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Dipolar spin ensembles with random spin positions are attracting much attention because they help us to
understand decoherence as it occurs in solid-state quantum bits in contact with spin baths. Also, these ensembles
are systems which may show many-body localization, at least in the sense of very slow spin dynamics. We
present measurements of the autocorrelations of spins on diamond surfaces at infinite temperature in a doubly
rotating frame which eliminates local disorder. Strikingly, the timescales in the longitudinal and the transversal
channel differ by more than one order of magnitude, which is a factor much greater than one would have expected
from simulations of spins on lattices. A previously developed dynamic mean-field theory for spins (spinDMFT)
fails to explain this phenomenon. Thus, we improve it by extending it to clusters (CspinDMFT). This theory does
capture the striking mismatch up to two orders of magnitude for random ensembles. Without positional disorder,
however, the mismatch is only moderate with a factor below 4. The pivotal role of positional disorder suggests
that the strong mismatch is linked to precursors of many-body localization.

DOI: 10.1103/PhysRevResearch.5.043191

I. INTRODUCTION

Understanding and controlling the dynamics of many-body
quantum systems enables the development of novel materials
and technologies for quantum devices for sensing, computa-
tion, communication, and modeling [1,2]. Such systems have
been realized in a variety of platforms: ultracold atoms [3],
trapped ions [4], superconducting devices [5,6], and solid-
state quantum bits (qubits) [7-11]. Access to the dynamics
of a single qubit is especially important in heterogeneous
systems [12,13] where the local environment of the qubit
plays a vital role and the averaging over an ensemble can
conceal important features of the temporal evolution. The in-
terplay between the local environments, interactions, and the
dimensionality of the system has been the subject of extensive
theoretical and experimental investigations [14—16]. The sys-
tems under study allowed for the experimental observations of
nonequilibrium quantum dynamics in strongly interacting sys-
tems such as the propagation of quantum correlations [17-19],
nonequilibrium phases of matter [20-24], and phenomena of
relaxation and localization effects [10,11,25-30].
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We consider the spin dynamics of two-dimensional en-
sembles of randomly positioned spins with § = 1/2 with
long-range magnetic dipolar interactions at high temperature
in the spin disordered state. Dipolar spin ensembles have
attracted much attention in recent years due to their potentially
very long coherence times [31-35]. The considered spins
have two different quantum states and thus can be viewed
as quantum bits. Such systems have been widely studied also
in solid-state NMR [36], and they were the starting point for
Anderson’s work on localization [37]. The spatial propagation
of spin states takes place via flip-flop processes at a rate set by
the dipolar interaction strength J. Varying local energies, for
instance, due to local intrinsic and extrinsic magnetic fields,
suppress this propagation due to a mismatch of energies at the
involved sites.

To fully capture the dynamical interplay represents a
formidable task. Due to the exponentially growing dimen-
sion of the relevant Hilbert space with the number of spins,
a direct, brute-force approach is out of the question. Exact
diagonalization and Chebyshev polynomial expansion are re-
stricted to fairly small sample sizes [38,39]. Density-matrix
renormalization works for chains [40] and star topologies [41]
and is restricted in the maximum time that can be reached.
Semiclassical approaches related to the truncated Wigner ap-
proximation [42—46] neglect by construction a large amount
of quantumness, in particular interference effects which mat-
ter for the effects studied here. Approaches based on master
equations [47] require that there is a priori a distinction of
system and bath including a clear separation in energy scales.
Cluster expansions represent powerful tools [48-53], but their
application gets cumbersome in disordered systems. Finally,
Monte Carlo approaches are not particularly efficient for real-
time dynamics.

Published by the American Physical Society


https://orcid.org/0000-0001-6544-4452
https://orcid.org/0000-0001-8103-0903
https://orcid.org/0000-0001-8895-6338
https://orcid.org/0000-0003-1961-0346
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043191&domain=pdf&date_stamp=2023-12-01
https://doi.org/10.1103/PhysRevResearch.5.043191
https://creativecommons.org/licenses/by/4.0/

GRABER, REZAI, SUSHKOV, AND UHRIG

PHYSICAL REVIEW RESEARCH §, 043191 (2023)

Thus, the first main objective of this article is to develop
a tractable numerical approach for the local spin dynamics
in a spin disordered state of the random spin ensemble. To
this end, we extend the dynamic mean-field approach for
disordered spin systems which we recently introduced under
the name “spinDMFT” [54]. The extension takes the quantum
dynamics of a local cluster of spins completely into account
and applies the concept of dynamical mean fields only to the
surrounding spins which are not part of the considered cluster;
we suggest the acronym CspinDMFT for the extended ap-
proach. Note the similarity of the basic idea of this extension
to the extension of fermionic DMFT [55] to cellular DMFT
[56]. The need for a cluster extension of spinDMFT has been
noted already and carried out on the level of spin dimers
[35].

Our second main objective is to understand the vastly dif-
fering timescales of longitudinal and transversal relaxation,
Ti, and T, respectively, observed experimentally. We use the
Ti, at strong drive as a measurement of longitudinal relax-
ation instead of the 77 since slowdown of 7| relaxation is
already expected due to the presence of extrinsic disorder
[57]. However, the Tj, at strong drive evolves only under
dipolar spin dynamics as the effects of extrinsic disorder
are reduced. We show that the observed difference of one
to two order of magnitude cannot be explained by spins on
regular lattices, but that irregular, random configurations are
necessary to account for the qualitative difference. This sug-
gests that the very long longitudinal times 7, may be the
precursors of many-body localization [58-60], at least in the
weak sense of the occurrence of very long timescales [61]. We
stress that the theoretical explanation for the strongly differing
timescale in the transversal and longitudinal channel required
the methodological progress, i.e., passing from spinDMFT to
CspinDMFT.

We study the experimental platform consisting of an en-
semble of paramagnetic two-level systems (surface spins) on
the diamond surface [62,63]. These two-level systems stem
from electronic spins S = 1/2 and are likely localized defect
states [64,65] on the surface of diamond. A single, shallow
NV center measures the dynamics of the system of surface
spins. While recent experimental studies have shown that
some of the surface spins may be mobile depending on initial
surface treatment [66], we have verified that in our experi-
ments, the central surface spin’s position remains stable [57].
Even if the surface spins moved and changed their positions
between consecutive measurements, the theoretical approach
used in this article would be justified even better once the
simulated data are averaged.

Although the interaction of the surface spins is of dipolar
nature, their dynamics under the experimentally applied fields
is considerably different. For the singly rotating frame dynam-
ics (with longitudinal relaxation time 77 and and dephasing
time T5), we consider a strong static magnetic field B defining
the z direction. It encloses the magic angle 9, with the normal
vector of the diamond surface as indicated in Fig. 1. Passing
to the corresponding Larmor rotating frame and applying the
rotating wave approximation leads to the effective interaction

1 1 1 ,
Hzgot — 5 Z]ij (—ES;CS; — ES;)S; + Sij), (1)
i#]

FIG. 1. Experimental system and its geometry. (a) The experi-
mental system consists of a single near-surface NV center in diamond
strongly coupled to one surface electron spin Sj, which interacts
with other surface electron spins and a bath of proton nuclear spins.
(b) Sketch of the geometry of the surface spin system. 7 is the normal
vector of the surface and B the static magnetic field pointing in the
z direction. Since the spins are restricted to the surface, the distance
vector R; ; can be expressed by surface polar coordinates R;; and ¢;;.

which is anisotropic. The couplings are given by

h22

Jij = — COS 2(,0,']', (2)

3.
ij
where ¢;; is the angle between the distance vector
R;; = R; — R, and the x direction; see Fig. 1. For the dou-
bly rotating frame dynamics (7,), we additionally consider
a strong drive field perpendicular to B and rotating at the
Larmor frequency. The direction of the drive defines the spin
y component. Starting from Eq. (1) and turning to another
rotating frame including the application of the rotating wave
approximation results in

1 | I D ,
H = 3 ZJ,,»(ZSIZ.S; + SIS} - 55{5}). 3)
i#j

The distinguished direction is the y direction, which is hence-
forth called the longitudinal one. The other two directions
are henceforth called the transversal ones. Note that there
is a relative factor of 2 in the overall couplings compared
to the singly rotating frame Hamiltonian (1). This needs to
be considered when comparing results from both reference
systems with each other.

The article is structured as follows. In Sec. II we apply
spinDMFT to an inhomogeneous ensemble of dipolar spins in
the doubly rotating frame as in experiment. The striking dis-
crepancy leads us to Sec. III, in which we extend spinDMFT
by treating clusters of spins fully quantum mechanically. The
so-derived cluster spinDMFT (CspinDMFT) is subsequently
analyzed for its performance by investigating its conver-
gence for isotropically coupled spins on a triangular lattice
as well as on inhomogeneous graphs. Section IV is devoted
to the application of CspinDMFT to the experimental sce-
nario. We compare the decay times 7> and 77, obtained from
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CspinDMFT to those measured in experiment. Good agree-
ment is found supporting the hypothesis that the positional
disorder in the spin system is at the origin of the strongly dif-
fering transversal and longitudinal decay times as concluded
in Sec. V. In the Appendixes we discuss experimental details,
relevant numerical issues, and analytical subtleties.

II. SIMULATING DIPOLAR SPIN DYNAMICS
WITH SPINDMFT

As a starting point we apply spinDMFT to the Hamiltonian
(3) for an inhomogeneous dipolar spin ensemble, i.e., for
random positions of the spins. One realizes, however, that the
reduction to an effective single site problem oversimplifies
the physical setting because it implies that only one energy
scale, or equivalently timescale, matters in the problem. The
aspect of the random positions of the spins does not appear
anymore. The calculation for a perfectly ordered spin lattice
with appropriate energy scale would be identically the same.

The derivation of spinDMFT will be sketched for com-
pleteness, but we refer the reader to Ref. [54] for its detailed
justification. The starting point is the Hamiltonian in Eq. (3).
It can be rewritten in the form

1 s o
Hiro = 58 Vi )

by introducing the operators for the local environments

. . 1 0 0
Vi=> J;DS;, D=|0 -1 0 5)
Joi#i 0 0 j

In spinDMFT, these operators are replaced by time-dependent
random mean fields drawn from normal distributions. This
leads to the time-dependent mean-field Hamiltonian

HY () =S, -Vir) (©6)

d-rot,i

for the spin i of the system along with the self-consistency
conditions

VEOV(0) = 1J4,{S1 ()8} (0)), (7a)
V(O (0) = 1J5..(87 ()8} (0)), (7b)
VEOVE0) = 1573 (85 (1)S;(0), (7¢)

connecting the second mean-field moments to spin autocorre-
lations. This implies that the quadratic coupling constant

2 2 myt
Jout= D J5 =) —pe c08’ 201 ®)

Jri# J#

captures the whole dependence of the spin-spin autocorrela-
tions on the spatial distribution of spins. The anisotropy in the
couplings yields the relative factor of 4 between the longitu-
dinal (y) and transversal (x, z) self-consistency equations.

To solve the self-consistency problem by iteration we start
from some fairly arbitrary initial guess for the local environ-
ment field of the considered spin to determine the spin-spin
autocorrelation. In the next iteration, the autocorrelations de-
fine the moments of the normal distribution for the local fields
so that one obtains improved results for the autocorrelations.

0.00F, y— —
0 10 20 30 40 50

t (units of J(ill)

FIG. 2. Universal spin autocorrelations in the doubly rotating
frame obtained in spinDMFT. The spatial distribution of spins enters
only in the quantitative determination of the energy scale Jo; whose
reciprocal value is the unit of time if / is set to one.

Note that one has to average over a sufficiently large number
of time-dependent local fields (about 10° in our calculations)
to obtain the relevant autorcorrelations with good accuracy.
This step is repeated till convergence is achieved within a
tolerance of 7x 10~* for the spin-spin autocorrelations

&P (1) = (S*(1)SP(0)), ©

which are plotted in Fig. 2. The result is universal in the sense
that only the energy (time) scale needs to be determined; no
trace of the random distribution of the spins in space enters
anymore. There is roughly a factor of 2 to 4 between the
decay time in the longitudinal yy channel and the one in the
transversal xx channel. This is in line with the factor of 2 in
the anisotropic couplings in Eq. (3).

In experiment, however, the autocorrelations behave very
differently, as depicted in Fig. 3. In contrast to the spinDMFT
result, the longitudinal decay is slowed enormously, relative
to the transversal one. Moreover, we find that the ratio be-
tween the decay times depends on the specific environment
of the measured spin. Measurements at different spots on the
diamond surface lead to quantitatively different ratios. Yet
the significant difference between the longitudinal and the
transversal channel is a common feature. As explained above,
a variation of the ratio of the decay times cannot be repro-
duced by spinDMFT because the environment is described by
a single environment field depending only on Jq ;. This caveat
clearly calls for a methodological extension.

We stress that the key aspect of spinDMFT is to replace
spin environments by dynamic random mean fields, which is
justified if the contributions from the environment are numer-
ous and similar in magnitude. A formal expansion parameter
is the inverse effective coordination number z of a spin. The
term “effective” is used because not only the nearest neighbors
matter for long-range interactions. This effective coordination
number is given by the ratio of the linear sum squared and the
quadratic sum of all couplings [54],

2
(Zj,j;ﬁi |Jij|)
gyim R D (10)
2 it
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FIG. 3. Measurement of the lifetime of the central spin state. (a) Surface spin Hahn echo measurement of (S;(#)S7(0)), the transversal spin
autocorrelation, used to determine 7, along with the applied pulse sequence shown in the top right corner. Since the measurement takes place
in the singly rotating frame, the spin dynamics are affected by the proton nuclear spin bath at the surface. To display this, the data are fitted
using a Gaussian with modulation depending on the noise at the frequency w;, g(t) = exp[—(t/T3)*lexp[—8 sin*(wrt/4)y2(B%)/w}] (solid
orange line). ¥, is the electron gyromagnetic ratio, (B%) the root-mean-square of the noise field, and wy, the proton Larmor frequency. This fit
yields 7> = 0.65(3) us. (b) Measurement of (S? (#)S? (0)), the longitudinal autocorrelation in the doubly rotating frame, under spin lock driving
for a strong drive strength Q)S to determine T,. The drive strength Qf is chosen to be much larger than the on-site magnetic field strength
due to the proton nuclear spin bath and the dipolar interaction strength of nearby surface spins. This is modeled by an exponential function

oxexp(—t/Ti,) obtaining 77, = 26(3) us (solid blue line).

The larger z, the more the environment consists of many
contributions justifying the assumption that the environment
behaves like a classical random variable with normal distri-
bution according to the central limit theorem. For lattices,
the coordination number is fairly large, e.g., z & 19.1 for the
triangular lattice with couplings J oc 1/r® [54]. For inhomo-
geneous systems, this is not necessarily the case. Some strong
constraints on the distances between spins push the ratio up,
but for spins distributed totally at random one obtains values
in the range z &~ 1-10 [54]. Frequently, randomly positioned
spins have only one or two close neighbors dominating their
dynamics, which limits the accuracy of the mean-field substi-
tution of spinDMFT.

For these reasons, an improved approach has to avoid
replacing spin environments that correspond to small coordi-
nation numbers by classical fields. Since the experimentally
measured autocorrelations vary from spin to spin, one has to
incorporate the inhomogeneous nature of the system as well.
These considerations urge to develop a cluster mean-field
approach as done in the next section.

III. CLUSTER spinDMFT

We argued that spinDMFT neglects spatial information to
a large degree as is common in mean-field theories which
result in effective single-site problems by reducing the envi-
ronment to single fields. Thereby, subtle interference effects of
quantum processes are neglected. Indeed, spinDMFT is semi-
classical in nature. The local fields are taken to be classical so
that quantumness is reduced to the quantum effects of a single
spin. Thus, our extension to clusters of spin will serve two
purposes: inclusion of spatial information and more accurate
description of quantum dynamics. As a consequence of deal-
ing with clusters of spins on the quantum level, the mean fields
become weaker and the local dynamics more accurate. We call
this extension cluster spinDMFT or CspinDMFT for short.

We derive it in the present section for an isotropic Heisenberg
model for simplicity.

We consider this model with S = 1/2 at infinite tempera-
ture of which the Hamiltonian reads

1 I
H= E;‘:Jﬁsi.sj.

1)

The underlying graph, i.e., the positions of the sites labeled
i and j, and the couplings J;; need not be specified for the
time being. But we emphasize that the particular goal of
the approach is to describe randomly distributed spins as in
the experimental setup. The aim is to reliably compute the
dynamics of a selected spin S; which we call the central spin.
To this end, we consider a group of spins in its proximity; see,
e.g., Fig. 4. This group of spins together with the central spin
is henceforth called a cluster, denoted by I'.

For a cluster calculation, we have to define which spins
around the central spin under study are chosen to form the
considered cluster. Clearly, the spins which are coupled most
strongly should be tracked. But still there are (at least) two

FIG. 4. Examples for clusters I' around a central spin S; for
different graphs: the left panel displays the regular triangular lattice,
and the right panel a random seed. The couplings between the spins
are considered to decrease with the distances with a power law.
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strategies to take the strength of the couplings into account.
Strategy 1 considers the coupling to the central spin to be
decisive. Thus, the decision which spin is included in the
cluster is taken solely by its coupling strength to the central
spin. We call this strategy the central-spin-based strategy. It
is certainly plausible, but it has a certain drawback: there can
be a spin j, strongly coupled to the central spin 1, which itself
is strongly coupled to a spin m. The latter, however, might be
only weakly coupled to the central spin. Thus, it would not
be included in the cluster, although it is obvious that it has a
sizable effect on the spin dynamics.

Thus, we also consider a recursive strategy (2), which we
call cluster-based strategy in which the spins are added one by
one. The decision which spin m is to be included next in the
cluster is taken based on the total strength of all its couplings
to the spins already included in the cluster. The details of both
strategies are presented and discussed in Appendix B, and
their performance is discussed in Appendix E. The following
general procedure applies to a cluster from any conceivable
strategy determining cluster. For the actual simulations below,
we will use the second, cluster-based strategy.

In order to expose the details of CspinDMFT, it is helpful
to analyze the different kinds of couplings in (11) with regard
to I'. We split the Hamiltonian as follows:

1

HZE Z J,jS,Sj (123)
i#jli,jel’
+> 8 IS, (12b)
iel’ j¢r
1 L
+5 > 1SS, (12¢)

i#jli, j¢l

The first term contains the intracluster couplings; they are
treated exactly in CspinDMFT. The second term contains the
couplings between spins of the cluster and the spins in the en-
vironment. These couplings are treated on a mean-field level.
The third term contains only spins of the environment which
are decoupled from I'. They do not show up in CspinDMFT.
The mean-field approximation consists in replacing the oper-
ators of the quantum environment

Vii= > U8, (13)
Jgr
by classical fields. In contrast to spinDMFT, there are several
classical fields involved distinguished by the subscript i be-
cause each spin in the cluster has its own field. Thus, an N-site
cluster requires to track N classical fields, which will be taken
to be random in time and drawn from normal distributions.

Based on these considerations, CspinDMFT works as fol-
lows:

(a) The quantum environment of each spin of the consid-
ered cluster is replaced by a time-dependent random classical
mean field drawn from a normal distribution.

(b) The first moments of the distributions are set to zero.

(c) The quantum mechanical expectation values of V¢ -Vf
correlations define the second moments of the normal distri-
butions yielding self-consistency conditions («, 8 € {x, y, z}).

(d) The self-consistency conditions are solved iteratively.

The substitution in step (a) is analogous to what is done in
spinDMFT. The justifications are given in Ref. [54]. Here we
simply substitute

Vi — Vi) (14)

obtaining the mean-field Hamiltonian

HY ()= Y 1,88+ ) 8-Vi). (15

ijli,jer iel’

The expectation values are computed by the trace over the
density matrix at infinite temperature of the Hilbert space of
the cluster combined with a classical average over the normal
distributions of the mean fields [54]. The required ingredients
for the approach are the first and second moments of the mean
fields because they define the normal distributions.

Step (c) consists in relating the required moments to quan-
tum expectation values of the corresponding environment
operators. The first moments vanish due to the assumed in-
finite temperature

VE(r) = (Vi) = 0. (16)
For the second moments, we find
VEOVE0) = (VE )V (0)) (17a)

= Y Jipdjg(SL(SE(0)).

p.q¢r

(17b)

Since the spins in these expectation values are not in the
cluster I' these moments cannot be taken from the cluster
calculation itself. In spinDMFT, this issue was circumvented
with the following two ideas.

Any pair correlation, i.e., any correlation between two
different spins, was neglected because they are suppressed
by the inverse coordination number. This step was manda-
tory in spinDMFT because the approach does not allow for
the computation of pair correlations since the effective sin-
gle site problem comprises only a single spin. Obviously,
CspinDMFT provides room for improvement on this aspect.

Second, in spinDMFT all autocorrelations are replaced by
the autocorrelation of the considered central spin. This results
from the assumption that all spins of the system are essentially
equivalent. While this assumption holds in Bravais lattices, it
must be questioned for inhomogeneous systems.

Returning to Eq. (17) let us replace the required, but un-
known, correlations by some known correlations computed
within the cluster similar to what is done in spinDMFT for
the autocorrelation. This idea can be implemented in many
different ways. For lattices an obvious approach consists in
exploiting the translational invariance and to substitute out-
of-cluster correlations by their exact replicas in I' as shown
exemplarily in Fig. 5; see also Appendix C 2 for details. For
inhomogeneous systems, we pursue the analogous strategy
by identifying approximate replicas for each out-of-cluster
correlation. We call this correlation replica approximation
(CRA) and provide its details next.

The goal of the CRA is to systematically find a representa-
tive correlation in " for each correlation in T, where T is the
complement of I', i.e., all spins that are not part of the cluster
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FIG. 5. Example for a correlation replica on a square lattice.
Translational invariance imposes that the pair correlation between
the spins p and ¢ is identical to the pair correlation between the spins
k and [ so that they can be mutually substituted.

I'. In mathematical terms, we look for a map
T =12, (18)

which maps index pairs {pq} to {kl} such that (Sz(t)Sg 0))
and (S¥ (t)Sf (0)) are as similar as possible. Since none of the
correlations is known a priori, defining such a map, which
ensures the similarity of the correlations, is nontrivial. One
way to tackle this issue is to resort to the couplings and the
short-time behavior as a measure for similarity. In Appendix C
we analytically derive quantities suitable to measure similarity
based on the correlation behavior around ¢ = 0. Eventually,
we use the following map:

_ [minger |92, = T3], p#4.
JUpah) = {minker 5p— sl p=g, with OV
sp= T (19b)

r,r#p

Strictly, autocorrelations are mapped to autocorrelations
and pair correlations are mapped to pair correlations. In ad-
dition, it makes sense to define a lower cutoff for qu by

o= min /2, (20)
such that any pair correlation in T with ng < Ceut 18 consid-
ered too small to be relevant and hence is set to zero. This
cutoff prevents that the weakest pair correlation in I" is overly
weighted in the self-consistency.

Using the map defined above, we can approximate the
second moments of the mean fields according to

>SS sisi). @

k,lel

VEOVF ()~

where the coupling tensor JG* is defined by

U = X

P.q¢r,
fdpgh={kl},

2.
J g™ Ceut

Jindjq (22)

for all i, j, k,l € I'". The sum runs over all index pairs {pq}
that fulfill the constraints f({pq}) = {kl} and ngq > Ceut-

In this way, we obtain the closure of the self-consistency
by Eq. (21). We solve it numerically by iteration once the
coupling tensor JCR, is known. For regular lattice problems

the coupling tensor JCRa" is used instead; it is defined in
Eq. (C10) in Appendlx C 2

Technical details of the numerical implementation are pro-
vided in Appendix D. In essence, the procedure is the same
as for spinDMFT [54]. In Appendix E we illustrate that the
results converge upon increasing the cluster size. The follow-
ing section is devoted to the application of the introduced
method to the experimental scenario of dipolar surface spins
in a doubly rotating frame.

IV. ENSEMBLE OF DIPOLAR SURFACE SPINS

Here we adapt the developed CspinDMFT to the experi-
mental setup. We adopt the Hamiltonian (3), which fixes a
large number of parameters. The remaining parameters are the
positions of the spins and the global energy scale. For these,
we will use the available input from experiment.

As far as the CspinDMFT is concerned we follow the steps
exposed in the previous section. This leads us to the closed set
of self-consistency conditions

Vel ) =D"D Y " (1550
k,lel

(szn)sP). 23

They are identical to the ones in Eq. (21) except for the
anisotropic prefactors D*# from Eq. (5). Employing the sym-
metry relations (E2) and inserting the prefactors, we finally
arrive at

1
VI)VI0) = sz (JERAYV(SE (ST (0),  (24a)
Jlel

1 ,

VY (0)VI(0) = i > (Jg‘}j) (SLOS; (),  (24b)
k,lel’

- 1

VIOVi0) =52 D U S Si0Si0).  (240)

k,lel’

The coupling tensor J57}* is computed from the spin positions
and the dipolar coupling in the doubly rotating frame given in
Eq. (2).

In contrast to what was done in the previous section for
inhomogeneous spin ensembles, the spin positions are not
drawn completely at random, but there are some constraints
known from the experiment:

(1) Using methodology similar to the one employed in
Ref. [67], we extract the positions of the central spin and
its two strongest coupled neighbors from the measurements
obtaining

7 /nm := (0.22,0.17)", (central spin) (25a)
7/nm = (1.7, =3.9)T, (25b)
73/nm := (—0.1, —5.5)". (25¢)

(2) The modulus of the largest coupling to the central spin

is
[Jmax| = [J (71 — )| =~ 3.078 MHz. (26)
Considering the couplings defined by Eq. (2), this defines a

clover-shaped area around the central spin, in which no other
spin can be located because otherwise this spin would have
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approach derived in Appendix B 2 with cluster sizes Np = 5

to 7. Which value we actually choose is decided by comparing
the strongest bond between in-cluster spins and out-of-cluster

JF,strongest = rllc’léllzi Z |Jkil. (29)

iel’

This bond strength is a measure for the importance of a single
spin outside of the cluster on the spin dynamics within the
cluster; see Appendix E. Hence, the smaller Jr srongest 18, the
better. We adopt the cluster size with the lowest value of

I ® fixed spins |
—~ 10} ° forbidden area by Jmax
g [ b ] spins
(J
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n OF i o] e
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FIG. 6. Cutout of a typical distribution of spins on the surface
with the central spin being no. 1 in Fig. 7. The dark blue dots cor-
respond to the spin positions measured in experiment. The positions
of the other spins are drawn randomly considering the constraints (3)
and (4). The two light blue spins are important for the dynamics of
the central spin and, thus, are added to the cluster in the CspinDMFT
simulation. The remaining spins (black) form the mean fields. We
set the radii of the dots to 0.5nm visualizing the constraint of the
minimum distance 3: two dots are not allowed to overlap. Moreover,
no spin can be in the orange area because otherwise another value of
Jmax Would arise.

the largest coupling to the central spin. This is illustrated in
Fig. 6.

(3) Two spins are not allowed to have a distance smaller
than

dmin ~ 1nm; (27

i.e., we assign a certain spatial extent to the surface spin wave
function.
(4) The spin density is given by [57]
ny ~ Lnm~>. (28)
Apart from these constraints, the spin positions are as-
sumed to be random. In this way, we generate distributions
such as the one in Fig. 6. In practice, we consider a square area
with edge length [/ and the three known spin sites from (1).
Subsequently, we successively draw N — 3 random positions
in the area fulfilling the constraint on the density N/I? = ny
as well as the constraints (2) and (3). For the couplings,
we assume periodic boundary conditions: the shortest vector
connecting two spins defines their distance and thereby their
coupling. This vector may cross the edges of the square.
Typically, we take / ~ 200 nm because the coupling tensor
JSI}(‘Z‘\ is sufficiently converged for this size, i.e., it does not
change significantly any more if / is increased. We stress that
the computation of ng,l}j is extremely quick. The scaling of

the computation is O(N£(N — Nr)?), but this is done before
solving the self-consistency and, therefore, affected neither
by the Monte Carlo averaging nor by the time discretization.
Thus, it is by no means the computational bottleneck so that /
could also be chosen larger.

Next, we define a cluster I" around the central spin. Accord-
ing to the conclusion in Appendix E, we use the cluster-based

Jr strongest Decause we saw that cutting strong bonds by the
choice of cluster deteriorates the results. Subsequently, we
compute the corresponding coupling tensor Jg}}j. Once this
is done, all ingredients for CspinDMFT are available, and the
self-consistency problem is solved numerically by iteration.

In Fig. 7(a) we present the results for several sets of ran-
dom spin positions, while the positions of the three spins 1,
2, 3 are fixed as in Eq. (25). The common feature of the
longitudinal autocorrelations is a quick initial drop to some
moderate value between 0.4 and 0.8 followed by a rather slow
decay which can be well described by an exponential. The
behavior of the transversal autocorrelations is qualitatively
different. They display a quick drop to zero which is some-
times followed by one or two small revivals. Essentially, the
transversal signal has disappeared after about 10 us, i.e., on a
much shorter timescale than the longitudinal signal. Further-
more, it is striking that the first drop of the longitudinal signal
varies relatively strongly from configuration to configuration
of spin positions. This can also be seen in the relatively large
1o interval of the averaged longitudinal signal. We conclude
that the environment of the central spin even beyond the two
closest spins, of which the positions are measured and thus
given, matters considerably.

From experiment, we take that the characteristic transver-
sal decay time 7 is essentially determined by 1/Jp,x which
is in line with the fact that this decay happens fast. In order
to determine 7, systematically we fit the initial drop of the
transversal signal by a Gaussian. This appears to be appropri-
ate for the numerical results obtained by CspinDMFT; see for
instance the orange curve in Fig. 8. As displayed in Fig. 7(b),
the resulting times 7, vary between 0.5—1.0 s, which is con-
vincingly close to the experimental values.

To extract Tj, we use an exponential fit of the longitu-
dinal autocorrelations after some offset in time because the
initial drop and its subsequent oscillations show a qualitatively
different temporal behavior. The tails of the longitudinal auto-
correlations, however, are very well captured by exponential
fits. We obtain that the start time of each fit hardly matters;
see Fig. 7(a). Yet we observe that the values for 7;, vary con-
siderably from configuration to configuration of random spin
positions. For the averaged signal, we obtain about 100 us,
but the characteristic times of single autocorrelations cover
the range 10400 us. This observation underlines our above
conclusion that the environment of the central spin matters
strongly. Even if the positions of two close spins are fixed, the
behavior changes significantly from random set to random set
of spin positions. This shows that the system is still far from
any self-averaging.
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FIG. 7. (a) Simulated longitudinal spin autocorrelations for the experimental setup of three fixed spins and constrained random positions
for the other spins. The average over 30 random sets of positions is also displayed as well as the corresponding 1o interval of the transversal
and longitudinal autocorrelation, respectively. The tails of the longitudinal curves (t > 30 us) are fitted by exponentials ocexp(—¢/7j,) and the
first drop of the transversal curves by Gaussians g(t) = exp[— (¢ /275)?]. The factor of 2 is required, since the T, measurement in experiment is
performed in the singly rotating frame in which the couplings are twice as strong; see Eq. (1). The gray dashed lines render the fitting curves.
(b) Characteristic times, i.e., the fit parameters, are shown in the light-bluish region for the various samples. The averaged values are shown in
the dark-bluish region, while the experimental values are shown in the reddish region. We emphasize the large ratio between the characteristic

times in the longitudinal and the transversal channel.

It is also worth mentioning that the variance of T}, becomes
even larger when the positions of the closest neighbors of the
central spin are also varied in the simulations. This matches
qualitatively with the experimental observation of different
relaxation times at different spots on the diamond surface, i.e.,
different geometries. Extracting spin positions from the mea-
surement, however, forms a difficult and cumbersome task,
which is why we did not compare theory and experiment for
other configurations.

The key observation of Fig. 7 is the large ratio between the
characteristic timescales in the longitudinal and the transver-
sal channel. There is more than one order of magnitude

1.00_....,...................
L g”%, spinDMFT
[ --e-- g¥¥ spinDMFT ]
0.75F g°%, ¢o = 0, CspinDMFT -
\ —— gY¥, po = 0, CspinDMFT |
3 L \ Gaussian fit of g** |
dm 050 ; \ X exponential fit of g¥¥
< [
0.25
0.00 |
MR B B B B
0 10 20 30 40 50

t (units of ps)

FIG. 8. Spin-spin autocorrelations for dipolar couplings in the
doubly rotating frame as in Eq. (3) on a triangular lattice obtained
from CspinDMFT with N = 5. The lattice can be tilted relative
to the reference axis for the couplings. Only the results for gy = 0
are shown because the tilting angle has only a minor influence.
The longitudinal result (r > 20us) is fitted by an exponential
exp(—t/Ti,) to determine Tj,; the transversal results by a Gaussian
g(t) = exp[—(t/2T»)*]. Fits are shown by dotted lines.

difference between these times in experiment, see reddish area
of Fig. 7(b). The ratio in the averaged theoretical calculations
even exceeds two orders of magnitude. But the individual
ratios of each random set of spin positions strongly fluctuate
from one to almost two orders of magnitude. Where does this
large ratio stem from? In the Hamiltonian (3) there is only a
factor of 2 difference between the longitudinal and transversal
couplings of the spin components. We claim that it is the
positional randomness which makes the difference.

To corroborate this hypothesis we present autocorrelations
obtained by CspinDMFT for the Hamiltonian (3) on a regular
triangular lattice, not on a randomly chosen set of sites. Thus,
the coupling tensor entering the self-consistency conditions in
Eq. (23) is changed, and instead of using the CRA, we map
correlations to their replicas based on translational invariance;
see Appendix C 2. Since the couplings depend on the angle
@ij [see Eq. (2)], the results will depend on how the reference
axis for ¢ is placed in the lattice. We take this into account
by a tilting angle ¢y. It describes the angle between the axis
set by ¢ = 0 and one of the axes connecting two neighboring
sites of the triangular lattice. The ratio of the longitudinal and
transversal timescales only takes a moderate value

Ti,\
(T) = 3.8(3), (30)

2

where the overbar stands for an average over the tilting angle,
but all angles yield essentially the same result. This is far too
low in comparison to experiment. This shows that a regular
set of spin positions implies a spin dynamics which is at
odds with the experimental observations. We conclude that
the randomness must be a pivotal element in understanding
the observed spin dynamics.

The fact that outliers of very large values of 77, occur in
the random ensembles is interesting in itself. It appears that
there exist configurations of spins which do not interact much
with their environmental spins. Hence, the eigenstates in these
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configurations must be well localized within the considered
cluster. One may speculate that the very slow decay of cer-
tain longitudinal autocorrelations is a precursor of many-body
localization. In the strict sense, true localization would imply
that the autocorrelations persist, i.e., the timescale would be
infinite. On the one hand, the clusters we treat in CspinDMFT
are still fairly small with up to seven spins for the results in
Fig. 7. Hence, it is possible that the decay is due to some
“leakage” occurring due to the approximate treatment. On the
other hand, it is also conceivable that the noninfinite values of
Ti, reflect the true physical behavior because recent results
suggest that perfect many-body localization is not generic
[61,68].

The obtained agreement between experiment and theory
is good, and we conclude that our approach provides a valid
model for the experimental setup. Yet the agreement is not
quantitatively perfect. There are three main reasons for this.
The first point is that our results clearly show that the ran-
domness of the spin positions introduces a large variability in
the results. No self-averaging takes place. Furthermore, it is
not fully understood whether the spin positions change in the
course of time so that the experiment tends to measure aver-
ages [66]. Generally, the lack of knowledge on the whole spin
systems also limits the accuracy of a theoretical description.

Second, we introduced a powerful approximate approach
by extending spinDMFT to CspinDMFT. Yet it is still an
approximation due to the finite cluster size which can be
simulated. Thus, a part of the discrepancy between theory and
experiment is likely to stem from the theoretical approxima-
tion.

Third, the theoretical description starts from the effective
Hamiltonian (3). This is not the Hamiltonian realized directly
on the diamond surface; rather it is the effective Hamiltonian
resulting from two nested rotating wave approximations in the
doubly rotating frame. This must be realized in experiment,
and the measurements must take these rotating frames into
account. All imperfections in field alignment and in pulse
amplitude or duration will have an effect on the quantitative
results. For instance, the experimental data do not start pre-
cisely at + = 0, but the data have a certain intrinsic offset
explaining why the data points in Fig. 3 do not start from 1
on the y axis.

In view of these difficulties, the obtained agreement be-
tween experiment and theory is fully satisfactory.

V. CONCLUSIONS

In this article we pursue two objectives. The first is
methodological, namely, the extension of the spin dynamic
mean-field theory (spinDMFT) [54] to a cluster dynamic
mean-field theory (CspinDMFT). The second is to understand
the experimental finding in random dipolar spin ensembles
that the longitudinal relaxation is much slower than the
transversal one. In fact, the failure of spinDMFT to explain the
experimental observation triggered the strive for the method-
ological progress.

SpinDMFT summarizes all couplings into one energy
scale. This disregards any influence of the spatial positions
of the spins. CspinDMFT treats the dynamics in a cluster of
spins rigorously, and only the cluster’s environment is treated

on a mean-field level. This improves the approximation be-
cause all processes within the cluster are dealt with exactly.
Thus, the whole spatial dependence within the cluster is cap-
tured: increasing the cluster size improves the accuracy. We
established systematic self-consistency conditions reaching a
closed set of equations for the random, normal distributed
mean fields. The convergence of CspinDMFT with increasing
cluster size was found to be excellent for a regular triangular
lattice. It is also good for inhomogeneous spin ensembles with
randomness although the fluctuations in the spin dynamics
between different sets of random positions are very high. The
choice of appropriate clusters around the central spin needs
careful consideration. One should avoid “cutting” strong cou-
plings, i.e., to assign a spin to the cluster while another spin, to
which it is strongly coupled, is incorporated in the mean fields.
Strategies to find appropriate clusters are suggested, tested,
and discussed.

The developed CspinDMFT is applied to the effective
Hamiltonian in the doubly rotating frame for a dipolar spin en-
semble on the surface of diamonds at infinite temperature, i.e.,
for the completely disordered spin state. Experimentally, the
longitudinal and transversal autocorrelations are measured. A
striking mismatch between the relaxation times in these two
channels is found. The ratio between the two characteristic
times is larger than one order of magnitude, although there is
only a factor of 2 difference in the couplings. This finding
is at odds with what theory based on spinDMFT predicts
so that the importance of the spin positions is underlined
again. Similarly, CspinDMFT for a regular lattice shows a
ratio of less than 4 between the two characteristic times. This
disagrees with what is found experimentally for an ensemble
with random spin positions.

Hence, we are led to the conclusion that the randomness in
the spin ensemble is the key ingredient explaining the strongly
differing timescales. Indeed, the theoretical predictions by
CspinDMFT for the ratio of timescales shows up to two orders
of magnitude difference. This agrees well with the experimen-
tal results in view of the theoretical approximate treatment
and the demanding experimental realization of the effective
Hamiltonian in the doubly rotating frame. Scaling arguments
suggest that the difference in the timescales becomes even
larger when the temperature is reduced [31].

Moreover, the very large ratio between the timescales in
the two channels found in CspinDMFT can be interpreted
as a precursor of many-body localization, at least in the
sense of very slow relaxation, but not of complete persis-
tence of correlations [61]. Complete localization within the
studied cluster would imply the persistence of correlations,
but it is unlikely to occur in CspinDMFT because the ap-
proximation introduces temporal randomness via the mean
fields.

Our findings suggest a large variety of extensions. Clearly,
further experimental studies of dense spin ensembles are re-
quired to control and to understand the relevant timescales in
more detail. For instance, it would be extremely instructive
to examine spin ensembles in the whole range from perfect
regularity, i.e., on lattices, to more and more irregular, random
systems. This would allow one to make further statements on
the extent of slow relaxation and perspective on many-body
relaxation.
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From the theoretical side, many further applications of
the developed mean-field approach are obvious. Clearly, a
plethora of regular and irregular geometries and spin-spin
interactions can be tackled. Moreover, one can also include
external time dependencies. This will require one to re-
frain from using time translational invariance in the actual
computations. Similarly, one can envisage studying systems
where the parameters such as the density of spins and their
interactions vary in space. Combining time and space depen-
dence, phenomena of spin diffusion should be tractable. An
intriguing long-term vision consists in the consideration of
spin systems at finite temperature similar to previous studies
[69,70].
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APPENDIX A: EXPERIMENTAL CONSIDERATIONS

A near-surface nitrogen-vacancy (NV) center in diamond
probes the dynamics of the surface spin system Fig. 1. NV
centers are optically initiated and read out by laser pulses
delivered via a confocal microscopy setup. Radiofrequency
pulses that drive the NV center and surface spin transitions are
delivered by a transmission line fabricated on a glass cover-
slip, on top of which the diamond sits. A bias magnetic field of
order 1000 G enables independent addressing of the NV spin
and surface spin transitions by using different resonant RF
tones, and all measurements take place at room temperature.

The dipolar coupling strength between the NV center
and the surface spins is extracted from the double electron-
electron resonance (DEER) measurement. We limit this study
to the case of one surface spin dominating the coupling with
the NV center. In order to extract the positions of the three
strongest coupled surface spins to the NV center, we perform
DEER measurements at low external magnetic field, varying
the azimuthal angle the external magnetic field makes with
the NV axis. This modulates the dipolar interaction strength
between the NV center and each surface spin, and by using
methods similar to those used in [67], we are able to extract
likely locations for these spins.

Each measurement presented in this work consists of a
series of pulse sequences, which correlate the NV and central
spin evolution, surrounded by NV optical spin polarization
and readout steps. With this sequence, the NV center mea-
sures autocorrelation functions of the central surface spin
(S;(1)S;"*(0)), where the time 7 and the measured spin
projection depend on the pulses applied during the evolution
interval [71].

In this work, we consider measurements of the longitudinal
and transverse spin autocorrelations within the doubly rotat-

ing frame. The transverse spin autocorrelation (S7(¢)S7(0)) is
extracted from a surface spin Hahn echo (T,) measurement
[Fig. 3(a)], where the relaxation rate is directly related to the
strength of the dipolar interaction of the central surface spin
with nearby surface spins (1/Jn.x = T2). In the doubly rotat-
ing frame, the longitudinal spin autocorrelation (S} (7)S; (0))
is extracted from a surface spin 77, measurement [Fig. 3(b)],
taken at a drive strength 5 much greater than the strength of
on-site local magnetic fields.

APPENDIX B: STRATEGIES TO DEFINE THE CLUSTER

In this Appendix we discuss strategies for choosing the
cluster around the central spin in case of an inhomogeneous
system of spins. The aim is to optimize the convergence of
CspinDMFT by including the most important spins in the
cluster so that their dynamics is treated exactly. Whether a
spin is important or not is quantified by its contributions to
the mean fields. We present two different strategies to pursue
this goal. To be specific, we consider the isotropic Heisenberg
model with § = 1/2. But the arguments can straightforwardly
be extended to more general couplings as well.

1. Central-spin-based strategy

The first strategy is motivated by the general aim of
CspinDMFT to find a good approximation for the dynamics of
the spin under study, the so-called central spin. Accordingly, it
is plausible to treat the spins in the immediate vicinity exactly
in the cluster because they are most strongly coupled. To this
end, we aim at making the mean field of the central spin as
small as possible. Since we do not want to run demanding
numerical simulations before the cluster is defined, we choose
the initial moments as criterion for the size and importance
of the mean field. Since the first moment vanishes due to
the assumed initial disordered spin state reflecting infinite
temperature, we consider the second moment. It is given by

vy r(0) := VL (O)VEL(0)

1
) Zjlzp >0,
per

(Bla)

(B1b)

where 1 is the index of the central spin and I" is the currently
considered cluster. Next, we extend the cluster by an addi-
tional spin with index k according to
- I'=TU/{k}. (B2)

The optimum choice of k is the one that minimizes this second
moment. Minimizing v{ -, (0) with respect to k corresponds to
maximizing the difference

Afr =] 1 (0) — v§ . (0) = L7 > 0. (B3)
Hence, the spins to be added to the cluster should be deter-
mined from searching the maximum modulus of couplings to
the central spin. This does not need to be done iteratively,
but one can simply choose the N — 1 spins which are most
strongly coupled to the central spin. This is the central-spin-
based strategy.
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2. Cluster-based strategy

An alternative approach aims at minimizing all mean fields
of the cluster simultaneously. To this end, we consider the sum
of the second moments

vE0) == ) VROV (B4)
i,jel’
1
=3 SO il (BS)
i,jel p,q¢l’

If the couplings are positive, minimizing v, (0) with respect
to the added spin k means maximizing the difference

A = vp(0) — v5 (0) (B6a)
2
= 1ZJJ = IZJ- 0. (B6b)
= 4 L ik jk — 2 4 ik > U.
i,jel’ iel’

Thus, the next spin to be added can be determined from
searching the maximum of the modulus of the linear sum of
the couplings to all spins in the cluster I'. In the experimental
scenario in Sec. IV, however, the couplings become negative
for half of the orientations of the distance vector. Therefore,
contributions of different spins sometimes cancel one another
in the linear sum of the couplings so that this sum is not a good
measure for the actual “importance” of a spin to the cluster.
For this reason, we recommend to maximize the linear sum of
the moduli of the couplings instead. From our experience, this
results in more appropriate clusters.

The results stemming from the two strategies are shown
and compared in Appendix E. Altogether, we find slight ad-
vantages for the cluster-based strategy.

APPENDIX C: MAPPING OF OUT-OF-CLUSTER
CORRELATIONS TO IN-CLUSTER CORRELATIONS

In this Appendix we discuss the identification of out-
of-cluster correlations with in-cluster correlations, which is
needed to close the self-consistency problem in Eq. (17).

1. Inhomogeneous systems

For the inhomogeneous system, we introduce the cor-
relation replica approximation CRA, which approximates
correlations outside the cluster by correlations inside the clus-
ter. For this purpose, the correlations are classified according
to their short-time behavior as derived here. We consider the
general correlation

go (1) = (S1(1)SL(0) (C1)
in the isotropic Heisenberg model with § = % defined by the

Hamiltonian
1 oQu
=5 2SS
i#j.o

(C2)

with arbitrary, but fixed couplings J;;. Att = 0, the correlation
is given by

g0 (0) = 18,8 (C3)

This result already provides important information for find-
ing correlation replicas: autocorrelations take their maximum
value at + =0 given by le while pair correlations vanish.
Therefore, the most important characteristic is whether p and
q are equal or not. The first temporal derivative

dg”" £8r 0y =0 (C4)

vanishes for all p, g and does not provide helpful information.
The second derivative reads

2,7P
dﬁ(;) = —<[H

- (B S ]J0s50) (S
= ([H, S} ](®)[H, $5](0)). (C5b)

The commutator with the Hamiltonian yields
[H.S/]=1) "> JerPsesh, (C6a)

Li#p af
which we insert in (C5b) to obtain
L8 o L8y D T, — 8,02, (CT

3 (0) = g Y2 22 s, RO (e7)

rr#p

The prefactor §,, implies that the second derivative con-
tributes only for y = p. Here this is no caveat because any
correlation with y # p vanishes in the isotropic Heisenberg
model at infinite temperature. For other models, this point
might be worth reconsidering. Here we can simply reduce the
crucial quantities to

Z pr

rrp

(C8)

for the autocorrelations and to ng for pair correlations with
p # q. Thus, we assess the similarity of correlations on the
basis of the similarity of s, for autocorrelations and on the
basis of the similarity of J ,%q for pair correlations. We use these
characteristics also for the anisotropic model in Sec. IV.

2. Regular lattice systems

For regular systems with translational invariance, the map-
ping of the correlations in Eq. (17) is much easier. We discuss
a systematic mapping restricting ourselves to Bravais lattices.
The extension to crystal lattice with several atoms in the unit
cell is straightforward.

Each site of the lattice is completely equivalent. Hence,
all autocorrelations and all pair correlations with the same
distance vector 7,, are equal. CspinDMFT breaks the trans-
lational symmetry by singling out the cluster. So the
contribution of the mean fields varies from site to site in I’
and so do the correlation functions. This leads to ambiguities
in finding the correlation replicas: for instance, the autocor-
relation in the lattice can be represented by Nr different
autocorrelations in I', which need not be exactly the same.
Here Nr is the number of sites in the cluster.

A good way to deal with the ambiguity is to approximate
the unknown out-of-cluster correlation with the distance vec-
tor 7, by the average of all in-cluster correlations with the
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same distance vectors

(82()SE (0) ~ (S:0)8{ ). (©9)

The sum runs over all index pairs k, [ with 7; = 7,4, that s, all
Ny correlation replicas within the cluster I'. Then the coupling
tensor in Eq. (21) reads

2 1
5k = No > Jipdig:
P.q¢l,

Ppg=Txl

(C10)

where CRav stands for correlation replica average.

There are other options as well, for instance, using the
correlations involving the central spin because one may expect
that the dynamics of this spin is captured best. Our checks
revealed that this alternative affects the spin dynamics barely
because (1) the correlations in I" with the same 7;; do not differ
much and (2) because the final results are not very sensitive to
small variations in the temporal behavior of the mean fields.

APPENDIX D: NUMERICAL DETAILS

Here we discuss several aspects of the numerical imple-
mentation and point out technical issues and how they can be
dealt with.

1. Implementation and numerical resources

The implementation of the self-consistency problem is
close to that of spinDMFT, which is why we refer to the cor-
responding section in Ref. [54]. Clearly, the numerical effort
for CspinDMFT is significantly larger in several steps. First,
the dimension of the covariance matrix built from the second
moments of the mean fields becomes larger by the factor
Nr because each site in the cluster has its own mean field.
Second, the computation of the quantum expectation values is
more demanding since the dimension of the Hilbert space is
(28 + D™ in the cluster instead of only 25 + 1. Third, one
has to compute N% times more spin-spin correlations in each
iteration step to close the self-consistency. This factor can
be reduced to Nr(Nr + 1)/2 by making use of time-reversal
invariance. Fortunately, we still observe a fast convergence
of the self-consistency iteration for CspinDMFT within only
three to five steps. For typical numerical parameters (200 time
steps and 10* mean-field samples), cluster sizes up to Np = 6
require moderate numerical resources, e.g., the run time is
~50 core hours.

Finally, we emphasize the strong advantage of employ-
ing commutator-free exponential time (CFET) propagation
to compute time evolution operators [72]. Especially in the
considered inhomogeneous systems, spatially close spins are
strongly coupled and thus display fast oscillations. Counterin-
tuitively, these oscillations need not be resolved by fine time
steps when using CFET propagation because the dynamics
induced by the time-independent part of the Hamiltonian is
captured exactly. Only the oscillations in the time-dependent
mean fields have to be resolved to prevent numerical errors
stemming from too coarse time discretization.

2. Definiteness of the covariance matrix

The substitution of quantum operators by classical Gaus-
sian variables entails a numerical subtlety. To be able to
interpret the quantum expectation values as matrix elements
of a covariance matrix, symmetry and positive semidefinite-
ness are necessary. Due to the considered infinite temperature,
symmetry

VeV ) = (VEO)Ve @) (D1)

is always ensured. Positive semidefiniteness can be verified
by summing the mean-field correlations with arbitrary real-
valued coefficients A over all occurring indices according to

!
Y (VEOVEE hiashjpe =0,

ijap.t.t

D2)

where the time is also discretized so that the sum is well
defined. Rewriting this expression as

2

iot

> <V?(r)Vf(r’))x,;a,,x,;ﬁ,ﬂ=< D VIO ki
(D3)

i,jaB.tt

its non-negativity is obvious. Note that the basis for this con-
clusion is that the covariance is indeed a product of the two
independent environment operators.

But employing an approximation to the right hand side of
Eq. (17b) such as the CRA leading to Eq. (22) or Eq. (C10)
one realizes that this is no longer the case because coupling
tensor JS}}(? cannot be split into the product of two indepen-
dent sums over k and /; see Eq. (21). Thus, the non-negativity
of the approximate covariance matrix cannot and is not guar-
anteed.

One way to quantify the violation of positive semidefinite-
ness due to the CRA is to measure the ratio of the sum of all
negative eigenvalues of the covariance matrix over the sum of
all positive eigenvalues u;,

, Zﬂi<0 [l (D4)

Zui>0 Hi

For the eigenvalues of the matrix with matrix elements
Y iierU5h)? we find r~ 0.6, which seems to indicate
a strong violation of positive definiteness. But the relevant
covariance matrix includes the spin-spin correlations; see
Eq. (21). The inclusion of these correlations reduces r consid-
erably. Thus, one can set the remaining negative eigenvalues
to zero so that the resulting matrix can be taken as covariance
matrix of a normal distribution.

To assess the influence of this truncation in the numerical
simulations, we track r in the final iteration step to check
whether the truncation is justified and the obtained results
are reliable. From our experience, the violations of positive
semidefiniteness become relevant only in the inhomogeneous
systems. Here the violations are sometimes r ,z 0.1; we ob-
served this in one out of 90 random sets of the spin positions.
For all practical purposes, this is still tolerable. To show
this, we exemplarily compare the results for a random set
of positions with r =~ 0.1, where we (1) truncate all negative
eigenvalues to zero and (2) replace all negative eigenvalues by
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FIG. 9. Exemplary results for a set of spin positions with notice-
able violation of the positive semidefiniteness of the approximated
covariance matrix in the numerical simulation, r ~ 0.12 for the
effective dipolar Hamiltonian (3) in the doubly rotating frame. The
cluster size is N = 6.

their absolute value. Figure 9 depicts both results and the dif-
ferences are still extremely small for the central spin (spin 1).
For the outermost spin of the cluster (spin 6), the differences
are larger. This is not surprising since the truncation affects
the mean fields in the first place, which are stronger for the
spins at the border of the cluster. For violations far beyond
r = (.1 the obtained data might not be reliable, but we did not
observe such cases.

3. Numerical error sources

Several numerical errors emerge in the numerical eval-
uation of the self-consistency problem. As in the original
spinDMFT [54], we have a statistical error due to the Monte
Carlo sampling, an error from the time discretization as well
as a self-consistency error resulting from terminating after a
small number of the iterations.

The statistical error of a spin correlation gfﬁ (t) is given by

7 (6 ©) = =olef 0. V)] (Ds)
where M is the sample size and V stands for a single mean-
field sample. We conservatively estimate the single-sample
standard deviation by

off N 1
a[gu . V)] WE (D6)
in accordance with the results in Ref. [54]. Current numerical
simulations indicate that this value becomes smaller if the
cluster size is increased. Harnessing this effect can consid-
erably improve the performance.

The error from the time discretization is difficult to ana-
lyze because it strongly depends on the considered system
and geometry. To compute time-evolution operators, we use
CFETs of order 2 and integrate with the trapezoidal rule,
which typically makes the error scale as 6t%, where 8t is
the (equidistant) step width. This scaling cannot be used for
an estimate of the accuracy of the discretization. Hence, we

choose the simple strategy to compute the deviation between
two different discretizations. If the deviation is not sufficiently
small, the discretization has to be made finer.

Analogous to spinDMFT, the self-consistency problem is
solved by iteration. We make some initial guess for the mean-
field moments, compute the spin autocorrelations by Monte
Carlo simulation, and, subsequently, update the mean-field
moments via the self-consistent equations. This procedure is
repeated until the results have sufficiently converged. One
way with which to measure the convergence is to compute
the time-averaged deviations between the current (n) and the
previous iteration step (n — 1) according to

1

L
of of
L+1 Z ‘gij,(n)(lat) - gij,(n—l)(l(st)” (D7)

1=0

AL (n) =

where L is the number of time steps. The largest Alg’g (n) can
then be compared to some preset tolerance to decide whether
the iteration can be terminated. In this case, the iteration error
can be estimated by the tolerance. The tolerance is chosen
such that the iteration error does not exceed the statistical
error.

For best efficiency, the numerical parameters should be
chosen such that all error sources are of the same magnitude.
Throughout this article, the numerical error of any shown
correlation is 1% or less of the theoretical maximum value
0.25.

APPENDIX E: CONVERGENCE OF CspinDMFT

Here we illustrate that the proposed extended mean-field
approach converges for increasing cluster size. This fact cor-
roborates the justification of CspinDMFT. We consider the
regular triangular lattice with an isotropic spin Hamiltonian
first and, subsequently, inhomogeneous spin ensembles with
random spin positions.

On the triangular lattice we choose couplings with a power-
law dependence like dipolar couplings

_ (ﬁ) & Jo.ui
= 3

3
r()\70.tri

3
rij

sy = , (ED)

2

r i i
where rq is defined via the spin density no = 1/r2 and a is
the lattice constant. The number Nr of spins in the clus-
ter is increased successively according to the numbering in
Fig. 10(b). The energy constant [Jy i sets the energy scale.
For each Nr, we compute the coupling tensor (22) and solve
the self-consistent equations by iteration. Due to the isotropy
of the considered model, all off-diagonal correlations vanish
while all diagonal correlations are equal:

(S)S] () =0 Va # 8,
(SES] () = (S{(1)S)(0)) = (S;(1)S:(0)).

The obtained results for the autocorrelation of the central
spin are shown in Fig. 10(a) as a function of time. Generally,
the curves do not vary much with the cluster size. This is
expected, since the effective coordination number of the trian-
gular lattice z defined in Eq. (10) is fairly large, z & 19.1 [54],
so that spinDMFT already represents a good approximation.

(E2a)
(E2b)
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FIG. 10. (a) Spin-spin autocorrelations in CspinDMFT on the triangular lattice at infinite temperature for various cluster sizes Nr according
to the numbering in panel (b); Nr = 1 refers to spinDMFT. Beyond the relatively large jump from N = 6 to N = 7 the deviations are barely
visible. (b) Triangular lattice and sequence of the spins included in the cluster I".

At t ~2/Jy, a low maximum appears which grows upon
increasing the cluster size; see also the inset of Fig. 10(a).
Its growth stops at Nr = 7, indicating that it is important
to include all nearest neighbors of the central spin in the
cluster as one may have expected a priori. The deviations
of the results between N = 7, 8, and 9 are very small and
only slightly above the expected numerical errors resulting
from the time discretization. Hence, at cluster sizes beyond
the size of the cluster including the nearest neighbors, the
advocated CspinDMFT constitutes a considerable improve-
ment over spinDMFT for lattices. It converges well with the
cluster size.

The main goal of this article is to access the spin dy-
namics in inhomogeneous systems. As pointed out in Sec. I,
spinDMFT fails for inhomogeneous system since it does not
capture any aspect of the inhomogeneity beyond a global
energy scale. Moreover, the effective coordination number
tends to be small in random systems. Thus, we address the
convergence of CspinDMFT for an inhomogeneous systems
next. We consider spins at randomly drawn positions in two
dimensions. For simplicity, the spins are coupled according to
the isotropic Heisenberg Hamiltonian (11) with

13 Jo.inh

3 )
rij

Jij =

(E3)

where ry is defined via the spin density ny = 1/ rg. It is ex-
pected that the environment and hence the spin dynamics vary
strongly from spin to spin. As a consequence, the autocorre-
lations depend strongly on the drawn set of spin positions.
To capture this aspect, we study two different sets of spin
positions: one where the central spin is only weakly coupled
to its environment and one where it is strongly coupled. The
results obtained by CspinDMFT are shown in Figs. 11 and 12.
We also compare the influence of the two strategies to define
the cluster introduced in Appendix B.

Our first observation is that the correlations still deviate
quite noticably when passing from two over three to four
spins in the cluster. Hence, one should not expect reliable
results for N < 4. For Nr > 4, the general features of the
curves, i.e., the timescale of the initial decay and the period

of the dominant oscillation, no longer change in the displayed
data. The remaining differences are small and concern only
certain quantitative details such as the height of secondary
extrema. Both the central-spin-based strategy (see upper rows
of panels) as well as the cluster-based strategy (see lower rows
of panels) show sufficient convergence for N > 4. Inspecting
the cluster shown Fig. 11(d), one can doubt the convergence
of the cluster-based strategy because the cluster does not seem
to be centered around the central spin. One spots at least three
other close neighbors that are ignored in this choice of the
cluster. But inspection of the results of the alternative strategy
in Fig. 11(a) clarifies that an explicit quantum-mechanical
treatment of these spins (4, 5, and 6) has no large effect
on the autocorrelation of the central spin. In addition, the
computed autocorrelations displayed in Fig. 11(c) show very
good convergence corroborating this choice of the cluster.

The convergence of the autocorrelation of the central spin
with a stronger coupled environment depicted in Fig. 12 is
also good except for the outlier at N = 8 in Fig. 12(a). The
occurrence of this outlier can be understood by inspecting
the geometry and the clusters in Fig. 12(b). Spin 8 has an
extremely close neighbor which is not included in the cluster.
Including spin 8 in the cluster but treating its strongly coupled
neighbor only on the mean-field level implies cutting a spin
dimer, which is obviously not justified.

We conclude that a good choice of the cluster needs to
include at least N = 4 spins. In addition, it is advantageous
if the couplings between in-cluster spins and out-of-cluster
spins are rather weak. It is difficult to provide compelling
evidence to rank the two strategies for the choice of cluster
because of the strong fluctuations in inhomogeneous systems.
But the observation that cutting strong couplings between
spins inside and outside the cluster is detrimental leads us
to conclude that the cluster-based strategy provides better
performing clusters than the central-spin-based strategy. For
the decision to include or to exclude an additional spin in the
cluster the cluster-based strategy considers the couplings of
this spin to all spin in the cluster so that “cut” dimers tend to
be avoided. In contrast, the central-spin-based strategy is blind
to any couplings but to the ones to the central spin.
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