θ2) + O(ζθ ).

(F8)

As such, the effects of the differential phase ζ , to first order,
are also removed by this echoing.

APPENDIX G: SWAP ERRORS WITHOUT
PHASE MATCHING

When running CAFE with characterized unitaries in the
experiments performed in this work, we do not attempt to
correct the swap errors. This is for two reasons. First, the
swap errors are the smallest errors in the system and tend to
be overshadowed by the other sources of error. Second, in our
system, the relative phases accumulated between qubits sitting
at different idle frequencies are accounted for by changing

the microwave phases. This is possible because the two-qubit
gate we are using, the CZ gate, ideally commutes with such
differential phases. The effect of not “phase matching” (that is,
removing this differential phase by shifting qubit frequencies)
on swap errors is that the swap phase χ is shifted from cycle to
cycle, preventing the swaps from coherently adding and fur-
ther diminishing their effect relative to the other error sources.
Should one be concerned with relatively large swap angles θ ,
one could incorporate the application-dependent value of χ in
the determination of the circuit to map the predicted state back
to |00〉.

APPENDIX H: ADDITIONAL CZ DATA

For completeness, we present in Fig. 14 the entire error
budget results from the parallel CZ CAFE data set acquired on
a Sycamore processor. These data illustrate that CAFE can be
straightforwardly deployed on large-scale quantum processors
to characterize the fidelity of quantum operations in parallel,
while budgeting the incoherent and coherent error contribu-
tions. For reference, we also present an error budgeting of
the same CZ gates obtained from XEB. Note that in this latter
case, the coherent error contribution is obtained by subtracting
the incoherent speckle purity error from the total XEB error,
which gives an unphysical negative εincoh value for 33 out
of the 103 gates. In our tests, this problem did not arise for
CAFE.
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