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Synchronization by magnetostriction
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We show how to utilize magnetostriction to synchronize two mechanical vibration modes in a cavity
magnomechanical (CMM) system. The dispersive magnetostrictive interaction provides necessary nonlinearity
required for achieving synchronization. Strong phase correlation between two mechanical oscillators can be
established, leading to synchronization robust against thermal noise. We develop a theoretical framework to
analyze the synchronization by solving the constraint conditions of steady-state limit cycles. We determine that
the strong cavity-magnon linear coupling can enhance and regulate the synchronization, which offers a path to
modulate synchronization. In this paper, we reveal a mechanism for achieving and modulating synchronization
and indicate that CMM systems can be an ideal platform to explore rich synchronization phenomena.
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I. INTRODUCTION

The emergence of spontaneous order in coupled systems,
known as spontaneous synchronization, is a ubiquitous phe-
nomenon in various natural and social systems [1,2]. Over
the past few decades, synchronization phenomena have been
thoroughly investigated in the classical domain [3,4]. In re-
cent years, research in this field has been gradually extended
into the microcosmic regime [5–11], where quantum effects,
e.g., quantum fluctuations and the Heisenberg uncertainty
principle [12,13], nonclassical properties of the non-Gaussian
states [6,8,14], quantum correlations [15–18], quantum phase
transitions [11,19], etc., manifest themselves. Subsequently,
the phenomena have been systematically explored and sum-
marized as the quantum synchronization theory, which also
reveals the deep mechanisms of some remarkable quantum
effects [11,20,21] and provides a perspective on fundamental
quantum theories [14,20] and quantum information pro-
cessing [13,17,22]. Synchronization in various microcosmic
systems has been observed or predicted, e.g., in subatomic
particle ensembles [10,11,23], mechanical resonators [8,12–
14,20,24–31], and cavity or circuit electrodynamics systems
[16,17]. All of them correspond to complex models with
multiple subsystems, or eigenmodes, coupled by appreciable
nonlinear interactions (strong enough, typically enhanced by
an intense pump, to support self-sustaining dynamics [32]).
Among them, only a few systems can be well analyzed beyond
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the purely numerical results, and unfortunately, the constraints
imposed by current experimental techniques further narrow
the range of such candidate systems [10,24–30]. A mature and
easy-to-control platform capable of bridging synchronization
theory, numerical analysis, and experimental observation is
highly desired.

Here, we show that the recently developed cavity mag-
nomechanical (CMM) system [33–36] can be exactly such
a candidate system. In the CMM system, magnons, quanta
of collective spin excitations, in a ferrimagnetic yttrium-iron-
garnet (YIG) sphere couple to vibration phonons via the
magnetostrictive interaction, which is a dispersive interaction
[37,38] and thus provides necessary nonlinearity for achieving
synchronization in the system. Such nonlinearity also plays
an essential role in preparing macroscopic quantum states
[34,39–42] and designing quantum technologies [43–51]. In
addition, magnons further couple to microwave cavity pho-
tons via the magnetic-dipole interaction. Due to the high spin
density of YIG, the strong cavity-magnon coupling can be
easily achieved, leading to cavity polaritons [52–54]. Such a
coupling is adjustable by changing the position of the YIG
sphere in the microwave cavity. The intrinsic nonlinearity and
tunable strong coupling of the CMM system make it an ideal
platform to explore synchronization.

Specifically, we show that it is possible to achieve robust
synchronization of two mechanical vibration modes protected
by strong phase correlation under feasible parameters even at
room temperature. The synchronization in the CMM system
can be analytically decomposed by mapping the constraint
conditions of steady-state limit cycles into the parameter
space, which provides us a simple way to understand the
complicated dynamics of the synchronization. We find that the
strong cavity-magnon coupling provides a degree of freedom
which plays an important and active role in enhancing and
modulating the synchronization. This represents a path to
the modulation of synchronization and fundamentally differs
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FIG. 1. Schematic diagram of the cavity magnomechanical sys-
tem used for achieving synchronization of two mechanical modes.
It consists of a microwave cavity mode a, a magnon mode m, and
two mechanical vibration modes b1,2 (with resonance frequencies of
ω1,2).

from the synchronization mechanism in other systems, e.g.,
optomechanical systems [24–31].

II. THE MODEL

We consider a typical CMM system [33–36], as depicted
in Fig. 1. It consists of a microwave cavity and a macroscopic
YIG sphere placed inside the cavity, which supports a magnon
(spin wave) mode and a series of mechanical vibration modes,
among which we focus on two mechanical modes and study
the synchronization between them. The Hamiltonian of the
system reads

Ĥ

h̄
= ωaâ†â + ωmm̂†m̂ + gma(â†m̂ + m̂†â)

+
∑
j=1,2

[ω j b̂
†
j b̂ j + g jm̂

†m̂(b̂†
j + b̂ j )]

+ i�[m̂† exp(−iω0t ) − m̂ exp(iω0t )], (1)

where â, m̂, and b̂ j (ωa, ωm, and ω j) are the annihilation op-
erators (resonance frequencies) of the cavity, magnon, and jth
mechanical modes, respectively, satisfying [Ô, Ô†] = 1 (Ô =
â, m̂, b̂ j ). The magnon frequency can be adjusted by altering
the bias magnetic field H0 via ωm = γ0H0, with the gyro-
magnetic ratio γ0/2π = 28 GHz/T. Here, gj denotes the bare
coupling rate between the magnon and the jth mechanical
mode, and gma is the cavity-magnon coupling rate, which can
be (much) stronger than the cavity and magnon dissipation
rates κa and κm [52–54]. To enhance the magnetostrictive
interaction, the magnon mode is driven by a microwave field
with frequency ω0 and amplitude B0, and the corresponding
Rabi frequency is � = (

√
5

4 )γ0

√
NB0 [34], where N = ρV is

the total number of spins, ρ = 4.22 × 1027 m−3 is the spin
density of YIG, and V is the volume of the sphere.

In the frame rotating at the driving frequency ω0, and
by adding dissipative and input noise terms, we obtain the
following quantum Langevin equations (QLEs):

˙̂a = − (i�a + κa)â − igmam̂ +
√

2κaâin,

˙̂m = − (i�m + κm)m̂ − igmaâ −
∑
j=1,2

ig jm̂(b̂†
j + b̂ j )

+ � +
√

2κmm̂in,

˙̂b j = − (iω j + γ j )b̂ j − ig jm̂
†m̂ + √

2γ j b̂
in
j , (2)

where �a = ωa − ω0 and �m = ωm − ω0. κa, κm and γ j (âin,
m̂in, and b̂in

j ) are the decay rates (input noise operators) of
the cavity, magnon, and jth mechanical modes, respectively.
The input noises are assumed Gaussian and white noises, of
which the correlation functions are 〈Ôin(t )Ôin†(t ′)〉 = (N̄O +
1)δ(t − t ′) and 〈Ôin†(t )Ôin(t ′)〉 = N̄Oδ(t − t ′), with Ô = â, m̂,
b̂ j , and N̄O = [exp(h̄ωO/kBT ) − 1]−1 (O = a, m, j) being the
mean thermal excitation number of the corresponding mode,
kB the Boltzmann constant, and T the bath temperature.

III. PHASE NOISE ANALYSIS

To study synchronization at a finite temperature, thermal
noises of the system must be included, as the mean ther-
mal occupation N̄O � 1 at a high temperature, e.g., room
temperature. We therefore apply stochastic Langevin equa-
tions (operators Ô are replaced with complex variables O)
[31,55] to describe the system dynamics and simulate them
numerically up to the long-time limit. The stochastic Langevin
equations associated with Eq. (2) are given by [56,57]

ȧ = − (i�a + κa)a − igmam +
√

2κaain,

ṁ = − i(�m + κm)m − igmaa −
∑
j=1,2

ig jm(b∗
j + b j )

+ � +
√

2κmmin,

ḃ j = − (iω j + γ j )b j − ig j |m|2 + √
2γ jb

in
j . (3)

The operators â, m̂, and b̂ j in the QLEs are replaced with c-
number complex variables a, m, and bj , and the input noise
operators are replaced with classical complex random noises
with modified correlation functions 〈Oin,∗(t )Oin(t ′)〉 = (n̄O +
1/2)δ(t − t ′) (O ∈ {a, m, b j}) because the c numbers lose the
commutation relation.

After repeatedly calculating the stochastic Langevin equa-
tions N times (N should be large), the disturbance of the
noises to the synchronization can be characterized by the
phase-space probability distribution of the considered phases
and the phase correlation (particularly the phase difference),
which are defined as

Pθ j (θ ) = lim
h→0

Nθ j (θ )

Nh
,

Pθ− (θ ) = lim
h→0

Nθ− (θ )

Nh
, (4)

where Nθ j(−) (θ ) is the number of the results satisfying θ i
j(−) ∈

[θ − h/2, θ + h/2], the superscript i denotes the ith stochastic
trajectory in the simulation, and θ j is the phase of the
slowly varying complex amplitude of the jth oscillator (see
Appendix A). The ensemble-averaged quantities and
their quantum fluctuations can be estimated by 〈θ j(−)〉 =∑

θ i
j(−)/N and 〈θ2

j(−)〉 = ∑
θ i

j(−)
2
/N − (

∑
θ i

j(−)/N )2,
respectively.

We simulate the stochastic Langevin equations for a time
interval γ1t = 19, i.e., the same time interval used to obtain
the phase diagram in the following section, and repeat the
calculations 104 times. The noise analysis corresponds to the
following four cases, and each case corresponds to a specific
stable phase difference (or a set of parameters). The state
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FIG. 2. (a)–(d): Phase difference probability distribution θ− (circle) and phase probability distribution of the oscillator 1 θ1 (triangle)
obtained by 104 times calculations of the stochastic equations with different values of � and gma [from left to right and from top to bottom,
corresponding to the cases (i)–(iv), respectively]. The solid and dashed lines represent the results that fit the corresponding original data with
a Gaussian distribution. (e) 104 statistical results of θ− (blue) and θ1 (red) for the case (i).

of the system can be well described by the four cases, i.e.,
the two oscillators are (i) synchronized, (ii) antisynchronized,
(iii) at the critical point between synchronization and anti-
synchronization, and (iv) antisynchronized with low energy
(see the phase diagram for the detailed description). The cor-
responding parameters are, respectively, (i) log10(�/�0) =
−0.4, gma/ω1 = 0.8; (ii) log10(�/�0) = −0.8, gma/ω1 =
0.8; (iii) log10(�/�0) = −0.5168, gma/ω1 = 0.7, and (iv)
log10(�/�0) = −1, gma/ω1 = 0.5. We use experimentally
feasible parameters in getting Fig. 2 [33–36]: ωa = ωm =
2π × 10 GHz, ω1 = 2π × 10 MHz, κa = 2π × 1.5 MHz,
κm = 2π × 1 MHz, γ1 = 2π × 100 Hz, γ2 = 2π × 150 Hz,
g1 = 2π × 60 mHz, g2 = 2π × 50 mHz, and �0 = 7 ×
1014 Hz (corresponding to the drive magnetic field B0 = 3.8 ×
10−5 T and power P = 8.3 mW [34]).

The solid lines in Figs. 2(a)–2(d) show the phase prob-
ability distribution of the mechanical oscillator 1. We find
that, when the effects of thermal noises are considered, the
phase of the mechanical mode is progressively diffused with
phase variance 〈δθ2

1 〉 = 4.8 × 10−4 corresponding to case (i),
〈δθ2

1 〉 = 2.2 × 10−2 in case (ii), 〈δθ2
1 〉 = 3.5 × 10−4 in case

(iii), and 〈δθ2
1 〉 = 1.3 × 10−2 in case (iv). The circles show

that the distribution of the phase difference is obviously nar-
rowed, which can be described quantitatively by defining a
compression ratio:

η = 〈δθ2
−〉〈

δθ2
1

〉 , (5)

where η = 1 for two uncorrelated oscillators due to 〈δθ2
−〉 


〈δθ2
1 〉 
 〈δθ2

2 〉 in this case. We obtain η = 1.19 × 10−4,
1.16 × 10−4, 1.75 × 10−5, and 5.34 × 10−4 for the four cases,
which reveal the emergence of strong phase correlations be-
tween the two oscillators. In Fig. 2(e), we show the 104

random results of θ1 and θ− for the case (i). The horizontal
axis represent the ith random result (i = 1, 2, 3, . . . , 104).
We can determine that synchronization in the CMM system

is robust to thermal noises with the protection of the phase
correlation. In addition, we emphasize that the mixture of two
(or more) limit cycles never emerges in our simulation results
(the considered parameters are not limited to the four points
shown), which means that the adjacent attractors are too dis-
tant in the phase space. Therefore, the noises cannot support
the mechanical modes jumping from one stable solution to
another.

These results prove that a strong phase correlation is
established between two vibrational modes, leading the syn-
chronization between them to be very robust against thermal
noises. It thus suggests that synchronization can be well stud-
ied in the noiseless case, which is considered in the following
sections.

IV. SYNCHRONIZATION PHASE TRANSITION

For the system under study, it does not exhibit chaotic be-
havior, which occurs only under an extremely strong driving
field. Therefore, we can characterize synchronization in terms
of the phase difference [55]: P (t ) = cos[θ1(t ) − θ2(t )], where
θ j is the phase of the jth mechanical oscillator, and P = −1,
0, and 1 correspond to the π -phase, non-, and zero-phase
synchronization, respectively.

The synchronization phase diagram is shown in Fig. 3 by
taking the time average of P (t ) for a sufficiently long time
interval, ensuring stable values [58], i.e., t ∈ [9/γ1, 19/γ1].
Clearly, the π - and zero-phase synchronizations are present
in a large parameter regime, and a prominent phase tran-
sition of synchronization appears for a sufficiently strong
(small) coupling gma (mechanical frequency difference �ω).
The synchronization is quite robust, and even close to the
phase-transition boundary, thermal noises and random initial
conditions have negligible impact on the synchronization. Our
theoretical analysis indicates that the system is bistable or
even multistable. However, Fig. 3 displays only one of the
steady states of the limit cycles. This is because we do not
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FIG. 3. Synchronization phase diagram as a function of (a) Rabi
frequency � and coupling gma and (b) Rabi frequency � and mechan-
ical frequency difference �ω = ω2 − ω1. We take �ω = 0.01ω1 in
(a), gma = 0.5ω1 in (b), and �a = �m 
 −ω1 in both plots. The
gray areas denote the stable regime when the quantum Langevin
equations (QLEs) only have asymptotic steady-state solutions, and
they can be determined by the Lyapunov stability criterion. The other
parameters are the same as in Fig. 2.

traverse all possible initial states but only assume the system
is in a thermal initial state (see Sec. V). It is worth noting that
the cavity-magnon coupling gma (a controllable parameter that
can be tuned in a wide range) can effectively modulate the
synchronization phase, c.f. Fig. 3(a). For a moderate value of
gma, the two mechanical modes can be π -phase synchronized
even for a large frequency difference �ω > 0.1ω1 and at a low
driving power of 83 µW, as shown in Fig. 3(b). This reveals
a distinct advantage of the CMM system for realizing and
modulating synchronization compared with other systems.

V. MECHANISM OF SYNCHRONIZATION AND
MULTISTABLE SYNCHRONIZED LIMIT CYCLES

To explain the complex limit cycle dynamics of the system,
we take the slowly varying amplitude (SVA) equations ap-
proach [31,59] and study the long-time dynamics of the two
mechanical oscillators in the frame rotating at a fast reference
frequency ω̄, i.e., b j (t ) = βs

j + Bje−iω̄t (see Appendix A),
where βs

j are the equilibrium positions, Bj are slowly varying
complex amplitudes, and ω̄ = (ω1 + ω2)/2. Substituting it
into the noiseless Langevin equations, we obtain the formal
solutions of the cavity and magnon modes, which can be ex-
pressed as the sum of a series of sidebands at the frequencies
of nω̄, with n being an integer. Substituting these solutions
into the equations of the oscillators, we obtain the follow-
ing amplitude equations (see Appendix A for the detailed
derivation):

Ḃ j = −[i(ω j − ω̄) + γ j]Bj − i
g jF

g̃
(g1B1 + g2B2), (6)

where g̃ =
√

g2
1 + g2

2, and the dimensionless function

F (�a,m, κ, g1,2,ma, |B|,�) = g̃|B̃|−1 ∑
n MnM∗

n+1, with
B̃ = ∑

j g jB j . Here, Mn is the amplitude of the nth
mechanical sideband, which can be determined via iterative
computation or other numerical methods. Equation (6)
indicates that the backaction of the cavity-magnon system on

the dynamics of the mechanical oscillators is fully manifested
in the F function, which renormalizes the frequencies and
dissipations and, more importantly, provides an effective
coupling between the two oscillators.

By rewriting Eq. (6) in terms of the modulus I j and phase
θ j of the complex amplitude Bj = I j exp(iθ j ), we obtain the
following Kuramoto-like equations (KLEs) [3]:

İ j =  j I j + g1g2

g̃

[
Fi cos θ− + Fr

(−1) j
sin θ−

]
I3− j,

θ̇− = g1g2

g̃

(
Fr cos θ−

I2
1 − I2

2

I1I2
− Fi sin θ−

I2
1 + I2

2

I1I2

)

+ g2
2 − g2

1

g̃
Fr + �ω, (7)

where  j = g2
jFi/g̃ − γ j , F = Fr + iFi, and the phase differ-

ence θ− = θ1 − θ2. The KLEs provide us a powerful tool to
describe the self-sustained mechanical oscillations. They can
be further simplified to stationary equations by setting the
derivatives to zero, which describe two synchronized oscilla-
tors as two amplitude-stable limit cycles will be of a constant
phase difference. The stationary F function F s can be written
as a function of the stationary modulus Is

j , i.e.,

F s
r = g̃

[(
g2

1γ2 − g2
2γ1

)
Rs + g1g2(γ2 − γ1Rs2) cos θ s

−
]

g1g2
(
g2

2 + 2g1g2Rs cos θ s− + g2
1Rs2

)
sin θ s−

,

F s
i = g̃(γ2 + γ1Rs2)

g2
2 + 2g1g2Rs cos θ s− + g2

1Rs2 , (8)

where we define Rs = Is
1/Is

2 for convenience. Substituting
Eq. (8) into Eq. (7) yields the following state constraint equa-
tion on Rs and θ s

−:

�ω sin θ s
− + (γ1 + γ2) cos θ s

− = g2γ1

g1
Rs + g1γ2

g2Rs
, (9)

which determines the behavior of the stationary synchroniza-
tion of the two oscillators. Note that the above constraint
equation depends only on the mechanical system but not
on the cavity-magnon system [60]. Hence, the constraint of
the synchronization is essentially an intrinsic property of the
two oscillators. The solutions of Eq. (9), manifested as
the identical red lines in Figs. 5(a)–5(f), are thus the neces-
sary conditions for the synchronization, which are satisfied
by all allowed synchronization states under the given pa-
rameters, while any other states outside the red lines are
actually the unstable states of the limit cycles. The per-
fect zero-phase synchronization θ s

− = 0 requires Rs = g1γ2

g2γ1
.

By contrast, the perfect π -phase synchronization is unattain-
able for the conventional parameters, as it requires Rs =
− g1γ2

g2γ1
. For a given θ s

−, the solution of Rs is symmetric,

and θ s
− has a single maximum at Rs = g1

g2

√
γ2

γ1
, which yields

an optimal P for the π -phase synchronization, i.e., Popt
π =

2(γ1+γ2 )
√

γ1γ2−�ω
√

�ω2+(γ1−γ2 )2

�ω2+(γ1+γ2 )2 . Apparently, �ω � γ1,2 is
the basic condition for the occurrence of the π -phase
synchronization.

Utilizing the analytical expression of Eq. (8), we now
discuss in detail the mechanism of synchronization phase
transition. We still study the synchronization dynamics in the
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FIG. 4. Parametric plot of F . The red (purple) lines denote the
steady-state range of the zero-phase (π -phase) synchronization in the
coordinates of F s

r and F s
i . The lines (L1–L4) represent the dynamic

range of F , with gma/ω1 = 0.8 and �/�0 = 10−0.8 for L1; gma/ω1 =
0.8 and �/�0 = 10−0.4 for L2; gma/ω1 = 0 and �/�0 = 10−0.8 for
L3; and gma/ω1 = 0 and �/�0 = 10−0.4 for L4. Inset shows the
points A–D marked in the synchronization phase diagram, of which
the parameters are the same as L1–L4, respectively.

long-time limit. As shown in Fig. 4, the steady-state range
F s [red and purple lines obtained by solving Eqs. (8) and
(9)] and the dynamic range of F [lines L1–L4 obtained by
solving Eq. (A9)] are plotted. The intersection point of F s and
F indicates that the limit cycles have a steady-state solution.
The points A–D (also marked in the inset) represent the values
of the steady-state solution F s at the corresponding parame-
ters of the phase diagram. These points are obtained by first
simulating the noiseless Langevin equations with the thermal
initial states for a sufficiently long time ensuring stable values
(i.e., θ s

− and Rs), then substituting them into the F s(θ s
−, Rs)

function. Clearly, our theoretical approach fits perfectly with
the numerical simulation, and more importantly, it reveals the
bistability of the limit cycles, i.e., the points A′–D′. Here,

FIG. 5. Steady-state distribution of Rs and θ s
− with different val-

ues of gma. The red line is the solution of Eq. (9), and each blue
point corresponds to a pixel in Fig. 3(a). The gray points represent
the nonsynchronization states, of which the phase differences θ−
are nonstationary, but their time averages θ s

− are around π/2. The
parameters are the same as in Fig. 3(a).

the points A′–D′ are obtained by simulating the noiseless
Langevin equations under appropriate initial conditions. To
be specific, starting with the final state of A and using the
parameters of B (or increasing the drive power), we can obtain
a new phase B′. Similarly, starting with the final state of B
and using the parameters of A (or lowering the drive power),
we achieve a new phase A′. Therefore, the phase transition is
essentially induced by the initial thermal states, which will be
different if under different (appropriate) initial conditions.

VI. MODULATION OF SYNCHRONIZATION

According to the value of gma, we classify the states of the
mechanical oscillators (the asymptotic steady states marked
in gray are excluded) in the phase diagram of Fig. 3(a) and
plot their characteristic variables θ s

− and Rs in Figs. 5(a)–5(f).
The blue scatter points are hitched by the solution of the
constraint equation, as excepted, but they do not completely
smear the red lines, confirming that the constraint equation is
only a necessary condition. As gma increases, the blue points
tend to distribute to both poles, implying that the system
has a distinct feature of zero- or π -phase synchronization.
This indicates that the synchronization can be enhanced and
modulated by adjusting the cavity-magnon coupling rate. The
synchronization properties beyond the constraint equation are
reflected in the aforementioned F function, which is entirely
determined by the cavity-magnon system. This suggests divid-
ing the whole system into two parts, as sketched in Fig. 6(a):
the mechanical system that constrains the range of the le-
gal synchronization states, corresponding to the steady-state
modulation, and the cavity-magnon system that selects which
kind of synchronization state can be finally obtained, corre-
sponding to the nonlinear modulation. These two types of
modulation are mutually independent, which greatly simpli-
fies the procedures for synchronizing the oscillators to a given
target phase. Specifically, the procedures are summarized as
follows: (i) Solving Rs from the constraint equation Eq. (9)
with a given θ s

−; (ii) substituting θ s
− and Rs into Eq. (8) to

obtain the conditions that F should fulfill, denoted as F s;
and (iii) adjusting relevant parameters of the cavity-magnon
system to satisfy F = F s, corresponding to the KLEs having
steady-state solutions and thus the occurrence of the target
synchronization state.

Due to the nonlinearity of the F function, the last pro-
cedure is more easily realized by checking the intersection
points after plotting F and F s in the parametric space, as
shown in Fig. 6(b). As we are interested in prominent syn-
chronization phenomena, the phase difference is restricted
to a small range satisfying |P| > 0.995, and the nonlinear
modulation is realized by controlling F via changing � and
gma. When the driving power and the coupling rate are small
(green triangles), there will be no solutions. As the power
increases, the curve is shifted along the F s

r axis, leading to
the appearance of multistable synchronized limit cycles (blue
circles). Comparing with the blue circles (with Rabi frequency
�0 and cavity-magnon coupling rate 0.1ω1), the orange dots
(with Rabi frequency 0.3�0 and cavity-magnon coupling rate
ω1) can produce both the zero- and π -phase synchronizations
even for relatively small couplings, e.g., g1/2π = 16 mHz
and g2/2π = 18 mHz (dashed lines), which can be easily
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FIG. 6. (a) Schematic diagram of synchronization modulation.
(b) Nonlinear modulation by controlling the cavity-magnon system
(i.e., via controlling F ). The red (purple) lines denote the zero-phase
(π -phase) synchronization regime with g1/2π = 60 mHz, g2/2π =
50 mHz (solid lines), and g1/2π = 16 mHz, g2/2π = 18 mHz
(dashed lines and inset). Inset shows the P-� relation for different
values of gma. (c) Steady-state modulation by controlling the mechan-
ical system (i.e., via controlling F s). The red (purple) lines denote the
zero-phase (π -phase) synchronization regime with γ1/2π = 100 Hz,
γ2/2π = 150 Hz (solid lines), and γ1/2π = 100 Hz, γ2/2π = 60 Hz
(dotted lines). Inset shows the impact of γ2 on the synchronization,
where g0/2π = 60 mHz. In (b) and (c), we take � = 0.1�0 and
gma = 0.1ω1. The other parameters are the same as in Fig. 3.

achieved in the CMM experiments [33–36]. This benefits
from a new mechanism of synchronization: as gma increases,
the curve is rotated around the original point, which can sweep
over a much wider area in the parametric space. The inset
shows how the coupling gma modulates the synchronization.
Clearly, increasing the cavity-magnon coupling can signifi-
cantly enhance the synchronization. In Fig. 6(c), we explore
the steady-state modulation via controlling F s realized by
altering γ j . The results indicate that the zero-phase synchro-
nization can be enhanced by reducing the dissipation rates, as
more clearly shown in the inset.

VII. CONCLUSIONS

We present a mechanism of synchronizing mechanical
oscillators in a CMM system exploiting the nonlinear mag-
netostriction. We find that a strong phase correlation can be
established between two mechanical oscillators, leading to
their synchronization which is robust against thermal noise.
We also develop a theoretical framework to analyze the syn-
chronization and determine the active role the cavity-magnon
coupling plays in enhancing and modulating the synchro-
nization. All of these indicate that the highly controllable
and tunable CMM system can be a promising platform for
studying and modulating synchronization. The work can be
extended straightforwardly to study synchronization between
two or multi-YIG spheres. It can also be applied to other
systems that share a similar Hamiltonian as the CMM system,
e.g., synchronizing two mechanical oscillators in exciton-
optomechanics systems [61–63]. Synchronized mechanical
oscillators can be exploited to achieve the synchronization
between two optical cavities, e.g., by means of an opto-
magnomechanical configuration [38,64], and between two
atomic ensembles by further coupling each cavity to an atomic
ensemble [65]. This provides the possibility to distribute
synchronization or quantum states in a complex quantum
network [13].
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APPENDIX A: DERIVATION OF THE SVA EQUATIONS

The noiseless Langevin equations of the system are given
by

ȧ = −(i�a + κa)a − igmam,

ṁ = −i(�m + κm)m − igmaa −
∑
j=1,2

ig jm(b∗
j + b j ) + �,

ḃ j = −(iω j + γ j )b j − ig j |m|2. (A1)

We now consider the self-sustaining solution of the me-
chanical modes. After an initial transient regime, the
dynamics of the mechanical modes have the following
form [59,66]:

b j (t ) = βs
j + Bje

−iω̄t , (A2)

where βs
j are the equilibrium positions, Bj are slowly varying

complex amplitudes, and the reference frequency ω̄ = (ω1 +
ω2)/2. Here, the chaotic motion of the mechanical modes
are neglected, as it occurs only at extremely large driving
powers. Substituting the solution Eq. (A2) into Eq. (A1), we

043197-6



SYNCHRONIZATION BY MAGNETOSTRICTION PHYSICAL REVIEW RESEARCH 5, 043197 (2023)

FIG. 7. Synchronization phase diagram in the detuning-coupling
plane. We take �a = �1 = �2 = �, κ1 = κ2 = κex = 2π × 1 MHz,
and P0 = 8 mW. The parameters are the same as in Fig. 3(a).

have

ṁ = − i[�m + β̃s + 2|B̃| cos(ω̄t − ϕ)]m − κmm

− igmaa + �, (A3)

where β̃s = ∑
j g j (βs

j
∗ + βs

j ) and B̃ = ∑
j g jB j = |B̃|eiϕ .

Equation (A3) has the formal solution:

m(t ) =
∫ t

0
dτ exp

( ∫ t

τ

dτ ′{−i[�m + β̃s

+ 2|B̃| cos(ω̄τ ′ − ϕ)] − κm}
)

[−igmaa(τ ) + �].

(A4)

Note that the order of the characteristic time corresponding
to the dynamics of the amplitude |B̃| is γ j , which is much
slower than the fast oscillations at ω̄, and one thus can treat
|B̃| as a constant in the integral over τ ′ in Eq. (A4). We then
have

m(t ) = exp

[
−i

2|B̃|
ω̄

sin(ω̄t − ϕ)

] ∑
n

Jn

(
2|B̃|
ω̄

)

×
∫ t

0
dτ exp{in(ω̄τ − ϕ) − [i(�m + β̃s) + κm]

× (t − τ )}[−igmaa(τ ) + �], (A5)

where we use the Jacobi-Anger expansion exp[i 2|B̃|
ω̄

sin(ω̄τ −
ϕ)] = ∑

n Jn( 2|B̃|
ω̄

) exp[in(ω̄τ − ϕ)], and Jn is the nth Bessel
function of the first kind. The nonlinear interaction will lead
to the magnon mode exhibiting complex dynamics accom-
panied by higher-order sidebands, satisfying the following

form:

m(t ) =
∑

n

Mn exp[in(ω̄t − ϕ)]. (A6)

Substituting Eq. (A6) into Eq. (A1), we have the solution:

a(t ) =
∑

n

−igmaMn

i(�a + nω̄) + κa
exp[in(ω̄t − ϕ)]. (A7)

Inserting Eq. (A7) into Eq. (A5) and comparing the co-
efficients on both sides, we can solve the corresponding
equation by the iterative method. We finally determine the
following iterative equation:

Mn =
∑
k,l

Jn−k−l

(
− 2|B̃|

ω̄

)
Jk

(
2|B̃|
ω̄

)[
�δl,0 − g2

maMl

i(�a+lω̄)+κa

]
i[�m + β̃s + (k + l )ω̄] + κm

.

(A8)

Here, Mn can finally be determined after the errors con-
verge to an acceptable range through multiple iterations,
i.e., |M j+1

n − M j
n | < ε. The magnon excitation term can be

written as

|m(t )|2 =
∑
nn′

Mn+n′M∗
n′ exp[in(ω̄t − ϕ)]. (A9)

Substituting Eq. (A9) into Eq. (A1), we obtain

βs
j = −ig j

iω j + γ j

∑
n

|Mn|2,

Ḃ j = −[i(ω j − ω̄) + γ j]Bj − ig j g̃
−1(g1B1 + g2B2)F,

(A10)

where g̃ =
√

g2
1 + g2

2, and the dimensionless auxiliary func-
tion F is defined as

F = g̃

|B̃|
∑

n

MnM∗
n+1. (A11)

APPENDIX B: SYNCHRONIZATION OF TWO YIG
SPHERES IN CAVITY MAGNOMECHANICS

Here, we study the synchronization of two mechanical
vibrational modes of two YIG spheres that are spatially sepa-
rated, e.g., placed at the antinodes of the magnetic field of the
same cavity mode. The realization of such remote synchro-
nization between two or multi-YIG spheres would be more
attractive but also more difficult.

The system consists of two YIG spheres, each supporting
a magnon mode and a mechanical mode, interacting with a
common cavity mode, which is driven by a microwave field.
The Hamiltonian of the system is given by

Ĥ

h̄
= ωcâ†â +

∑
j=1,2

ωm jm̂
†
j m̂ j + ω j b̂

†
j b̂ j

+ g jm̂
†
j m̂ j (b̂

†
j + b̂ j ) + gma(â†m̂ j + m̂†

j â)

+ i�a(â†e−iω0t − âeiω0t ), (B1)

where �a =
√

2κexP0
h̄ω0

denotes the drive-cavity coupling

strength, with κex being the external decay rate of the cavity
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through the input port and P0 the drive power. In the frame
rotating at the driving frequency ω0, by adding dissipative and
input noise terms, we obtain the following QLEs:

˙̂a = −(i�a + κa)â − igma(m̂1 + m̂2) + �a +
√

2κinâin
1

+
√

2κexâin
2 ,

˙̂mj = −(i� j + κ j )m̂ j − igmaâ − ig jm̂ j (b̂
†
j + b̂ j ) + √

2κ j m̂
in
j ,

˙̂bj = −(iω j + γ j )b̂ j − ig jm̂
†
j m̂ j + √

2γ j b̂
in
j , (B2)

where κa = κin + κex is the total cavity decay rate, with κin

being the intrinsic cavity decay rate, and � j = ωm j − ω0. The
above QLEs can be well approximated by a set of coupled
noiseless Langevin equations [57], considering the synchro-
nization is very robust against thermal noise:

ȧ = −(i�a + κa)a − igma(m1 + m2) + �a,

ṁ j = −(i� j + κ j )mj − igmaa − ig jmj (b
∗
j + b j ),

ḃ j = −(iω j + γ j )b j − ig j |mj |2. (B3)

In Fig. 7, we plot the synchronization phase diagrams by
using Eq. (B3) and taking the time average of the phase
difference P (t ) = cos[θ1(t ) − θ2(t )] for a sufficiently long
time interval ensuring stable values, i.e., t ∈ [9/γ1, 19/γ1].
In this system of two YIG spheres, the effective coupling
between the two mechanical modes is much more indirect
(via the mediation of two magnon modes and a common
cavity) compared with the case studied in the main text. This
makes it more difficult to synchronize two mechanical modes
of two YIG spheres, reflected by the fact that the parameter
regime for achieving synchronization is much smaller than
the single-sphere case. To achieve zero-phase (π -phase) syn-
chronization, a much stronger cavity-magnon coupling rate
is needed, about gma 
 2ω1. Such a strong coupling can,
however, be easily obtained in cavity magnonic experiments,
thanks to the high spin density of YIG. This indicates the
advantage of the system: The achievable very strong cavity-
magnon coupling can effectively enhance and modulate the
synchronization of two mechanical modes of either one YIG
sphere or two YIG spheres.
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