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Implementing two-qubit gates at the quantum speed limit
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The speed of elementary quantum gates, particularly two-qubit gates, ultimately sets the limit on the speed
at which quantum circuits can operate. In this work, we experimentally demonstrate commonly used two-qubit
gates at nearly the fastest possible speed allowed by the physical interaction strength between two superconduct-
ing transmon qubits. We achieve this quantum speed limit by implementing experimental gates designed using a
machine-learning-inspired optimal control method. Importantly, our method only requires the single-qubit drive
strength to be moderately larger than the interaction strength to achieve an arbitrary two-qubit gate close to
its analytical speed limit with high fidelity. Thus the method is applicable to a variety of platforms, including
those with comparable single-qubit and two-qubit gate speeds, or those with always-on interactions. We expect
our method to offer significant speedups for non-native two-qubit gates that are typically achieved with a long
sequence of single-qubit and native two-qubit gates.
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I. INTRODUCTION

Increasing the speed of elementary quantum gates boosts
the “clock speed” of a quantum computer. For noisy,
intermediate-scale quantum computers [1] with finite coher-
ence times [2,3], speeding up single- and two-qubit quantum
gates also increases the circuit depth needed for solving
useful computational problems [4,5]. In most experimental
platforms, single-qubit gates are achieved via electromagnetic
fields that drive individual qubit transitions. The maximum
speed of these gates is often limited by the strength of the
driving fields [6,7]. However, a two-qubit entangling gate,
necessary for universal quantum gates, can only operate at
a speed proportional to the interaction strength between the
qubits [8–10], which is typically weaker than available single-
qubit drive strengths and cannot be easily increased.

Assuming a limited interaction strength, one can analyti-
cally obtain the maximum speed for any particular two-qubit
gate in the limit of arbitrarily fast single-qubit gates [11,12].
In practice, all single-qubit gates have finite speeds, and in
platforms such as superconducting qubits, single-qubit gates
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may not be much faster than two-qubit gates due to lim-
ited anharmonicity [13–15]. The speed limits of two-qubit
gates in such scenarios have not been studied. Therefore
we seek to both theoretically and experimentally investigate
these practical speed limits, which are not only relevant to
the optimal design of quantum gates and quantum circuits,
but also directly related to the speed limits of entanglement
generation, a fundamental topic of high interest in quantum
information theory, condensed-matter physics, and black-hole
physics [16–20].

In this paper we report a method for designing two-qubit
gates that are speed optimized, and we implement the gates
experimentally using superconducting transmon qubits. We
find that the protocol for achieving the fastest two-qubit gates
in Refs. [11,12] can be far from optimal with a finite single-
qubit gate time. Our method differs from previous protocols
[11,12,21] in that we apply single-qubit drives simultaneously
with the two-qubit interaction, a crucial strategy for speed
optimization. We optimize the pulse shapes of the single-qubit
drives using a method that combines the well-known GRAPE
algorithm [22,23] with state-of-art machine learning tech-
niques. Importantly, our method works as long as there exists
a physical interaction between two qubits and one can drive
each qubit with controllable pulse shape and phase. This ap-
plies to almost any platform suitable for quantum computing.
Furthermore, we experimentally demonstrate that our method
can achieve maximally entangling two-qubit gates, such as
theCNOT gate, close to their analytical speed limits found in
Refs. [11,12] with modest single-qubit drive strengths and
up to 98.3% average gate fidelity determined from quantum
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process tomography. This largely eliminates the impractical
assumption of infinitely fast single-qubit gates. The same
applies to the SWAP gate we implemented, which is crucial
for remote quantum gates but notoriously hard to achieve
with a short gate sequence [24]. We have also implemented a
non-Clifford gate, the

√
SWAP gate, close to its quantum speed

limit at 97.0% average gate fidelity.
We emphasize that the above-mentioned gates we imple-

mented are all non-native gates, meaning that they cannot
be achieved by evolving the static interaction Hamiltonian
without single-qubit gates or time-dependent drives. These
non-native gates are crucial for efficient implementation of
many useful quantum circuits [25–27]. With our method, one
could even realize an arbitrary two-qubit gate close to its
theoretical speed limit. The conventional method of using a
universal gate set to achieve a general SU(4) unitary would
instead require a sequence of up to three two-qubit gates
and twelve single-qubit gates [28], which is not only much
slower in practice, but also likely of lower fidelity due to error
accumulation.

Although certain two-qubit gates with 99.5% fidelity or
higher have already been achieved with superconducting
qubits [13–15], the lower fidelity gates reported here are
largely due to limitations of our experimental hardware, as
the theoretical gate fidelities associated with our demon-
strated gates are all above 99.9%. The main purpose of this
work is to demonstrate that the theoretical two-qubit gate
speed limits can be largely achieved using a general opti-
mal control method with minimal hardware requirement. Our
speed-optimized gates achieve the same level of fidelity as
that achieved previously on the same hardware with only
fidelity optimization [21], showing that our gate-speed opti-
mization does not rely on sacrificing gate fidelity. Moreover,
our method is scalable to a large number of qubits, provided
that the two-qubit interactions can be switched on and off
(such as via tunable couplers [29]), since we can perform
the speed optimization for each two-qubit gate independently.
With most of the research on quantum gates focusing on
improving gate fidelities, our work represents an orthogonal
direction that aims to improve the fidelity of the whole quan-
tum circuit [30] by optimizing the speed of any two-qubit
gates.

II. EXPERIMENTAL SETUP

Our experimental platform consists of strongly coupled
fixed-frequency superconducting transmon qubits with static
capacitive couplings in a hanger readout geometry [31].
An intrinsic silicon substrate is used on which aluminum
oxide tunnel junctions are fabricated via an overlap tech-
nique [32]. The remaining circuit components are made of
niobium. The full chip design and corresponding circuit
model is shown in Fig. 1. The two transmon qubit transi-
tion frequencies are 5.10 GHz, 5.26 GHz, anharmonicities are
−270 MHz,−320 MHz, T1 decay times are 40 µs, 21 µs and
T ∗

2 decay times are 12 µs, 10 µs, respectively. In the rotating
frame of the two qubit frequencies and assuming h̄ = 1 from
now on, the static Hamiltonian of the two qubits can be written

FIG. 1. (a) Optical micrograph of the experimental chip includ-
ing qubits, readout resonators, test Josephson junctions, and test
resonators. (b) Zoomed-in view of the two floating qubits. Each qubit
consists of two identical pads (red for the left qubit and blue for the
right qubit) and a Josephson junction connecting the two pads. Each
qubit is coupled to its own readout resonator (blue). (c) Grounded
circuit model of the capacitively coupled qubits.

as [21,33]

H0 = g
(
σ z

1 + σ z
2 + σ z

1σ z
2

)
, (1)

where g ≈ 2π × 1.75 MHz represents a fixed Ising coupling
strength between the qubits. To interact with the qubits, we
deliver two microwave drives—resonant with each qubit’s
transition frequency—simultaneously through the feedline.
Each of the drive fields contain two adjustable quadratures (X
or Y) and can be described by the drive Hamiltonian:

H1(t ) =
∑

γ=x,y

∑
i=1,2

�
γ

i (t )σ̃ γ

i , (2)

where �
x,y
i (t ) denotes the Rabi frequency of the drive resonant

with qubit i’s transition in the X or Y quadrature at time t .
For perfect single-qubit drives, σ̃

γ
i = σ

γ
i . However, due to

the strong Ising coupling between the two qubits in H0, the
drive strength on one qubit is dependent on the other qubit’s
state, resulting in σ̃

γ

1 = σγ ⊗ (|0〉〈0| + r2|1〉〈1|) and σ̃
γ

2 =
(|0〉〈0| + r1|1〉〈1|) ⊗ σγ , with r1 ≈ 1.1 and r2 ≈ 0.7 for our
current chip. We note that with a weaker coupling strength or
with a tunable coupler [34,35], both r1 and r2 can be made
closer to or equal to 1.

III. ANALYTICAL SPEED LIMIT

In the limit of arbitrarily strong single-qubit drives, i.e.,
�max ≡ max |�x,y

1,2(t )| → ∞, one can derive an analytical
speed limit for any target two-qubit unitary with the above-
mentioned static Hamiltonian H0 and control Hamiltonian H1.
Note that in this limit, the speed limit is only well defined
when r1 = r2 = 1, since otherwise H1 will lead to arbitrarily
strong interactions. As detailed in [11], any two-qubit target
unitary U can always be decomposed as

U = (U1 ⊗ U2)Ud (V1 ⊗ V2), Ud = e−i
∑

γ λγ σ γ ⊗σγ

, (3)

where U1,V1 (U2,V2) are some single-qubit gates on the first
(second) qubit, γ = x, y, z, and λγ ∈ [−π

4 , π
4 ]. {λx, λy, λz}

form a canonical vector that uniquely specifies any given
two-qubit gate U up to single-qubit rotations, and their exact
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values can be obtained with the knowledge of U based on
Ref. [12]. To obtain the analytical speed limit, we assume that
single-qubit gates are arbitrarily fast and thus take a negligi-
ble amount of time. The total gate time for implementing U
therefore reduces to the time spent on realizing Ud , which is
responsible for any entanglement generation. Based on H0,
together with instantaneous single-qubit rotations, Ud can be
realized with a minimum time of

Tmin = |λx| + |λy| + |λz|
g

=
⎧⎨
⎩

π/(4g) CNOT
3π/(4g) SWAP
3π/(8g)

√
SWAP

. (4)

Equation (4) is the analytical speed limit for a two-qubit gate
U . Its values for the CNOT, SWAP, and

√
SWAP gate are shown

above and derived in Appendix B.

IV. OPTIMAL CONTROL METHOD

In practice, single-qubit gate speeds are limited by finite
drive strengths and the analytical speed limit in Eq. (4) does
not apply. To our best knowledge, no analytical speed limit has
been found with finite single-qubit gate time. In this case we
can no longer rely on the decomposition in Eq. (3) to reduce
the problem to just finding the minimum time in implement-
ing Ud . The true time-optimal protocol may not feature the
structure of such decomposition and is challenging to find
analytically for a general target gate. In fact, if we still follow
Eq. (3) for realizing a target two-qubit gate, the resulting
gate time can be much longer than Tmin. To realize universal
single-qubit gates needed in Eq. (3), we use a two-axis gate
(TAG) protocol first developed in Ref. [21], which employs an
analytically obtained, three-segment drive pulse for �

x,y
1,2(t ) to

exactly cancel the effects of static interaction for any values
of r1 and r2. A single-qubit gate implemented this way has
a gate time of at least π/(2g) [33]. Apart from the native
controlled-Z (CZ) gate that can be directly realized via an
evolution of H0 over a time t = π/(4g) ≈ 71.4 ns [21,36,37],
any two-qubit gate design that involves the use of single-
qubit gate(s) realized via TAG requires a gate time of at least
Tmin + π/(2g) (since single-qubit gates cannot shorten Tmin)
and is thus far from optimal.

Consequently, to approach the analytical speed limit with
finite �max (or finite single-qubit gate time), we adopt an al-
ternative approach that avoids the use of any single-qubit gate
and generate the target two-qubit gate directly. Specifically,
we directly optimize the pulse shapes �

x,y
1,2(t ) in our control

Hamiltonian H1(t ) in order to minimize the gate time for
achieving a certain target gate with sufficiently high fidelity.
For a given set of pulse shape functions �

x,y
1,2(t ), we numeri-

cally find the evolution operator

U = T e−i
∫ T

0 [H0+H1(t )]dt , (5)

where T denotes the time-ordered integral and T denotes the
total evolution time. Note that U can achieve any two-qubit
gate with properly engineered pulse shapes, as the Hamil-
tonian and the commutators of the Hamiltonian at different
times span all SU(4) generators.

FIG. 2. The minimum time TF (in units of Tmin) it takes to achieve
a CNOT gate of F > 99% as a function of �max (in units of g) using
either our optimization algorithm (blue) or the GRAPE algorithm in
QUTIP (red). Both algorithms use 16 segments of the drive pulses and
200 random restarts. The GRAPE algorithm in QUTIP fails to reach
F > 99% for larger �max values, where the gate time approaches its
theoretical limit Tmin.

Next we calculate the average gate fidelity between the
target unitary U and the evolution operator U using [38]

F = 1

5
+ 1

20

∑
j

Tr(UUjU
†UUjU†), (6)

where Uj ∈ {σγ ⊗ σγ ′ } and σγ ∈ {σ x, σ y, σ z, I}. For effi-
cient numerical optimization, we will assume �

γ
i (t ) is an

M-segment piecewise function, i.e., �
γ
i (t ) = �

γ
i,m for t ∈

[ m−1
M T, m

M T ], where m indexes the segments sequentially. Our
goal is to maximize F over all possible values of {�γ

i,m}
subjected to the constraints |�γ

i,m| � �max for a given time T .
The numerical speed limit TF is then defined as the minimum
T that can achieve F > 1 − ε, where ε is the infidelity we can
tolerate (set to 1% in the following).

Since F is a highly nonlinear function of {�γ

i,m}, simple
numerical optimization methods will not work well in finding
the global maximum of F . Here we develop a method that
combines the standard GRAPE algorithm [22] with state-
of-the-art machine learning techniques. Using the backward
propagation method in the widely used machine learning li-
brary PyTorch [39], we calculate the gradients of F over
each pulse parameter �

γ

i,m automatically. We then perform
a stochastic gradient descent (SGD) algorithm with the Nes-
terov momentum method [40] to maximize F over the pulse
parameters. To avoid obtaining only a local maximum for F ,
we repeat each gradient descent process with 200 random
seeds used for both initialization and SGD, and then select
the global maximum among all repetitions. Further increas-
ing the number of random seeds does not lead to noticeable
improvement in maximizing F , showing that the optimization
has converged.

To benchmark our numerical optimization method, we
choose the target gate to be the CNOT gate and find the
above-mentioned numerical speed limit TF for F = 99%
as a function of �max. We set M = 16, which allows the
calculation to be done within a few hours on a small high-
performance computing (HPC) cluster, and larger M does
not lead to noticeable improvements. As shown in Fig. 2,
we clearly see that as �max/g increases, TF approaches the
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analytical speed limit Tmin, indicating that the optimization
succeeded in reaching the theoretical speed limit. Importantly,
the maximum single-qubit drive strength �max does not need
to be significantly larger than the interaction strength g to
get close to the analytical speed limit. For example, setting
�max = 3g already gives us a minimum gate time of 1.24Tmin

with F > 99%. We also compare our method with the stan-
dard GRAPE algorithm in the widely used QUTIP software
[41]. With the same number of iterations and random initial-
izations, the GRAPE algorithm in QUTIP can closely match
our optimization results for �max/g < 2.5. However, it fails
to achieve F > 99% for �max > 2.5g, and the same happens
even with double the number of iterations or random ini-
tializations. This is likely because the algorithm struggles at
escaping local minima due to a larger parameter space for a
larger value of �max.

In Appendix C we show that our optimization method
also works well for different interaction Hamiltonians, such
as the flip-flop interaction common in superconducting qubit
systems. With such interaction, the speed optimization can
significantly speed up CNOT and CZ gates, since they can
operate as fast as the native i SWAP gate. In contrast, most
existing experiments with flip-flop interacting Hamiltonians
report much slower CZ gates compared to i SWAP gates
[13,14,42].

V. EXPERIMENTAL RESULTS

We now proceed to demonstrate the speed limits of the
two-qubit CNOT, SWAP, and

√
SWAP gates experimentally. The

procedure for this is as follows. First, for each gate the to-
tal evolution time T is varied from 0 to �Tmin in 20 steps,
and the optimized pulse sequence is obtained numerically
for each value of T . Next, this pulse sequence is applied to
the transmon qubits experimentally by modulating the mi-
crowave drive signals. Finally, the average gate fidelity F is
measured at time T by performing a quantum process tomog-
raphy (QPT) [43]. Our QPT involves applying 36 different
prerotations to an initial state with both qubits in the state
|0〉, applying the optimized pulse sequence for time T , and
then measuring nine different Pauli operators (see Appendix D
for details), resulting in 324 different experimental protocols,
each of which is further repeated 500 times to ensure low
statistical errors. After correcting the state preparation and
measurement (SPAM) errors as well as performing a max-
imum likelihood estimation to ensure a completely positive
and trace-preserving quantum map (see Appendix D for de-
tails), the QPT allows us to find a Pauli transfer matrix [44]
for the corresponding quantum process, which can be further
used to infer F (Appendix D). This process allows us to find
the value of T above which we can get sufficiently high gate
fidelity. Such T is the experimental speed limit for the target
gate.

There are several experimental limitations in this pro-
cedure. First, as strong microwave drives can heat up the
superconducting qubits and cause decoherence, we only send
microwave pulses of at most 2π × 6 MHz in Rabi fre-
quency, roughly three times the coupling strength g. But as
we have shown in Fig. 2, this limitation should not prevent
us from getting close to the analytical speed limit. A more

noticeable limitation is that we can only generate smoothly
varying pulse shapes that approximate the segmented (and
thus discontinuous) pulse shapes used in the numerical op-
timization. As the number of segments M increases, this
approximation deteriorates while the gate speed increases
(and eventually converges). For our setup, we choose M = 4
for the experiment as a sweet spot for balancing the error
and speed. We note that this limitation can be addressed by
numerically optimizing smooth pulse shape functions (such as
a train of Gaussian envelopes), although such optimization is
more resource intensive. Finally, with r1, r2 
= 1 experimen-
tally, our single-qubit drives will induce a small amount of
extra interaction that would in principle allow us to go above
the analytical speed limit for sufficiently large �max. Our
numerical optimizer accounts for this artifact. The amount of
speedup over the scenario of r1,2 = 1 varies for different target
gates.

Our experimental results are shown in Fig. 3. The measured
gate fidelity F (red curves) closely matches the one obtained
from the numerical simulation of the experiment with no error
(blue curves). The deviations between the two grow as the gate
fidelity gets close to 1 for reasons we discuss in the next sec-
tion. For the CNOT gate, we were able to achieve F ≈ 96.5%
experimentally with a gate time of T = 93.7 ns ≈ 1.32Tmin

[Fig. 3(a)]. We emphasize that this outperforms the CNOT gate
implemented using the SWIPHT protocol [45] performed on
the same hardware (F ≈ 94.6% for a gate time of 1.87Tmin

[21]), which is protocol designed specially for our hardware.
The highest fidelity we achieve is F ≈ 98.3% at time T ≈
1.84Tmin.

For the SWAP and
√

SWAP gates, the extra interactions
caused by nonunity r1 and r2 values have a more noticeable
effect in speeding up the gates. For the SWAP gate [Fig. 3(b)],
we obtain an experimental gate fidelity of F ≈ 95.9% at
T = 216 ns ≈ 1.01Tmin, where theoretically F ≈ 99.997%. A
SWAP gate with such a short time is hard to achieve via
a gate sequence using a typical universal gate set, making
our method particularly useful given the importance of SWAP

gates in many quantum algorithms [24]. For the
√

SWAP

gate [Fig. 3(c)], we obtain an experimental gate fidelity of
F ≈ 97.0% at T = 126 ns ≈ 1.18Tmin, with F ≈ 99.999% in
theory.

For all gates, the demonstrated experimental speed limits
are reasonably close to the analytical speed limits. We note
that the fidelities achieved here are lower than state-of-the-art
due to limitations of the hardware platform (discussed in the
next section) and not due to the optimal control algorithm.
Even without optimal control, the fidelities obtained on this
setup are close to or lower than what we are getting here [21].

VI. ERROR ANALYSIS

We have calculated the fidelity between the experimental
process and the exact time evolution operator U in Eq. (5) for
each point in Fig. 3, which is in general >95% (see Fig. 4)
As seen from Fig. 3, the experimental errors get larger at large
values of T . This is possibly due to the following reasons.

First, the qubits decohere as time increases. This is evi-
denced by our measurement of a dark evolution (i.e., with
the drive Hamiltonian H1 turned off) process fidelity that
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FIG. 3. Experimental measurements of the average gate fidelity F using optimized four-segment drive pulses, with the target gate being
(a) CNOT, (b) SWAP, and (c)

√
SWAP. The red curves represent experimental measurements, while the blue curves represent the exact numerical

calculation of F without considering any experimental error. �max = 6 MHz for the CNOT gate, and �max = 5MHz for SWAP and
√

SWAP gate.
The error bars represent a upper bound on the statistical error of the mean for 500 repeated measurements at each point.

drops from ≈99.3% to ≈96.3% from T = 0 to T = 3π/(4g)
(the theoretical minimum time for the SWAP gate), as shown
in Fig. 4. This large loss in fidelity is unrelated to optimal
control or errors in the control pulses, and likely results from
finite T1 time of the qubits, measurement errors, and low-
fidelity (about 98% on average) single-qubit gates used in our
QPT [21,33]. With better hardware designs, these errors can
be largely eliminated. For example, single-qubit gates with
>99.9% fidelities have already been achieved with supercon-
ducting qubits [46].

Second, when T is large enough to allow the numerically
optimized F to approach 1, imperfect calibration or fluctu-
ations on the microwave drive amplitudes or phases tend to
create a larger discrepancy between the experiment and the
theory, as we have discussed in detail in Appendix E. This can
account for up to 0.1% loss in fidelity for ≈1% deviations in
pulse shapes.

FIG. 4. Fidelity F between the experimental quantum process
(characterized by the QPT) and the corresponding exact time evolu-
tion operator in Eq. (5) using the optimized pulse shapes for a given
gate time T with the target gate being CNOT, SWAP, or

√
SWAP. The

blue curve represents the fidelity between the experimental evolution
without the drives (i.e., dark evolution) and the ideal evolution oper-
ator of e−iH0T .

Finally, there are also systematic errors coming from the
leakage to higher excited states (in particular, the |2〉 state
for each transmon), cross talk between the drives of each
qubit, rotating-wave approximations, and the deviation of the
experimental pulse shapes from the ideal square waves used in
our numerical optimization. We can characterize these errors
with the following Hamiltonian in the laboratory frame for
two qutrits:

H (t ) =
∑

m

Em|m〉〈m|

+ 1

2

∑
i=1,2

∑
m 
=m′

(dm,m′Ei(t )|m〉〈m′|e−iωit + H.c.), (7)

where m ∈ {00, 01, 10, 11, 02, 20, 12, 21, 22} labels the en-
ergy eigenstates of the static Hamiltonian, and dm,m′ represents
the dipole moment for the transition between states |m〉 and
|m′〉. E1(t ) and E2(t ) denote the electric fields of the two
microwave drives we applied at frequencies ω1 = E10 − E00

and ω2 = E01 − E00, respectively. Their values are set by
the actual experimentally applied electric fields that follow
the pulse shapes from our optimization method but have fi-
nite rising/lowering edges between different pulse segments.
The Hamiltonian in Eq. (7) then fully models the leakage
outside the qubit subspace, the cross talk between the two
drive fields, and realistic pulse shapes without rotating-wave
approximations. We then calculate the fidelity between the
exact evolution operator of this Hamiltonian and the one in
Eq. (5) (which was used for Figs. 3 and 4). As shown in
Fig. 5, these errors only add up to about 0.3% infidelity on
average. And since these errors are explicitly modelled by
the Hamiltonian in Eq. (7), we can further minimize their
impact to gate fidelities using the same optimization method
we built. However, this is beyond the scope of this work, as
our experiment hardly benefits from such effort due to other
error sources being dominating.

VII. CONCLUSION AND OUTLOOK

There are primarily three advancements made in this
work. First, we have studied the speed limits for two-qubit
gates under realistic experimental conditions and shown that
these limits are close to the analytical speed limits derived
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FIG. 5. Average fidelity F between the evolution operators cal-
culated using the Hamiltonian in Eq. (7) and using Eq. (5) for the
speed-optimized CNOT, SWAP, and

√
SWAP gates shown in Fig. 3.

under ideal conditions. Second, we have developed an optimal
control algorithm to generate a realistic pulse sequence to
achieve these speed limits. Our algorithm performs better than
a standard GRAPE algorithm and can be used to design speed-
optimized two-qubit gates in a variety of quantum computing
platforms with different types of interactions. It can offer
significant speedups for non-native two-qubit gates, especially
when single-qubit gate times are not negligible. Finally, we
have experimentally demonstrated the quantum speed limits
for various two-qubit gates using superconducting qubits.

We have also carefully characterized the error sources for
our experimental gates. Most of the gate errors come from
characterization/calibration errors, imperfect measurements,
qubit decoherence, and low-fidelity single-qubit gates. While
the strong drive pulses in the optimal control could lead to
more leakage and cross-talk errors, we show that these errors
only add up to about 0.3% infidelity on average, and they can
be further mitigated by optimizing a more accurate Hamil-
tonian. It is also worth pointing out that by optimizing the
speed of two-qubit gates, errors from qubit decoherence will
be suppressed. We therefore expect our method to be able to
improve the fidelity of the whole quantum circuit.

An important future direction is to generalize this work
to a multiqubit scenario where additional qubits are used to
speed up a two-qubit gate. Previous work has shown that
significant scaling speedups may be obtained in perform-
ing remote quantum gates or preparing useful many-body
entangled states [16,20] with long-range interacting qubits.
However, questions regarding the speed limit of entangling
gates when interactions are strongly long-ranged are still
largely open [17]. Such interactions play important roles in
quantum information scrambling [18] and the development
of fully-connected quantum computers [47]. Another interest-
ing direction is to study the speed limit of entangling gates
when higher excited states outside the qubit subspace are uti-
lized [48], where experimental and analytical results are both
lacking.
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APPENDIX A: EXPERIMENTAL HARDWARE,
CALIBRATION, AND CHARACTERIZATION

Our experimental device is operated at 10 mK in an
Bluefors LD dilution refrigerator. Full schematics of the
experimental setup are shown in Fig. 6. All qubit drive
and readout microwave tones are delivered via the feedline,
which has an output amplification chain of a Raytheon BBN
Josephson parametric amplifier (JPA) preamp at base, high-
electron-mobility transistor (HEMT) amplifier at 4 K, and a
high-gain room-temperature amplifier.

Each experimental cycle consists of a state initialization, a
time evolution under the engineered Hamiltonian flanked by
process tomography rotations [43] and followed by a hetero-
dyne state readout (see Fig. 6). The state initialization occurs
by waiting 500 µs ≈ 12T1 between two experimental cycles,
which is long enough to guarantee that each qubit is in the |0〉
state. All gates consist of microwave tones from a Holzworth
HS9008B pulse shaped by a BBN arbitrary pulse sequencer
(APS) quadrature modulation scheme. Readout consists of
a simultaneous 2-µs probe (Agilent N5183Ms) of the two
readout resonators to detect shifts in their frequencies due
to their respective qubit states. The I/Q components of the
readout signal shift are extracted via down conversion and a
digital lock-in routine with a reference tone. They are then
used to identify the two-qubit states as |00〉, |01〉, |10〉, |11〉
via a classification algorithm using support vector machines.
Total state preparation and measurement errors, quantified by
the basis-state preparation confusion matrix [43], stayed under
5%, with the errors dominated by readout errors associated
with qubit state relaxation during the measurement.

The computational subspace spectrum of the transmons
was determined via a combination of spectroscopy (directly
probing excitations with a 10-µs square pulse) and Ramsey
experiments (driving 2 MHz off-resonant, running a typical
Ramsey sequence, and noting the deviation of the fitted fre-
quency from 2 MHz) [49]. The strength of the drive fields on
the qubits was inferred from the frequency of Rabi oscillations
of the excited-state population incurred by driving at uniform
strength for a linearly increasing duration. The linearity of the
pulse-shaping quadrature channels on the pulse sequencer was
characterized by measuring the Rabi oscillation frequency
resulting from a sweep over pulse amplitudes, analyzing it
via Fourier filtering [33], and correcting for it at the software
level.

APPENDIX B: OBTAINING ANALYTICAL SPEED LIMITS

We provide details on how to obtain the analytical speed
limit Tmin defined in Eq. (4) of the main text. Given a two-qubit
unitary operator U , the key step is to find the decomposition of
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FIG. 6. Our experimental setup composed of qubit drives and heterodyne state readout. Each qubit drive (green section) is shaped via
quadrature modulation by a BBN APS1 and Polyphase Microwave AM4080A. Readout (orange) consists of digitally locking in the signal
passing through the device with a reference and extracting I/Q shifts used to classify the ground/excited states.

U into (U1 ⊗ U2)Ud (V1 ⊗ V2), where Ud = e−i
∑

γ=x,y,z λγ σ γ ⊗σγ

with λx,y,z ∈ [−π
4 , π

4 ], and U1,V1 (U2,V2) are some single-
qubit gates on the first (second) qubit. This decomposition
is nontrivial, and the detailed procedure can be found in
Ref. [11]. Here we provide the results of the decomposition
for the three target gates we studied in Table I. The values
of λx,y,z directly lead to Tmin values for the three target gates
shown in Eq. (4) of the main text. Note that an overall phase
difference is tolerated for the decomposition of U .

APPENDIX C: OPTIMIZATION FOR DIFFERENT
STATIC HAMILTONIANS

To demonstrate the universality of our optimal control
method, here we apply it to two different static Hamilto-
nians commonly seen in superconducting qubit platforms
[13,25,35,50,51]: a flip-flop (also known as XY) Hamilto-
nian HXY

0 and an XXZ Hamiltonian HXXZ
0 that contains both

TABLE I. Detailed decompositions of theCNOT, SWAP, and√
SWAP gates based on Eq. (3).

CNOT SWAP
√

SWAP

U1
1√
2

(
1 −1
1 1

) (
1 0
0 1

) (
0 1

−1 0

)

U2

(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 −1

)

V1
1√
2

(
1 i

−1 i

) (
1 0
0 1

) (
0 1

−1 0

)

V2
1√
2

(
1 −1

−1 1

) (
1 0
0 1

) (
1 0
0 −1

)

λx
π

4
π

4
π

8

λy 0 π

4 − π

8

λz 0 π

4 − π

8

flip-flop interaction and ZZ (Ising-type) interaction:

HXY
0 = g

(
σ x

1 σ x
2 + σ

y
1 σ

y
2

)
,

HXXZ
0 = g

(
σ x

1 σ x
2 + σ

y
1 σ

y
2 + ησ z

1σ z
2

)
. (C1)

As an example, we set the parameter η = 1/2 in the fol-
lowing, and similar results are expected for different η values.
We now perform our gate-speed optimization described in
Sec. IV with our experimental static Hamiltonian H0 in Eq. (1)
replaced by the above HXY

0 or HXXZ
0 , and the target gate being

either SWAP or CNOT.

FIG. 7. Minimum gate times at different maximum drive
strengths achieved by our optimization method for an XY or XXZ
interacting Hamiltonian shown in Eq. (C1), with the target gate
being SWAP or CNOT. Every point here has average gate fidelity
F > 99.99%.
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FIG. 8. Quantum process tomography based on the Pauli transfer matrix for the three target gates we performed experimentally. Top row
from left to right: Pauli transfer matrices for an ideal CNOT gate, SWAP gate, and

√
SWAP gate. Bottom row from left to right: Examples of

SPAM-error-corrected Pauli transfer matrices obtained experimentally for the CNOT, SWAP, and
√

SWAP gates, with average gate fidelities being
95.6%, 93.1%, and 95.7%, respectively.

In Fig. 7 we show the minimum gate time T (in units of
the corresponding analytical speed limit Tmin) as a function of
the maximum drive strength �max (in units of the interaction
strength g), similar to Fig. 2. Note that for the CNOT gate
(as well as the CZ gate), Tmin = π/(4g) holds for H0, HXY

0 ,
and HXXZ

0 . But for the SWAP gate, Tmin = 3π/(8g) for HXY
0

and Tmin = 3π/(10g) for HXXZ
0 . In other words, the XY or

XXZ interaction can generate a SWAP gate faster than the Ising
interaction used in our experiment at the same strength.

We have also set a higher fidelity threshold of F > 99.99%
to better show the potentials of our optimization method in
Fig. 7, while the number of pulse segments, random seeds,
and iterations remain identical to those in Fig. 2 (for our
experiment such a high-fidelity threshold is unnecessary due
to experimental error sources). We find that for both HXY

0 and
HXXZ

0 , one can reach T ≈ Tmin with �max/g < 4. For the CNOT

gate, one needs larger drive strengths to reach the theoretical
speed limit, but at moderate drive strengths (�max ≈ 3g as in
our experiment), one can still get close to the theoretical speed
limit (T ≈ 1.2Tmin).

APPENDIX D: PROCESS TOMOGRAPHY AND SPAM
ERROR CORRECTION

We perform a two-qubit quantum process tomogra-
phy (QPT) via a standard protocol [43,44] based on the

measurement of a Pauli transfer matrix R defined as

Ri, j ≡ Tr[PiE (Pj )], Pi ∈ {I, X,Y, Z} ⊗ {I, X,Y, Z}, (D1)

where E (·) denotes a quantum map of the process being mea-
sured.

For an ideal two-qubit gate U , we can calculate the
16 × 16 Pauli transfer matrix R numerically using Eq. (D1)
(see Fig. 8 for examples). To measure R experimentally,
we need to perform single-qubit rotations before and after
the quantum process [52]. Here we apply nine postro-
tations Rk ∈ {I, X−π/2,Yπ/2}⊗2 and 36 prerotations Rl ∈
{Yπ/2,Y−π/2, X−π/2, Xπ/2, I, Xπ }⊗2 [44], for a total of 324 dif-
ferent sequences, each of which is repeated 500 times to
suppress statistical noise in the measurement. The single-qubit
rotations here are achieved via the “two-axis gate” protocol
[33], and they are fined tuned to ensure single-qubit gate
fidelities up to 99.1% [21].

Each single experiment returns a measurement out-
come as one of the four two-qubit basis states | j〉 ∈
{|00〉, |01〉, |10〉, |11〉}. We then group the outcomes of all
162 000 experiments using a tensor njkl which counts the
number of measurement outcome states | j〉 for the kth postro-
tation and lth prerotation. To take into account possible
measurement errors, we separately measure a 4 × 4 confusion
matrix P , where Pi, j denotes the probability of obtaining a

043194-8



IMPLEMENTING TWO-QUBIT GATES AT THE QUANTUM … PHYSICAL REVIEW RESEARCH 5, 043194 (2023)

FIG. 9. Average gate infidelity 1 − F calculated using the optimized pulse shapes in Fig. 3 of the main text but with random Gaussian
noise added to each pulse shape parameter �

γ

i,m (see main text) with the target gate being CNOT (a), SWAP (b), and
√

SWAP (c). The blue (red)
curves correspond to a standard deviation of the Gaussian noise at 0.01�max (0.05�max).

measurement outcome as the state |i〉 if we initialize the two
qubits in state | j〉.

To infer the Pauli transfer matrix R from the measurement
outcome tensor n jkl , we further invoke a maximum likelihood
estimation (MLE) method with the following log-likelihood
function of R [43]:

log L(R) =
∑
j,k,l

n jkl log

⎛
⎝ 15∑

m,n=0

BjklmnRmn

⎞
⎠, (D2)

Bjklmn =
15∑

m′,n′=0

3∑
j′=0

× P j j′ 〈 j′|Pm′ | j′〉Rk )m′m(Rl )nn′Tr(Pn′ρ0), (D3)

where Rk and Rl are the Pauli transfer matrices for the above-
defined postrotation unitary Rk and prerotation unitary Rl ,
respectively. ρ0 = |00〉〈00| is our initial state, and Pm′ , Pn′ are
defined in Eq. (D1). The experimental Pauli transfer matrix R
is then obtained by maximizing log L(R) under the constraint
that R represents a trace-preserving and completely positive
quantum map [43,44].

Before we perform QPT for the speed-optimized two-qubit
gates, we first perform the above QPT procedure for a zero-
time evolution to obtain a Pauli transfer matrix Rexp

I , which
without state preparation and measurement (SPAM) errors
should represent an identity quantum map. The measured
Rexp

I can be used to correct the SPAM errors for a quantum
process we perform with nonzero time evolution, whose mea-
sured Pauli transfer matrix is denoted by Rexp

U for a target
unitary U .

To achieve SPAM error correction, we first obtain the pro-
cess matrix χ

exp
I and χ

exp
U for the corresponding Pauli transfer

matrix Rexp
I and Rexp

U , respectively [by inverting Eq. (D5) be-
low] [52]. The process matrix for a quantum map E is defined
via E (ρ) = ∑

m,n χmnPmρPn with Pm, Pn defined in Eq. (D1).
Second, we obtain the SPAM-error-corrected process matrix
χ corrected

U for the target process using

χ corrected
U = T −1

(
T χ

exp
U T † − V χ

exp
I V † + χ

exp
I

)
(T †)−1, (D4)

where Tmn = Tr(PmPnU †)/4 and Vmn = Tr(PmPn)/4 [53]. Fi-
nally, we convert the error-corrected process matrix χ corrected

U

to the error-corrected Pauli transfer matrix Rcorrected
U via

Ri j =
15∑

m,n=0

χmnTrPiPmPjPn. (D5)

Examples of such error-corrected Pauli transfer matrix
Rcorrected

U for U being the CNOT, SWAP, or
√

SWAP gate are
shown in Fig. 8. Finally, Rcorrected

U allows us to find the average
gate fidelity F to the target gate U via [38]

F = 4Tr
(
Rcorrected

U Rideal
U

) + 1

5
, (D6)

where Rideal
U represents the Pauli transfer matrix of the ideal

target gate U .

APPENDIX E: ADDITIONAL ERROR ANALYSIS

One error source shared among all our data points is the
statistical error due to quantum measurements. To quantify
this error, we simulate additional measurements by adding a
Gaussian-distributed random noise with zero mean and unity
standard deviation on each Pauli operator measured during our
QPT [44]. This allows us to set an upper bound on the statisti-
cal error of the mean that would be obtained on reperforming
the full experiment with all other error sources held fixed. As
shown in Fig. 3 of the main text, this statistical error on the
measured F is less than 1% in all cases.

We have also numerically simulated the effects of imper-
fect calibration or noises on the optimized pulse shapes (either
for amplitudes or phases) by adding random perturbations to
each optimized pulse parameter �

γ

i,m (see main text). We ex-
pect such perturbations to be present in our experimental setup
with magnitudes of a few percent of �max. The simulated
average gate fidelity F is shown in Fig. 9, where all other
parameters are identical to the exact F curves in Fig. 3 of the
main text. We see that our optimization method is robust to
small amount (1%) of noises on the pulse shapes, where the
fidelity can still exceed 99.9% for gate time close to Tmin. For
larger noises (5%), the infidelity caused by errors on the drive
pulses can be around 1% −2%, but such large noises are rare
in most experimental platforms.
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