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Many-body Szilárd engine with giant number fluctuations
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Szilárd’s information engine is a canonical example in the field of thermodynamics of information. We realize
experimentally a macroscopic many-particle Szilárd engine that consists of active particles and use it to lift a
mass against gravity. We show that the extractable work per cycle increases when the raised weight is changed
more gradually during the process. Interestingly, we find that the ideal extractable work grows with the number
of particles due to giant number fluctuations. This is in contrast to the calculated behavior of a similar engine
operating on thermal particles.
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I. INTRODUCTION

In recent years there has been a renewed interest in the
connection between information and thermodynamics [1–10].
This fundamental line of research, originating with Maxwell’s
celebrated thought experiment [11] is now a reality, having
been experimentally tested in various settings [12–24]. The
first illustration of how a Maxwell’s demon can be used to
construct an engine is due to Szilárd [25], who proposed
a single-molecule engine directly converting information to
work [Fig. 1(a)].

In Szilárd’s engine, an ideal gas molecule is placed in a
rectangular box that is in equilibrium with a surrounding heat
bath. A mobile partition is then placed in the center of the
box, and a measurement is made to determine which side the
molecule occupies. The information gained by the measure-
ment I = ln 2 is proportional to the reduction in entropy of
the system. Next, the single-molecule gas is allowed to expand
isothermally, performing work of W = kBT ln 2. The partition
is then removed, bringing the system to its original state. As in
any typical engine, this process is repeated in a cyclic manner.

While previous experimental realizations have mainly fo-
cused on single-particle systems, theoretical analyses have
also explored generalizations to many-body information en-
gines [26–32]. In a classical many-body Szilárd’s engine [26]
[Fig. 1(b)], N ideal-gas particles are placed in the box, and
the measurement determines the number of particles in each
side: NL, NR (for simplicity, an odd N = NL + NR is assumed).
Work is extracted from the system by taking advantage of the
pressure difference between the two halves. In the many-body
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case, work extraction increases with the imbalance in the
initial division of particles. This is the case for any system
where the pressure is a monotonic function of the density (see
Appendix A).

Information engines are inherently out-of-equilibrium due
to the application of measurement outcome-dependent feed-
back. In most of the literature, this is the sole mechanism that
drives the engine away from equilibrium. Only very recently,
connection to a nonequilibrium environment [33,34], or an
active working substance [35], were considered.

Here, we consider a Szilárd engine operating on a many-
body active system. In a Szilárd engine operating on an
ideal gas, the number of particles in each half is distributed
binomially, due to thermally induced number (or density)
fluctuations. In contrast, if the engine operated instead on a
system that exhibits giant number fluctuations, the imbalance
between both halves would be more prominent. Giant number
fluctuations are known to exist in driven dissipative systems
[36–38] and active matter [39–45]. Therefore, realizations
with large number differences |NL − NR| are more likely to
occur in a Szilárd engine with active particles. This, in turn,
should result in a higher amount of extractable work.

II. EXPERIMENTAL SETUP

In the following, we describe our experimental realization
of a many-body Szilard engine consisting of self-propelled
particles [Fig. 1(c)] (see Supplemental Material (SM) Movie
1 [46]). We start by characterizing the properties of the ac-
tive system, focusing on the distribution of NR, and on the
dependence of the pressure on the number of particles. We
investigate the consequence of increasing the number of par-
ticles and verify that the giant number fluctuations result in
an increase of the extractable work, in contrast to an ideal-gas
many-body Szilárd engine. Finally, we experimentally extract
work from the Szilárd engine by lifting a mass against gravity.
We compare the measured work to the expected work within
the constraints of the protocol, and to the work extractable in
an optimal (quasistatic) process.
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FIG. 1. (a) Szilárd’s engine. (b) Many-body generalization.
(c) Our experimental setup with many active particles. The arena
is round and the partition is free to rotate on an axle placed in its
center. A mass is attached to a string that is connected to the partition,
converting the circular motion of the partition to vertical motion and
pulling the mass against gravity (hence extracting work).

Particles in our system are self-propelled, elongated bris-
tle robots (Hexbug, Nano). Each robot has 12 flexible
legs on which it jumps due to the rotation of an internal,
battery-powered motor [47]. Bristle robots (bbots) exhibit typ-
ical active matter behaviors such as clustering [47–49]. The
motion of a single bbot can be described as directed random
motion with a persistence length of more than 1 m [50], which
is larger than the radius of our system, R � 0.2 m. Bbots
exhibit a slightly chiral motion that did not significantly affect
the resulting pressure and particle distribution. We place the
bbots in a half-circular arena with rounded edges to prevent
particles from getting stuck in corners. The arena has a de-
tachable partition that can be inserted at will and rotates freely
on an axle. We record the experiments with a web camera
(Logitech, Brio 4K).

III. RESULTS

Pressure as a function of density. The relation between
pressure and density is determined by measuring the average
steady-state volume occupied by the bbots under a specified
external pressure. A constant force is applied by attaching
a mass m to the partition. The bbots are positioned on one
side of the partition and exert pressure to counteract the
gravitational force (see SM Movie 2 [46]). The mechanical
quasi-two-dimensional pressure that the bbots apply on the
partition is given by mg/L, where g is the gravitational accel-
eration, and L is the length of the partition. The density, at
this pressure, is given by the number of bbots in the chamber
divided by the average volume they occupy.

In Fig. 2, we plot the applied pressure as a function of the
average measured density N/V , demonstrating that pressure is
a monotonous function that grows with density. Since a linear
dependence of the pressure on density is observed throughout
the density range tested in our experiment, we fit the pres-
sure to an ideal-gaslike equation of state P = αN/V + P0,
with a fitting parameter α = (1.78 ± 0.21) × 10−4 J (Fig. 2,
solid line). The nonzero intercept P0 = (2.18 ± 0.52) × 10−2

N/m is attributed to a combination of static friction and the
finite size of the system. At high loads, the finite system size
restricts the partition and volume fluctuations, truncating its

FIG. 2. Applied pressure as a function of density. A linear fit
P = αN/V + P0 is shown in a black line. Different colors indicate
different particle numbers N . To rule out a possible effect of the
chiral motion of bbots, measurements were made with particles at
either side of the partition (triangular symbols indicate the direction
of applied force on the partition).

range. This leads to an underestimation of the mechanical
equilibrium volume and an overestimation of the pressure in
a nontrivial manner (see Appendix B). It should be noted that
the intercept is canceled out in subsequent calculations that
are based on the difference of pressures from both sides.

The dependence of pressure on particle number may cease
to be linear at higher densities. Nonetheless, active particles
were previously shown to have a monotonic dependence of
pressure on density if their Péclet number is high enough
[51,52]. The tendency of active particles to cluster near walls
[51] can contribute to the forces they apply on them, which
can help maintain high pressures even when large clusters
form. A theoretical analysis of the pressure and number
fluctuations at high densities is beyond the scope of the
current work.

Number fluctuations. We use image analysis [53] to mea-
sure the distribution of the number of particles in each half,
e.g., Pr(NR). For small N the distribution is essentially that of
ideal thermal particles [Fig. 3(a)]. In contrast, much wider dis-
tributions are observed for larger NR [Fig. 3(b)]. In Fig. 3(c),
we show the standard deviation �NR of NR for different val-
ues of N . The results exhibit a transition from �NR ∝ √

N

(b)

(c)

(a)

(c)

FIG. 3. Experimental measurement of number fluctuations.
(a)–(b) Histograms of the number of particles in the right half of the
system NR for N = 6, 19 particles (green line), respectively, com-
pared to the expected distribution for an ideal gas (blue line). (c) The
standard deviation of the distribution of the number of particles in the
right half of the system �NR as a function of N. The black lines are
the power laws for a system in equilibrium (�NR ∼ N1/2, bottom)
and for a system with giant number fluctuations (�NR ∼ N , top).
We observe a transition between these regimes when the number of
particles is increased.
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FIG. 4. Upper bound on mean work per cycle as a function of the
number of particles for the many-body Szilárd’s engines: (a) passive
(solid blue line) and (b) active (green points). Values for the ideal gas
are normalized by kBT whereas, for the active gas, work is in units
of 10−4 Joules. (c) Information per measurement as a function of N .
(d) The efficiency of converting information to work, for quasistatic
work extraction, as a function of N .

towards the maximally possible exponent �NR ∝ N . Such
high number fluctuations were found for other rodlike active
materials [39–42].

Maximal extractable work. Keeping in mind Szilárd’s orig-
inal view, we consider a case where work is extracted by
connecting a mass that is lifted against gravity. The work W =∫

Fdh clearly depends on both the time-dependent height
h of the mass and the force F applied at every instant. In
equilibrium, optimal work extraction is achieved by following
a quasistatic process in which the force balances the pressure
difference at any time. In this case, all the free energy differ-
ence is converted into work. This quasistatic work is given by

W (k) =
∫ N/2+k

N Vtot

1
2 Vtot

PRdVR +
∫ N/2−k

N Vtot

1
2 Vtot

PLdVL, (1)

where k = NR − N/2 and PL,R are the pressure of the
left/right-hand side of the system. For an ideal gas

W (k) = NkBT

(
1

2
ln
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1 − 4

(
k

N

)2
)

+ k

N
ln

1 + 2 k
N

1 − 2 k
N

)
,

(2)
where T is the temperature and kB is Boltzmann’s constant.
The average extracted work, given that particles are nonin-
teracting and their spatial distributions are uniform, is 〈W 〉 =∑N/2

k=−N/2 W (k) Pr(k), with Pr(k) = ( 1
2 )N

( N
N
2 +k

)
. For an engine

operating on an ideal gas and N � 1, the mean work can be
approximated by noting that Pr(k) is a fast-decaying function
as |k/N | grows. As a result one can expand W (k) [26]:

W (k) = NkBT

(
2

(
k

N

)2

+ O

((
k

N

)4
))

, (3)

lim
N→∞

〈W 〉 = 2kBT

N
〈k2〉 = 1

2
kBT, (4)

and higher-order terms vanish. Therefore, the mean
extractable work depends on number fluctuations
(〈k2〉 = (�NR)2), and for an ideal-gas-based Szilárd engine it
transitions from kBT ln 2 to kBT/2 as N increases [Fig. 4(a)].

We calculate 〈W 〉 for the active particle system following
the same analysis, substituting α (Fig. 2) for kBT and the

experimentally measured distribution Pr(k) in place of the bi-
nomial distribution [Fig. 4(b)]. We find that the calculated 〈W 〉
increases with N . This is a clear qualitative difference between
information engines operating on active and thermal particles.

Information and efficiency. The protocol used to extract
work uses information about the number of particles in each
half to determine the weight that can be lifted. The informa-
tion measure that fits this protocol is the Shannon information
of the distribution Pr(NR): I = −∑N

NR=0 Pr(NR) ln Pr(NR).
For an engine with thermal particles, the efficiency of convert-
ing information to work is ηc = 〈W 〉/kBT I . For comparison,
we use a figure of merit ηc = 〈W 〉/αI also for our active
information engine.

The information and ηc for both cases are shown in
Figs. 4(c) and 4(d). The wider number distribution of the
active particles is reflected in larger I . At the same time, the
calculated ηc for the active particles is larger than for their
thermal counterparts, especially for large N . In fact, ηc > 1
is found for the active system with N = 25. It should be
stressed that in the active system, there is an additional source
of energy that is not taken into account in the definition of ηc,
which is therefore not the true thermodynamic efficiency of
the setup.

Experimental work extraction. In theoretical analyses of in-
formation engines, work is commonly assumed to be extracted
in an optimal way and more attention is directed to finding
the optimal measurement protocol [27,28,54]. Extraction of
the full amount of energy from the post-measurement state is
an experimental challenge, requiring the ability to control the
system quasistatically [14–16]. In many cases, a slow qua-
sistatic work extraction process is undesired and impractical,
as is in our experimental setup which has long relaxation times
and is controlled manually. Taking these considerations into
account, we demonstrate that measurable work can be ex-
tracted from our system by testing a finite-time approximation
of the optimal protocol [55].

Work extraction is demonstrated using the following pro-
tocol. The partition is placed in the center of the arena, with
different numbers of bbots on its sides, thereby matching a
particular measurement of NL, NR. A string with three weights
is then attached to the partition. The weights are chosen so
their sum partially balances the expected pressure imbalance.
The partition is then allowed to move freely so that after a
while it fluctuates around the volume ratio where the forces on
it are balanced. At this point, the lower weight (m1) is removed
by burning the string connecting it to the other weights (see
SM Movie 3 [46]). The lower net weight on the string means
that the partition is free to move and fluctuate around a new
balancing point while raising the remaining weights. The pro-
cess is repeated. At the end of the process, the ith weight has
been raised by �hi. The work extracted in the process is given
by W = g

∑
i mi�hi. The partition exhibits large fluctuations,

but repetitions of the process allow for approximation of the
ensemble average of the work. Clearly, the protocol can be
refined by adding more steps with smaller masses, where
quasistatic control will be achieved at the limit of infinitely
many infinitesimally small masses.

In Fig. 5(b) we plot the upper bound of the extractable
work W (k) (solid green line), calculated for a quasistatic
process, the expected work (see Appendix B) for the
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FIG. 5. Experimental and predicted work extraction for the
three-step expansion protocol compared to the quasistatic limits.
(a) Pressure difference applied on the partition as a function of the
right half’s volume VR at NR/N = 15/17. The calculated pressure
difference �P on the partition, based on data from Fig. 2, is shown
in a solid green line. The experimental results are shown in purple
points. The initial volume is VR = V/2, shown in a dotted verti-
cal line. The work extracted at each step is W = �P�V (area of
gray and purple rectangles for calculated and experimental results,
respectively). (b) Work extracted from the system for experiments
with different values of NR/N for N = 17 after one (crosses), two
(diamonds), and three (circles) stages of the protocol. For NR = 15,
values correspond to the areas of purple rectangles in (a). Results
are compared to the expected work from the finite-time protocol
with three control steps (dashed purple line), and the optimal control
protocol (solid green line).

three-stage protocol (dashed purple lines), and the
measured work (markers) for experiments with N = 17
and NR = 14, 15, 16. The measured work exhibits the same
trends as its expected counterpart and also falls just within
experimental uncertainty. However, it also is systematically
smaller than expected. This difference is attributed to a
mechanical constraint that restricts the maximally attainable
volume (see Appendix B). Nevertheless, the results show that
more work can be extracted when the imbalance between
the number of particles in the two halves is larger, and as
more control steps are added. This verifies that pressure
measurements are reliable and can be used to calculate
the amount of extracted work for a given work extraction
protocol, hence demonstrating that work of order 10−4 J can
be extracted from the engine, as predicted in Fig. 4.

IV. CONCLUSIONS

In summary, we report the first experimental study of
a macroscopic information engine operating on an active
system. Our implementation was based on a many-body
Szilárd’s engine configuration consisting of self-propelled
bbots. We analyzed the operation of the engine in comparison
to one based on an ideal gas. The differences between the
two reveal themselves in the dependence of the work per
cycle on the number of particles. Specifically, the extractable
work increases with particle number in our active engine,
while decreasing in an ideal gas engine. This fundamental
difference is attributed to the giant number fluctuations
exhibited by the active system. This is a general result and
should hold for any system with giant number fluctuations
and monotonous dependence of pressure on density. While
previous studies of work extraction from active systems were

based on the interaction between active matter and boundaries
[56–60], here we use a different attribute of active matter:
their tendency to aggregate.

In addition, we demonstrated how different protocols affect
the extracted work. It would be interesting to explore differ-
ent protocols to maximize work extraction at finite operation
times, especially in light of the literature on optimal control of
active matter [61–64]. Clearly, more work could be extracted
from our system using more elaborated feedback and control
schemes that employ information about the dynamics of the
partition during the expansion process.

Fluctuations in our experiment are athermal and can occur
at any scale, without the amplification required in Ref. [65].
This allowed us to extract work with an order of magnitude
α � 10−4 J per cycle, where α is the scaling factor between
pressure and density for the bbots (Fig. 2). In comparison,
state-of-the-art microscopic information engines can only ex-
tract up to about kBT � 10−21 J per cycle [16,18], or 10kBT �
10−20 J when a passive particle is subjected to nonequilib-
rium fluctuations [33,34]. Notably, the energy scale α in our
experiment is also three orders of magnitude larger than that
measured for a macroscopic Maxwell’s demon operating on a
granular gas [60].

To compare our results to microscopic information engines
on equal footings, we also evaluate the normalized values of
work and ηc. The ideal work per cycle (Fig. 4) is 〈W 〉/α �
3.88 at N = 25, which is comparable to 〈W 〉/kBT � 1 values
in microscopic engines [16–18]. The corresponding maxi-
mum value of ηc we observed is ηc = 〈W 〉/αI = 1.21 ± 0.42,
which is of course a result of the energy required to maintain
activity not being taken into account. A conversion efficiency
ηc > 1 highlights the nonequilibrium dynamics the active par-
ticles. This is in line with the results of Ref. [33] but in stark
contrast to the situation in Ref. [34], where the nonequilibrium
fluctuations are analogous to thermal fluctuations at a high
effective temperature.

Finally, we note that when considering the energy required
to sustain the active system in a steady state, the full ther-
modynamic efficiency of our active information engine is
naturally very low. This is a result of only a fraction of the total
energy being used to push the partition. Evidently, directly
connecting the batteries to an electric engine would yield a
significantly higher power output than can be extracted from
the movement of the partition. However, understanding the
various mechanisms by which energy can be extracted from
active matter is fundamentally interesting. It will also assist
in the design of microscopic engines operating in naturally
occurring active systems, such as bacteria swarms.
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FIG. 6. Pressure-volume diagram for the system at different NR/N ratios. The pressure difference �P = PR − PL between both sides as a
function of the volume of the right side VR is shown in a solid line. The pressure of the right side PR is shown in a dashed line for comparison.
The grey boxes are the expected work output for each control step used in the experiment [Pi�Vi in Eq. (B5)]. The purple lines and boxes show
the actual mean volume at which the system equilibrated in the experiment and the corresponding real output work. The initial volume V/2
is shown in a dotted vertical line, whereas the maximum and minimum volumes are shown in solid black lines (the geometry of the system
prevents the volume of the right half of the system from exceeding these values).

(Grant No. 1929/21). R.G. acknowledges support from the
Ratner Center for Single Molecule sciences.

FIG. 7. This snapshot taken from one of the experiments illus-
trates that the volume distribution is truncated due to the geometry of
the arena. Rounded corners prevent the side with more particles from
expanding further, even though several particles are pushing against
the partition and particles from the other side do not apply any force
on the partition. Inset: a zoomed in picture of the corner that restricts
the partition from moving further.

APPENDIX A: DEPENDENCE OF WORK ON NUMBER
FLUCTUATIONS

Consider a system with N particles and volume Vtot , in
which the pressure P(ρ) is a monotonic function of the
density ρ. A wall is placed in the center of the system,
dividing it into two subsystems of volume 1

2Vtot , with NL

and NR particles in the left and right halves, respectively, so
that NL + NR = N . We let the partition move due to the force
applied to it by pressure difference on both sides, �P = PR −
PL, until a mechanical equilibrium state PR = PL is reached.
Due to the assumption on P, this occurs when the volume of
each side reaches a value so that densities are equal:

ρeq = NL

V eq
L

= NR

V eq
R

. (A1)

Define the volume difference �V between the initial and final
volumes of each side so that V eq

L = Vtot/2 − �V and V eq
R =

Vtot/2 + �V . Also denote NL = N/2 − �N and NR = N/2 +
�N , then

1 − 2�N/N

1 + 2�N/N
= 1 − 2�V/Vtot

1 + 2�V/Vtot
, (A2)

�N

N
= �V

Vtot
, (A3)

where N and Vtot are constants, so �V is a function of the
random variable �N , whose value is determined when the
wall is placed, dividing the full system into two subsystems.
The work extracted from a quasistatic process is given by

W =
∫ V R

eq

Vtot
2

�P(VR)dVR (A4)
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FIG. 8. Volume distribution experimentally measured for each NR/N ratio at different applied weights. The measured volumes are shown in
blue and their average is in a purple line. This is compared to the predicted volume from Eq. (B4) (solid black line). The maximum achievable
volume (constrained by the geometry of the arena) is shown in orange. The increased counts near the maximum volume indicate that the
distribution is indeed truncated at this value.

=
∫ V eq

R

Vtot
2

PR(ρR)dVR −
∫ V eq

R

Vtot
2

PL(ρL )dVR (A5)

=
∫ V eq

R

Vtot
2

PR(ρR)dVR +
∫ V eq

L

Vtot
2

PL(ρL )dVL. (A6)

Since the number of particles in each partition remains con-
stant, we can substitute Vi = Ni/ρi and dVi = −(Ni/ρ

2
i )dρi

(i ∈ L, R), so that

W = −NR

∫ ρeq

2NR
Vtot

P(ρR)

ρ2
R

dρR − NL

∫ ρeq

2NL
Vtot

P(ρL )

ρ2
L

dρL. (A7)

Since Vtot is a constant and NL, NR and �V are all functions
of �N , we found that the work W can be recast as a function
of �N , i.e., its mean and fluctuations can be calculated from
the number fluctuations in the setup.

APPENDIX B: CALCULATIONS OF WORK
IN THE DISCRETE CONTROL PROTOCOL

In the three-step expansion protocol, the system is initially
divided into two halves of volume V/2 with NL,R particles at
each half. Let us assume that a mass m is attached to the par-
tition and calculate the volumes VL,VR at which mechanical
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equilibrium is achieved. These satisfy

L�P = mg, (B1)

where L is the length of the partition, �P is the pressure differ-
ence between the two sides, and g is the gravity acceleration.
Using the linear relation between density and pressure, shown
in Fig. 2 of the main text, leads to

α
NR

VR
− mg

L
= α

NL

VL
, (B2)(

αNR − mg

L
VR

)
V =

(
α(NR + NL ) − mg

L
VR

)
VR. (B3)

We solve the quadratic equation for VR

VR(m, NR, NL ) = 1

2

(
V + αL

mg
(NR + NL )

±
√(

αL

mg
(NR + NL ) + V

)2

− 4
αL

mg
NRV

)
(B4)

and since VR should grow with NR for fixed N = NR + NL,
only the solution with the minus sign is physical.

The mechanical equilibrium value of VR can be used to
compute the extracted work for a protocol consisting of n
masses mi: define Mi = ∑n

j=i m j the total mass at step i (be-
ginning with a heavy total mass and gradually reducing the
mass by removing some of the weights), the extracted work is

W =
∑

i

Pi�Vi

=
n−1∑
i=1

Mig

L
(VR(Mi, NR, NL ) − VR(Mi−1, NR, NL )), (B5)

with M0 defined so that VR(M0, NR, NL ) = V/2 (the initial
volume is one half of the arena for any protocol).

In Fig. 6, we plot the expected extracted work for the
masses used in the experiment for several NR/N ratios
[Eq. (B5)], and compare the calculations to experimentally
measured values. The figure illustrates how adding more con-
trol steps allows the extracted work to approach its quasistatic
limit.

Deviation of the experimental work from its predicted val-
ues. Our results, see for example Fig. 6, show that while
for a larger mass, the mean volume the system is found at
is consistent with the prediction based on pressure measure-
ments, as the mass is reduced a deviation from the predicted
value observed. We suggest that this is mainly a result of the
truncation of the volume distribution caused by the geometry
of the arena. Figure 7 shows a snapshot from an experi-
ment where the partition cannot move despite being pushed
by particles only from one side. The inset shows it is the
rounded corners that prevent the setup from reaching very
large volumes. This is supported further by observing the
volume distributions for different NR/N ratios and different
applied weights. Figure 8 shows the measured distributions
for all the measurements contributing to the data presented in
Fig. 6. Clearly, the distributions in all experiments are affected
by this restriction, as they all show an increased likelihood
to be at the cutoff volume, and absence of larger volumes.
But for larger masses, only realizations near the tail of the
distribution are affected, and their overall weight is relatively
small. Indeed, for these masses, the observed mean volume
matches the calculated value. When the mass of the weight is
reduced the distribution of volumes is shifted towards larger
values. As a result, more realizations are found at the cutoff
volume, meaning that the truncation effect is more prominent.
This explains why the experimental extracted work agrees
with its predicted value based on pressure measurements in
the first control step, where the applied mass is very large (so
only a small pressure imbalance is expected), and deviates
more as the weight is decreased (a larger imbalance should
result in VR expanding further towards its maximal value).

This observation explains the systematic deviations be-
tween the measured work and the results of calculations based
on Eq. (B4). Indeed, one can see in Fig. 6 that much of the
discrepancy comes from the latter stages of the process, where
the weights are smaller, and volumes are typically larger. An
improved theoretical calculation that would take into account
the cutoff will require a description of the distribution of
volume and is unrealistic. In a larger experimental setup that
would minimize finite-size effects we expect better agreement
between calculated and measured work.
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