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Qubit entanglement generated by classical light driving an optical cavity
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We study the generation of entanglement between two qubits which communicate through a single cavity
mode of quantum light but have no direct interaction. We show that such entanglement can be generated simply
by exchanging quanta with a third party, which is in our case the cavity mode. Exchanging only a single quantum
creates maximal entanglement. A single quantum can be provided by an external quantum light source. However,
we use a classical light source to pump quanta which are used for the exchange, and investigate the degree of
two-qubit entanglement. We first identify a characteristic timescale of the interaction between the cavity mode
and each qubit. We investigate two regimes of the driving pulse length: one is short and the other is long compared
to the characteristic timescale of the interaction. In the first regime, it is known that the pulse can pump the system
by generating a displacement of the cavity mode. We show that, by using a specific pulse shape, one can make the
displacement essentially vanish after the pulse finishes interaction with the cavity mode. In this case, a rotation
of the qubits can be invoked. In addition, higher-order effects of the pulse including a nonlocal operation on the
joint system of the cavity mode and the qubits are found, and we present a formalism to compute each term up
to a given order. An explicit condition on the pulse shape for each term to be nonzero or suppressed is derived
to enable an experimental design for verifying the entanglement generation using a classical light source. In
the opposite regime where the driving is sufficiently long, we utilize a squeezed state which may be obtained
adiabatically. We study how the squeezing and the accompanied rotation of qubits affect the generated two-qubit
entanglement.
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I. INTRODUCTION

If there is a direct interaction between two systems, clas-
sical light can generate entanglement between them [1–4].
However, when the two parties are not coupled, they cannot
be entangled by classical light, which only allows a local
unitary transformation on each party. However, quantum light
can be used to create entanglement between two noninter-
acting systems [5–7]. Several types of quantum light have
been considered to generate entanglement between qubits.
In particular, the generation of entanglement between two
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noninteracting two-level systems (or qubits) based on cavity
electrodynamics has been studied for various states of quan-
tum light, including the Fock [8–10], thermal [11], coherent
[8,12–14], and squeezed state [15,16]. The vacuum state can
also be used in an off-resonant cavity to generate the qubit
entanglement [17–20].

As one of the most effective and simple methods, a single-
photon state of the cavity mode can be used to entangle two
qubits, both resonant to the cavity mode. This can be done by
exchanging a quantum, which is in this case a photon, between
the cavity mode and the qubits. Suppose both qubits are in
their ground states. Since there is only one photon for two
qubits, only one qubit or the other, but not both at the same
time, can receive the photon to get excited. Thus, the resulting
state is the superposition of those two possibilities, which is
an entangled state between the qubits (see also Sec. V B of
Ref. [8]). Note that this is valid for a resonant cavity. Two
qubits can be excited simultaneously with a single photon if
the photon frequency is twice as large as that of each qubit
[21]. Pumping only a single quantum directly into a cavity
typically requires an external single-photon source [22,23],
which is a quantum state with no classical counterpart. With
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such a quantum light source, even a maximally entangled state
can be achieved.

Then, how much entanglement can be generated if we use
a classical light source for pumping the cavity mode? This
is the question to investigate in this paper. We consider an
exactly solvable model of two qubits interacting with a single
cavity mode [24] and compute the entire time-dependent state.
We explore the resulting two-qubit concurrence [25,26] as
a measure for their entanglement. Previously, this has been
done for several initial states of the system [8–16]. In this
work, we do not assume a particular initial state other than
the ground state of the total system. Instead, we drive the
cavity mode with an external classical field and investigate
what kind of state can be prepared. Since the cavity mode is
driven by a classical light, a coherent state may be expected
to a good approximation if the interaction of the cavity mode
with the qubits is negligible. Some correction may be needed
since the cavity mode would interact with the qubits even
during the driving. We show analytically how the joint state
of the cavity mode and the two qubits depends on the external
classical field. The interaction between the cavity mode and
the qubits is considered consistently with the external driving
of the cavity mode, to identify the classes of states that can be
prepared with a classical light source. We study then the en-
tanglement generated by the prepared state. We demonstrate
how the two-qubit entanglement dynamics can be controlled
in terms of the strength, duration, phase, and temporal shape
of the classical light field.

There are two regimes that can be distinguished in terms of
the duration of the driving. Namely, it can be short or long
compared to a characteristic timescale which we denote as
Tg. The timescale Tg determines how fast the entanglement
is generated after the system is pumped. Tg is determined
by how strong the cavity mode and each qubit are coupled.
When there is no coupling, no quantum can be exchanged
and thus no entanglement is generated, which means Tg → ∞.
When there is a coupling, quanta can be exchanged and thus
entanglement can be generated. The stronger the coupling is,
the faster the exchange of quanta would be, which means Tg

gets shorter. The precise expression of Tg is discussed. Once
the characteristic timescale Tg is identified, we investigate the
two mentioned driving regimes. In the regime when the cavity
mode is driven by a pulse which is sufficiently short compared
to Tg, we study how the two-qubit entanglement depends on
the pulse strength, duration, and the shape. We show that, by
selecting an appropriate pulse shape, the pumping can result in
a displacement of the cavity mode or a rotation of the qubits,
to a good approximation. The entanglement dynamics can be
controlled by selecting the type of pumping through the pulse
shape. In the latter regime, one can adiabatically generate a
squeezed state and rotated qubits. The effect of the squeezing
and the rotation on the entanglement formation is investigated.

This paper is organized as follows. In Sec. II, we describe
the model system, where a cavity mode is driven by a classical
light source. In Sec. III, we show how the entanglement can
be generated by exchanging quanta between the qubits and
the cavity mode. The characteristic timescale Tg of the cavity-
qubit interaction is identified. In Sec. IV, we consider one of
the regimes where the driving duration is sufficiently short
with respect to the characteristic timescale of the cavity-qubit

interaction. In Sec. V, we investigate the other regime where
the driving is quasistatic. In Secs. VI and VII we discuss a set
of parameters for an experimental realization and conclude the
paper with a summary.

II. MODEL

We consider two qubits coupled to a resonant cavity mode
of frequency ω. A classical external light drives the cav-
ity mode. In the laboratory frame, the Hamiltonian can be
written as

Hlab(t ) = Hf + Hg + He,lab(t ), (1)

which consists of the free Hamiltonian Hf , the cavity-qubit
coupling Hamiltonian Hg, and the interaction Hamiltonian
He,lab(t ) describing the coupling between the cavity mode and
the classical external field. The free Hamiltonian is given by

Hf = h̄ω(a†a + σ z/2).

Here, a and a† are the annihilation and creation operators of a
cavity photon, respectively. σ z = σ z

A + σ z
B, with the subscript

numbering the qubits. The cavity-qubit coupling term Hg can
be expressed as

Hg = h̄g(σ+a + σ−a†). (2)

The two-qubit ladder operator is defined as

σ± = σ±
A + σ±

B , (3)

where σ±
A and σ±

B are the ladder operators for qubits A and
B, respectively. The interaction between the cavity mode and
each qubit is described under the rotating wave approximation
(RWA), which is justified for g � ω. The last term in Eq. (1)
is given by

He,lab(t ) = h̄� f (t )x,

where � is the driving strength, f (t ) is the temporal shape of
the external field, and x ≡ a + a† is the quadrature operator.
In the rotating frame generated by the free Hamiltonian Hf ,
the model can be described by

H (t ) = Hg + He(t ), (4)

where Hg remains the same as in the laboratory frame due
to the cavity-qubit resonance. The second term of Eq. (4) is
given by

He(t ) = h̄� f (t )xω(t ), (5)

where xω(t ) is the quadrature operator in the rotating frame,

xω(t ) ≡ ae−iωt + a†eiωt . (6)

The interaction Hamiltonian He(t ) describes a linearly driven
oscillator, representing a cavity mode coupled to an external
field. The Hamiltonian has been used theoretically [27–30]
and demonstrated experimentally [31–33]. A comprehensive
account for the interaction Hamiltonian can be found, e.g., in
Ref. [34]. We consider a pulsed driving. Let τd be the duration
of the pulse and t = 0 be the center of the pulse. The total
considered time interval will be [−T, T ], where

T/τd ≡ Tu � 1, (7)
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in order to make this time interval long enough to accommo-
date the pulse.

Consider a pulse with a central frequency ω which is res-
onant to the cavity mode and each qubit. Let f0(t ) be the
envelope of the pulse shape and φ be the carrier-envelope
offset phase. We write the pulse shape as

f (t ) = f0(t ) cos(ωt + φ). (8)

The envelope function can be expanded in a complete set
of localized functions, e.g., a set of Hermite-Gaussian (HG)
functions, which can be written as

fHG,m(u) = NmHm(u)e−u2/2. (9)

Here, u ≡ t/τd and Hm(u) is the mth-order Hermite
polynomial for m � 0. The normalization factor Nm is given
by

Nm = π−1/4

√
m! 2m

,

so that ∫ ∞

−∞
du| fHG,m(u)|2 = 1.

The HG functions have a couple of suitable properties for
expanding a pulse shape. First, the HG functions are or-
thonormal and form a complete basis set. Second, the Fourier
transform of a HG function is also a HG function. This is
useful for our approach since the Fourier transform of the
pulse shape is used in the analytical expressions. Other com-
plete sets of localized functions, however, may also be used to
expand the pulse shape.

III. EXCHANGING QUANTA GENERATES
ENTANGLEMENT

How can the two qubits become entangled? One way is
to exchange a quantum with the cavity mode. For example,
suppose there is no driving and consider an initial state where
all the qubits are in their ground state and the cavity mode
has one photon. In this case, there is only one excitation in
the system, a photon. Due to the coupling between each qubit
and the cavity mode, Eq. (2), the excitation starts to “move”
from the cavity mode to the qubits. However, there are two
qubits for a single excitation quantum. Since the coupling
strength between each qubit and the cavity mode is the same,
the probability that the quantum will be found after some time
at one of the qubits is identical as for the other qubit. This
state, where the two possibilities of a bipartite system (two
qubits) are superposed, is entangled.

We will trace this entanglement generation. Let us denote
the initial state |ψ (0)〉 as |00; 1〉 ≡ |00〉|1〉. |00〉 ∈ Hq repre-
sents the state of two qubits where both of them are in their
ground states. |n〉 with n � 0 denotes the Fock state with n
photons in the cavity mode. Hq and Hγ represent the Hilbert
space of the qubits and of the cavity mode, respectively.
At time t , the state evolves into a certain state, denoted as
|ψ (t )〉. The time evolution is governed by the Hamiltonian
Hg in Eq. (2). One can diagonalize the Hamiltonian to cal-
culate the exact expression of |ψ (t )〉. However, we note that
|ψ (t )〉 would be a superposition of only two states, |00; 1〉

and |
+; 0〉 ≡ |
+〉|0〉, where |
+〉 ≡ (1/
√

2)(|01〉 + |10〉).
This can be seen by noting that σ+|00〉 = √

2|
+〉 and that
Hg consists of two terms, σ+a and σ−a†, which describe
exchanges of quanta between both qubits and the cavity
mode. Considering a time evolution with a finite time t as a
succession of infinitesimal steps �t , each approximated as
1 + (−i/h̄)Hg�t , all possible paths that a state may evolve
along can be indicated by the following diagram:

0 ↽−−
σ−a†

|00〉|1〉 σ+a−−⇀↽−−
σ−a†

|
+〉|0〉 σ+a−−⇀ 0. (10)

From this diagram, one can expect that the state will be a
superposition of the two states. An exact calculation shows
that

Ug(t )|00; 1〉 = cos (g1t )|00; 1〉 + sin (g1t )|
+; 0〉, (11)

where Ug(t ) = exp[− i
h̄ Hgt] and g1 = √

2g. At t = 0, the total
state is |00; 1〉 and the two qubits are not entangled. When t =
π/2g1, the total state becomes |
+; 0〉, where the two qubits
are in a maximally entangled state. Note that the timescale of
the entanglement dynamics is proportional to g−1

1 ∼ g−1.
When there are n � 2 quanta, the state can have an addi-

tional component, namely, |11; n − 2〉 ≡ |11〉|n − 2〉, which
can be noticed by considering the possible paths as the fol-
lowing diagram:

0 ↽−−
σ−a†

|00〉|n〉 σ+a−−⇀↽−−
σ−a†

|
+〉|n − 1〉 σ+a−−⇀↽−−
σ−a†

|11〉|n − 2〉 σ+a−−⇀ 0.

An exact calculation shows that the timescale of the dynamics
is proportional to g−1

n ∼ (
√

ng)−1, where

gn = √
4n − 2 g (12)

for n � 1. Here, we define a timescale, denoted as Tg, of the
system containing n quanta as

Tg = (
√

ng)−1.

The dynamics of observables for a state with n quanta will
characteristically unfold at this timescale. We expect that the
formation of entanglement takes about this amount of time
when there are n quanta in the system.

To confirm the timescale of the entanglement dynamics,
we quantify the entanglement of the reduced density operator
ρ of the two qubits. The density operator is defined as

ρ(t ) = trγ [|ψ (t )〉〈ψ (t )|], (13)

where |ψ (t )〉 represents the state of the total system at time t
and trγ is a partial trace with respect to the degree of freedom
of the cavity mode. After tracing out the cavity mode, the
qubits are in a mixed state in general. For instance, the reduced
density operator for the state given as Eq. (11) is

ρ(t ) = cos2(g1t )|00〉〈00| + sin2(g1t )|
+〉〈
+|,
which is a mixed state for all times t , except for t �= mπ/2g1

where m is an integer. A mixed state can be represented
as a statistical ensemble of pure states with their associated
probabilities. Each possible pure state in the ensemble has
a well-defined entanglement, defined via the von Neumann
entropy that represents the upper bound on the purification
or entanglement cost, the latter being defined in terms of the
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cooperative game that uses the local operations and classi-
cal communication (LOCC) protocols [35]. It has been also
demonstrated [35] that the von Neumann entropy can only go
down in average when nonunitary operations, such as mea-
surements, are performed.

To quantify entanglement of mixed states of two qubits,
the notion of entanglement of formation has been introduced
as the minimal average von Neumann entropy of an ensem-
ble of pure states that represents the given mixed state (the
pure states do not have to be mutually orthogonal, and their
number is not fixed), and the minimum is taken over all such
ensembles [36]. It has been shown in Ref. [36] that the entan-
glement of formation defined in this way has the analogous
property of decreasing upon nonunitary transformations, asso-
ciated with measurements, and therefore is considered a good
measure of entanglement for mixed states of two qubits.

Since the definition involves an optimization problem, the
entanglement of formation is apparently hard to compute.
Therefore, an important result is an explicit formula for the
entanglement of formation in terms of the so-called concur-
rence, postulated in Ref. [25]. There, the concurrence was
defined in terms of the eigenstates of a matrix acting in the
Hilbert space of two qubits. This matrix is composed of the
product of the density matrix of the given mixed state and its
involuted counterpart, with the involution that comes from the
antilinear operator acting in the Hilbert space of a single qubit
that represents the time-reversal symmetry. The formula for
the entanglement of formation in terms of the concurrence has
been proven there, for a particular case of the density matrices
with at least two zero eigenvalues. The proof was extended to
a general mixed state of two qubits in Ref. [26].

The calculation of concurrence is related to a time-reversal
operation. For qubits, which are pseudospins, this corresponds
to a “spin flip.” The concurrence is defined in terms of how
similar is a state to its time-reversed, or spin-flipped, counter-
part. For example, |00〉〈00| is a product state. Its spin-flipped
counterpart is |11〉〈11|. The similarity between the two states
is quantified by the absolute value of their inner product,
namely, |〈11|00〉| = 0, which is consistent with the zero en-
tanglement of the state |00〉. If one does the same procedure
for a maximally entangled state, say, |
+〉〈
+|, one notices
that its spin-flipped counterpart is the same, thus yielding the
maximal similarity |〈
+|
+〉| = 1. For a mixed state, the
concurrence is defined as

C ≡ max{0, C̃}, (14)

which is either zero or a quantity called “naive” concurrence
C̃. The naive concurrence is given as

C̃ ≡ λ1 − λ2 − λ3 − λ4, (15)

where λ1 � λ2 � λ3 � λ4 are square roots of the eigenvalues
of ρρ̃. Here, ρ̃ ≡ σ

y
Aσ

y
Bρ∗σ y

Aσ
y
B is a spin-flipped counterpart of

ρ. The multiplication of ρ with ρ̃ and calculating its eigenval-
ues quantifies the similarity between ρ and ρ̃. By combining
with signs in a special way as given in Eq. (15), it is known
that the concurrence defined as Eq. (14) indeed is a measure
of the entanglement of formation [26].
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FIG. 1. The concurrence Cn(t ), as given by Eq. (16), when there
are n photons in the initial state. The gray solid lines shown on the
photon-number-concurrence planes represent the maximal concur-
rence, as given by Eq. (18).

We denote the concurrence as Cn ≡ Cn(t ) for the state
|ψn(t )〉 = Ug(t )|00; n〉 with n � 0. We get

Cn =
{

0 (n = 0)
max

{
0, ρ
+

n − 2
√

ρ00
n ρ11

n

}
(n � 1),

(16)

where ρμ
n ≡ ρμ

n (t ) ≡ 〈μ|ρn(t )|μ〉 is the population of a two-
qubit state |μ〉 for μ ∈ {00, 
+, 11}. ρn(t ) is the reduced
density operator of the qubits, which is defined as Eq. (13)
with |ψ (t )〉 = |ψn(t )〉. The populations are given as

ρ00
n (t ) = [pn + qn cos(gnt )]2,

ρ
+
n (t ) = qn sin2 (gnt ),

ρ11
n (t ) = pnqn[1 − cos(gnt )]2,

(17)

where pn = (n − 1)/(2n − 1), qn = n/(2n − 1), and gn is de-
fined by Eq. (12).

The maximal concurrence is achieved when there is only
n = 1 photon in the initial state. To see this, we notice that
C1(t ) = sin2(g1t ), which follows from Eqs. (16) and (17).
Similarly, the maximal value achievable for each n can be
derived as

max
t

Cn(t ) =
{

0 (n = 0)
1/n (n � 1), (18)

which shows that the entanglement vanishes as n → ∞. This
is consistent with the results in Sec. V B of Ref. [8]. In
Fig. 1, we plot the concurrence Cn(t ) and its maximal value
maxt Cn(t ) for each initial photon number n. Although the
photon number changes with time, the total number of quanta
is conserved, which is a sum of the number of photons and the
number of excited qubits. In other words, the state of the sys-
tem always belongs to a subspace with n quanta. Thus, each
concurrence has a well-defined period 2π/gn ∼ (

√
ng)−1 =

Tg, which determines the timescale of entanglement genera-
tion in the subspace of n quanta.

Regarding the entanglement generation mechanism, we
note that what creates or eliminates the entanglement is the
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set of two ladder operators, σ+ and σ−. On top of that, what
triggers the action of these ladder operators is an event of
exchanging a quantum with the cavity mode [see Eq. (10)].
Thus, when there is no quantum in the system, such as |00〉|0〉,
no exchange of quanta can occur and no entanglement is
generated.

IV. ENTANGLEMENT GENERATION
BY SUBCYCLE DRIVING, τd � Tg

In this section, we consider entanglement generation by a
short pulse. With τd � Tg, the action of the pulse on the sys-
tem lasts shorter than the timescale of the interaction between
the cavity and the qubits. However, we need to set also a lower
bound on τd . First, there seems to exist a finite lower bound for
the pulse duration that can be realized experimentally. Second,
the pulse will possess a well-defined carrier frequency ω. This
is to prevent exciting other cavity modes and to efficiently
couple the external mode to the cavity mode with the de-
sired frequency. The condition reads �ω � ω, where �ω is
the bandwidth of the pulse. Combining this condition with
the uncertainty relation between time and frequency, namely,
(�ω)−1 < τd (or ∼τd for a Fourier-limited pulse), we get
ω−1 � τd . Using both limits, one arrives at the range of pulse
durations

g/ω � gτd � 1/
√

n. (19)

Again,
√

n is determined by the number of quanta involved in
the dynamics of the state, as in Sec. III.

In this short-pulse regime, the interaction between cavity
mode and the qubits would seem almost frozen during the
pulse. Since only the cavity mode is externally driven, the
qubits can notice the effect of the pulse only through the state
of the cavity mode, which is coupled to the qubits. The higher
the cavity mode–qubit coupling g, the faster can the changes
in the cavity mode affect the qubits. As described in Sec. III,
the interaction speed is roughly proportional to

√
n, where

n is on the same magnitude as the number of quanta in the
state undergoing the dynamics. Thus, if the pulse duration
τd is sufficiently shorter than the interaction timescale Tg =
(
√

ng)−1, then in the leading order we can leave the qubits out
of consideration while the cavity is pumped.

Formally, neglecting the cavity mode–qubit interaction
translates into g → 0. In this case, the total Hamiltonian
in Eq. (4) reduces to H (t ) = He(t ), which is a linearly
driven harmonic oscillator in the rotating frame. Classically,
it has an exact solution obtained by solving the Hamilton
equations. In the original frame it reads

ẋ(t ) = +ωp(t ),

ṗ(t ) = −ωx(t ) − 2� f (t ),
(20)

with the following classical-quantum correspondence: x ↔
a + a†, p ↔ −ia + ia†. Expressing the two real variables
x and p by a single complex variable zω ≡ (x + ip)/2, the
Hamilton equations (20) can be combined as

żω(t ) = −iωzω(t ) − i� f (t ). (21)

In the absence of driving, i.e., � = 0, the system ex-
hibits a harmonic motion, zω(t ) = e−iω(t−t0 )zω(t0), for a given

reference time point t0. In the rotating frame defined by
zω(t ) ≡ e−iωt z(t ), the Hamilton equation for zω(t ) given by
Eq. (21) translates to

ż(t ) = −i� f (t )eiωt .

The solution describes a displacement with an amplitude,

z(t ) − z(t0) = −i�
∫ t

t0

dt ′ f (t ′)eiωt ′
. (22)

Although this result comes from the classical Hamilton equa-
tions [Eqs. (20)], the same expression can be obtained from
a fully quantum-mechanical description, governed by H (t )
in Eq. (4) with g → 0. Even if g is not exactly zero, the
displacement with the amplitude given in Eq. (22) is a good
approximation as long as the pulse is sufficiently shorter
than (

√
ng)−1. In this approximation, the relevant number of

quanta, n, at time t is around the average photon number
|z(t )|2. Thus, self-consistency requires

τd � (
√

ng)−1 ∼ (|z(t )|g)−1

for all relevant times t . We may increase the amplitude z
until gτd � 1/|z| still holds. In order to generate a large am-
plitude with a certain level of accuracy, a sufficiently short
pulse is required. Exactly how small the duration should be
is determined by the pulse shape. If we can understand how
the accuracy depends on the pulse shape, we may be able to
find a pulse shape which generates a large enough amplitude
with a good fidelity, even for a moderately short pulse. In
Sec. IV E, we express the fidelity as a functional of the pulse
shape and utilize it to properly tailor the pulse for mitigating
the error. We expect the error to come from the fact that we
neglected the interaction between the qubits and the cavity.
This is shown in Sec. IV C. The magnitudes of this second-
order and higher-order terms are identified in the following
sections. Generally, these terms occur to be smaller than the
leading-order term. However, they can become essential when
z(t ) converges to zero after the end of the pulse so that the
leading-order term vanishes. We discuss the condition for
such pulses with almost no displacement and generalize the
idea so that one can switch on or off a term with a specific
order. This can be useful since each term has its own signature.
For example, the leading-order term induces a displacement of
the cavity mode and the second-order term induces a rotation
of the qubits.

In this section, we show that the leading-order effect of
the pulse is to create a coherent state in the cavity mode.
Furthermore, we formulate the conditions when this effect can
be turned off by pulse shaping. Then, the second-order term
becomes relevant. It acts only on the state of the qubits. We
demonstrate that by shaping the pulse appropriately one can
select which part of the system is pumped, either the cavity
mode or the qubits. Understanding how the pulse shape con-
trols both the amplitude of the generated coherent state and the
states of the qubits is essential for an experimental realization
of the entanglement generation as well as other phenomena
including the collapse and revival of the qubits observables
[37] and the existence of the “attractor” state [13,38].
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−T 0 t Time

U(t,−T )

Ug(0,−T ) Ug(t, 0)U(t)

f0(t)

f (t)

FIG. 2. The interaction picture for a pulsed driving.

A. Interaction picture for the pulse

In order to describe the effect of the pulse, we switch
to a variant of the interaction picture. This is done as fol-
lows. In the absence of external driving, i.e., � = 0, the
Hamiltonian, Eq. (4), becomes time independent: H (t ) = Hg.
The time evolution from the initial time −T to t ∈ [−T, T ]
can be described by the total time-evolution operator

U (t,−T ) = Ug(t,−T ) = Ug(t, 0)Ug(0,−T ),

where U (t,−T ) and Ug(t, t ′) ≡ Ug(t − t ′) ≡ exp[−iHg(t −
t ′)/h̄] are the time-evolution operators generated by H (t ) and
Hg, respectively. In the presence of an external pulse, i.e.,
� > 0, centered at time t = 0, we define a time-evolution
operator U :

U (t,−T ) ≡ Ug(t, 0)U (t ; 0,−T )Ug(0,−T ). (23)

The time-evolution operator U accounts for the effect of
the pulse. For brevity, we denote U (t ; 0,−T ) as U (t ). A
schematic diagram of the interaction picture is shown in
Fig. 2. U (t ) satisfies

U̇ (t ) = − i

h̄
HI (t )U (t ). (24)

Here HI (t ) is the Hamiltonian in the interaction picture:

HI (t ) = U †
g (t )[H (t ) − Hg]Ug(t )

= h̄�H̃I (t ),
(25)

with

H̃I (t ) = f (t )U †
g (t ) xω(t )Ug(t ). (26)

Since H̃I (t ) is proportional to the pulse shape f (t ), it impacts
the evolution of the system only for a short duration of time,
τd . If the pulse is sufficiently shorter than the cavity-qubits
timescale, i.e., τd � Tg, then Ug(t ) in Eq. (26) essentially
remains identity during the interaction with the pulse, so that
H̃I (t ) � f (t )xω(t ). Formally, this can be seen by using the
identity of Campbell [39],

eXYe−X = Y + [X,Y ] + 1
2 [X, [X,Y ]] + . . . , (27)

to expand H̃I (t ) in powers of gτd ,

H̃I (u) = (gτd )0 f (u)xω(u) + (gτd )1 f (u)u[iH̃g, xω(u)]

+ O[(gτd )2], (28)

where H̃g ≡ Hg/h̄g and u ≡ t/τd .

B. Leading-order effect: Displacement of the cavity mode

The solution of Eq. (24) can be expressed in terms of the
Magnus expansion [40],

U (t ) ≡ exp [−iAI (t )], (29a)

AI (t ) =
∞∑

m=1

A(m)
I (t ). (29b)

Each term A(m)
I (t ) in the expansion (29b) is an m-fold integral

of a product of m Hamiltonians HI . For example, the first two
terms are given as

A(1)
I (t ) = 1

h̄

∫ t

−T
dt ′HI (t ′),

A(2)
I (t ) = − i

2h̄2

∫ t

−T
dt ′

∫ t ′

−T
dt ′′ [HI (t ′), HI (t ′′)].

The expression for A(m)
I (t ) for any m � 2 is given as Eq. (B3)

in Appendix B. The expansion is known to absolutely con-
verge [41,42] if HI (t ) is bounded and∫ t

−T
dt ′

∥∥∥∥− i

h̄
HI (t ′)

∥∥∥∥
2

< π, (31)

where ‖O‖2 ≡ max〈ψ |ψ〉=1 〈ψ |O†O|ψ〉1/2 denotes the 2-norm
of an operator O. This is a sufficient condition for the conver-
gence, implying that the series may still converge even if the
integral in Eq. (31) exceeds π . Note that ‖U †OU‖2 = ‖O‖2

for any unitary operator U , i.e., the 2-norm is invariant under
unitary transformations. Using this invariance and substituting
u ≡ t/τd , the convergence condition, Eq. (31), reads

�τd

∫ t/τd

−Tu

du | f (u)|‖x‖2 < π. (32)

Although a and a† are not bounded in the whole Fock space,
they are bounded in the n-quanta subspace. As long as the
state belongs to at most a composite space of one or more
n-quanta subspaces, the operator x = a + a† is bounded and
on the order of

√
n, where n can be thought of as an average

number of quanta in the system. Then the convergence condi-
tion, Eq. (32), reads

O[
√

n�τd ] < π, (33)

implying that for a sufficiently small
√

n�τd , the Magnus
expansion Eq. (29) would converge and thus an approximate
expression can be obtained by considering the leading terms
of the expansion.

The exponent AI (t ) of U is expanded in powers of �τd

so that

A(m)
I (t ) ≡ (�τd )mÃ(m)

I (t ) (34a)

= O[(
√

n�τd )m] (34b)
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for each m � 1. For brevity, let us denote �̃n ≡ √
n�τd . We

then get

A(m)
I (t ) = O[(�̃n)m]. (35)

The factor
√

n in Eq. (34b) comes from the fact that the
total degree of Ã(m)

I (t ) is m in a and a†, whose matrix ele-
ments in the subspace of n quanta are on the order of

√
n.

A derivation of Eq. (34) is presented in Appendix B. When
�̃n ≡ √

n�τd � 1, the leading-order term is A(1)
I (t ), which

can be written in terms of

Ã(1)
I (t ) =

∫ t/τd

−T/τd

duH̃I (u).

In order to see the dominant effect of a short pulse such that
τd/Tg = √

ngτd ≡ g̃n � 1, we substitute H̃I (u) with Eq. (28)
and take the leading-order term in gτd . We get then

Ã(1)
I (t ) = Ã(1,0)

I (t ) + O(gτd ), (36)

where

Ã(1,0)
I (t ) ≡ A(1,0)

I (t )/(�τd )

= s1(t ) a + s∗
1(t ) a†,

(37)

with

s1(t ) =
∫ t/τd

−T/τd

du f (u)e−iωτd u. (38)

After the pulse, i.e., when t � τd , and with T satisfying
Eq. (7), s1(t ) becomes

s1 � f̂ (ωτd ), (39)

where f̂ (k) ≡ ∫ ∞
−∞ du f (u)e−iku is the Fourier transform of

f (u). By controlling the central frequency component of the
pulse, one can make s(t ) either zero or nonzero for t � τd .

In our case, the pulse consists of a central frequency ω and
an envelope f0(t ) with the carrier-envelope phase φ, as written
in Eq. (8). Thus, the Fourier component of f (u) at ωτd can be
expressed as

f̂ (ωτd ) = 1
2 eiφ f̂0(0) + 1

2 e−iφ f̂0(2ωτd ), (40)

where f̂0(k) is the Fourier transform of the envelope function
f0(u). Note that f0(u) is defined in the scaled time domain
u ≡ t/τd , with duration τd/τd = 1. Thus, the width of f̂0(k)
in the Fourier domain is also on the order of 1. If one con-
siders a pulse with a well-defined carrier frequency, we get
ωτd � 1, in line with Eq. (19). In this regime, f̂0(2ωτd ) in
Eq. (40) almost vanishes, so that the functional s1 can be
approximated as

s1 � 1
2 eiφ f̂0(0). (41)

From Eqs. (29), (34), and (36), we get the leading-order term
of U ,

U (t ) = exp[−iAI (t )] (42a)

� exp[−iA(1)
I (t )] (42b)

� exp[−iA(1,0)
I (t )] (42c)

≡ U1(t ), (42d)

where the second line holds for
√

n�τd � 1 and the third line
for

√
ngτd � 1. The U1(t ) denotes the leading-order term.

From Eq. (37), one can show that the leading term U1 is a
displacement operator,

U1(t ) = D[z(t )],

where the complex amplitude of the displacement can be
written as

z(t ) = −i�τd s∗
1(t ). (43)

The phase, or direction, of the displacement can be controlled
by the carrier-envelope offset phase φ, as can be seen from
Eq. (41).

If z(t ) � 0 after the pulse, i.e., t � τd , the leading-order
term U1 has only a transient modulation during the pulse. In
order to drive the cavity mode into a coherent state with a
nonzero amplitude z after the pulse, a pulse with s1(t ) �= 0
for t � τd is required. With the asymptotic expression for
s1 given by Eq. (41), this requires an envelope f0(t ) such
that f̂0(0) = ∫ ∞

−∞ dt f0(t ) �= 0. For example, a Gaussian shape
fHG,0(t ) can be used. The concurrence induced by a subcycle
pulse with such a shape is shown in Fig. 3.

Depending on the pulse area �τd , characteristics of the
time-dependent concurrence vary. For example, for a small
pulse area, i.e., �τd � 1, the average number of quanta
pumped into the cavity, which is given by |z(T )|2, is much
smaller than one. Thus, the concurrence is dominated by
the interference between states belonging to few-quanta sub-
spaces. This can be seen in Fig. 3(a). When �τd ∼ 1 such that
the generated coherent state has an average photon number of
around one, i.e., |z|2 ∼ 1, a value of concurrence larger than
0.75 can be achieved, which is shown in Fig. 3(b). This is con-
sistent with the case of a Fock state where the single-photon
state allows to achieve maximal entanglement. When many
photons are pumped into the cavity mode, so that |z|2 � 1,
a smooth oscillation of concurrence appears, as shown in
Fig. 3(c). This is consistent with the concurrence generated
by a strong coherent state [13,14].

We note that the driving strengths � used in Figs. 3(b)
and 3(c) may not be small enough to satisfy the convergence
condition, Eq. (33) for the Magnus expansion in Eq. (29b).
Still, the analytical results shown in Figs. 3(b) and 3(c), which
are based only on the leading term in gτd of the first term
of the Magnus expansion, determined by Eqs. (37) and (42d)
and corresponding to the so-called impulsive approximation
[43], seem to agree well with the numerical results. In the
following section, we account for the agreement by two steps.
First, we observe that if we work in a “deeper” interaction
picture generated by U1, the corresponding Magnus expansion
converges for the parameters used in Fig. 3. Second, we derive
the expression for the next-order term from which we find that
the pulse shape in Fig. 3(d) actually makes this term vanish
after the pulse, accounting for the demonstrated accuracy of
the approximation based on U1.

C. The second-order effect: Rotation of the qubits

The propagator U1(t ) is a good approximation of U (t )
when

√
n�τd � 1 and

√
ngτd � 1. Thus, even if the pulse is

short, satisfying the latter condition, if the pulse area
√

n�τd
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FIG. 3. Naive concurrence induced by a subcycle pulse with
different driving strengths �, given by (a) �τd = 0.0531, (b)
�τd = 1.29, and (c) �τd = 8. The pulse duration, envelope, carrier-
envelope phase, and the cavity-qubit coupling are fixed as τd = π/ω,
f0(t ) = fHG,0(t ), φ = 0, and g = 0.05ω, respectively. The black
solid lines (blue dotted lines) represent numerically (analytically)
evaluated naive concurrences. The analytical results are obtained
essentially by approximating the time-evolution operator by a dis-
placement operator, i.e., U (t ) � D[z(t )] based on Eq. (42). The
displacement amplitude z(t ) is given by Eq. (43). (a)–(c) The cor-
responding average photon numbers |z(t )|2 at the end of the pulse
t = T are indicated in each panel. (d) The gray solid line and the
light gray dashed line show the pulse shape f (t ) and its envelope
f0(t ), respectively.

is not small enough, U1(t ) may not be sufficient to describe the
dynamics. This is because the series in Eq. (29b) may diverge
for a large

√
n�τd , in which even the inclusion of high-order

terms may not work.
In order to describe the case where

√
n�τd is not too small,

we generalize the approach of Ref. [43], where the following
decomposition of U is used:

U (t ) ≡ U1(t )U2(t ). (44)

In order to evaluate U2(t ), we find the Hamiltonian which
generates U2(t ). Let us denote the Hamiltonian as HII (t ).
Then the time-evolution operator U2(t ) satisfies U̇2(t ) =
(−i/h̄)HII (t )U2(t ). From Eq. (44), we get the Hamiltonian,

HII (t ) = U †
1 (t )[HI (t ) − H1(t )]U1(t ), (45)

where HI (t ) and H1(t ) are the Hamiltonians generating
U (t ) and U1(t ), respectively. HI (t ) can be evaluated from
Eqs. (25) and (26). H1(t ) can be obtained by differentiat-
ing U1(t ) and using the definition of H1(t ), namely, U̇1(t ) =
(−i/h̄)H1(t )U1(t ). The derivative of U1(t ) can be obtained by
using the Zassenhaus formula [40] or

d

dt
eA(t ) =

∫ 1

0
ds esA(t ) dA

dt
e−sA(t )eA(t ),

which is shown in, e.g., Ref. [44]. We can then get the
Hamiltonian H1(t ) as

H1(t ) = He(t ) − 1
2 〈z(t )|He(t )|z(t )〉, (46)

where |z(t )〉 ≡ D[z(t )]|0〉 is a coherent state with the ampli-
tude z(t ) given as Eq. (43). Inserting Eqs. (25) and (46) into
the expression for HII (t ) in Eq. (45), we get

HII (t ) = H ′
II (t ) + HII,z(t ),

where

H ′
II (t ) ≡ U †

1 (t )[U †
g (t )He(t )Ug(t ) − He(t )]U1(t ), (47a)

HII,z(t ) ≡ 1
2 〈z(t )|He(t )|z(t )〉. (47b)

Since HII,z(t ) is a scalar, it can be subtracted from HII (t ) by
the transformation

U2 ≡ UII,z(t )U ′
2(t ), (48)

with

UII,z(t ) = exp

[
− i

h̄

∫ t

−T
dt ′HII,z(t ′)

]
.

We get then the differential equation

U̇ ′
2(t ) = − i

h̄
H ′

II (t )U ′
2(t ),

whose formal solution is again given by the Magnus
expansion,

U ′
2(t ) ≡ exp[−iA′

II (t )], (49a)

A′
II (t ) =

∞∑
m=1

A′(m)
II (t ). (49b)

However, the order of magnitude of each term is differ-
ent from that of A(m)

I (t ) in Eq. (29b). In Appendix B, we
show that

A′(m)
II (t ) = O[(�̃ng̃n)m]. (50)

It has an additional factor, g̃n ≡ √
ngτd , compared to the

previous case, A(m)
I (t ) = O[(�̃n)m] in Eq. (35). This arises

from a property of H ′
II (t ), given by Eq. (47a), where He(t ) is

subtracted from U †
g (t )He(t )Ug(t ). Applying the identity (27)
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to U †
g (t )He(t )Ug(t ), the Hamiltonian can be expanded as

H̃ ′
II (u) ≡ H ′

II (u)/h̄�

= (gτd )1 f (u)uU †
1 (u)[iH̃g, xω(u)]U1(u) + O[(gτd )2].

(51)

We note that H̃ ′
II (t ) = O[(gτd )1], whereas H̃I (t ) = O[(gτd )0],

as can be seen from Eq. (28).
For �̃ng̃n � 1, the dominant term in the expansion (49b)

is A′(1)
II (t ) [cf. Eq. (50)]. This condition allows us to use a

pulse such that 1 < �̃n � (g̃n)−1 by using a sufficiently short
pulse g̃n � 1. Note that if we use the Magnus expansion in
Eq. (29b) to get the second- and higher-order terms, the pulse
area has to be limited by �̃n � 1 to ensure the expansion
convergence. By shifting to the second interaction picture,
Eq. (48), we can use a pulse with a larger �̃n. This is re-
quired to generate a coherent state with amplitude much larger
than 1 since z(t ) = O[�τd ]. Phenomena such as the collapse
and revival of qubits observables are visible only in this
regime [37].

Using Eq. (51) to evaluate A′(1)
II (t ), we get

A′(1)
II (t ) = A′(1,1)

II (t ) + O
[
�̃ng̃2

n

]
. (52)

The leading term is given as

Ã′(1,1)
II (t ) ≡ A′(1,1)

II (t )/(�τd )(gτd )

= s(1,1)(t )(−iσ−) + s∗
(1,1)(t )(iσ+),

(53)

where

s(1,1)(t ) =
∫ t/τd

−T/τd

du u f (u)e−iωτd u.

Similar to s1 in Eq. (39), when t � τd , s(1,1)(t ) can be approx-
imated as

s(1,1) � i f̂ (1)(ωτd ),

where f̂ (1) ≡ d f̂ /dk is the derivative of the Fourier transform
f̂ of f . In our case, the pulse has a well-defined carrier fre-
quency ω, entering Eq. (8), which means ωτd � 1. Therefore,
the functional can be approximated as

s(1,1) � 1
2 eiφ i f̂ (1)

0 (0), (54)

where f̂ (1)
0 ≡ d f̂0/dk. Note that for any envelope f0(u) with

even parity, f̂ (1)
0 (0) = 0.

From Eqs. (49), (50), and (52), we now get the second
leading-order term as

U ′
2(t ) = exp[−iA′

II (t )] (55a)

� exp[−iA′(1)
II (t )] (55b)

� exp[−iA′(1,1)
II (t )] (55c)

≡ U2(t ), (55d)

where the second line holds for �̃ng̃n � 1 and the third line
for g̃n � 1. The last line defines the second-leading term
U2(t ). With Eq. (53), one can show that U2(t ) is a rotational
operator:

U2(t ) = R[θ (t ); n(t )],

where R[θ ; n] ≡ exp[−iθn · σ/2] for an angle θ , a rotational
axis n of unit length, and σ = (σ x, σ y, σ z ) with σ j ≡ σ

j
A + σ

j
B

for j ∈ {x, y, z}. It rotates the Bloch vector of each qubit. The
angle and the rotational axis are given as

θ (t ) = 2(�τd )(gτd )|s(1,1)(t )|, (56a)

n(t ) = (sin[φ(1,1)(t )],− cos[φ(1,1)(t )], 0), (56b)

for s(1,1)(t ) ≡ |s(1,1)(t )|eiφ(1,1) (t ).
In order to have a nonzero rotation after the pulse, i.e.,

θ (t ) �= 0 for t � τd , we need a pulse envelope f0(t ) with
s(1,1)(t ) �= 0 for t � τd , as follows from Eq. (56). Using
Eq. (54), the condition reads i f̂ (1)

0 (0) = ∫ ∞
−∞ du u f0(u) �= 0.

Thus, if the pulse envelope is even, the rotational angle essen-
tially vanishes. If we use an odd envelope, a nonzero rotation
is possible. In this case, the leading-order contribution U1 is
turned off after the pulse since s1(t ) � 0 for t � τd . This can
be viewed as an instance of a catalytic process in that the
cavity mode functions as a catalyst since it returns to the initial
state after interacting with the pulse while inducing changes in
the qubits state. This is just an opposite case of, e.g., Ref. [45],
where a qubit acts as a catalyst to alter the state of the cavity
mode. The concurrence induced by a subcycle pulse with an
odd envelope is shown in Fig. 4. Comparing Fig. 4 with Fig. 3,
the cavity-qubit coupling g, the normalized pulse duration gτd ,
and the pulse area �τd are the same in both figures. The only
difference is the shape of the pulse envelope f0(t ), resulting in
qualitatively distinct dynamics of the concurrence.

A stronger driving results in an increased angle of rotation.
An angle larger than π/2 is achieved in Fig. 4(b). There, the
numerical result shows that there is an additional effect of the
pulse on top of the displacement U1 = D[z] and the rotation
U2 = R[θ, n]. Those additional corrections can be attributed
to higher-order terms which are treated in the following
section.

We note that neither U1 nor U2 generates any entangle-
ment, since they are local unitary transformations. Thus, for
U � U1U2, the concurrence remains essentially zero during
the interaction between the system and the driving pulse.
However, both operations can pump the system to have excita-
tions: U1 pumps photons to the cavity mode and U2 can excite
each qubit. The entanglement builds up when the excitations
pumped by the pulse are exchanged between the cavity mode
and each qubit. This process is induced by the free propaga-
tion Ug, which is why the concurrence starts to grow after the
pulse.

D. Higher-order effects: Conditional displacement and rotation
around the z axis

The first two leading-order effects are identified as a dis-
placement of the cavity mode and a rotation of the qubits. One
may describe the effect of the pulse approximately with these
two operations. However, there are higher-order terms which
do not vanish in general. Understanding the higher-order
terms might help to find other possible types of operations
apart from the displacement or the rotation.

As an example, we present two quadratic terms in gτd .
They can be found by expanding the exponent A′

II (t ),
Eq. (49b), in the orders of �τd and gτd . There are only two
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FIG. 4. Same as Fig. 3, except that the pulse envelope is given
by f0(t ) = fHG,1(t ) and the driving strength � is given by (a) �τd =
2.05 and (b) �τd = 4.1. The analytical solution is based on the ap-
proximation U (t ) � D[z(t )]R[θ (t ); n(t )], i.e., including the terms up
to the second order. The expressions for the displacement amplitude
z(t ), the rotational angle θ (t ), and the rotational axis n(t ) are given
by Eqs. (43), (56a), and (56b), respectively. For the given envelope,
the displacement amplitude almost vanishes after the pulse, i.e., at
t = T . The rotational angle at the end of the pulse, θ (T ), is indicated
in (a) and (b).

such terms, A′(1,2)
II (t ) and A′(2,2)

II (t ), which are quadratic in gτd .
The first term A′(1,2)

II (t ) generates a conditional displacement
where the direction to which the cavity mode is displaced
depends on the state of the qubits. To be explicit,

Ã′(1,2)
II (t ) ≡ A′(1,2)

II (t )/(�τd )(gτd )2

= σ z[s(1,2)(t )a + s∗
(1,2)(t )a†].

The functional s(1,2)(t ) modulates the displacement amplitude
and is given as

s(1,2)(t ) =
∫ t/τd

−T/τd

du
u2

2!
f (u)e−iωτd u.

The second term A′(2,2)
II (t ) represents a rotation of qubits

around the z axis:

Ã′(2,2)
II (t ) ≡ A′(2,2)

II (t )/(�τd )2(gτd )2

= σ z[s(2,2)(t ) + s∗
(2,2)(t )].

The functional s(2,2)(t ) determines the corresponding angle of
rotation and can be written as

s(2,2)(t ) = s(2,2),1(t ) + s(2,2),2(t ),

where

s(2,2),1(t ) =
∫ t/τd

−T/τd

du
u2

2!
f (u)(−i)s∗

1(u)e−iωτd u,

s(2,2),2(t ) =
∫ t/τd

−T/τd

du
u

1!
f (u)(−i)s∗

(1,1)(u)e−iωτd u,

originate from the first and the second Magnus terms gener-
ated by H ′

II (t ), Eq. (49b), respectively.

E. Towards exact operation

Another advantage of identifying the higher-order terms is
improvement of the accuracy of a given operation. One can
enhance the accuracy of an operation by eliminating irrelevant
terms. This can be done by searching a set of the driving
parameters, including the pulse shape, which makes those
terms vanish.

As an example, let us discuss how to obtain a displace-
ment with a given amplitude z0 with a certain accuracy.
From the displacement amplitude z(t ) given by Eq. (43) we
require that at the end of the operation, t = T , the ampli-
tude of the displacement reaches the desired value z0, i.e.,
z(T ) = z0. One can indeed find parameters satisfying this
requirement. For T � τd and ωτd � 1, being valid in the
considered regime, we can use Eq. (41). By selecting a pulse
shape such that f̂ (0) > 0, we obtain

�τd � 2|z0|/ f̂0(0), (57a)

φ � −φ0 − π/2, (57b)

where z0 ≡ |z0|eiφ0 .
The error in the resulting operation with respect to the

displacement determined by Eq. (57a) can be estimated in
terms of the normalized pulse duration gτd . One can show that
as gτd → 0 the error becomes arbitrarily small. In practice, the
pulse cannot be infinitesimally short but has a finite duration.
For a given finite pulse duration, what is important is the order
of the error in terms of gτd . In order to quantify the error,
we use the state fidelity, comparing the target state with the
actual state. Starting from the ground state |ψ (−T )〉 = |00; 0〉
of the system at time t = −T , the pulse finishes displacing
the cavity mode by z(T ) = z0 at time t = T . In the interac-
tion picture defined by Eq. (23), the target state, denoted as
|ψ0〉 = |00; z0〉 ≡ |00〉|z0〉, is a displaced ground state, where
|z0〉 ≡ D[z0]|0〉 is a coherent state. The state fidelity F is
defined as the probability of measuring the target state from
the actual state of the system |ψ (T )〉 ≡ U (T )|ψ (−T )〉:

F = |〈ψ0|ψ (T )〉|2.
Using Eq. (44) with Eq. (48) and identifying U1(T ) =
D[z(T )] = D[z0], the fidelity can be written as

F = |〈00; 0|U ′
2(T )|00; 0〉|2. (58)

The leading-order term, which is the displacement, cancels
out the displacement of the target state and what is left is
U ′

2(T ). Thus, the dominant error term for the displacement
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operation is determined by the leading term of U ′
2(T ), which

is A′(1,1)
II (T ). For a fixed �τd as given in Eq. (57a), the order

of magnitude of the error term is

A′(1,1)
II (T ) = O[(gτd )].

Note that A′(1,1)
II (T ) is the only term that is linear in gτd

in the exponent A′
II (T ) of U ′

2(T ). Let us denote A′(:,1)
II (T ) =

A′(1,1)
II (T ), where “:” in the superscript implies “all” orders

of �τd for the given order of gτd which is 1 in this case.
Expanding U ′

2(T ) with respect to gτd , we arrive at

F = 1 − (gτd )2Var
[
Ã′(:,1)

II (T )
] + O[(gτd )3],

where Ã′(:,1)
II (t ) ≡ A′(:,1)

II (t )/(gτd ) = Ã′(1,1)
II (t ) and the variance

is evaluated with respect to the initial state |ψ (−T )〉 =
|00; 0〉. In general, especially for a pulse envelope without
definite parity, Ã′(1,1)

II (T ) is nonzero, as can be seen from
Eq. (53). An example of such a pulse envelope is f0(t ) =
(1/

√
2) fHG,0(t ) + (1/

√
2) fHG,1(t ). However, when the pulse

envelope has an even parity, e.g., f0(t ) = fHG,0(t ), then the
leading error term, Ã′(1,1)

II (T ), almost vanishes, which can be
seen from Eqs. (53) and (54). Since the linear term in gτd is
almost zero, the error is dominated by quadratic terms. As
shown in Sec. IV D, there are two quadratic terms in gτd .
Denoting their sum as

A′(:,2)
II (t ) = A′(1,2)

II (t ) + A′(2,2)
II (t )

≡ (gτd )2Ã′(:,2)
II (t ),

the fidelity can be written as

F = 1 − (gτd )4Var
[
Ã′(:,2)

II (T )
] + O[(gτd )5].

In Fig. 5, we show the fidelity for z0 = −0.05i and for two
exemplary shapes of the pulse envelope f0(t ). For both pulse
shapes, the error converges to zero as the pulse duration be-
comes shorter. For f0(t ) = fHG,0(t ) the convergence rate is
higher. In this case the leading term A′(1,1)

II (T ) of the error is
suppressed since the functional s(1,1)(T ) in Eq. (53) almost
vanishes. A higher convergence rate implies that for a given
requirement on the fidelity a longer pulse can be utilized. This
is more desirable for experimental realization, because too
short pulses can be problematic both in terms the generation
and avoiding certain types of operation errors, as mentioned
in the beginning of this section. One may go beyond the
presented convergence rate by eliminating even higher-order
error terms A′(:,k)

II (T ) for k � 2, through the pulse shaping. By
this method, one may systematically increase the convergence
rate to the extent that a desired operation with a required
fidelity can be implemented based on a pulse of available
duration.

V. ENTANGLEMENT GENERATION BY QUASISTATIC
DRIVING, τd � Tg

We consider a quasistatic driving where the duration τd of
the external driving is longer than the characteristic timescale
of the system, Tg. We first assume that the envelope function
is constant, i.e., f0(t ) = 1. For a fixed driving amplitude �,
we describe the ground state of the Hamiltonian. Then, we
increase the driving strength adiabatically from zero to a finite
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Analytical, F � 1 − a4(gτd)
4, a4 = Var[Ã

′(:,2)
II (T )]

FIG. 5. State fidelity for a displacement operation D[z0] with
z0 = −0.05i, implemented by a subcycle pulse. The blue solid line
with circles (blue dashed line) indicates numerically (analytically)
evaluated fidelity for an envelope shown in inset (a). Likewise, the
orange solid line with crosses (orange dotted line) represents nu-
merically (analytically) evaluated fidelity for an envelope shown in
inset (b).

value, so that the system remains in the ground state corre-
sponding to the instantaneous value of the driving strength at
each time moment.

For this quasistatic driving, we set φ = 0 and f0(t ) = 1 in
Eq. (8). Notice that, under RWA, a nonzero φ would corre-
spond to a rotation of both the state of the cavity mode in its
phase space and the state of the qubits, by the same angle φ.
Thus, we have f (t ) = cos (ωt ) = (1/2)(e−iωt + eiωt ). Using
this in Eq. (5) and applying the RWA, we get

HRWA
e = h̄� 1

2 (a + a†).

Note that for the RWA to hold, the driving strength � should
be small enough with respect to the driving frequency ω. The
total Hamiltonian given in Eq. (4) becomes time independent:

HRWA = Hg + HRWA
e . (59)

The ground state of HRWA is known for an arbitrary number of
qubits [46]. It is normalizable when � < Ng, where N is the
number of qubits. Let us denote the state vector corresponding
to the ground state as |E0; r〉 with energy E0. One can show
that the ground state is given by a product state of the rotated
qubits and a squeezed state of the cavity mode, with the
ground-state energy E0 = 0. For our two-qubit case (N = 2),
it can be written as

|E0; r〉 = |θrθr〉|r〉,
where

|θrθr〉 ≡ R[θr ; ey]|00〉 (60)
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FIG. 6. (a) The relation between the squeezing parameter r of
the cavity mode and the rotational angle θr for the qubits. (b) The
naive concurrence C̃(t ) versus the squeezing parameter r and time t .
(c) Naive concurrence maximized with respect to time for each given
squeezing r.

and R[θr ; ey] rotates the qubits by an angle θr around the y
axis. The angle depends on the driving strength �, as deter-
mined by the relation

sin θr = �

Ng
= �

2g
,

where 0 � θ < π/2 for � < Ng = 2g. The cavity mode is
squeezed,

|r〉 ≡ S(r)|0〉,
where S(r) = exp[(r/2)(a†)2 − (r/2)a2)] is the squeezing
operator with r � 0 being the squeezing parameter. The av-
erage photon number of |r〉 is

n̄γ ≡ 〈a†a〉 = sinh2 r.

The rotational angle is connected to the squeezing
parameter by

cos θr = e−2r, (61)

where 0 � r < ∞. Figure 6(a) illustrates the relation between
r and θr . The average number of excited qubits is given as

n̄q ≡
N∑

j=1

〈σ+
j σ−

j 〉 = N sin2(θr/2),

where N = 2 is the number of qubits and the average is taken
with respect to the rotated state, Eq. (60). The total average
excitation number n̄ is defined as the sum of the average
number of photons and that of the excited qubits:

n̄ = n̄γ + n̄q.

By turning off the external driving at time t = 0, we mean
� = 2g sin θr → 0 instantaneously. Then the system starts to
evolve with the initial condition |ψ (0)〉 = |E0; r〉 and with
the Hamiltonian H (t ) = Hg since � = 0. The concurrence
evolves accordingly for t � 0, which is shown in Fig. 6(b).
In order to find the squeezing parameter with the maximal
entanglement of formation, we evaluate the naive concurrence
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FIG. 7. Same as Fig. 6, except that the rotational angle is zero for
all values of the squeezing parameter r.

C̃(t ) maximized with respect to time, i.e., maxt C̃(t ), which
is shown in Fig. 6(c). The maximization is done for the time
range presented in Fig. 6(b). The maximal concurrence occurs
for r = 0.899 corresponding to the average photon num-
ber n̄γ = 1.05, average number of excited qubits n̄q = 0.83,
and the average total excitation number n̄ = 1.89. For larger
squeezing, the maximal concurrence decreases. Note that the
rotational angle converges to π/2 as r → ∞.

To see the pure effect of the squeezed state on the genera-
tion of entanglement, one may rotate the qubits back to their
ground states while keeping the squeezing of the cavity mode.
For the rotations, one may address the qubits directly, by shin-
ing a laser along a direction perpendicular to the axis of the
cavity. If it is not feasible to access the qubits directly, one can
still rotate them by driving the cavity mode. In order to achieve
this, one may drive the cavity mode with a specific pulse
shape that satisfies z(T ) = 0, in order to avoid displacement
of the cavity mode but still to induce the required rotation of
the qubits, facilitated by the second-order term discussed in
Sec. IV C. An example of such a pulse shape can be found in
Fig. 4(c).

In Fig. 7(b), we show the naive concurrence induced purely
by a squeezed state, without any rotation, i.e., θr = 0, as
shown in Fig. 7(a). We notice that the naive concurrence can
be negative when the rotation is involved as can be seen in
Fig. 6(b), whereas, when the rotation is subtracted out re-
sulting in a pure squeezed state, the naive concurrence stays
always nonnegative.

Another difference concerns the value of the squeezing
parameter r which maximizes the concurrence. As can be
seen from Fig. 7, the concurrence reaches its maximum at
r = 1.11, which corresponds to the average photon number
n̄γ = 1.84. The rotation shifts the optimal squeezing parame-
ter r and the corresponding average photon number. Without
rotation, a higher average photon number is required to get the
maximal concurrence. This difference in the average photon
number is compensated by the pumping of quanta through the
rotation (see Fig. 8). In order to generate a maximal concur-
rence, what matters most is the total number of excitations in
the system, including both the photons and the excitations of
the qubit system.
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FIG. 8. Naive concurrence maximized with respect to time
versus the average total excitation number. The black solid line with
circles denotes the case where the rotation is accompanied by the
squeezing, whereas the blue dashed line represents the case where
no rotation is involved.

We finish this section by considering two limits. The first
is the low-excitation limit, n̄ � 1. In Fig. 9(a), we show
the time-dependent naive concurrence in the low-squeezing
regime, where r = 0.0492 corresponding to n̄ = 0.0962 with
rotation and n̄ = 0.00243 without rotation. We see that when
there is no rotation, an oscillation with a well-defined period
is present. The reason is that in this limit the initial state
consists of |00; 0〉 and a small amount of |00; 2〉. The former
has no time dependence. The latter belongs to the two-quanta
subspace and is essentially the only contribution to the time
dependence in this regime. When the rotation enters, however,
the oscillation of the concurrence has multiple frequencies, as
can be seen in Fig. 9(a), indicated by the black solid line.
This can be understood as a consequence of an additional
interference with another state with a single quantum, namely,
|
+; 0〉, introduced by the rotation of |00; 0〉.
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FIG. 9. Comparison of the naive concurrence with and without
the rotation. The squeezing parameters are shown in each panel. The
black solid lines represent the inducing of concurrence by a squeezed
state with no rotation. The blue dashed lines represent the naive
concurrence from a squeezed and rotated state with the rotational
angle θr given as Eq. (61).

We next turn to the opposite regime, where the excitation
number is much higher than 1. One example is shown in
Fig. 9(b), where the squeezing parameter is r = 3.15. The
corresponding average total excitation number with rotation
is n̄ = 137 and that without rotation is n̄ = 136. After some
time passes, the naive concurrence in both cases shows com-
plicated fluctuations. When the rotation is not subtracted, the
naive concurrence fluctuates around an average value close to
zero, whereas when the initial state is purely a squeezed state
with the rotation removed, the system can maintain positive
entanglement of formation for longer duration.

VI. DISCUSSION

Let us discuss the relevant parameters for experimental
realization of the presented results. First, since the theory
employs the RWA for the coupling between each qubit and the
cavity mode, the coupling strength should be small compared
to the frequency of the cavity mode and the qubits, i.e., g � ω.
Second, for the subcycle, or sub-Rabi, driving, we require
gτd � 1, which follows from τd � Tg = (

√
ng)−1. For the

efficient coupling of the external field to the cavity mode,
without affecting much the other modes, the pulse needs to
have a well-defined carrier frequency which is resonant with
the frequency of the cavity mode. From this condition, we
require ωτd � 1, which follows from Tω ≡ 2π/ω � τd . All
the conditions can be summarized by Eq. (19). As long as the
cavity-qubit coupling g, the mode frequency ω, and the pulse
duration τd satisfy this condition, one can test the demon-
strated results. To have a concrete example, we consider a
quantum dot in a photonic crystal [31], where the resonant
frequency corresponds to a wavelength λ = 928 nm and the
cavity-qubit coupling g/2π = 16 GHz. This imposes a condi-
tion on the pulse duration as

Tω ≡ 2π/ω ∼ 3 fs � τd � 55 ps/
√

n ∼ 2π/(
√

ng).

For the low-excitation limit, where n ∼ 1, we get τd � 55 ps.
If one selects τd = 5.5 ps, it corresponds to gτd ∼ 0.6, which
is used in our calculations, e.g., in Fig. 5. Another physical
system where this model can be tested consists of supercon-
ducting qubits coupled to a common resonator. Experiments
have been realized at few-qubit [32] and many-qubit [33]
limits. An important issue to ensure is that the decay rate of
each qubit and the cavity should be sufficiently lower than
the cavity-qubit coupling g, in order to observe a coherent
dynamics of concurrence on a timescale longer than Tg. A col-
lection of experimentally realized cavity parameters including
the cavity-qubit coupling strength and the decay rates for the
qubits and the cavity can be found in Ref. [47].

Next, we discuss a potential multiqubit generalization of
the presented results. We expect that the form of the leading-
order term U1, which is a displacement operator of the cavity
mode, as well as that of the second-order term U2, which
is a rotational operator for qubits, would remain the same.
The only modification of the model would be the definition
of σ±, from Eq. (3) to

∑N−1
j=0 σ±

j , where N is the number
of qubits. Thus, the subcycle pulse would be able to drive
the initial ground state to a product state of a coherent state
of the cavity mode and the rotated qubits, where the only
difference is the total number of qubits. The reduced density
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operator for a pair of qubits can be obtained by tracing out
the cavity mode and the other N − 2 qubits. The two-qubit
reduced density operator would in general represent a mixed
state. How the concurrence would be affected by the presence
of the other qubits is a question of immediate interest that can
be investigated in the near future. The two-qubit entanglement
is expected to vanish as the total number of qubits in the sys-
tem increases and approaches the thermodynamic limit, where
the number of qubits goes to infinity. This is at least partly
because the interaction in the system is nonlocal in the sense
that a single cavity mode is connected to all qubits. Thus, if an
entanglement between qubits is generated, its structure should
be also nonlocal. Entangling only a subset of qubits is unlikely
due to the qubit exchange symmetry for all involved qubits.
For this reason, looking at only two qubits by tracing out the
other N − 2 qubits and the cavity mode would barely capture
such nonlocal entanglement.

To understand the entanglement structure that may not be
captured by the two-qubit concurrence, another entanglement
measure is required. For a three-qubit pure state, there are
at least two inequivalent measures which can be used to for-
mulate a necessary and at the same time sufficient condition
for the entanglement [48]. Generalizing these entanglement
measures to the case of mixed states seems to be a challenging
task. However, a set of efficient estimators for both the lower
and the upper bound of a mixed-state entanglement has
been proposed and experimentally demonstrated [49]. Other
approaches to understand the multiqubit entanglement include
the spectroscopic spin squeezing [50,51] and the quantum
Fisher information [14,52], which provide sufficient condi-
tions for a given state to be entangled. To study the multiqubit
system in more detail, information scrambling among qubits
can be studied using the tripartite mutual information [53].
The concept of information lattice, which is a hierarchy of
local information from the smallest subsystem to that from
the largest, may also be an interesting alternative way to
characterize the nonlocal entanglement [54]. It is expected
that the entanglement structure which is hard to capture by the
two-qubit concurrence may be revealed by the information
lattice.

VII. CONCLUSIONS

We have considered the generation of entanglement be-
tween two qubits by using a classical light source and a quan-
tized cavity mode. We have shown how two qubits can be en-
tangled by exchanging quanta with a third party which in our
case is the cavity mode. Quanta can be pumped into the system
through an external driving by a classical light source coupled
to the cavity mode, with no direct driving of the qubits. The
quanta exchange timescale Tg = (

√
ng)−1 is identified. With

respect to this characteristic timescale of the cavity-qubits
system, we considered two regimes of the external driving.

We first discussed the subcycle driving, where it is per-
formed by a pulse with duration shorter than the characteristic
timescale of the system, Tg. We showed that the leading-order
effect of a pulsed driving is a displacement of the cavity
mode, which can be expected since the cavity mode is directly
coupled to the pulse. We further showed that by shaping the
pulse, one can also rotate the qubits, and if desired, one can

let the cavity remain intact after the passage of the pulse. The
entanglement generation for each type of the pulse shape was
demonstrated, showing good agreement with exact results. We
showed that the error for the displacement operation can be set
arbitrarily small by choosing a sufficiently small gτd , which
represents the shortness of the pulse duration with respect to
Tg. The error was estimated by identifying the convergence
rate. Furthermore, enhancing the convergence rate by shaping
the pulse was demonstrated, indicating how to perform a
desired operation with a given fidelity. Higher-order effects
including the phase shift of the qubits and the displacement of
the cavity mode conditional to the qubits state are found.

As the opposite regime of the driving, we discussed a
quasistatic driving where its duration is much longer than
Tg. We considered a continuous-wave driving with the driv-
ing amplitude such that there exists a normalizable ground
state in the rotating frame. In this regime, the ground state
is a squeezed state with rotated qubits. Assuming adiabatic
driving to prepare the ground state with nonzero squeezing,
we studied the entanglement induced by the squeezed and ro-
tated state. We observed a maximal entanglement of formation
when the total number of excitations, which is a sum of the
average photon number and the average number of excited
qubits, is on the order of 1. We compared the result with the
case of pure squeezing where there is no rotation of the qubits
and found that the optimal value of the squeezing parameter
slightly changes. However, the average total number of exci-
tations which generates the maximal entanglement was found
to remain essentially the same.

The studied cavity-qubits system is a useful testbed for
fundamental quantum properties of light-matter interaction
and entanglement. The presented framework enables select-
ing specific operations on the joint cavity-qubits state by an
appropriate pulse shaping of an external classical light. The
set of all possible operations accessible by the subcycle or the
quasistatic driving and how each operation can be activated
or suppressed with prescription for a high fidelity can be used
for a laser-based experimental generation and control of the
entanglement between noninteracting systems.
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APPENDIX A: VALIDITY OF THE RWA FOR
A SHORT PULSE

We check the validity of the usage of the RWA in Eq. (2)
on the coupling between the cavity mode and each qubit. In
Fig. 10, we compare the naive concurrence obtained with
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FIG. 10. The naive concurrence of the two qubits calculated with
different methods. The dashed and solid lines are numerical solu-
tions, respectively with and without the rotating wave approximation
(RWA) between the cavity and each qubit. The dotted line is obtained
by the analytical expression based on U � U1. The cavity mode is
driven by a pulse with duration τd = Tω/45, strength � = 0.225ω,
and shape f (t ) = exp[−(t/τd )2]. The coupling strength between the
cavity mode and each qubit is g = 0.005ω.

and without the RWA. In each calculation, their respective
ground states are used. Note that the ground state under
the RWA is |00; 0〉 which is separable, whereas the ground
state without the RWA is entangled with concurrence on the
order of 10−5. In the full (RWA-free) result, there is a rela-
tively rapid oscillation on top of the longer-scale evolution,
coming from the counter-rotating terms in the Hamiltonian,
which are neglected under the RWA. If the amplitude of the
rapid oscillation becomes comparable to the magnitude of
the naive concurrence, one may not completely ignore the
counter-rotating terms. In the studied cases the value of the
naive concurrence is large enough with respect to the rapid
oscillation, justifying the RWA. For the subcycle driving, we
note that all data presented in this paper do not rely on the
RWA between the cavity mode and the external field, being
consistent with Eq. (5).

APPENDIX B: ORDERS OF MAGNITUDE
OF MAGNUS TERMS

In this section, we derive Eqs. (34) and (50) to obtain
sufficient conditions for the convergence of the Magnus ex-
pansions in Eqs. (29b) and (49b), respectively. For general
discussions on the Magnus expansion, see Ref. [40].

Let us start from the first Magnus expansion, Eq. (34). The
first term of the expansion can be written as

A(1)
I (t ) ≡ (�τd )Ã(1)

I (t ), (B1)

where

Ã(1)
I (t ) =

∫ t/τd

−T/τd

du H̃I (u)

= O[(�τd )0]

(B2)

and H̃I (u) ≡ HI (u)/h̄� is defined in Eq. (25). Any following
term, i.e., A(m)

I (t ) for m > 1, can be written in terms of its
preceding terms, i.e., A(k)

I (t ) for 1 � k < m, as [41]

A(m)
I (t ) = �τd

m−1∑
j=1

Bj

j!

∑
k1+···+k j=m−1

k1�1,...,k j�1

×
∫ t/τd

−T/τd

du ad−iA
(k1 )
I (u)

· · · ad−iA
(k j )

I (u)
H̃I (u). (B3)

Bj for a nonnegative integer j is the Bernoulli number [55,56]
and adXY ≡ [X,Y ] for given operators X and Y . For example,
the second Magnus term is given by

A(2)
I (t ) = �τd

(
−1

2

) ∫ t/τd

−T/τd

du
[ − iA(1)

I (u), H̃I (u)
]
,

with B1 = −1/2.
From Eq. (B3), let us show

A(m)
I (t ) ≡ (�τd )mÃ(m)

I (t )

= O[(�τd )m]
(B4)

for all m � 1, by an induction. This implies Ã(m)
I (t ) =

O[(�τd )0] for all m. Equation (B4) holds for m = 1, which
follows from Eqs. (B1) and (B2). For any m > 1, if Eq. (B4)
holds for all k such that 1 � k < m, we set A(k)

I (t ) ≡
(�τd )kÃ(k)

I (t ) and use adcXY = c adXY for c ∈ C to show
that Eq. (B3) is proportional to (�τd )m. This concludes the
induction for Eq. (B4) to hold for all m � 1.

We then proceed to show

Ã(m)
I (t ) = O[(

√
n)m], (B5)

for all m � 1, where n is the number of excitations in the
state of the system. When the state is in a superposition of
states with different numbers of excitations, n may be set to
the average number of excitations. Each

√
n comes from a

or a†. Equation (B5) holds for m = 1, which follows from
Eq. (B2) and the fact that H̃I (u) is linear in a and a† in its
leading order, as can be seen from Eqs. (28) and (6). Showing
Eq. (B5) for any m > 1 can be done by another induction in
the same manner as we did for deriving Eq. (B4).

Combining Eq. (B4) with Eq. (B5), we obtain Eq. (34).
Similarly, Eq. (50) can be derived by substituting A(k)

I (t ) and
H̃I (u) in Eq. (B3) for A′(k)

II (t ) and H̃ ′
II (t ), respectively, for all

k such that 1 � k � m.
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Vučković, Coherent generation of non-classical light on a chip
via photon-induced tunnelling and blockade, Nat. Phys. 4, 859
(2008).

[32] M. Feng, Y. P. Zhong, T. Liu, L. L. Yan, W. L. Yang, J. Twamley,
and H. Wang, Exploring the quantum critical behaviour in
a driven Tavis-Cummings circuit, Nat. Commun. 6, 7111
(2015).

[33] K. Kakuyanagi, Y. Matsuzaki, C. Déprez, H. Toida, K. Semba,
H. Yamaguchi, W. J. Munro, and S. Saito, Observation of
collective coupling between an engineered ensemble of macro-
scopic artificial atoms and a superconducting resonator, Phys.
Rev. Lett. 117, 210503 (2016).

[34] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms,
Cavities, and Photons (Oxford University Press, Oxford, UK,
2006).

[35] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,
Concentrating partial entanglement by local operations, Phys.
Rev. A 53, 2046 (1996).

[36] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Mixed-state entanglement and quantum error correc-
tion, Phys. Rev. A 54, 3824 (1996).

[37] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon,
Periodic spontaneous collapse and revival in a simple quantum
model, Phys. Rev. Lett. 44, 1323 (1980).

[38] J. Gea-Banacloche, Collapse and revival of the state vector in
the Jaynes-Cummings model: An example of state preparation
by a quantum apparatus, Phys. Rev. Lett. 65, 3385 (1990).

[39] J. E. Campbell, On a law of combination of operators bearing on
the theory of continuous transformation groups, Proc. London
Math. Soc. s1-28, 381 (1896).

043195-16

https://doi.org/10.1103/PhysRevLett.81.3631
https://doi.org/10.1103/PhysRevLett.123.170503
http://arxiv.org/abs/arXiv:2301.07564
https://doi.org/10.1103/PhysRevLett.79.1
https://doi.org/10.1103/PhysRevLett.81.5932
https://doi.org/10.1103/PhysRevLett.130.213601
https://doi.org/10.1103/PhysRevA.68.062316
https://doi.org/10.1088/0253-6102/45/3/010
https://doi.org/10.1103/PhysRevA.106.042425
https://doi.org/10.1103/PhysRevA.65.040101
https://doi.org/10.1088/0253-6102/41/6/953
https://doi.org/10.1088/1367-2630/11/10/103047
https://doi.org/10.1103/PhysRevA.95.022302
https://doi.org/10.1088/6102/44/2/259
https://doi.org/10.1364/AOP.2.000229
https://doi.org/10.1103/PhysRevLett.85.2392
https://doi.org/10.1103/PhysRevLett.87.037902
https://doi.org/10.1103/PhysRevA.65.042102
https://doi.org/10.1126/science.aau4691
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.78.3221
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1088/0954-8998/3/1/003
https://doi.org/10.1103/PhysRevA.45.5135
https://doi.org/10.1103/PhysRevLett.100.014101
https://doi.org/10.1103/PhysRevA.102.033729
https://doi.org/10.1038/nphys1078
https://doi.org/10.1038/ncomms8111
https://doi.org/10.1103/PhysRevLett.117.210503
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevLett.65.3385
https://doi.org/10.1112/plms/s1-28.1.381


QUBIT ENTANGLEMENT GENERATED BY CLASSICAL … PHYSICAL REVIEW RESEARCH 5, 043195 (2023)

[40] W. Magnus, On the exponential solution of differential equa-
tions for a linear operator, Commun. Pure Appl. Math. 7, 649
(1954).

[41] S. Blanes, F. Casas, J. Oteo, and J. Ros, The Magnus ex-
pansion and some of its applications, Phys. Rep. 470, 151
(2009).

[42] F. Casas, Sufficient conditions for the convergence of the
Magnus expansion, J. Phys. A: Math. Theor. 40, 15001 (2007).

[43] A. S. Moskalenko, Z.-G. Zhu, and J. Berakdar, Charge and
spin dynamics driven by ultrashort extreme broadband pulses:
A theory perspective, Phys. Rep. 672, 1 (2017).

[44] R. P. Feynman, An operator calculus having applications in
quantum electrodynamics, Phys. Rev. 84, 108 (1951).

[45] A. de Oliveira Junior, M. Perarnau-Llobet, N. Brunner,
and P. Lipka-Bartosik, Quantum catalysis in cavity QED,
arXiv:2305.19324.

[46] G. Milburn and P. Alsing, Quantum phase transitions in a linear
ion trap, in Directions in Quantum Optics, edited by H. J.
Carmichael, R. J. Glauber, and M. O. Scully (Springer, Berlin,
2001), pp. 303–312.

[47] N. Meher and S. Sivakumar, A review on quantum information
processing in cavities, Eur. Phys. J. Plus 137, 985 (2022).

[48] S. Xie and J. H. Eberly, Triangle measure of tripartite entangle-
ment, Phys. Rev. Lett. 127, 040403 (2021).

[49] S. Xie, Y.-Y. Zhao, C. Zhang, Y.-F. Huang, C.-F. Li, G.-C. Guo,
and J. H. Eberly, Experimental examination of entanglement
estimates, Phys. Rev. Lett. 130, 150801 (2023).

[50] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and
D. J. Heinzen, Spin squeezing and reduced quantum noise in
spectroscopy, Phys. Rev. A 46, R6797(R) (1992).

[51] A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Many-
particle entanglement with Bose-Einstein condensates, Nature
(London) 409, 63 (2001).

[52] L. Pezzé and A. Smerzi, Entanglement, nonlinear dynam-
ics, and the Heisenberg limit, Phys. Rev. Lett. 102, 100401
(2009).

[53] S. Sur and V. Subrahmanyam, Information scrambling and
redistribution of quantum correlations through dynamical evo-
lution in spin chains, Quantum Inf. Process. 21, 301 (2022).

[54] T. K. Kvorning, L. Herviou, and J. H. Bardarson, Time-
evolution of local information: Thermalization dynamics of
local observables, SciPost Phys. 13, 080 (2022).

[55] J. Bernoulli, Ars conjectandi, opus posthumum. Accedit Tracta-
tus de seriebus infinitis, et epistola gallicé scripta de ludo pilae
reticularis (Thurneysen Brothers, Basel, 1713), pp. 97–98.

[56] G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists, 6th ed. (Elsevier Academic Press, New York, 2005),
pp. 376–379.

043195-17

https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1016/j.physrep.2016.12.005
https://doi.org/10.1103/PhysRev.84.108
http://arxiv.org/abs/arXiv:2305.19324
https://doi.org/10.1140/epjp/s13360-022-03172-x
https://doi.org/10.1103/PhysRevLett.127.040403
https://doi.org/10.1103/PhysRevLett.130.150801
https://doi.org/10.1103/PhysRevA.46.R6797
https://doi.org/10.1038/35051038
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1007/s11128-022-03641-3
https://doi.org/10.21468/SciPostPhys.13.4.080

