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Robust and efficient network reconstruction in complex system via adaptive signal lasso
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Network reconstruction is a crucial task in understanding and controlling the collective dynamics of complex
systems. Most real-world networks exhibit sparse properties, and the connection parameter is a binary signal (0
or 1). Traditional shrinkage methods, such as lasso or compressed sensing (CS), are not suitable for revealing this
property. Recently, the signal lasso method was introduced to solve the network reconstruction problem, which
was found to be more effective than lasso and CS methods. However, the signal lasso method has a limitation:
it cannot accurately classify estimated coefficients that fall between 0 and 1. To address this issue, this paper
proposes a method called adaptive signal lasso, which can accurately estimate the signal parameter and uncover
the network topology in complex networks with a small number of observations. Our proposed method has
at least three advantages: first, it is highly effective in uncovering the network topology and can completely
shrink the signal parameter to either 0 or 1, eliminating the unclassified portion in network reconstruction;
second, it performs well in both sparse and nonsparse signal scenarios and is robust to noise contamination;
third, it only requires the selection of one tuning parameter, reducing computational cost and making it easy to
apply. Theoretical properties of this method have been studied, and numerical simulations from linear regression,
evolutionary game, and the Kuramoto model are deeply explored. Finally, two real-world examples from human
behavioral experiments and the world trade web are used for illustration. It is expected that our proposed method
will establish a reliable and uniform framework for estimating signal parameters in complex systems.
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I. INTRODUCTION

Complex networks have wide applications and have seen
much progress [1–4]. In a complex network, the pattern of
node-to-node interaction or network topology is unknown,
and uncovering of the network topology based on a series of
observable quantities obtained from experiments or observa-
tions is important and may play a role in the understanding and
controlling of collective dynamics of complex systems [5–7].
Network reconstruction as an inverse problem in network
science has been paid much attention recently, such as in the
reconstruction of gene networks using expression data [8,9],
extraction of various functional networks in the human brain
from activation data [10,11], and detection of organizational
networks in social science and trade networks in economics
[12]. Evolutionary-game-based dynamics have been used to
study network reconstruction, where it is possible to observe
a series of a small number of discrete quantities [5,6,13,14],
in which case the problem can be transformed to a statistical
linear model with sparse and high-dimensional properties.
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We use two typical examples to illustrate how such signal
parameters appear in practice. The first example is a dynamic
equation governing the evolution state in a general complex
system, which can be written as differential equations [15,16],

ẋi(t ) = ψi(xi(t ), νi ) +
N∑

i=1

ai jφi j (xi(t ), x j (t )) + εi(t ), (1)

where xi(t ) denotes an m-dimensional internal state variable
of a system consisting of N dynamic units at time t , where
ψi ∈ Rm and φi j ∈ Rm, respectively, define the intrinsic and
interaction dynamics of the units; εi(t ) is a dynamic noise
term; νi is a set of dynamic parameters; and ai j defines the in-
teraction topology and is called an adjacency matrix such that
ai j = 1 if there is a direct physical interaction from unit j to
i, and ai j = 0 otherwise. The matrix A = [ai j] completely de-
fines a network with size N , i.e., an abstraction used to model
a system that contains discrete interconnected elements. The
elements are represented by nodes (also called vertices) and
connections by edges. In general, xi(t ) can be observed as
time-series data, but ai j for i = 1, . . . , N are unknown and
must be estimated. It is clear that Eq. (1) can be rewritten as
a linear regression model if the functional forms of ψi and
φi j are known. This model includes synchronization models,
oscillator networks, and spreading networks [15].

The second example comes from the evolutionary game
on structured populations, where a node represents a player,
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and a link indicates that two players have a game relationship.
The prisoner’s dilemma game (PDG), snowdrift game (SDG),
or spatial ultimatum game (SUG) can be used for network
reconstruction [5–7,14]. We use the PDG, with temptation to
defect T , reward for mutual cooperation R, punishment for
mutual defection P, and sucker’s payoff S. Thus the payoff
matrices can be defined as

MPDG =
(

R S
T P

)
, (2)

and T > R > P > S, where mutual defections are the equilib-
rium solutions [17–20]. For clarity, this manuscript employs
a weak prisoner’s dilemma game, where the parameters are
adjusted to T = b, P = S = 0, and R = 1. This scaling with
1 � b < 2 guarantees the correct payoff hierarchy (T > R >

P > S) and captures the essential social dilemma [18,21]. In
some experimental driving studies, each player can interact
with other players by choosing either a cooperator (C) or
defector (D) to obtain their payoff, and the procedure is con-
tinued for a predetermined number of rounds [22–25]. In a
theoretical study, some updating mechanism can be used to
generate theoretical data on three types of topologies [26].
Suppose that each player i is either a cooperator (C) or de-
fector (D) with equal probability, which can be written as
si = (1, 0) or si = (0, 1). In a spatial PDG game, player i, say
the focal player, acquires its fitness (total payoff) Fi by playing
the game with all its connected neighbors,

Fi =
∑
j∈�i

siMPDGs′
j =

N∑
j=1, j �=i

ai jPi j, (3)

where �i is the set of all connected neighbors of player
i, Pi j = siMPDGs′

j , and the prime denotes the transposition
of a vector or matrix. Equation (3) can be converted to a
linear model, with elements ai j of the adjacency matrix for
a network. If ai j = 1, then players i and j are connected,
and if ai j = 0, then they are not. The process can produce
time-series data. In each step players can update their strate-
gies using a rule or determine them themselves. Suppose L
accessible time is available. Then the model containing the
time-series data can be rewritten as

Yi = �iX̃i + ei, (4)

where Yi = [Fi(t1), Fi (t2), . . . , Fi (tL )]′, �i = [Pi j (t )] ∈
RL×(N−1), and X̃i = (ai1, . . . , ai,i−1, ai,i+1, . . . , aiN )′, in which
the ith connection with itself is removed. The introduction
of ei is due to noises or missing nodes in real applications.
Therefore the aim of Eq. (4) is to estimate the elements ai j

of the connectivity matrix, which is important for uncovering
network structures, such as a possible social network in the
social science or an intrinsic scientific relationship in gene-
regulatory network reconstruction from the expression data in
systems biology.

In the areas of complex systems and applied physics, the
compressed sensing (CS) or lasso methods are techniques
to estimate ai j and achieve the purpose of network recon-
struction [5,6,13], and the lasso has been found to be robust
against noises in the reconstruction of sparse signals. Player i
and player j are predicted to have a game relationship (con-
nection) if |âi j − 1| � 0.1 and no relationship if |âi j | � 0.1,

where âi j is an estimator of ai j . Otherwise, the relationship
is not identifiable. Although the CS or lasso method can
shrink parameter estimates toward zero under natural sparsity
in complex networks, links between nodes cannot be shrunk
to a true value of 1, which will decrease estimation accuracy
in most cases. For this reason, Shi et al. (2021) [14] proposed
the signal lasso method to solve the network reconstruction
problem and found that it performed better than the lasso and
CS methods. However values of âi j that fall in the interval
(0.1,0.9) cannot be placed in the correct class and leave an
unclassified portion in network reconstruction.

In this paper we propose a method called adaptive signal
lasso to estimate the signal parameter and uncover the net-
work topology in complex networks with a small number of
observations. Our method utilizes a weight on the penalty
terms of the traditional signal lasso method. The results show
that our method can shrink the parameter to either 0 or 1
completely, greatly improving estimation accuracy. Addition-
ally, our method only requires tuning one parameter within a
small range, significantly reducing computational time. The
method is also robust to noise and missing nodes due to the
inclusion of a least-squares error control term. We conduct
simulation and comparison studies using a linear regression
model with signal parameters, comparing our method with six
existing shrinkage methods. We also validate our reconstruc-
tion framework using evolutionary game and synchronization
models, and consider three different topological structures,
including random (ER), small-world, and scale-free networks.
All results demonstrate that our method can achieve high pre-
diction accuracy, remove unclassified subjects, and decrease
computational cost compared to the traditional signal lasso
method. We also use two real-world examples to illustrate the
effectiveness of our method, particularly in detecting signals
in nonsparse or dense networks. Our method has potential
applications in various fields such as social, economic, physi-
cal, biological systems and machine learning research, where
recovering the signal is an important task.

II. MOTIVATION AND RELATED WORKS

Consider the general linear regression model,

Y = �X + ε, (5)

where ε is a noise or random error with mean zero and finite
variance, � = [φi j] is an n × p matrix, Y = [yi] is an n × 1
vector, and X = [Xi] is a p × 1 unknown vector. To elimi-
nate the intercept from (5), throughout this paper we center
the response and predictor variables so that the mean of the
response is zero. We assume the parameter X has a signal
property, e.g., the true values of Xj , j = 1, . . . , p, are either
0 or 1. This kind of problem is common in the reconstruction
of complex networks to identify a signal as either connected
or not [5,6].

The signal lasso method minimizes [14]

1

2

n∑
i=1

⎛
⎝yi −

p∑
j=1

φi jXj

⎞
⎠

2

+ λ1

p∑
j=1

|Xj | + λ2

p∑
j=1

|Xj − 1|,

(6)
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FIG. 1. Solution of X under an orthogonal design in signal lasso
and adaptive signal lasso. (a) Signal lasso with λ1 = 0.6 and λ2 =
0.4, where δ1 = λ1 + λ2, δ2 = λ1 − λ2. (b) Adaptive signal lasso
with λ1 = 0.6 and λ2 = 1.2, where α = λ1/λ2, α1 = λ1/(1 + λ2),
α2 = (1 + λ1)/(1 + λ2). (c) Adaptive signal lasso with λ1 = 6 and
λ2 = 12. (d) Penalty function of adaptive signal lasso vs X for dif-
ferent OLS of X when λ1 = 0.6 and λ2 = 1.2, where the blue line
is for X10 = 0.1, X20 = 0.9, the green line for X10 = 0.9, X20 = 0.1,
and the red line is a penalty function of the lasso.

where λ1, λ2 > 0 are two tuning parameters. The term∑p
j=1 |Xj − 1| is added in the penalty term because some

elements of X should be 1. When λ2 = 0, it reduces to the
lasso method [27]. The tuning parameters λ1 and λ2 > 0 must
be determined by the dataset through cross-validation. This is
a compromise between shrinking terms to 0 and 1, and we
expect some elements of X will be close to 0, and others to 1.

If the columns of � are orthogonal to each other and p < n,
denoting the ordinary least-squares estimate by X̂0 = �′Y , the
estimator of X in signal lasso is given by (see [14] for detail)

X̂k =

⎧⎪⎨
⎪⎩

(X̂k0 + δ1)−, X̂k0 � 0,

(X̂k0 − δ2)+, 0 < X̂k0 � 1 + δ2,

max{1, X̂k0 − δ1}, X̂k0 > 1 + δ2,

(7)

for k = 1, . . . , p, where δ1 = λ1 + λ2 and δ2 = λ1 − λ2, and
X̂k0 and X̂k are the kth element of X̂0 and X̂ , respectively; B+
denotes the positive part of B and means that B+ = B if B � 0
and 0 otherwise. B− is similarly defined as the negative part
of B.

Figure 1(a) shows the solutions of X̂ as a function of X̂0

under an orthogonal design matrix for the signal lasso method,
where λ1 = 0.6 and λ2 = 0.4, and the 45◦ line of X̂ = X̂0

is for reference. The signal lasso method not only shrinks
the small values of the parameter to zero but also shrinks
large values to 1, and therefore outperforms the lasso and
CS methods in network reconstruction for signal parameters
[14]. However, this method still has some unsatisfactory as-
pects in shrinking signal parameters. First, although larger

values such that 1 + δ2 � X̂k0 � 1 + δ1 can be shrunk to 1
and values in the interval −δ1 � X̂k0 � δ2 to 0, values in the
interval (δ2, 1 + δ2) only shift by a constant δ2, making some
parameters unidentifiable.

Compared to the pattern shown in Fig. 1(a), the pattern
shown in Figs. 1(b) and 1(c), obtained from our method, is
more favorable, as the middle part between 0 and 1 can be
shrunk toward two directions. Second, the signal lasso in-
volves two tuning parameters, making the computation costly,
even if cross-validation is available. To overcome these weak-
nesses, we propose an efficient modification by giving a
weight in penalized terms of signal lasso. We find that the
estimation of parameters in model in (5) can be completely
shrunk to 0 or 1, and we only need to select one tuning param-
eter, which makes the computation fast and greatly improves
its accuracy.

III. ADAPTIVE SIGNAL LASSO

A. Method

To deal with the above-mentioned problems, we propose
the following penalized least-squares function:

L(X |λ1, λ2) = 1
2 ||Y − �X ||22 + PF (X, λ1, λ2), (8)

with the penalty function PF (X, λ1, λ2) given by

PF (X, λ1, λ2) = λ1

p∑
j=1

ω1 j |Xj | + λ2

p∑
j=1

ω2 j |Xj − 1|,

where weight coefficients ω1 j and ω2 j are functions of X̂ j0, an
initial estimator of Xj , which can be an ordinary least-squares
estimator for p < n, or a ridge estimator for p > n. A new
estimator of X , defined by

X̂ = arg min
X

L(X |λ1, λ2), (9)

is called an adaptive signal lasso. For the choice of weights,
we expect that the first term of the penalty will have a lower
weight, and the second term will have a large weight when X̂k0

is close to 1 (similar to when X̂k0 is close to 0). Motivated by
the adaptive lasso [28], we can choose that

ω1k = |X̂k0|−ν, ω2k = |X̂k0|γ ,

with ν, γ > 0 for k = 1, . . . , p. After comparison and analy-
sis, we find the best candidates for the weights are ω1k = 1
and ω2k = |X̂k0|. This is effective in the analysis and will be
used throughout this paper if not specified otherwise (see the
Appendix for discussions).

We now give the geometry of adaptive signal lasso in the
case of an orthogonal design matrix � with p < n. After some
calculations (see Appendix 2), the solution is given by

X̂k =

⎧⎪⎨
⎪⎩

{(1 − λ2)X̂k0 + λ1}−, X̂k0 � 0,

{(1 + λ2)X̂k0 − λ1}+, 0 < X̂k0 � α2,

max{1, (1 − λ2)X̂k0 − λ1}, X̂k0 > α2,

(10)

where α2 = (1 + λ1)/(1 + λ2). In this case, the adaptive
signal lasso with 0 < λ1 < λ2 < 1 will enjoy satisfactory
technical properties. Figure 1(b) shows the solutions of X̂ as a
function of X̂0 for the adaptive signal lasso in the special case

043200-3



SHI, HU, JIN, SHEN, TAN, AND YU PHYSICAL REVIEW RESEARCH 5, 043200 (2023)

of (10), where the main difference from the signal lasso occurs
in the interval (0,1). It is of interest to see that the values
of X̂0 in (α1, α) will be shrunk toward 0, while the values
of X̂0 ∈ (α, α2) will be shrunk toward 1, where α = λ1/λ2

and α1 = λ1/(1 + λ2). The line X = (1 + λ2)X0 − λ1 has a
slope of 1 + λ2, which indicates a kind of shrinkage strength.
When λ2 increases to 12 and we keep α = 0.5 (which means
λ1 = 6), the pattern given in Fig. 1(c) shows that almost all
parameter estimation in the middle part can be shrunk almost
to 0 or 1.

Thus we reparametrize λ1 and λ2 by λ = λ2 and α = λ1/λ2

and rewrite the penalty function by

PF (X, λ, α) = λ

⎧⎨
⎩α

p∑
j=1

|Xj | +
p∑

j=1

|X̂ j0||Xj − 1|
⎫⎬
⎭. (11)

It can be easily proved from Eq. (10) that when α is fixed and
let λ → +∞, then we have

X̂k →
{

1, X̂k0 > α,

0, X̂k0 < α,
(12)

since α2 → α and α1 → α in these scenarios. The parameter
can be assigned randomly as 0 or 1 if X̂k0 = α. This result
indicates that if we set λ large enough, the estimators from the
adaptive signal lasso can be completely shrunk to either 0 or 1,
thus removing the unidentified set that will be presented in the
signal lasso method. Another advantage is that we only need
to select the tuning parameter α, which dramatically reduces
the computation time compared with the signal lasso. In ad-
dition, the range for selecting α can be set in a small interval
such as (0.2,0.8), since a smaller or larger α is inappropriate in
practice. Figure 1(d) shows the functional form of the penalty
to show how the penalties behave for different values of X̂0.
For example, when X̂10 = 0.1, X̂20 = 0.9, the adaptive penalty
function tends to shrink toward (0,1), while it shrinks toward
(1,0) when X̂10 = 0.9, X̂20 = 0.1.

Figure 2 shows constraint regions PF (X ) = c for different
shrink estimation methods. Figure 2(a) shows the graphs for
adaptive lasso methods. Figure 2(b) shows a signal lasso and
Figs. 1(c) and 1(d) show an adaptive signal lasso with dif-
ferent values of (X̂10, X̂20). For example, for X̂0 = (0.9, 0.1),
the contours for the adaptive signal lasso will be centered at
X = (1, 0), gradually converging to it when c becomes small.
It is of interest to see that the shape of constraint regions
PF (X ) = c in the adaptive signal lasso varies by target point.

B. Algorithm and computation

It is noted that the penalty function in Eq. (8) is convex.
Hence, the optimization problem in (9) does not suffer from
multiple local minima, and its global minimizer can be effi-
ciently solved. We provide an algorithm using the coordinate
descent method [29], an iterative algorithm that updates the
estimator by choosing a single coordinate to update and then
performing a univariate minimization over it. Since ω1k and
ω2k are known, we denote λ∗

1k = ω1kλ1, λ∗
2k = ω2kλ2. Define

FIG. 2. Constraint regions of PF (x) = c for some con-
stant c under four estimation methods in the two-dimensional
case (p = 2). (a) Adaptive lasso estimation with penalty func-
tion PF (x) = ∑2

j=1 |X̂ j0|−1|x j |, c = 1, where the green line
is for the case of X̂0 = (0.1, 0.9) and the magenta line
for X̂0 = (0.9, 0.1). (b) Signal lasso with penalty function
PF (x) = λ1

∑2
j=1 |x j | + λ2

∑2
j=1 |x j − 1|, λ1 = 0.6, λ2 = 0.4, c =

1.7, 1.3, 1, 0.82. (c) Adaptive signal lasso with penalty func-
tion PF (x) = λ1

∑2
j=1 |x j | + λ2

∑2
j=1 |Xj0||x j − 1|, λ1 = 0.6, λ2 =

1.2, X̂0 = (0.9, 0.1), c = 1, 0.8, 0.6, 0.5. (d) Adaptive signal lasso
with penalty function PF (x) = λ1

∑2
j=1 |x j | + λ2

∑2
j=1 |Xj0||x j −

1|, λ1 = 0.4, λ2 = 0.6, X̂0 = (0.1, 0.9), c = 1, 0.8, 0.6, 0.5.

a threshold function by

Sθ1,θ2 (z) =
⎧⎨
⎩

(z + θ1)−, z � 0,

(z − θ2)+, 0 < z � 1 + θ2,

max{1, z − θ1}, z > 1 + θ2.

(13)

Then the update can proceed as

X̂ t+1
k ← Sδ∗

1k ,δ
∗
2k

(
X̂ t

k + 〈r̂t , φk〉
〈φk, φk〉

)
, (14)

where δ∗
1k = (λ∗

1k + λ∗
2k )/〈φk, φk〉, δ∗

2k = (λ∗
1k − λ∗

2k )/〈φk,

φk〉, 〈z1, z2〉 denotes the inner product of vectors z1 and z2, φk

is the kth column of �, X̂ t
k is the estimator of Xk in the t th

step, and r̂t = Y − �X̂ t . The algorithm applies this update
repeatedly in a cyclical manner, updating the coordinates of
X̂ along the way. Once an initial estimator of X is given, for
example, by lasso or ridge estimation, updating can continue
until convergence. These results are proved in the Appendix.

If Eq. (9) is formulated by parameters λ and α and ω1k = 1,
ω2k = |X̂0k|, then

δ∗
1k = λ(α + |X̂k0|)

〈φk, φk〉 , δ∗
2k = λ(α − |X̂k0|)

〈φk, φk〉 .

Let λ → +∞. It is clear that Eq. (14) will shrink the nega-
tive solution to 0 and a solution larger than 1 to 1, because
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TABLE I. Measures for accuracy of network reconstruction.

Predicted class

Actual class Signal Nonsignal Unclassified

Signal class True positive (TP) False negative (FN) Unclassified positive (UCP)
Nonsignal class False positive (FP) True negative (TN) Unclassified negative (UCN)

δ∗
1k → +∞. For X̂k0 ∈ (0, 1), when X̂k0 > α and λ → +∞,

then δ∗
2k → −∞ and only the last condition in Eq. (13) holds.

Therefore the solution gives a result of 1, since δ∗
1k → +∞ in

this case. When X̂k0 < α and λ → +∞, then δ∗
2k → +∞, and

only the first two conditions in Eq. (13) are possible. However,
they both equal 0 since δ∗

1k → +∞. This indicates that the
conclusion given in Eq. (12) still holds in the general case
(meaning without the limitations of p < n and a design matrix
with orthogonal columns), which will be helpful for selecting
the tuning parameters in the adaptive signal lasso.

C. Tuning the parameter

From the previously mentioned properties based on λ and
α in Eq. (12), we can specify a large value for λ and only
tune α using cross-validation (CV), which only involves one
parameter and will greatly reduce computation. Furthermore,
since α represents the proportion of data compressed to 0 in
the interval (0, 1), it should be less than 1 and greater than 0.
For the choice of α, we also need to conduct cross-validation,
which minimizes the mean square prediction error (MSPE).
In more detail, we first divide the full data set into some
number of groups K > 1. The typical choices of K might be
5 or 10. We fix one group as the test set, and the remaining
K − 1 group are designed as training set. We then apply the
adaptive signal lasso method based on training set to obtain
a fitted model for a range of α and use each fitted model to
predict the responses in the test set, which leads to a mean
square prediction error for each α. The procedure can be
repeated K times and the average MSPE recorded, and the
value of α with the minimum MSPE is selected as tje best
choice of tuning parameters in our method. More details can
be found in Ref. [14]. We use λ = 1000 as a large value for
calculation in this paper and find that it is good enough in
our calculations and can remove the unclassified portion in
network reconstruction after conducting CV for α.

D. The metrics of reconstruction accuracy

To measure the accuracy of the estimation method, we have
to define some metrics in the signal identification problem.
As shown in Table I, we adopt common notation as in binary
classification, where a true positive (TP) is the number of
correctly identified true signals, a true negative (TN) is the
number of correctly identified nonsignals, a false positive
(FP) is the number of nonsignals incorrectly identified as
signals, and a false negative (FN) is the number of signals
incorrectly identified as nonsignals. However, in our analysis
some lasso-type methods have points that cannot be clas-
sified (e.g., the parameter X is classified as signal if X̂ ∈
1 ± 0.1 and nonsignal if X̂ ∈ 0 ± 0.1, and the remainder are

unclassified [5,6,14]); hence we have the additional classes of
unclassified positive (UCP) and unclassified negative (UCN),
as shown in Table I. In traditional classification problems,
the predicted class is completely classified into two classes,
and therefore most common indexes for measuring accuracies
are the true positive rate (TPR, sensitivity or recall), true
negative rate (TNR, or specificity), and precision (positive
prediction value, PPV), as well as the areas under the receiver
operating characteristic curve (AUROC) and under the preci-
sion recall curve (AUPR) [5,12,30], where TPR and TNR are
defined by

T PR = T P

T P + FN
, T NR = T N

T N + FP
. (15)

However, these measures have a problem when size of signals
and nonsignals are unbalanced [31]. An alternative solution
employs the Matthews correlation coefficient (MCC),

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN )(T N + FP)(T N + FN )

,

(16)

which correctly takes into account the size of the confusion
matrix elements [31,32]. MCC is widely used in machine
learning to measure the quality of binary classifiers and is
an overall measure of accuracy at the detection of signal
and nonsignal classes. It is generally regarded as a balanced
measure, which can be used even if classes have very different
sizes [32,33]. Its values range from –1 to 1, and a large value
indicates good performance.

In most cases of network construction, some links are un-
classified; hence, the success rates for the detection of existing
links (SREL) and nonexisting links (SRNL) are defined to
study the performance of network reconstruction [5,6,14],
where

SREL = T P

T P + FN + UCP
, SRNL = T N

T N + FP + UCN
,

(17)

which considers the effects of nonclassifiability in Table I and
is more reasonable for measuring the reconstruction accuracy
of a network structure.

To address the effect of nonclassifiability on accuracy mea-
sures of reconstruction, we define an adjusted MCC, MCCa,
by replacing FN with FN+UCP (i.e., the number of signals
that are not correctly predicted), and FP with FP+UCN (the
number of incorrectly predicted nonsignals) in MCC. It is
clear when an unclassified set disappears, MCCa reduces to
MCC. It is easy to see that MCCa plays a similar role to MCC
when nonclassifiability occurs. We find that MCCa performs
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TABLE II. Simulation results in linear regression model based on seven methods: lasso, adaptive lasso (A-lasso), SCAD, MCP, elastic net,
signal lasso (S-lasso), and adaptive signal lasso (AS-lasso). Each of the results is averaged over 200 independent realizations, where n is the
sample size, p is the number of explanatory variables, and p1 is the number of signals (number of β = 1). The first panel is for the case of
p < n, and the signal is sparse with p1 = 6. The second panel is for p > n and sparse signals. The third panel considers the nonsparse signal
case, where p1 = 20. The noise is introduced by σ = 0.4, 1, respectively, in each panel.

Method MSE/SREL/SRNL/TPR/TNR/UCR/MCC/MCCa

(n, p, p1, σ ) (100, 30, 6, 0.4) (100, 30, 6, 1)

Lasso 0.0014/0.920/0.987/0.999/1.000/0.027/1.000/0.919 0.0083/0.492/0.850/0.979/0.999/0.221/0.980/0.347
A-lasso 0.0015/0.925/0.976/0.999/1.000/0.343/1.000/0.900 0.0095/0.465/0.843/0.980/1.000/0.232/0.985/0.316
SCAD 0.0008/0.937/0.987/0.999/1.000/0.023/1.000/0.937 0.0043/0.522/0.985/0.999/1.000/0.108/1.000/0.632
MCP 0.0008/0.935/0.992/1.000/1.000/0.019/1.000/0.943 0.0046/0.525/0.980/1.000/1.000/0.111/1.000/0.633
Elastic net 0.0012/0.835/0.999/1.000/1.000/0.333/1.000/0.892 0.0066/0.385/0.979/0.970/1.000/0.139/0.970/0.503
S-lasso 0.0007/0.972/0.992/0.999/1.000/0.012/1.000/0.966 0.0046/0.671/0.916/0.999/1.000/0.133/1.000/0.609
AS-lasso 0.0001/1.000/0.997/0.999/1.000/0.002/1.000/0.993 0.0006/0.980/0.990/0.999/1.000/0.012/1.000/0.965

(n, p, p1, σ ) (50, 150, 6, 0.4) (50, 150, 6, 1)

Lasso 0.0016/0.640/0.969/0.989/1.000/0.043/0.990/0.529 0.0085/0.333/0.859/0.969/1.000/0.162/0.970/0.107
A-lasso 0.0026/0.585/0.937/0.979/1.000/0.076/0.980/0.375 0.0130/0.288/0.830/0.859/1.000/0.191/0.860/0.061
SCAD 0.0002/0.822/1.000/0.999/1.000/0.007/1.000/0.896 0.0111/0.271/0.987/0.567/1.000/0.037/0.609/0.305
MCP 0.0002/0.820/0.999/1.000/1.000/0.007/1.000/0.892 0.0130/0.246/0.991/0.541/1.000/0.032/0.588/0.309
Elastic net 0.0007/0.556/0.998/1.000/1.000/0.019/1.000/0.712 0.0037/0.263/0.989/0.850/1.000/0.039/0.850/0.359
S-lasso 0.0004/0.806/0.994/0.999/1.000/0.013/1.000/0.839 0.0028/0.570/0.964/0.999/1.000/0.051/1.000/0.482
AS-lasso 0.0009/0.973/0.999/0.985/0.999/0.001/0.989/0.976 0.0213/0.996/0.974/0.998/0.980/0.005/0.821/0.781

(n, p, p1, σ ) (50, 150, 20, 0.4) (50, 150, 20, 1)

Lasso 0.0279/0.198/0.885/0.860/0.999/0.202/0.905/0.091 0.0431/0.162/0.826/0.755/1.000/0.255/0.847/-0.01
A-Lasso 0.0104/0.429/0.925/0.964/0.999/0.140/0.975/0.372 0.0305/0.220/0.842/0.882/0.999/0.237/0.918/0.057
SCAD 0.1556/0.019/0.969/0.037/0.999/0.085/0.095/-0.01 0.1565/0.029/0.971/0.050/0.999/0.082/0.124/0.057
MCP 0.1709/0.017/0.973/0.026/0.998/0.072/0.078/-0.01 0.1771/0.022/0.974/0.032/0.999/0.069/0.091/-0.00
Elastic net 0.0142/0.294/0.968/0.934/1.000/0.119/0.961/0.362 0.0276/0.183/0.942/0.812/1.000/0.153/0.883/0.172
S-Lasso 0.0015/0.850/0.972/0.999/1.000/0.044/1.000/0.815 0.0092/0.680/0.912/0.996/0.999/0.118/0.997/0.549
AS-Lasso 0.0368/0.806/0.983/0.827/0.998/0.005/0.840/0.819 0.0400/0.794/0.982/0.812/0.998/0.004/0.827/0.809

well in network reconstruction to measure the accuracy of the
method from either simulations or real examples.

IV. NUMERICAL STUDIES

We conduct simulation studies using three kinds of model:
(1) a standard linear regression model with different assump-
tions; (2) a dynamics model of an evolutionary game [14],
but with the PDG game; and (3) the Kuramoto model in
synchronization dynamic, which is a special case of Eq. (2).
Models (2) and (3) use three network topology structures:
Erdös-Rényi (ER) random networks, Barabási-Albert (BA)
scale-free networks, and small-world Watts-Strogatz (WS)
networks. In each case we evaluate performance under situ-
ations of sparse and dense signals. When an adaptive signal
lasso is used, we set λ = 1000 as a large value and tune α by
the cross-validation method.

A. Linear regression models

We first use the following standard linear model,

Y = 1nx0 + �1X1 + �2X2 + ε, (18)

for simulation study, where Y is a n × 1 response variable,
x0 is the intercept, 1n is an n × 1 vector with all elements
equal to 1, X = (X′

1, X′
2)′, X1 ∈ Rp1 represents the signal pa-

rameter, X2 ∈ Rp2 denotes the nonsignal parameter, and ε is

the error term. A smaller p1 is called a sparse signal, and
a larger p1 (comparing with n and p = p1 + p2) is called a
dense signal. In generation of the data set, we set X1 = 1p1

and X2 = 0p2 . Each design matrix comes from a standard
normal score with mean 0 and variance 1, but the columns in
� = (�1,�2) are correlated in such a way that the correlation
coefficient between φi and φ j is given by r|i− j| with r = 0.5
(see similar uses in [27,34]). The error variable ε is generated
from a Gaussian distribution with mean zero and variance
σ 2. We also calculate the results from several well-known
shrinkage estimates, including lasso, adaptive lasso, elastic
net, SCAD, MCP, and signal lasso [14,27–29,34]. The above-
mentioned first five methods do not shrink the parameter X
in the model to 1, as they were designed to shrink irrelevant
variables to zero using different penalty functions. Hence,
we call these lasso-type methods, while signal lasso and
adaptive signal lasso are called a signal-lasso-type method in
this paper.

The results are presented in Table II, with the first panel
showing the case of p < n and sparse signals with n = 100,
p = 30, p1 = 6, and σ = {0.4, 1}. The second panel shows
the case of p > n, with n = 50, p = 150, and the same pa-
rameters as the first panel. The third panel presents the case of
nonsparse signals, where p1 = 20 and other parameters are
the same as in the second panel. The case of p > n corre-
sponds to high-dimensional variable selection, which is often
encountered in network reconstruction with a small number of
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FIG. 3. Accuracy in the reconstruction vs � = L/N for PDG
game with small-world (WS) network attained by lasso, adaptive
lasso (a-lasso), signal lasso (s-lasso), and adaptive signal lasso (as-
lasso) methods. (a) Measures using SREL and SRNL. (b) Measures
of TPR and TNR. (c) Measures of MCCa and MSE. (d) Measures of
MCC and UCR. The network size N = 100 with average degree 6.
Each point is averaged over ten simulations.

observations. The method is tested for robustness by adding
Gaussian noise with variances of 0.4 and 1. In the table we
present all measures discussed in Sec. III D, but we only need
to focus on MCC, MCCa, MSE, and UCR, as MCC is a
synthesis measure of TPR and TNR, and MCCa is for SREL
and SRNL.

In the first panel we can see that the measures of accu-
racy for the adaptive signal lasso method are overwhelmingly
superior to other existing methods. The mean square error
(MSE) and UCR values are the smallest, and the MCC and
MCCa values are the largest among the seven methods. The
signal lasso method is the second best, outperforming the
first five nonsignal lasso methods based on all measures. It
is also worth noting that the MCCa of the adaptive signal
lasso method for large noise (σ = 1) remains at a high value,
indicating its robustness. In the second panel, where p  n,
the adaptive signal lasso method gives the largest values of
MCCa and the smallest values of UCR for all cases. For small
noise (σ = 0.4), the MCC of the adaptive signal lasso method
is slightly lower and the MSE is slightly higher than other
methods, but the difference is negligible. For large noise with
σ = 1, the MCC of the signal lasso method is the highest;
however, the MCCa of the adaptive signal lasso method is
much higher than other methods. The MSE for all methods
is small, but the adaptive signal lasso is not the smallest
one; this is because adaptive signal lasso almost shrinks the
parameter completely to 0 or 1, causing a larger deviation with
the true value once it is falsely classified. In the last panel
we can see the results for the cases of nonsparse signals with
p < n, p1 = 20, and σ = {0.4, 1}, respectively. As before, the
adaptive signal lasso method outperforms other methods in

terms of MCCa and UCR. The signal lasso method in this case
has the largest MCC values and the smallest MSE. It is clear
that the lasso-type methods (the first five methods) perform
poorly, especially for the case of large noise.

In summary, we find that the adaptive signal lasso method
outperforms other methods, followed by the signal lasso
method. The first five methods (nonsignal lasso type) are not
capable of efficiently identifying the correct signals, espe-
cially in cases of large noise and nonsparse signals. The signal
lasso method is only competitive with the adaptive signal
lasso method in cases of nonsparse signals and small noise.
However, the most important advantage of the adaptive signal
lasso method is that it can almost classify all parameters as
0 or 1 (with UCR close to zero), as its theory indicates. The
adaptive signal lasso method is robust against noise, as it still
performs well for larger σ in all cases.

B. Evolutionary-game-based dynamical model

We illustrate our method by iterative game dynamics
[Eq. (2)] through Monte Carlo simulation. We take a simple
structure with R = 1, T = b = 1.15, and P = S = 0 in our
simulation. The total payoff is Fi = ∑

j ai jPi j [Eq. (3)], where
ai j = 1 if the ith player and jth player interact, and 0 other-
wise. In each round of the game, each player calculates its
total payoff and then imitates with a certain probability the
two strategies (p, q) of a randomly selected player in its direct
neighborhood. That is, player x adopts the strategy of player
y with probability W = 1/{1 + exp [(Fx − Fy)/K]} (Szabo
et al., 2007), where K is the uncertainty in strategy transition,
with a value of 0.1 in this paper. The game iterates forward
in a Monte Carlo manner, and player i (the focal player)
acquires its fitness (total payoff) Fi by playing the game
with all its direct neighbors, i.e., Fi = ∑N

j=1 ai jPi j . The focal
player then randomly picks a neighbor j, which similarly ac-
quires its fitness. Following the definition of fitness, a strategy
update then occurs between its direct neighbors in a given
network. Player i tries to imitate the strategy of player j with
Fermi updating probability W = 1/(1 + exp[(Fi − Fj )/K]),
where K = 0.1 [35,36]. To make the model more realistic, we
account for mutation at very small rates.

Now Fi = ∑N
j=1, j �=i ai jPi j can be written as a linear regres-

sion model,

Yi = �iX̃i + ei, (19)

where Yi = (Fi(t1), Fi(t2), . . . , Fi(tL ))′, X̃i = (ai1, . . . , aiN )′,
and �i has the form of⎛

⎜⎜⎝
Pi1(t1) · · · Pi,i−1(t1) Pi,i+1(t1) · · · PiN (t1)
Pi1(t2) · · · Pi,i−1(t2) Pi,i+1(t2) · · · PiN (t2)

...
...

...
...

Pi1(tL ) · · · Pi,i−1(tL ) Pi,i+1(tL ) · · · PiN (tL )

⎞
⎟⎟⎠.

Let Y = (Y ′
1, . . . ,Y ′

N )′, X = (X̃ ′
1, . . . , X̃ ′

N )′, � = diag(�1,

�2, . . . , �N ), then Eq. (19) can be converted into the general
form of Eq. (5).

Figure 3 plots the measures discussed in Sec. III D against
the data length � = L/N in the PDG model with a small-
world WS network, using the methods of lasso, adaptive lasso,
signal lasso, and adaptive signal lasso. The adaptive lasso
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(a)

(b)

(c)

FIG. 4. Accuracy measures MCCa and UCR in the reconstruction vs � = L/N for the PDG model attained by the signal lasso (sl) and
adaptive signal lasso (asl) methods in three kinds of networks. Row A shows results for the PDG game with noise σ 2 = 0.1 and average degree
6. Row B shows results for the PDG game with noise σ 2 = 0.3 and average degree 6. Row C shows the results for the PDG game with average
degree 20 without noise. Three columns correspond to the results based on the Erdös-Rényi (ER) random network, Barabási-Albert (BA)
scale-free network, and small-world (WS) network, respectively. The network size N = 100, and each point is averaged over ten simulations.

method represents the best performing method among the
lasso-type methods, and lasso is also included as a commonly
used method. As shown in the Supplemental Material [37],
it is clear that the adaptive signal lasso method performed
best based on most measures, followed by signal lasso, adap-
tive lasso, and lasso. For the measures TNR and MSE, the
adaptive signal lasso method is not absolutely superior, but
the differences between the four methods are very small. It is
notable that the UCR of the adaptive signal lasso method is
close to zero, even in the case of small � = L/N , which is an
appealing property.

In Fig. 4 we compare the reconstruction accuracy measures
of MCCa and UCR in the ER, WS, and BA networks, with a
focus on the signal lasso and adaptive signal lasso methods,
as they performed better than other methods. In Fig. 4
rows A and B, we observe that the adaptive signal lasso
method is superior to signal lasso when there is noise in
the data, and that the UCR of the adaptive signal lasso
method remains close to zero. Additionally, Fig. 4 row C
shows that in a nonsparse network with an average degree of
20, the adaptive signal lasso has higher MCCa values than
the signal lasso at small �, and the two methods perform
similarly at large �. However, the UCR of the adaptive

signal lasso is always better than that of the signal lasso.
Overall, the results indicate the robustness and superiority
of the adaptive signal lasso method in the presence of
noise.

C. Kuramoto model in synchronization problem

For problems introduced in Eq. (2), we use the Kuramoto
model [38–40] to illustrate the reconstruction of the network
in a complex system. This model has the following governing
equation:

dθi

dt
= ωi + c

N∑
j=1

ai j sin(θ j − θi ), (20)

i = 1, . . . , N , where the system is composed of N oscillators
with phase θi and coupling strength c, each of the oscillators
has its own intrinsic natural frequency ωi, ai j is the adjacency
matrix of a give network and needs to be estimated in network
reconstruction. Using the same framework of Ref. [14], the
Euler method can be employed to generate a time series with
an equal time step h. Let Yi = (yi1, . . . , yiL )′, yit = [θi(t +
h) − θi(t )]/h, and �i = [φi j (t )] is a L × N matrix [14] with
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(a)

(b)

(c)

FIG. 5. Accuracy measures MCCa and UCR in the reconstruction vs � = L/N for the Kuramoto model attained by the signal lasso (sl)
and adaptive signal lasso (asl) methods in three kinds of networks. The top row, A, contains the measures from the Kuramoto model in the
network with average 6, while the middle panel, B, contains the results for the case with noise of σ 2 = 0.3, and the network with average 6.
The bottom panel, C, gives the results for a nonsparse network with average degree 20 without noise. The three columns correspond to the
results based on Erdös-Rényi (ER) random networks, Barabási-Albert (BA) scale-free networks, and small-world (WS) networks, respectively.
The network size N = 100, and coupling c = 10 for all cases. Each point is averaged over ten simulations.

elements

φi j (t ) = c × sin (θ j (t ) − θi(t ))

for t = 1, . . . , L and j = 1, . . . , N , X̃i = (ai1, . . . , aiN )′; then
a reconstruction model can be written as

Yi = ωi1L + �iX̃i, (21)

where 1L denotes a L × 1 vector of all element 1.
In Fig. 5 we analyze the performance of the adaptive sig-

nal lasso method in the Kuramoto model in ER, WS, and
BA networks with N = 100 and coupling strength c = 10.
Row A shows the results without noise, and we find simi-
lar results to those previously analyzed. Row B shows the
results with noise variance equal to 0.3, and it also indi-
cates that the adaptive signal lasso method is robust against
noise. Row C shows the results for a nonsparse network
with an average degree of 20. It is interesting to observe
that the adaptive signal lasso performed better than the sig-
nal lasso for small � = L/N , while the signal lasso became
better than the adaptive signal lasso for large � = L/N .
However, the UCR always performed well for both methods.

These results imply that the signal lasso is also useful in
nonsparse networks, but the adaptive signal lasso is more
computationally convenient since it only requires tuning one
parameter.

V. EXAMPLES

A. Human behavioral data

The real data from a human behavior experiment [22]
is used to illustrate social network reconstruction. There
were three trials with 135 volunteers participating in the ex-
periments where participants played an iterative prisoner’s
dilemma game on different types of networks. The data was
analyzed to show that the signal lasso method outperformed
other methods in a previous study [14]. In this study the
performance of the proposed adaptive signal lasso method
was evaluated and the results are given in Fig. 6, where rows
A, B, and C refer to the results of the experimental ring,
homogeneous random, and heterogeneous random network,
respectively. The figures in column (a) list the measures of
MCC and MSE, and column (b) lists the measures of MCCa
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A

B

C

FIG. 6. Accuracy in the reconstruction vs � = L/N for three
real trials using the signal lasso (sl) and adaptive signal lasso (asl)
methods. Row A shows the results of the experimental ring network,
(a) is a plot of MCC and MSE vs �, and (b) refers to the MCCa
and UCR criterion for the signal lasso and adaptive signal lasso,
respectively. There are 35 nodes and 140 links, and the degree of each
node is 4. Row B shows results of the experimental homogeneous
random network. There are 50 nodes and 200 links, and the degree
of each node is 4. Row C shows the results of the experimental
heterogeneous random network. There are 50 nodes and 200 links,
and the average degree of each node is 4.

and UCR. It is clear that the adaptive signal lasso outperforms
the signal lasso in terms of MCC and MCCa, especially for
MCCa. The MSE of the adaptive signal lasso is slightly larger
than that of the signal lasso for smaller values of �. The UCR
of the adaptive signal lasso is close to zero for all values of �,
indicating high reconstruction accuracy, while the UCR of the
signal lasso shows that it still contains some unclassified parts
for smaller �, reducing reconstruction accuracy.

B. World trade web

A network formed by import/export relationships between
countries, the world trade web (WTW) has been extensively
studied. Some empirical studies focused on the WTW as a
complex network and investigated its architecture [41]. When
the available information on the system is incomplete or
partial, reconstruction methods of the whole network have
been proposed, such as maximum entropy [12,42] and the
configuration model (CM) [43–45]. Much of the network re-
construction research in WTW focuses on ensemble models,
which means that a model is defined to be not a single network
but a probability distribution over many possible networks

[46]. We use a different perspective to illustrate the con-
struction of a trade network using our proposed signal lasso
method, which gives a model-based estimation of adjacency
matrix A.

In this paper we obtained a database of trade network using
data reported by countries to the United Nations Statistical
Division. The data, which is available for free on their website,
includes bilateral trade flows for over 5000 products and 200
countries from 1995 to 2018. We deleted any missing data and
focused on data from 1995 to 2018 involving 215 countries.
This resulted in a network of all trade products with 215 nodes
and 36 296 links, which is an extremely dense network, as
reported in [41].

We only consider an undirected binary network, defining
two countries as connected if one has output to another. Let Yit

denote total foreign trade (in U.S. dollars) of the ith country
at time t , including imports and exports with other countries.
Let wi j (t )( = w ji(t )) denote the import and export values of
the ith country with the jth country at time t (t = 1, . . . , 24).
Then we can formulate the following equation:

Yit =
N∑

j=1

ai jwi j (t ) + εit , (22)

where ai j is an element of a connectivity matrix with aii =
0, ai j = a ji for i �= j, and N = 215 is the number of countries.
It is noted that ai j is independent of t and represents a network
connectivity during an observed period. For some country
pairs, the export (or import) bilaterally or unilaterally at some
time periods are missing, which means in some years during
the observations there are no trade between two countries
or it is missing because the trading quantity is small and
can be ignored. Hence, the edges during 24 years might be
incompletely linked, which is unbalanced.

In many economic network analyses and spatial panel
data models, the adjacency matrix must be predetermined.
A simple method to obtain an adjacency matrix is to define
ai j = 1 if there is a connection at least one time between
two nodes and ai j = 0 otherwise [47,48]. However, this may
be unreasonable if two countries only have one year of very
small or negligible trade. An alternative method is to use the
percentage of the trade between two countries of the total
trade amount to measure their connectivity, but they need a
cutoff value, which might be subjective. An interesting prob-
lem is studying how to use the structural relationship, such
as Eq. (22), to estimate the network connectivity during the
observed periods; this problem can be dealt with using the
shrinkage theory proposed in this paper, since in this case ai j

is either 0 or 1. It is noted that the model in Eq. (22) relates
to the reconstruction of binary topology, and we assume this
topology is fixed during the observed time period, which is
usually favorable in statistical network models [47,48].

For comparison, we define the reference connectivity as
ãi j = 1 if at least one connection occurs during the observed
years and zero otherwise. This network is not assumed to be
a correct adjacency matrix, but it can be used for comparison
and analysis. The results are listed in Table III, using ãi j as
a baseline for comparison. It is surprising that the lasso and
adaptive lasso perform poorly in terms of SREL (TPR), MCC,
MCCa, and MSE, even with high values of SRNL (TNR),
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TABLE III. Estimation accuracy of reconstruction of trade network.

Measures Lasso A-lasso S-lasso AS-lasso

SREL 0.0055 0.0202 0.9632 0.9710
SRNL 1 1 1 1
TPR 0.0075 0.0263 0.9652 0.9722
TNR 1 1 1 1
MCC 0.0246 0.0563 0.9659 0.9722
MCCa 0.0185 0.0446 0.9636 0.9282
UCR 0.2296 0.2038 0.0103 0.0022
MSE 1.3×108 1.9×103 0.266 0.1358

perhaps because the trade network is highly dense, which was
verified in our simulation of Sec. IV A. The performance of
both the signal lasso and the adaptive signal lasso is out-
standing. Specifically, the signal lasso yields a larger MCCa
value, whereas the adaptive signal lasso demonstrates smaller
values for MSE and UCR. All methods can correctly identify
nonexistent links (SRNL and TPR have values of 1) because
there are just a few zero edges (about 12%) in WTW. The
values of SREL (TNR) of the adaptive signal lasso can exceed
96%, even with � = 24/215 = 0.11.

Figure 7 shows some basic statistics calculated from the
reference and estimated adjacency matrix. Figure 7(a) shows
the evolution of the average degree and average-nearest-
neighbor degree (ANND) over the time calculated from ãi j ,
which shows that these two quantities are time dependent and
have increasing degrees of nodes, but there is a downward

FIG. 7. The reconstruction results for undirected WTW using
the adaptive signal lasso method. (a) Plots of average degree and
average-nearest-neighbor degree (ANND) vs year, where 1 repre-
sents 1995 and 24 for 2018. (b) Plot of difference between the
reference and estimated adjacency matrix of the network. (c) Plot
of ANND vs average degree. (d) Plot of clustering coefficients of
network vs average degree. In (c) and (d), curves are fitted based on
a polynomial of order 3.

trend in the last few years. Figure 7(b) shows the absolute
difference of reference adjacency matrix Ã and estimated
adjacency matrix Â (denoted by D(Ã; Â) = |ãi j − âi j |) against
their weight coefficients:

w̃i j =
∑

t wi j (t )∑
t

∑
i< j wi j (t )

.

The small value of w̃i j means small imports/exports between
two countries or few connections during 24 years. D(Ã, Â) =
1(0) means inconsistent (consistent) results between Ã and
Â, and 0 < D(Ã; Â) < 1 indicates the unclassified cases. It
is clear that inconsistency only occurs at very small weight
coefficients, and unclassified cases occur mostly at smaller
weight coefficients. Further investigation finds that these two
cases occur at J = 1, 2, 3, where J is the number of years from
1995 to 2018 for which import/export statistics are available
(namely, nonzero). These results show that our shrinkage
estimation can eliminate unimportant linkages between nodes.

Figures 7(c) and 7(d) show plots of ANND and clustering
coefficients, respectively, versus average degree. We find the
results from Ã and Â are highly coincident, where decreasing
trends have been found in previous studies employing differ-
ent datasets in WTW [41]. The decreasing trend in Fig. 7(c)
is known as disassortivity (i.e., countries trading with highly
connected countries have few trade partners, and those trading
with poorly connected countries have many) in WTW [41].

VI. CONCLUSIONS

We present the adaptive signal lasso, an enhanced version
of the traditional signal lasso method. By introducing a weight
to the penalty terms of the original signal lasso method, we
have managed to enhance its overall performance. Our the-
oretical examinations and simulations have established that
the adaptive signal lasso demonstrates superior efficacy in
the detection of signals within complex networks. It offers
three key advantages over the traditional signal lasso and other
lasso-based methodologies: (1) it necessitates only a single
tuning parameter, thereby minimizing computational expen-
diture; (2) it exhibits a higher degree of robustness against
noise and contamination, as evidenced by simulations based
on the PDG evolutionary model and the Karumoto model;
and (3) it is adept at shrinking parameters to either 0 or 1
completely, surpassing the network reconstruction capabili-
ties of other lasso-based approaches. However, in the context
of nonsparse networks, the traditional signal lasso method
maintains its merit and holds its own against the adaptive
signal lasso. This parity is reflected in simulations involv-
ing evolutionary-game-based dynamics and the Kuramoto
model, where the signal lasso outperforms the adaptive signal
lasso when the data length � is larger (refer to row C of
Figs. 4 and 5) in terms of the MCCa metric. In examining
the real-world network of WTW, it is also observed that the
MCCa value obtained via the signal lasso exceeds that ob-
tained from the adaptive signal lasso.

To exemplify our method’s efficacy in reconstructing non-
sparse or dense signal networks, we employed a straightfor-
ward example from the WTW network. Our findings revealed
that the proposed method and the signal lasso both perform
well. The adaptive signal lasso exhibited smaller MSE and
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UCR values, whereas the signal lasso demonstrated larger
MCCa values. Importantly, this WTW example primarily
serves to assess the method’s effectiveness; a reliable method
should indeed yield a high recognition rate. In directed net-
works, our signal-lasso-type methods can be equivalently
applied and have demonstrated satisfactory performance, as
shown in the Supplemental Material [37]. In real-world sce-
narios, only partial information might be available, such as
in-degree or out-degree values in a binary network. These
circumstances can be managed by replacing the wi j in Eq. (22)
with an estimated value sourced from an existing method [12].

Our study focused on detecting signal parameters
(0 or 1) within binary networks. However, in weighted net-
works, weight coefficients exist within the interval [0,1]
[6,12,45]. In these instances the proposed adaptive signal
lasso could be applied by adjusting the λ parameter in Eq. (11)
to a suitable value rather than allowing it to approach infinity
as we did in this study. This potential modification and its
implications will be the focus of our future research.
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APPENDIX

1. Comparison of weight choice

If we assign the weight in both penalty terms, then ω1i =
|X̂i0|−ν and ω2i = |X̂i0|γ are two appropriate choices in adap-
tive signal lasso, where X̂i0 is the ordinary least square (OLS)
estimator of X . Figure 8(a) shows the curves of the penalty
solution of the adaptive signal lasso as a function of X̂0 when
ν = 0, γ = 1, which is the formula used throughout this pa-
per. Figures 8(b)–8(d) show the solution of the adaptive signal
lasso as a function of X̂0 in the three cases of ν = 1 and γ = 1,
ν = 0, and γ = 1, and ν = 0 and γ = 1.5, 2, respectively.
Although the adaptive signal lasso in (b)–(d) also has the func-
tion of shrinking the values between 0 and 1 in two directions
(0 or 1), it is too tedious and complicated, and sometime is
unstable. Case (a), with ν = 0 and γ = 1, is the simplest, but
it can achieve our purpose very well. In addition, case (a) can
reveal an appealing property [such as the result in Eq. (12)] in
selecting the tuning parameters in the adaptive signal lasso, as
we show in Eq. (12).

2. The proof of Eqs. (10) and (12)

In order to study the geometry of the signal lasso, we
assume that the columns of � are orthogonal to each other
and p < n. The ordinary least-squares estimate in this special
case then has the form of X̂0 = �′Y . Let Ŷ0 = �X̂0, and we

FIG. 8. Solution of X under orthogonal design in adaptive signal
lasso method with different weights. (a) Solution of adaptive signal
lasso as a function of OLS X̂0 with ω1 j = 1 and ω2 j = |X̂ j0|, where
the red line is for λ1 = 2 and λ2 = 4, and the blue line is for λ1 = 0.4
and λ2 = 0.8. (b) Solution of the adaptive signal lasso as a function
of OLS X̂0 with ω1 j = |X̂ j0|−1 and ω2 j = |X̂ j0|, where the red line is
for λ1 = 0.2 and λ2 = 0.8, the blue line is for λ1 = 0.6 and λ2 = 1.2.
(c) Solution of the adaptive signal lasso as a function of OLS X̂0 with
ω1 j = |X̂ j0|−1 and ω2 j = 1, where the red line is for λ1 = 0.1 and
λ2 = 0.2, the blue line is for λ1 = 0.3 and λ2 = 0.6. (d) Solution
of the adaptive signal lasso as a function of OLS X̂0 with ω1 j = 1
and ω2 j = |X̂ j0|γ , with λ1 = 2 and λ2 = 4, where the blue line is for
γ = 1.5 and red line for γ = 2.

then have

L(X |λ1, λ2) = 1
2‖Y − Ŷ0‖2

2 + 1
2‖X − X̂0‖2

2

+ λ1‖ω1 ◦ X‖1 + λ2‖ω2 ◦ (X − 1p)‖1,

(A1)

where ω1 and ω2 are p × 1 known weight vectors and ◦
denotes the Hadamard product. Note that the first term is
constant with respect to X and ‖X (X − X̂0)‖2

2 = ‖(X − X̂0)‖2
2.

Using the fact that

∂|Xi|
∂Xi

=
⎧⎨
⎩

1, i f Xi > 0,

−1, i f Xi < 0,

∈ [−1, 1] i f Xi = 0,

(A2)

and differentiating L(X, λ1, λ2) with respect to X and setting
it to zero, after some calculations we have

X̂ j =

⎧⎪⎨
⎪⎩

(X̂ j0 + λ1ω1 j + λ2ω2 j )−, X̂ j0 � 0,

(X̂ j0 − λ1ω1 j + λ2ω2 j )+, 0 < X̂ j0 � δ,

max{1, X̂ j0 − λ1ω1 j − λ2ω2 j}, X̂ j0 > δ,

(A3)

in which δ is the solution of function X̂ j0 − λ1ω1 j + λ2

ω2 j = 1. From our analysis in the main content of this pa-
per, we choose ω1 j = |X̂ j0|−ν as adaptive lasso used and
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ω2 j = |X̂ j0|γ . When ν = 0 and γ = 1, Eq. (10) can be derived
easily from Eq. (A3).

Now we reparametrize λ1 and λ2 by λ and α, and then we
have

X̂ j =

⎧⎪⎨
⎪⎩

{X̂ j0 + λ(α − X̂ j0)}−, X̂ j0 � 0,

{X̂ j0 − λ(α − X̂ j0)}+, 0 < X̂ j0 � α2,

max{1, X̂ j0 − λ(α + X̂ j0)}, X̂ j0 > α2,

(A4)

which will immediately lead to the results in Eq. (12).

3. Coordinate descent algorithm

Differentiating (8) with respect to Xk and setting it equal to
zero, we have

−
n∑

i=1

⎛
⎝yi −

p∑
j=1

φi jXj

⎞
⎠φik + λ∗

1ks(1)
k + λ∗

2ks(2)
k = 0, (A5)

where s(1)
k = ∂|Xk|/∂Xk = sgn(Xk ), s(2)

k = ∂|Xk − 1|/∂Xk =
sgn(Xk − 1); sgn(z) takes values of sgn(z) for z �= 0, and some
value lying in [−1, 1] for z = 0. Let r (k) = (r (k)

1 , . . . , r (k)
n )′

denote the partial residual, where r (k)
i = yi − ∑

j �=k φi jXj .
Then, using formula (A2) and after some calculation, we have

Xk =

⎧⎪⎨
⎪⎩

[zk + δ∗
1k]−, zk � 0,

[zk − δ∗
2k]+, 0 < zk � 1 + δ∗

2k,

max {1, [zk − δ∗
1k]}, zk > 1 + δ∗

2k,

(A6)

where 〈z, y〉 denotes the inner product of vectors z and
y, δ∗

1k = (λ∗
1k + λ∗

2k )/〈φk, φk〉 and δ∗
2k = (λ∗

1k − λ∗
2k )/〈φk, φk〉,

and zk = 〈r (k), φk〉/〈φk, φk〉. From the definition of Sθ1,θ2 (z), it
is easy to see that

Xk = Sδ∗
1k ,δ

∗
2k

( 〈r (k), φk〉
〈φk, φk〉

)
. (A7)

Note that 〈r (k), φk〉 = 〈r, φk〉 + Xk〈φk, φk〉, where r = Y −
�X , and we have

Xk = Sδ∗
1k ,δ

∗
2k

(
Xk + 〈r, φk〉

〈φk, φk〉
)

. (A8)

Therefore the update can be written as

X̂ t+1
k ← Sδ∗

1k ,δ
∗
2k

(
X̂ t

k + 〈r̂t , φk〉
〈φk, φk〉

)
, (A9)

where X̂ t
k denotes the estimator of Xk in the t th step, and

r̂t = Y − �X̂ t . The overall algorithm operates by applying
this update repeatedly in a cyclical manner, updating the co-
ordinates of X̂ along the way. Once an initial estimator of X
is given, for example, by lasso estimation or ridge estimation,
the update can be continued until convergence.

The algorithm for computation of methods such as lasso,
adaptive lasso, SCAD, MCP, and ElasticNet can be found in
R-software and has been widely used in scientific research
(see Supplemental Material [37] for details). The R-code us-
ing the coordinate descent method for the adaptive signal lasso
method can be found on GitHub [49].
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