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Modeling particle loss in open systems using Keldysh path integral
and second order cumulant expansion
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For open quantum systems, integration of the bath degrees of freedom using the second order cumulant
expansion in the Keldysh path integral provides an alternative derivation of the effective action for systems
coupled to general baths. The baths can be interacting and not necessarily Markovian. Using this method
in the Markovian limit, we compute the particle-loss dynamics in various models of ultracold atomic gases,
including a one-dimensional Bose-Hubbard model with two-particle losses and a multicomponent Fermi gas
with interactions tuned by an optical Feshbach resonance. We explicitly demonstrate that the limit of strong
two-body losses can be treated by formulating an indirect loss scheme to describe the bath-system coupling. The
particle-loss dynamics thus obtained is valid at all temperatures. For the one-dimensional Bose-Hubbard model,
we compare it to solutions of the phenomenological rate equations. The latter are shown to be accurate at high
temperatures.
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I. INTRODUCTION

Open quantum systems constitute one of the most inter-
esting challenges of the field, both from a fundamental point
of view and of course in connection with applications or
experimental realizations. This class of problems offers an
interesting interplay between coherent Hamiltonian dynamics
and incoherent, dissipative dynamics emerging from coupling
to the environment [1–3]. From a fundamental point of view,
after being considered a nuisance due to the destruction of
coherence, dissipative processes are now regarded as a re-
source allowing us to engineer quantum states of matter [4–7]
or to assist for quantum transport properties [8–10]. Among
the various types of dissipative processes, particle losses have
played a special role, and recent experiments in cold atomic
systems have allowed us to control them in an exquisite
manner. This is, for example, the case of losses in weakly in-
teracting Bose gases [11,12] or fermionic systems where local
losses are realized [13,14]. More recently, cavities have also
provided an interesting playground for this kind of physics
[15–17].

Theoretically studying dissipative phenomena is a con-
siderable challenge, and several approaches have been used
to deal with the coupling to the environment, which is of-
ten modeled as a bath. One common approach resorts to
non-Hermitian Hamiltonians [3,18–20]. The resulting (non-
Hermitian) models can be analyzed using, e.g., the powerful
tools of integrability [21,22] as well as various field-theoretic
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and numerical techniques [18,19], which include bosonization
and the renormalization group [20,22,23]. However, because
such treatments often neglect or at most treat in an approxi-
mate way the so-called quantum-jump term of the Lindblad
master equation, it is difficult to assess how reliably they can
describe the dynamics of the system observables. Other ap-
proaches deal with the full Lindblad master equation [24–27],
assuming the bath is Markovian [1,28]. In this paper, we are
concerned with another generic method to deal with such
out-of-equilibrium systems, namely, the Keldysh formalism
and its path integral formulation [29,30].

Approaches based on the path integral have a long his-
tory beginning with the pioneering work of Feynman and
Vernon [31]. They have often been used in the context
of quantum dissipation, where the coupling to ohmic, sub-
ohmic, or superohmic baths generates an effective long-range
interaction in imaginary time [32–35]. In a more general
context, they have also been used to describe nonequilibrium
dynamics in the presence of coupling to baths [29,36], time-
dependent environments [10,37], and single-particle losses
[30,38–40].

Despite these important developments, several phenomena
linked to the coupling to the environment still remain elusive.
In particular, in ultracold atomic systems the dynamics in the
presence particle losses involve a priori processes beyond
single-particle losses and include two- or three-particle losses
as well. Quite generally, the description of particle losses has
assumed the validity of phenomenological rate equations of
the form

dn

dt
= −γ1n − γ2n2, (1)

where n is the particle density and γ1 and γ2 are the one-
and two-particle loss rates, respectively. However, the correct
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functional form and range of validity of these phenomenolog-
ical equations and how to account for many-particle effects
are still not fully understood. For ultracold atoms near Fes-
hbach resonances, a theoretical description of the two-body
loss rate, γ2, was developed based on the S-matrix cal-
culation in Ref. [41] and some properties of three-body
losses could be determined from Bethe ansatz solutions
[42]. Braaten et al. [43] combined effective field theory
with the Lindblad master equation to obtain a universal re-
lation for the two-atom inelastic loss rate for two-species
Fermi gases.

In this paper, to go beyond the phenomenological de-
scription of particle losses provided by Eq. (1) and be able
to account for many-particle effects, we develop a path in-
tegral formalism that relies on the second order cumulant
expansion. The formalism can, in principle, also deal with
interacting as well as non-Markovian baths. However, here we
demonstrate it by studying the Markovian dynamics of many-
particle systems in the presence of one- and two-particle
losses and briefly discuss how to go beyond the Markovian
limit in Appendix C. In the absence of interactions in the
bath, the resulting approach is exact for one-particle losses
and approximately valid for two-particle loss problems at
weak coupling. To deal with the strong coupling regime,
we also introduce an indirect two-body loss scheme. We
discuss two experimentally relevant examples of this indirect-
loss scheme [a lossy one-dimensional Bose-Hubbard model
and a multicomponent Fermi gas near an optical Feshbach
resonance (OFR)] and explicitly derive the loss rate equa-
tions. In both cases, we find their functional form deviates
from Eq. (1). In the case of the lossy Bose-Hubbard model,
we explicitly show that, at low-temperatures where quan-
tum coherence is important, predictions of the microscopic
theory deviate substantially from those obtained using the
phenomenological Eq. (1).

The rest of this paper is organized as follows. In Sec. II,
we describe the derivation of the Keldysh path integral using
the second order cumulant expansion. We first illustrate the
method with a model consisting of a single-mode (fermonic
or bosonic) oscillator coupled to a bath to which particles can
be lost (cf. Sec. II A). The general formalism is discussed in
Sec. II B. However, since only the results of Sec. II A will be
used in the rest of the paper, Sec. II B can be skipped on a
first reading. Section III briefly describes how the results of
Sec. II A are applied to describe a quantum gas with one-body
losses. Sections IV and V deal with the applications of the
formalism to two models for relevant for the physics of ultra-
cold atomic gases with two-body losses: Sec. IV is concerned
with a lossy Bose-Hubbard model in one dimension, whereas
Sec. V deals with the model of a multicomponent Fermi
gas near OFR. Some technical details and useful results are
described to the Appendices.

II. FORMALISM

A. Single-mode case

To begin, let us illustrate the method by considering a
single bosonic or fermionic mode (system A) coupled to a bath

(B) by means of a quadratic Hamiltonian:

HA = ε0a†a + HA,int, (2)

HB =
∑

α

ωαb†
αbα + HB,int, (3)

HAB(t ) = f (t )
∑

α

[gαa†bα + g∗
αb†

αa]. (4)

Here a, a† describe a bosonic (fermionic) mode in the A and
bα, b†

α set of bosonic (fermionic) modes in B labeled by a
continuum index α. We shall assume that A and bath B are in
equilibrium (not necessarily with each other) at t = −∞ and
the interaction between them, HAB(t ), is switched according to
a protocol described by the function f (t ). Both A and B can be
interacting systems with, e.g., HB,int = gint

∑
αβγ δ b†

αb†
βbγ bδ .

The Keldysh generating functional [29] for the system
introduced above can be written as follows:

Z[V̄ ,V ] =
∫

D[āa]D[b̄αbα] eiS. (5)

The Keldysh action is S = SA + SB + SV + SAB, where

SA =
∫

C
dt [iā∂t a − HA], (6)

SB =
∫

C
dt

[
i
∑

α

b̄α∂t bα − Hint,B

]
, (7)

SV =
∫

C
dt [ā(t )V (t ) + V̄ (t )a(t )], (8)

SAB = −
∑

α

∫
C

dt f (t )[gα ā(t )bα (t ) + g∗
α b̄α (t )a(t )]. (9)

In the above expressions, C is the Keldysh contour, which
runs from t = −∞ to t = +∞ and back to t = −∞ [29];
V̄ ,V are sources that couple the system degrees of freedom:
Any n-point correlation of the system A can be obtained by
conveniently taking functional derivatives of Z[V̄ ,V ] with
respect to V̄ and V . The generating functional is normalized so
Z[V̄ = 0,V = 0] = 1, since in the absence of external sources
it merely describes the unitary evolution of the initial state
from t = −∞ to +∞ and back to t = −∞.

Starting from the above functional integral representation,
we can define the Feynman-Vernon influence functional [31]
F[ā, a] as the result of formally integrating out the bath de-
grees of freedom, i.e.,

F[ā, a] =
∫

D[b̄αbα] ei(SB+SAB ). (10)

It is often not possible to obtain F in a closed form and,
therefore, we have to resort to approximations. For a general
(e.g., interacting) bath that is weakly coupled to the system,
the second order cumulant expansion provides a good starting
point to capture the dissipative dynamics induced by the bath.
Furthermore, it is exact if the bath Hamiltonian HB and the
coupling HAB are quadratic and linear in the fields b̄α, bα ,
respectively. Using the cumulant expansion to second order
(see Appendix B), we approximate

F[ā, a] = 〈eiSAB〉B � exp
[
i〈SAB〉B − 1

2

(〈
S2

AB

〉
B − 〈SAB〉2

B

)]
= eiL[ā,a], (11)
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where 〈· · · 〉B stands for the average over the bath degrees
of freedom. Taking 〈SAB〉B = 0 after assuming that the bath
conserves the number of bath excitations in its initial state and
dynamics, we obtain the following dissipative effective action:

L = i

2

∑
α

∫
C

dt1dt2 |gα|2 f (t1) f (t2)

× [〈bα (t1)b̄α (t2)〉B ā(t1)a(t2)

+ 〈b̄α (t1)bα (t2)〉B a(t1)ā(t2)]

= i

2

∑
m,n=±

∫
dt1dt2v

mn(t1, t2)ām(t1)an(t2). (12)

In the last expression, we have split the integrals over the
Keldysh contour C. After rewriting them as a single integral
where t1, t2 run from −∞ to +∞, we have introduced the
subindices m, n = ± to denote on which branch of C the time
argument of the fields a, b, etc. lies. We have also introduced
the functions vmn(t1, t2) = f (t1) f (t2)gmn(t1 − t2), where

gmn(t1 − t2) = snsm

∑
α

|gα|2[〈bαm(t1)b̄αn(t2)〉B

+ z〈b̄αn(t2)bαm(t1)〉B]. (13)

In the above expression, sm=± = ±1 and z = +1 (z = −1)
for bosons (fermions). In the Appendices, within Markovian
limit, we show that gmn(t1 − t2) ∼ δ(t1 − t2). Thus, we arrive
at the following expression for the effective couplings (see
Appendix C for more detail):

v++(t1, t2) � ν0|〈g〉 f (t1)|2δ(t1 − t2), (14)

v−−(t1, t2) � ν0|〈g〉 f (t1)|2δ(t1 − t2), (15)

v−+(t1, t2) � −2ν0|〈g〉 f (t1)|2δ(t1 − t2) (16)

v+−(t1, t2) � 0, (17)

where 〈g〉 is an average system-bath coupling constant. Upon
denoting γ (t ) = ν0|〈g〉 f (t )|2 for the loss rate of particles to
the bath, we obtain the following result:

L = −i
∫

dt γ (t )

[
ā−(t )a+(t )

− 1

2
(ā+(t )a+(t ) + ā−(t )a−(t ))

]
. (18)

This is the dissipative part of the action characteristic of
a Markovian bath. It can also be obtained from the evolu-
tion of the density matrix according to the Lindblad master
equation (see Appendix A, which is based on Ref. [30] and
references therein).

Finally, let us compute the particle loss in system A caused
by switching on the coupling to bath B at t = 0 for an infinites-
imal time δt . This calculation can be carried out by the path
integral version of time-dependent perturbation theory, i.e.,
by perturbatively expanding the effective dissipative action to
leading order in L, which yields

〈a†(t )a(t )〉 =
∫

D[āa] ā−(t )a+(t ) ei(SA+L),

=
∫

D[āa] ā−(t )a+(t )[1 + L + O(L2)] eiSA ,

� 〈ā−(t )a+(t )〉A + i〈ā−(t )a+(t )L〉A, (19)

= na + γ

∫ +∞

0
dt ′〈ā−(t )a+(t )ā−(t ′)a+(t ′)〉A

− 1

2
γ

∫ +∞

0
dt ′〈ā−(t )a+(t )ā+(t ′)a+(t ′)〉A

− 1

2
γ

∫ +∞

0
dt ′〈ā−(t )a+(t )ā−(t ′)a−(t ′)〉A,

(20)

where we have set γ (t ) = γ θ (t ) and denoted na = 〈a†a〉,
which is the occupation in the initial state (i.e., for t < 0).
Assuming system A is noninteracting, we have

〈ā−(t )a+(t )ā−(t ′)a+(t ′)〉A = zn2
a, (21)

〈ā−(t )a+(t )ā+(t ′)a+(t ′)〉A = θ̃ (t − t ′)na(1 + zna)

+ θ (t ′ − t )zn2
a, (22)

〈ā−(t )a+(t )ā−(t ′)a−(t ′)〉A = θ (t − t ′)na(1 + zna)

+ θ̃ (t ′ − t )zn2
a. (23)

Hence,

na(t ) = 〈a†(t )a(t )〉 = na − γ na

∫ t

0
dt ′ θ (t − t ′). (24)

Setting t = δt 	 D−1 (where D−1 is the characteristic re-
sponse time of the bath, see Appendix C), we arrive at the
following one-body loss-rate equation:

dna(t )

dt
= −γ na(t ), (25)

On the right-hand side, with accuracy O(γ δt ), we have re-
placed na by na(δt ).

B. General case

In this section, we generalize the above results. Since only
the results obtained in the previous section will be neces-
sary, the applications discussed in this section can be entirely
skipped on a first reading. The starting point is again the
Hamiltonian describing the unitary dynamics of a system (A)
coupled to a bath (B).

H = HA(t ) + HB + HAB(t ), (26)

where HA(t ), HB, and HAB(t ) denote the Hamiltonians of
the system, bath, and their coupling, respectively. We have
assumed that, in general, the system Hamiltonian and its cou-
pling to the bath can be explicitly time dependent. We shall
consider a rather general form of the coupling between system
and bath:

HAB(t ) =
∑
q,p

[gqp(t )A†
qBp + H.c.], (27)

where

Aq = a†
q̄1

· · · a†
q̄N

aq1 aq2 · · · aqN ′ , (28)

Bp = b†
p̄1

· · · b†
p̄M

bp1 bp2 · · · bpM′ (29)
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are products of arbitrary number operators (with N 
=
N ′ and M 
= M ′, in general) acting either on the sys-
tem or the bath; p = {p1, · · · , pM ′ ; p̄1, · · · , p̄M} and q =
{q1, · · · , qN ; q̄1, · · · , q̄N ′ } are the quantum numbers carried
by those operators; gqp(t ) are the set of system-bath cou-
plings. The system-bath coupling is switched on according
to a certain protocol that determines the explicit time depen-
dence of the gqp(t ).

In general, we are not able to obtain the Feynman-Vernon
influence functional F exactly and here we will resort to a
second order cumulant expansion:

F[ā, a] = exp
[
i〈SAB〉B − 1

2 (〈S2
AB〉B − 〈SAB〉2

B) + · · · ]
= eiL[ā,a]. (30)

Explicitly, for the system-bath coupling introduced in
Eq. (27), the first-order correction takes the form

〈SAB〉B =
∑
pq

∫
C

dt
[
gqp(t )Āq(t )〈Bp(t )〉B

+ g∗
qp(t )〈B̄p(t )〉BAq(t )

]
. (31)

Note that this term does not describe dissipation and only
modifies the unitary evolution of system A. Thus, it can
be conveniently absorbed into HS by defining the operators
Bp and B†

p in Eq. (27) to have zero averages, i.e., 〈Bp〉B =
〈B†

p〉B = 0. In addition, this is automatically fulfilled if B and
B† change the number of particles in the bath but the bath
Hamiltonian HB and its initial state conserve this number.
Therefore, in what follows, we set 〈SAB〉B = 0 and do not
discuss it any further.

The second-order correction can be brought to the follow-
ing form in terms of bath correlators:

L = i

2!

〈
S2

AB

〉
B

= i

2

∑
q2q1

∫
C

dt1dt2[uq1q2 (t1, t2)Āq1 (t1)Āq2 (t2)

+ ūq1q2 (t1, t2)Aq1 (t1)Aq2 (t2)

+ vq1q2 (t1, t2)Āq1 (t1)Aq2 (t2)

+ v̄q1q2 (t1, t2)Aq1 (t1)Āq2 (t2)], (32)

where

uq1,q2 (t1, t2) =
∑
p1p2

g∗
p1q1

(t1)g∗
p2q2

(t2)CBB(p1t1, p2t2), (33)

ūq1q2 (t1, t2) =
∑
p1p2

gp1q1 (t1)gp2q2 (t2)CB̄B̄(p1t1, p2t2), (34)

vq1,q2 (t1, t2) =
∑
p1p2

g∗
p1q1

(t1)gp2q2 (t2)CBB̄(p1t1, p2t2), (35)

v̄q1q2 (t1, t2) =
∑
p1p2

gp1q1 (t1)g∗
p2q2

(t2)CB̄B(p1t1, p2t2). (36)

In the above equation, the following notation has been intro-
duced (X,Y = B, B̄):

CXY (p1t1, p2t2) = 〈TC[X (p1, t1)Y (p2, t2)]〉B (37)

for the bath two-point correlation functions of operators B, B†.
In the context of the Keldysh path integral, each one of the
above correlation functions becomes a 2 × 2 matrix in the
superindices m, n = ± after expanding the integrals over C
so t1, t2 run from −∞ to +∞. The superindices are inherited
by the couplings u, v, ū, v̄ introduced in Eq. (36), which also
become the 2 × 2 matrices umn

q1q2
(t1, t2), vmn

q1q2
(t1, t2), etc.

Explicit consideration of the time dependence of the cou-
pling matrices umn

q1q2
(t1, t2), vmn

q1q2
(t1, t2), etc., for a given bath

may allow us to identify regimes where the Markovian ap-
proximation applies. This is typically the case when the
response of the bath is much faster than the characteristic
timescale of the system dynamics. Thus, in the Markovian
regime we can assume that umn

q1q2
(t1, t2) ∝ δ(t1 − t2), etc. (al-

though some of them may also vanish as was the case in the
previous example). This provides an additional simplification
of the second-order term of the cumulant expansion and leads
to the following result:

L = LN + LA, (38)

where SN is the normal part,

LN = i

2

∑
q2q1,m,n=±

∫
dt ṽmn

q1q2
(t )Āq1,m(t )Aq2,n(t ), (39)

and LA is the anomalous part:

LA = i

2

∑
q2q1,m,n=±

∫
dt

[
ūmn

q1q2
(t )Aq1m(t )Aq2n(t ),

+ umn
q1q2

(t )Āq1m(t )Āq2n(t )
]
. (40)

In the above expressions, we have introduced the following
system-bath coupling matrices:

ṽmn
q1q2

(t ) = smsn
[
vmn

q1q2
(t ) + zv̄nm

q2q1
(t )

]
, (41)

where z = −1 (z = +1) if the operator products Aq, A†
q in

HSB have fermionic (bosonic) statistics and s+ = +1 (s− =
−1). We can classify the different terms according to the
type of time arguments of the system degrees of freedom
Aq(t ), Āq(t ). The first two terms on the right-hand side
contain Aqm(t ), Āqn(t ), whose time arguments lie on differ-
ent branches of the Keldysh contour C and therefore m 
=
n. These terms correspond to the so-called quantum jump
terms of the Lindblad master equation (see Sec. III and Ap-
pendix A). The remaining terms contain Aqm(t ), Āqn(t ) with
time arguments lying on the same branch of C, i.e., with
m = n. Such terms contribute to the anticommutator terms
of the Lindblad master equation in the operator language
(see Appendix A) and give rise to the anti-Hermitian part
of the effective non-Hermitian Hamiltonian in the operator
language [1].

Finally, although the last few expressions above have been
derived under the assumptions of Markovianity of the bath, we
want to emphasize that the approach used here is not limited
to the Markovian regime and can be used as a starting point
to include effects beyond Markovianity. The latter are outside
the range of applicability of the Lindblad master equation or
its path integral formulation as introduced in Ref. [30].

In the following sections, we shall consider a number of
applications to particle loss and show that, although derived
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using the cumulant expansion up to second order, which may
appear to be only valid for a weak system-bath coupling, it
is possible to reformulate the models to describe the limit of
very strong two-body losses exactly.

III. ONE-BODY LOSS

Before considering systems with two-body losses, it is
interesting to generalize the results of Sec. II A to describe
an ultracold gas coupled to a bath to which it can lose one
particle at a time. This section largely relies on the results
obtained in Sec. II A. We generalize the Hamiltonian to a
uniform gas and therefore the fields carry a momentum index
k. The Hamiltonian reads

HA =
∑

k

εka†
kak, (42)

HB =
∑
k,α

εk,αb†
kαbkα, (43)

HAB = f (t )
∑
k,α

[gαa†
kbkα + g∗

α b†
kαak], (44)

where the fields ak and bk,α are either fermionic or bosonic.
In ultracold atomic gases, the couplings gα, gα are often not
known from first principles. Instead, what is measured is the
loss rate of particles. Following the same steps as in Sec. II A
while keeping track of the momentum index k, we arrive at the
following effective action in the Markovian limit (m, n = ±):

SA,eff = SA + L, (45)

SA =
∑
k,mn

∫
dt

[
σ 3

mnākm(i∂t − εk )akn
]
, (46)

L = −i
∑
k,mn

∫
dt γ (t )

[(
σ−

mn − 1

2
σ 0

mn

)
ākmakn

]
, (47)

where we have introduced the following short-hand notations:
σ 3

++ = −σ 3
−− = 1, σ−

−+ = 1, σ 0
++ = σ 0

−− = 1, and zero oth-
erwise.

Like in Sec. II A, we can obtain the rate of particle loss by
assuming the coupling to the bath is switched on at t = 0 [i.e.,
f (t ) = θ (t )] and computing the change in the total particle
number density using perturbation theory in L:

nA(t ) = 1

�

∑
k

〈a†
k(t )ak(t )〉 (48)

= 1

�

∑
k

∫
D[āa] āk−(t )ak+(t ) ei(SA+L). (49)

Following the same steps as in Sec. II A, we compute the
leading-order change of nk(t ) = 〈a†

kak〉. Thus, we obtain
rate equations for the momentum distribution dnk(t )/dt =
−γ nk(t ), and hence the rate of change of the particle density
follows:

dnA(t )

dt
= −γ nA(t ). (50)

Note that the rate of change is proportional to the density,
which is characteristic of the one-body loss process.

FIG. 1. Scheme of the lossy 1D Bose-Hubbard model. J is the
nearest-neighbor hopping and U is the on-site interaction. The loss
parametrized by γ is the one-body loss rate of doublons, i.e., doubly
occupied sites

IV. LOSSY 1D BOSE HUBBARD MODEL

Next, we discuss how to describe two-body losses by cou-
pling a system to a bath. We first consider an ultracold gas
in a deep optical lattice which can be described by the one-
dimensional Bose-Hubbard model [44]. A laser is applied that
photoassociates atoms in doubly occupied lattice sites (dou-
blons) into molecules. The molecules are quickly lost from the
trap, resulting in a loss of two bosons (see Fig. 1). In the limit
where the loss of the photoassociated molecule is very fast,
the double occupancy is strongly suppressed. In other words,
in the presence of this coupling, the states containing doublons
are rapidly projected out. However, virtual transitions to states
containing doublons can still have an effect on the system
dynamics. This kind of loss dynamics was experimentally
studied in Refs. [6,45] and theoretically described using an
approach based on an effective master equation derived in
Ref. [46], which yields a phenomenological rate equation like
Eq. (1). In the following, we provide a microscopic theory for
the loss dynamics and compare it to the phenomenological
loss equation.

A convenient way to describe the dynamics of the Bose-
Hubbard model in a subspace containing no doublons relies on
the Jordan-Wigner transformation [44] that relates hard-core
bosons to fermions:

c j = Kja j, Kj =
∏
l< j

(1 − 2nl ), (51)

where n j = a†
j a j = c†

j c j = 0, 1 measures the occupation of

site j. The transformation holds true provided (a†
j )

2 = a2
j = 0

(i.e., no doublons) in the relevant Fock subspace. In this sub-
space, the kinetic energy of the hardcore bosons can be written
in terms of the Jordan-Wigner fermions (see Fig. 1):

Hc = −J
∑

j

[c†
j c j+1 + H.c.]. (52)

In addition, we note that the original hopping operator of
bosons −J

∑
i[a

†
j a j+1 + H.c.] also allows for transitions that

create virtual doublons. To allow for such processes, we intro-
duce a doublon field on each site d†

i that is coupled to the
(hardcore) bosons by means of −J

∑
j (d j + d j+1)a†

j a
†
j+1 +

H.c. Following the Jordan-Wigner transformation, this cou-
pling becomes

Hcd = −J
∑

j

[(c†
j c

†
j+1 + c†

j−1c†
j )d j + H.c.]. (53)
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Finally, we note that the doublon has an excitation energy
equal to U , and therefore

Hd = U
∑

j

d†
j d j . (54)

This rather heuristic derivation of the Hamiltonian in the
limit where the doublons are suppressed is confirmed be-
low by showing that it is a convenient Hubbard-Stranovich
decoupling of the effective interaction generated in the
strongly interacting limit of the one-dimensional Bose-
Hubbard model, i.e., for U 	 J [47].

The generating functional for the above model is

Z[V̄ ,V ] =
∫

D[d̄d]D[c̄c] eiS, (55)

where S = Sc + Sd + Sdc + SV :

Sc =
∑

j

∫
C

dt [c̄ j (i∂t − μ)c j + J (c̄ jc j+1 + c̄ j+1c j )], (56)

Sdc = J
∑

j

∫
C

dt[(c̄ j c̄ j+1 + c̄ j−1c̄ j )d j

+ d̄ j (c j+1c j + c jc j−1)], (57)

SV =
∑

j

∫
C

dt [V̄jc j + c̄ jVj]. (58)

As mentioned above, the doublon field will be treated as
Hubbard-Stranotovich field and therefore its action does not
contain a time-derivative term id̄∂t d:

Sd = −U
∑

j

∫
C

dt d̄ jd j . (59)

The calculations to be described below can also be carried out
including such derivative terms, which is not important in the
limit where U 	 J (see next section for a discussion where a
similar situation is encountered). We further assume that the
system is coupled to a bath that removes the doublons. This
coupling is described by the following term in the Keldysh
action:

SdB = −
∑
j,α

∫
C

dt f (t ) [gα d̄ jb jα + g∗
α b̄ jαd j], (60)

where the bath modes have the following quadratic action:

SB =
∑
j,α

∫
C

dt b̄ jα (i∂t − ωα )b jα. (61)

We integrate out the bath following the same steps as in
Sec. II A, which in the Markovian limit yields

Ld = −i
∑
j,mn

∫
dt γ (t )

(
σ−

mn − 1

2
σ 0

mn

)
d̄ jmd jn. (62)

Combining this term with the action for the doublon, the
following effective action is obtained:

Sd,eff =
∑
j,mn

∫
dt d̄ jmG−1

mn (t )d jn, (63)

G−1
mn (t ) = −Uσ 3

mn − iγ (t )
(
σ−

mn − 1
2σ 0

mn

)
. (64)

Finally, we integrate out the doublon field by making the
following change of integration variables in the functional
integral:

d jm(t ) = d ′
jm(t ) −

∑
m′,n′

Gm,m′ (t )σ 3
m′,n′h j,n′ (t ), (65)

d̄ jm(t ) = d̄ ′
jm(t ) −

∑
m′,n′

h̄ j,m′ (t )σ 3
m′,n′Gn′,m(t ), (66)

where we have denoted h j,m = −J (c j+1,mc j,m + c j,mc j−1,m ),
h̄ j,m = −J (c̄ j,mc̄ j+1,m + c̄ j−1,mc̄ j,m), and

Gmn(t ) = −Uσ 3
mn − iγ (t )

(
σ−

mn + 1
2σ 0

mn

)
U 2 + (γ (t )/2)2

. (67)

The resulting integral over d̄ ′
j, d ′

j is Gaussian and yields a
constant prefactor to the generating functional in Eq. (55).
In addition, there is an exponential factor with the following
effective action in the exponent:

S′
eff = −

∑
j,mn

∫
dt h̄ j,m(t )(σ 3G(t )σ 3)mnh j,n(t ). (68)

Note that in the limit where the coupling to the bath vanishes
and γ (t ) = 0, Gmn(t ) = −σ 3

mn/U , we obtain

S′
eff = 1

U

∑
j,mn

∫
dt h̄ j,m(t )σ 3

mnh j,n(t ) (69)

= J2

U

∑
j,mn

∫
dt σ 3

mn[2c̄ j+1,mc̄ j,mc j,nc j+1,n

− c̄ j+1,mc̄ j,mc j,nc j−1,n

− c̄ j−1,mc̄ j,mc j,nc j+1,n], (70)

which is the Keldysh action for the effective Hamiltonian ob-
tained using strong coupling perturbation theory in Ref. [47]
for the 1D Bose-Hubbard model in the limit where U 	 J and
in the subspace with no doublons.

Next, we switch on the coupling to the bath so γ (t ) =
γ θ (t ) and compute the particle-loss rate. It is convenient to
work in the Bloch wave basis, where ck = ∑

j e−ikx j c j/
√

M,
M is the number of lattice sites, x j = j, k = 2π l/M, l =
−M/2 + 1, . . . , M/2 (assuming periodic boundary conditions
and M to be even). Thus, the full effective action Seff =
Sc + S′

eff reads

Seff =
∑
k,mn

∫
dt σ 3

mnc̄k,m(i∂t − εk )ck,n

− 1

2M

∑
pkq,mn

∫
dt σ 3

mnŨpkq(t )c̄p,mc̄k,mck+q,ncp−q,n

− i

M

∑
pkq

∫
dt �pkq(t )c̄p,−c̄k,−ck+q,+cp−q,+, (71)

where εk = −J cos k is the single-particle dispersion,
Ũ (p, k, q) = Upkq(t ) − iσ 3

mn�pkq(t ) and �pkq(t ) are
given by

Upkq(t ) = −8J2UFpkq

U 2 + (γ (t )/2)2
, (72)

043192-6



MODELING PARTICLE LOSS IN OPEN SYSTEMS USING … PHYSICAL REVIEW RESEARCH 5, 043192 (2023)

FIG. 2. Left: Evolution of the lattice filling starting from an
initial filling of nA(t = 0) = 0.25 for different initial temperatures
on a log-log scale. The initial temperature is determined by the
initial state, which is assumed thermal. The phenomenological result
shows large deviations from the microscopic theory, especially at
low temperatures. Right: Evolution of the lattice filling starting from
initial filling of nA(t = 0) = 0.75 for different initial temperatures
on a log-log scale. At larger initial fillings, the deviation from the
phenomenological rate equation becomes smaller.

�pkq(t ) = 4J2γ (t )Fpkq

U 2 + (γ (t )/2)2
, (73)

Fpkq = cos (q) cos2

(
p + k

2

)
. (74)

In the limit where J 
 max{U, γ (t )}, both Upkq(t ) and
�pkq(t ) are perturbatively small. Using perturbation theory to
leading order in Upkq(t ) and �pkq(t ), we obtain the following
loss rate equation for the distribution function of Jordan-
Wigner fermions (see Appendix D for further details),

dnp(t )

dt
= −γeff

∫
dk

2π
C2

kp np(t )nk (t ), (75)

where Ckp = sin( p−k
2 ) cos( p+k

2 ) and the effective loss rate is

γeff = 16J2γ

U 2 + γ 2/4
. (76)

Integrating over p yields the following rate equation for the
lattice filling nA(t ) = NA(t )/M:

dnA(t )

dt
= −γeff

∫
d pdk

(2π )2
C2

kp np(t )nk (t ). (77)

The form factor C2
kp was not present in the approach used in

Ref. [46], which neglected inter-site correlations. The expres-
sion containing the form factor was later obtained by solving
the Lindblad master equation using an approximation termed
as a time-dependent generalized Gibbs ensemble [48,49]. As
illustrated below, the form factor turns out to be very impor-
tant when the filling of the lattice is low and at low initial
temperatures. The phenomenological loss rate equation and
the two-body loss coefficient γ2 [cf. Eq. (1)] [6,45,46] can be
obtained in the high-temperature limit where the Fermi-Dirac
distribution of the Jordan-Wigner fermions approaches nA(t )
and is independent of the momentum. Therefore,

dnA(t )

dt
= −γT n2

A(t ), (78)

with two-body loss coefficient γ2 = γT = γeff/4. Figure 2
compares the solution of the phenomenological rate equa-
tion with the numerical solution of Eq. (75) obtained from

FIG. 3. Top left panel: Decay of the lattice filling for an initially
half-filled system and different initial temperatures. The dependence
of the initial temperature is very weak (note the log-log scale).
Bottom left panel: Change of kinetic energies with different initial
temperatures. Systems with a lower initial temperature undergo a
larger change in the kinetic energy. Upper right panel: Time evolution
of the distribution of Jordan-Wigner fermions for an inverse tempera-
ture kBT = J (i.e., βJ = 1). Note a large depletion in the distribution
near k = ±π/2. Bottom right panel: Evolution of the distribution of
Jordan-Wigner fermions for kBT = J/10 (i.e., βJ = 10).

the microscopic Keldysh action at different initial temper-
atures determined by the initial momentum distribution of
the Jordan-Wigner fermions. Indeed, since after t = 0 the
system is out of equilibrium, a global temperature can no
longer be defined. At small values of the initial lattice filling
[e.g., nA(t = 0) = 0.25], the results from the phenomeno-
logical rate equation strongly deviate from the predictions
of the microscopic theory, Eq. (75). The difference between
the two rate equations becomes smaller as temperature in-
creases because, as mentioned above, the phenomenological
rate equation is recovered from Eq. (75) in the high-
temperature limit, where T 	 J . However, at a higher initial
lattice filling [nA(t = 0) = 0.75], the error incurred by using
the phenomenological rate equation becomes smaller at all the
studied temperatures. Thus, the phenomenological rate equa-
tion only applies at high temperatures or high lattice fillings
[i.e., nA(t = 0) � 1]. The latter are indeed the conditions of
previous experiments [6,45]. Our formalism thus allows us to
access other regimes of lattice fillings and temperature, which
can be explored in future experiments.

In addition, a closer examination of the numerical solution
of Eq. (75) shows that the situation is indeed more complex
than what can be naively inferred from the above discussion
of the validity of the phenomenological rate equation. To see
from where the complexity emerges, we have plotted the evo-
lution of the distribution function of Jordan-Wigner fermions
in Fig. 3 for an initially half-filled lattice and different values
of the effective loss rate γeff (right panels). In the same figure,
we also show the evolution of the lattice filling and kinetic
energy for different initial temperatures (left panels). Note that
for the lattice filling shown on the top left panel, the particle
loss dynamics is largely independent of the initial temperature
(note the log-log scale). On the other hand, the dynamics
of the average kinetic energy (shown in a linear scale) does
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FIG. 4. Scheme of an optical Feshbach resonance: The system
consists of N species of spin-F (N = 2F + 1) alkaline-earth atoms
in the ground state interacting via an s-wave potential. Using a laser
colliding pairs of atoms in the ground state are coupled to pairs con-
sisting of one ground state and one excited-state atom in a molecular
state. This state has a one-body coupling parametrized by gα to a bath
to which it can be lost or gained.

indeed depend on the initial temperature. As can be seen,
the change in kinetic energy induced by the two-body loss is
larger in systems with lower initial temperatures.

The dependence on the initial temperature of the kinetic en-
ergy, which is the first moment of the momentum distribution,
is an indication that the two-body loss drives the system into a
nonequilibrium state. To confirm this observation, we focus on
the evolution of the full momentum distribution of the Jordan-
Wigner fermions, which is shown on the right panels for two
values of the initial temperature (kBT = J and kBT = J/10).
Although the initial distribution is assumed to be thermal, it
can be seen that under the two-body loss in both cases it
rapidly evolves into a nonthermal distribution. Note that the
depletion is most effective (especially at low temperatures) for
k near ±π/2. This is because the form factor C2

kp in Eq. (77) is
maximum for k = −p = ±π/2, which corresponds to losses
of doublons with total zero momentum. The latter are created
from Cooper pairs ∼ckc−k of Wigner fermions. In conclusion,
even in cases where evolution of the particle filling stays rather
close to the results obtained from the phenomenological rate
Eq. (78) down to low temperatures, the system is indeed far
from equilibrium as revealed by close examination of other
observables like the kinetic energy.

V. LOSSES IN OPTICAL FESHBACH RESONANCE

In this section, we describe a multicomponent mixture of
alkaline-earth atoms with emergent SU(N) symmetry [50,51]
near an OFR by means of the following model (see Fig. 4):

Hc = H0 + Hint, (79)

Hint = U

�

∑
pkq,σσ ′

c†
pσ c†

kσ ′ck−qσ ′cp+qσ , (80)

Hca = f (t )√
�

∑
pq

∑
σσ ′,JM

gJ
q〈 f f σσ ′|JM〉

× [a†
p,JMcp−q,σ cq,σ ′ + c†

q,σ c†
p−q,σ ′ap,JM], (81)

Ha =
∑
q,JM

(εa
q + �)a†

q,JMaq,JM, (82)

HaB = f (t )
∑

q,JM,α

[gαb†
qαaq,JM + g∗

αa†
q,JMbq,α], (83)

HB =
∑
q,α

ωqα b†
qαbqα. (84)

Fermions in the ground state 1S0 interact via a weak s-wave
potential preserving SU(N ) symmetry. The OFR is described
by a SU(N) symmetry breaking scattering channel which in-
volves an intermediate bosonic molecular state where one of
the colliding atoms is in an optically coupled excited state,
i.e., 1S0 + 3P0 (see Fig. 4). The coupling gJ (q) = gJ (−q) is
the matrix element of the laser-induced transition between
two-particles in the ground state and the molecular excited
state, i.e., 〈1S0

3P0|Vlas|1S0
1S0〉. In the calculations below, we

assume that gJ 
 �m, γ , where �m is the detuning from the
excited state and γ is the one-body loss rate of the excited
molecular state. In this limit, the loss of the molecular state is
due to spontaneous emission. The contribution of stimulated
emissions is relatively small. The two-body loss of the system
particles is described as the one-body loss of the interme-
diate molecular state, which is coupled to a bath via HaB,
whose eigenmodes are the bosonic operators b†

q, bq. Since the
coupling is linear and the bath is described by a quadratic
Hamiltonian, the second-order cumulant expansion is exact
and applies even in the limit where the loss rate γ is large.
Below we write the Keldysh action after integrating out the
bath field following the same steps than in Sec. II. This yields

Seff = Sc + Sa,eff , (85)

Sc =
∫

dt σ 3
mn

{[∑
k

c̄kσm(i∂t − εk )ckσn − Hint

]

− f (t )√
�

∑
p,q

∑
σσ ′JM

gJ
q〈 f f σσ ′|JM〉[āpmcp−qσncqσ ′n

+ apmc̄p−qσnc̄qσ ′n]

}
,

Sa,eff =
∑
q,JM

∫
dtdt ′ āqJMmG−1

q,mn(t, t ′)aqJMn, (86)

where

G−1
q,mn(t, t ′) = δ(t − t ′)

[
σ 3

nm

(
i∂t ′ − εa

q − �
)

+ iσ 0
mnγ (t ′)/2 − iσ−

mnγ (t ′)
]
. (87)

In Eq. (86), to lighten the equations, we have adopted the
convention that summation over repeated indices m, n = ± is
implied.

Next, we integrate out the molecular field, āq,JM, aq,JM

using the cumulant expansion. To this end, we need to obtain
the Green’s function for the molecular fields, i.e., the inverse
of the matrix G−1

0 (t, t ′). To take into account the distribution
function of the molecules correctly, it is necessary [29] to take
a step back and work with the discrete version of the path
integral. However, the presence of the dissipative terms make
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the inversion of the matrix cumbersome. One way around
this difficulty is to realize that in the parameter regime of
interest here, i.e., for large γ (t ) and/or large detuning �m, it is
possible to neglect the time derivative part of G−1

q (t, t ′), which
effectively amounts to a Markovian approximation when the
molecular field is regarded as a bath itself. To understand this,
let us neglect the time dependence of the coupling to the bath
γ for the time being. Thus, the matrix G−1

q becomes a function
of t − t ′ and can be Fourier transformed, which yields the
following matrix in Keldysh space:

G−1
q (ω) = σ 3(ω − εa

q − �
) + iγ (σ 0/2 − σ−). (88)

If |ω| 
 min{�m, γ }, we can neglect the frequency depen-
dence of G−1

q (ω). Furthermore, assuming a vanishing number
of molecules in the initial state, the correlation functions that
determine the second-order term in the expansion are given by
the inverse of the above matrix with ω = 0. In Eq. (87), this
amounts to neglecting the term involving the time derivative,
i∂t , which yields Markovian correlations for the molecular
field of the form

Gq,m,n(t, t ′) � − δ(t − t ′)
(εq + �)2 + γ 2(t ′)/4

×
[
σ 3

nm

(
εa

q + �
) + i

2

(
σ 0

mn + σ−
mn

)
γ (t ′)

]
.

(89)

Using the above expression and Eq. (39), we obtain the fol-
lowing effective Keldysh action:

Seff =
∑
k,σ

∫
dt

{
σ 3

mnc̄kσm(i∂t − εk )ckσn

− 1

2�

∑
pkq

∑
σσ ′λλ′,JM

[
σ 3

mnUeff(p, k, q)−iσ 0
mnγ

′(p, k, q)
]

× c̄pσmc̄kσ ′mck+qλncp−q,λ′,n

}

− i
∫

dt
∑
p,k,q

∑
σσ ′λλ′,JM

γ ′(p, k, q, t )

�

× c̄pσ−c̄kσ ′−ck+qλ+cp−qλ′+, (90)

where Ueff(p, k, q, t ) = U0 + δU (p, k, q, t ) is the renormal-
ized interaction,

δU (p, k, q, t ) = − 2gJ
p−kgJ

p−k−2q〈 f f σσ ′|JM〉

× 〈 f f λλ′|JM〉 �p+k f 2(t )

�2
p+k + γ 2(t )

4

, (91)

and

γ ′(p, k, q, t ) = gJ
p−kgJ

p−k−2q〈 f f σσ ′|JM〉

× 〈 f f λλ′|JM〉 γ (t ) f 2(t )

�2
p+k + γ 2(t )

4

(92)

is the effective two-body loss rate in the limit of strong sponta-
neous loss on the intermediate molecular states [41,52–57]. In
the above expressions, �p = εa

p + � is the energy of the ex-
cited molecular state with total momentum p. Note that δU is

an SU(N )-symmetry breaking interaction and both quantities
are perturbatively small in the limit where gJ 
 min{�m, γ }
is of interest here. Hence, perturbation theory to leading or-
der in γ ′ yields the following rate equation for an quantum
degenerate gas:

dnc(t )

dt
= − 2

�2

∑
p,k

γ ′(p, k, 0)n(p, t )n(k, t ), (93)

where np(t ) is the instantaneous momentum distribution and
nc = ∑

p np(t )/� is the fermion density. From this result, the
phenomenological loss coefficient for a thermal gas can be
obtained by replacing the loss coefficient with its thermal
average [53,58,59]:

γT = 〈γ ′(p, k, 0)〉T (94)

=
∫

γ ′(p, k, 0) fM (p, T ) fM (k, T )d3pd3k. (95)

Here fM (p, T ) = (2πmkBT )−3/2 exp(−p2/2mkBT ) denotes
the Maxwell distribution at temperature T for particles with
mass m normalized to unity. Using the average loss coeffi-
cient, the rate equation can be approximated by

dnc(t )

dt
= −γT

2

�2

∑
p,k

n(p, t )n(k, t ) (96)

= −2γT n2
c (t ), (97)

which is the phenomenological two-body loss rate equa-
tion, Eq. (1), with γ1 = 0 and γ2 = 2γT for a thermal gas
[53,54,56,58,59].

VI. CONCLUSION

In this paper, we have discussed the derivation of the
Keldysh path integral for open quantum systems using the
second order cumulant expansion. Although we have focused
on Markovian baths, the method is not limited to the latter
and can be extended to describe effects beyond Markovianity.
It also does not require the bath to be noninteracting or the
bath coupling to be of a particular form. Formally, it requires
that the coupling to the bath is weak enough to be accurately
treated using second-order perturbation theory. However, as
we have shown above, when describing two-particle losses,
the system-bath coupling can be sometimes conveniently re-
formulated and a strong loss regime can be also described.

Turning to models relevant for ultracold atomic gases, we
have studied models of one- and two-body losses. Thus, we
have shown how two-body losses caused by photoassociation
of doublons in the one-dimensional Bose-Hubbard model can
be described within the path-integral formulation, allowing us
to obtain a microscopic loss-rate equation. The latter has been
compared with a previously derived phenomenological loss
equation. The microscopically derived rate equation shows
that the phenomenological equation is mostly accurate at high
temperatures and/or lattice fillings close to unity. However,
we have shown (see Sec. IV) that even in cases where the
phenomenological rate equation appears to be sufficiently ac-
curate, the implicit assumption that the system remains in a
thermal equilibrium characterized by a temperature T can be
incorrect. This has important implications for the calculation
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of other physical quantities such as the kinetic energy, for
which our theory, which properly handles such deviations
from equilibrium, is necessary.

Finally, in Sec. V we have applied the formalism to
a model describing an OFR in multicomponent mixture
of ultracold alkaline-earth fermions. We have also shown
that the phenomenological rate equation is expected to ap-
ply to the high-temperature regime. Although we have not
fully explored the low-temperature regime yet, using the
lessons learned with the much simpler one-dimensional Hub-
bard model, in the presence of an OFR we expect that if
quantum coherence becomes important, deviations from the
phenomenological approach will appear.

Finally, let us mention that, in this paper, when dealing with
the interactions between the Jordan-Wigner fermions in the
lossy one-dimensional Bose-Hubbard model, we have used
perturbation theory. This is justified because the latter are
weak [47] and the studied temperatures are relatively high.
However, in future work it will interesting to revisit this prob-
lem to account for the effect of the interactions in the system,
which in one dimension can be done nonperturbatively using
bosonization [60,61]. Other possible extensions of this paper
are, as pointed out above, studying effects beyond Markovian-
ity and the effect of strong interactions and correlations in
the bath.
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APPENDIX A: BRIEF RECAP OF THE PATH INTEGRAL
APPROACH TO THE LINDBLAD MASTER EQUATION

For an open quantum system described by a Hamiltonian
H = H (a†, a) in contact with a Markovian bath, the time
evolution of the reduced density matrix of the system A, ρA,
reads

∂tρA = −i[H, ρA] +
∑

s

γs

(
LsρsL

†
s − 1

2
{L†

s Ls, ρA}
)

, (A1)

where [O1, O2] = O1O2 − O2O1 and {O1, O2} = O1O2 +
O2O1 and the couplings γα along with the Lindblad operators
Lα = Lα (a†, a) and L†

α = L†
α (a†, a) describe the coupling to

the bath. Specializing to the case where the Lindbladian de-
scribes particle losses (but not gains) and using the resulting
time-evolution operator derived from the above master equa-
tion, a path integral can be derived following the procedure
described in Ref. [30] (see Eqs. (27) and (28) in Ref. [30]).
In the notations of this paper where ψ± → a± and −iL → L
describes only the dissipative part of the Keldysh action, etc.,

the path integral derived in Ref. [30] reads

Z =
∫

D[a+, ā+, a−, ā−] eiS, (A2)

S =
∫

dt[σ 3
mnāmi∂t an − σ 3

mnH (ām, an)

+ L(ā+, ā−, a+, a−)], (A3)

L = −i
∑

s

γs

[
L̄s,−Ls,+ − 1

2
(L̄s,+Ls,+ + L̄s,−Ls,−)

]
. (A4)

Note that the quantum jump term L̄s,−Ls,+ appears in the
reversed order compared to the Lindblad master equation [i.e.,
LsρL†

s in Eq. (A1)]. This order is important in the fermion
case when the Lindblad operator Ls contains an odd number
of fermion operators [62]. To make contact with our approach,
we shall consider the case of the one-particle losses studied in
Secs. II A and III for which the Lindbladian operators are Ls =
a and γs = γ (t ) and H (a†, a) = ε0 a†a, for the single-mode
case (i.e., dropping s, the generalization to the multiple mode
corresponds to letting s = k and γs=k = γ (t ) as in Sec. III).
Thus, L given above becomes our Eq. (18).

APPENDIX B: SECOND ORDER CUMULANT EXPANSION

In this Appendix, we provide a short derivation of the sec-
ond order cumulant expansion in the context of path integral
as used in Sec. II A. Consider the derivation of the Feynman-
Vernon functional which is obtained by formally integrating
out the bath B degrees of freedom, i.e.,

logF[ā, a] = log
(〈

eiSAB
〉
B

)
,

= log
[〈

1 + iSAB − 1
2 S2

AB + · · · 〉B]
� [〈

iSAB − 1
2 S2

AB + · · · 〉B]
−

[〈iSAB − 1
2 S2

AB + · · · 〉B
]2

2
+ · · ·

= [
i〈SAB〉B − 1

2

(〈
S2

AB

〉
B − 〈SAB〉2

B

) + · · · ],
= iL[ā, a], (B1)

where in the third line we use the expansion log(1 + x) =∑∞
n=1(−1)n+1 xn

n = x − x2/2 + · · · and kept the terms up to
second order in SAB. Note that the second-order term is not just
the average of S2

AB but a cumulant average 〈S2
AB〉B − 〈SAB〉2

B
(see, for instance, the discussion below Eq. (2.4) in Ref. [63]).

APPENDIX C: BATH CORRELATIONS IN DILUTE LIMIT
AND MARKOVIAN APPROXIMATION

The coupling functions gmn(t1 − t2) are expressed in terms
of bath correlators. In the limit of very dilute bath excitations,
i.e., nB(ωα ) ≈ 0, the effects of interactions in the bath can be
neglected and the correlation functions are well approximated
by those of a noninteracting system. Before embarking on the
calculation, it is important to note that, e.g., the time-ordered
correlation takes the form [29]

〈bα+(t1)b̄α+(t2)〉B = {θ̃ (t1 − t2)[1 + znB(ωα )]

+ θ (t2 − t1)znB(ωα )}e−iωα (t1−t2 ). (C1)
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In the above expression, we have made explicitly the distinc-
tion between the two kinds of step functions resulting from
the discrete version of the path integral with θ̃ (0) = 1 and
θ (0) = 0 [29]. Note that this prescription differs from the one
used in the operator approach to Keldysh perturbation theory,
but in this context this regularization is dictated by the discrete
form path integral, which is ultimately the mathematically
correct form of the latter. As we will show below, the distinc-
tion introduced by this regularization is important when taking
the Markovian limit where some of the above time arguments
become coincident. Furthermore, in the limit where the bath
excitations are dilute, the correlations simplify to

〈bα+(t1)b̄α+(t2)〉B = θ̃ (t1 − t2)e−iωα (t1−t2 ), (C2)

〈b̄α+(t2)bα+(t1)〉B = zθ (t1 − t2)e−iωα (t1−t2 ), (C3)

〈bα−(t1)b̄α−(t2)〉B = θ̃ (t2 − t1)e−iωα (t1−t2 ), (C4)

〈b̄α−(t2)bα−(t1)〉B = zθ (t2 − t1)e−iωα (t1−t2 ), (C5)

〈bα+(t1)b̄α−(t2)〉B = 0, (C6)

〈b̄α−(t1)bα+(t2)〉B = 0, (C7)

〈bα−(t1)b̄α+(t2)〉B = e−iωα (t1−t2 ), (C8)

〈b̄α+(t2)bα−(t1)〉B = ze−iωα (t1−t2 ). (C9)

The effective coupling are fully determined by Fourier trans-
form of the following spectral density of couplings to the bath:

JB(ω) =
∑

α

|gα|2δ(ω − ωα ). (C10)

In terms of the spectral density of couplings to the bath, the
functions gαβ (t1, t2) can be written as follows:

g++(t1 − t2) � {
θ̃ (t1 − t2)

+ θ (t1 − t2)}
∫

dω

2π
JB(ω)e−iω(t1−t2 ), (C11)

g−−(t1 − t2) � {
θ̃ (t2 − t1)

+ θ (t1 − t2)}
∫

dω

2π
JB(ω)e−iω(t1−t2 ), (C12)

g−+(t1 − t2) � −2
∫

dω

2π
JB(ω)e−iω(t1−t2 ), (C13)

g+−(t1 − t2) � 0. (C14)

By further assuming that, within a band of width D around
ω = 0, JB(ω) is well approximated by a constant, i.e.,

JB(ω) = ν0|〈g〉|2 = const (C15)

for |ω| < D/2, where 〈g〉 is the average coupling strength and
ν0 ∼ D−1 is the density of states. We note this constant depen-
dence in the spectral density corresponds to a Markovian bath.
Within our formalism, non-Markovianity can be introduced
using other types of spectral densities, e.g., power-law forms

[64], which yield bath correlations different from the Marko-
vian one. In the Markovian case, using the above expression,
we have∫

dω

2π
JB(ω)e−iωt � ν0|〈g〉|2 sin(Dt/2)

πt
. (C16)

Note that this function is strongly peaked for t = t1 − t2 = 0
and decreases (oscillates) rapidly for |t1 − t2| � D−1 (the os-
cillation is an artifact of the hard cutoff). Thus, if the dynamics
of the system is characterized by frequencies much smaller
than D, we can effectively replace the above function by a
Dirac delta function δ(t1 − t2), which yields

v++(t1, t2) � ν0|〈g〉 f (t1)|2δ(t1 − t2), (C17)

v−−(t1, t2) � ν0|〈g〉 f (t1)|2δ(t1 − t2), (C18)

v−+(t1, t2) � −2ν0|〈g〉 f (t1)|2δ(t1 − t2), (C19)

v+−(t1, t2) � 0. (C20)

To obtain the above expressions, we have used θ̃ (t )δ(t ) =
θ̃ (0)δ(t ) = δ(t ) and θ (t )δ(t ) = θ (0)δ(t ) = 0, as required by
the discrete version of the path integral [29]. θ̃ (t ) and θ (t ) are
two regularizations of the step function.

APPENDIX D: DERIVATION OF LOSS EQUATION
FOR LOSSY 1D BOSE HUBBARD MODEL

The momentum distribution nr (t ) for a particle with mo-
mentum r at time t using perturbation expansion to leading
order is

nr (t ) − n0
r � i〈c̄r,−(t )cr,+(t )L〉c

= i

{ −1

2M

∑
pkq,mn

∫ t

−∞
dt1 σ 3

mnUpkq(t1)Omn(t, t1; r, p, k, q)

+ i

2M

∑
pkq,mn

∫ t

−∞
dt1 σ 0

mn�pkq(t1)Omn(t, t1; r, p, k, q)

− i

M

∑
pkq

∫ t

−∞
dt1 �pkq(t1)O−+(t, t1; r, p, k, q)

}
, (D1)

where n0
r = 〈c†

r,−(t )cr,+(t )〉c is the momentum distribution
of the Jordan-Wigner fermions in the initial state described
by the (noninteracting) Jordan-Wigner fermion action Sc [cf.
Eq. (56) or first term on the right-hand side of Eq. (71)] with
initial inverse temperature β. In the above expression, 〈. . .〉c

stands for Keldysh time-ordered average with weight eiSc . In
addition, we have also introduced the following notation for
the six fermion-operator expectation values:

Omn(t, t1; r, p, k, q)

= 〈c̄r,−(t )cr,+(t ) c̄p,m(t1)c̄k,m(t1)ck+q,n(t1)cp−q,n(t1)〉c.

(D2)
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Expanding the sum including σ 3
mn and σ 0

mn, we have∑
mn

σ 3
mnOmn(t, t1; r, p, k, q)

= O++(t, t1; r, p, k, q) − O−−(t, t1; r, p, k, q), (D3)∑
mn

σ 0
mnOmn(t, t1; r, p, k, q)

= O++(t, t1; r, p, k, q) + O−−(t, t1; r, p, k, q). (D4)

Next, applying Wick’s theorem yields

Omn(t, t1; r, p, k, q)

= [〈c̄k,m(t1)ck+q,n(t1)〉c〈cr,+(t ) c̄p,m(t1)〉c

× 〈c̄r,−(t )cp−q,n(t1)〉c

+ 〈c̄p,m(t1)cp−q,n(t1)〉c〈cr,+(t ) c̄k,m(t1)〉c

× 〈c̄r,−(t )ck+q,n(t1)〉c]

− [〈c̄k,m(t1)cp−q,n(t1)〉c〈cr,+(t ) c̄p,m(t1)〉c

× 〈c̄r,−(t )ck+q,n(t1)〉c

+ 〈c̄p,m(t1)ck+q,n(t1)〉c〈cr,+(t ) c̄k,m(t1)〉c

× 〈c̄r,−(t )cp−q,n(t1)〉c], (D5)

which yields

O++(t, t1; r, p, k, q) = O−−(t, t1; r, p, k, q)

= [
δq,0δr,pn0

k + δq,0δr,kn0
p

− δq,p−kδr,pn0
k − δq,p−kδr,kn0

p

]
× [

θ̃ (t − t1)
(
1 − n0

r

)
n0

r

− θ (t1 − t )
(
n0

r

)2]
(D6)

and

O−+(t, t1; r, p, k, q) = −[
δq,0δr,pn0

k + δq,0δr,kn0
p

− δq,p−kδr,pn0
k − δq,p−kδr,kn0

p

](
n0

r

)2
.

(D7)

Note that the exponential phase dependence on t and t1 is
canceled in the above first order expectation values. Finally,
combining Eqs. (D1), (D3), and (D6) with Eq. (D7) and rear-
ranging the momentum indices yields

nr (t ) − n0
r = − 2

M

∑
k

[�rk,q=0 − �rk,q=r−k]n0
r n0

k

= −1

M

∑
k

∫ t

−∞

16J2γ (t1)

U 2 + γ 2(t1)/4
n0

r n0
k dt1

× sin2

(
r − k

2

)
cos2

(
r + k

2

)
. (D8)

Setting γ (t ) = θ (t )γ and taking t → 0, we arrive at the loss
rate equation given in Eq. (75).
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