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The moiré pattern induced by lattice mismatch in transition metal dichalcogenide heterobilayers causes
the formation of flat bands, where interactions dominate the kinetic energy. At fractional fillings of the flat
valence band, the long-range electron interactions then induce Wigner-Mott crystals. In this paper we investigate
the nontrivial electronic phases appearing away from fractional fillings. Either competing phases arise that are
characterized as doped Wigner-Mott charge transfer insulators, or alternatively a novel state with frozen charge
order is conducting the “electron slush.” We propose that an extremely spatially inhomogeneous local density of
states can serve as a key signature of the electron slush.
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I. INTRODUCTION

When two atomically thin materials are intentionally mis-
aligned or have a lattice mismatch, a long-range geometric
moiré pattern emerges. This results in a drastic reduction of
the electronic kinetic energy, paving the way for new strongly
correlated phases [1,2]. Though the first signs of correlations
were seen in twisted bilayer graphene [3,4], it is particularly
appealing to use instead monolayer semiconductor transition
metal dichalcogenides (TMDs) MX2 where M = W, Mo and
X = S, Se, Te [5–10]. In TMD moiré bilayers, the effec-
tive interaction strength U scales as the inverse moiré length
U ∼ a−1

M , whereas the flat band kinetic energy at the top of the
valence band scales as W ∼ a−2

M . Consequently, this back-of-
the-envelope argument suggests U/W ∼ aM , meaning there
is no limit as to how strongly coupled a TMD bilayer can be
(Appendix A)!

Furthermore, combining various TMD monolayers with
or without a relative twist angle allows for a wide degree
of variability in constructing the physics of flat bands [11].
Most notably, in TMD heterobilayers (combining two dif-
ferent TMDs) the electronic states are localized in only one
layer and form an effective triangular lattice Hubbard model
[12–17].

The observation of a Mott insulator state at half-filling n =
1 of the first flat valence band confirmed the presence of strong
electronic correlations in aligned WSe2/WS2 [18–20]. Subse-
quently a range of charge-ordered generalized Wigner-Mott
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crystals [21–23] at fractional fillings n = 1/2, 1/3, 2/3, 1/4,

and so forth, was observed; meaning not only the onsite re-
pulsion but also the longer ranged Coulomb interaction plays
a central role [24–32].

Exactly at these fractional fillings, the Wigner-Mott crystal
is an insulator, which can be described on the mean-field
level [13,33–37]. Away from fractional fillings, the situation
becomes less clear. While there is a large theoretical litera-
ture on interacting triangular lattice models, most focus on
superconducting instabilities [38–42], which are not observed
in experimental moiré systems. Instead, a realistic possibility
is the emergence of competing charge-ordered phases, as was
recently suggested by Monte Carlo simulations [43]. Alterna-
tively, the system can become a doped Wigner-Mott insulator
[44] where the charge order is given by the nearest fractional
filling.

Aside from variational approaches close to integer filling
[45], studies of the interplay of Mottness and charge order be-
yond mean-field theory are all based on versions of dynamical
mean-field theory (DMFT), augmented with either self-
consistent Hartree-Fock for the charge order [21–23,46,47] or
GW for the momentum-dependent self-energy [48,49]. Fol-
lowing the former approach, at most incommensurate fillings
we identify a novel metastable electron slush phase. Here
the electron charge freezes spontaneously in amorphous real-
space patterns, whose signatures in the local density of states
are shown in Fig. 1. Despite the frozen charge order, the
screening of long-range interactions prevents the opening of a
spectral “Coulomb gap. In addition, the random electrostatic
fields produced by such amorphous charge order induce local
doping of the Wigner-Mott solid, resembling the effect of site
disorder in ordinary Mott insulators.

As a result, the system remains a conductor — albeit a
very bad one, with an extremely high resistivity surpassing
the Mott-Ioffe-Regel limit. This stands in great contrast to
competing “doped Mott-Wigner insulator phases, where the
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FIG. 1. Local density of states (LDOS) of a typical “electron
slush” phase at incommensurate fillings of a TMD heterobilayer, ob-
tained using non-charge-self-consistent Hartree+CPA+DMFT, with
T = 1.2K, n = 1/2, and U/t = 38.3. Electrons are frozen in an
amorphous configuration. The presence of screened Coulomb inter-
actions causes a soft spectral gap (Fig. 4) and nonzero conduction
(Fig. 3). However, the LDOS is spatially extremely inhomogeneous
and dominated by only a few peaks at the Fermi level (a). At lower
energies, here at E = −20 meV (b), the LDOS shows more structure
of the amorphous slush state, which can be observed using scanning
tunneling microscopy.

fractional periodic charge order remains, and the dopants
realize a strongly renormalized (but highly conducting!)
Fermi liquid at low temperatures. Physically, this amorphous
charge order can be seen as a “compromise” between several
closely competing periodic Wigner orders, at incommensurate
fillings. The strange spectral and transport properties charac-
terizing such amorphous Mott matter are the central discovery
of this work. We emphasize that the frozen charge order is the
result of very strong nonlocal Coulomb repulsion V/t � 1,
which can be captured self-consistently on a semiclassical
Hartree level. Additionally, we use DMFT to gain insights into
the effect of such charge freezing upon the spin and transport
effects associated with strong electronic correlations due to
the Hubbard U .

II. MOIRÉ MODEL

To model the aligned WS2/WSe2 heterobilayers we follow
the continuum formulation proposed by Wu et al. [12]. We
briefly summarize their approach here; a more detailed de-
scription is provided in Appendix A. The continuum model
starts with the top of the valence band in monolayer WSe2,
where the holes have an effective mass of m∗ = 0.36me.

Aligned (θ = 0) WS2/WSe2 heterobilayers have a moiré
length of approximately aM = 7.9 nm. To obtain the strength

and phase of the periodic moiré potential, we performed
density functional theory calculations using the approach
of Refs. [12,50,51]. For WS2/WSe2 bilayers we obtained
(V, ψ ) = (7.7 meV,−106◦). Note, however, that the accuracy
of the magnitude V is debatable. Recently, STM measure-
ments revealed a moiré potential in excess of 100 meV [52],
whereas theoretical work suggests a complete absence of a
moiré potential [16]. Additionally, the magnitude is very sen-
sitive to the precise interlayer distance (and can thus be tuned
using pressure as was done in twisted bilayer graphene [53]).
Therefore, one should bear in mind that the provided values
for the electronic bandwidth can be significantly different in
real systems.

Nevertheless, with this value of moiré potential a flat band
emerges that can be represented by the extended Hubbard
model on a triangular lattice. The nearest-neighbor hopping is
t = 1.9 meV, and we ignore longer-ranged hoppings. The cor-
responding Wannier orbitals [54] are approximately Gaussian
around the W/Se stacking center with width σ = 0.125aM .
We use the screened Coulomb potential Vsc(r) = e2

4πε
( 1

r −
1√

r2+d2 ) to calculate the effective interaction strengths. With
a screening length of d = 20 nm, this provides an onsite
repulsion of εU = 1.7 eV and a nearest-neighbor repulsion
of εV = 0.6 eV. Even with quite large values for the dielectric
constant the onsite repulsion is stronger than the bandwidth,
and indeed even V � t!

Because both the bandwidth (via the moiré potential and
interlayer coupling) and the interaction strength (via engi-
neering of the dielectric environment) are tunable, in the
remainder of this paper we vary the ratio U/t . Our choices
are U/t = 38.3, 19.1, and 12.8, corresponding roughly to di-
electric constants of ε = 23.4, 46.8, and 70.2, respectively.
For the strongest choice of U/t , the corresponding nearest-
neighbor repulsion becomes V/t = 13, large enough to induce
nontrivial charge order.

III. CHARGE ORDER

Having established that the long-range repulsion is quite
strong, we next discuss the development of charge order. In
the absence of a lattice potential, a dilute two-dimensional
electron gas will form a triangular Wigner crystal [55,56].
Whenever an underlying triangular lattice is present, the trian-
gular Wigner crystal can be formed only at fractional fillings
given by n = 1

m2
1+m1m2+m2

2
with mi integers. The largest frac-

tions are n = 1/3, 1/4, 1/7, and 1/9; one can also have a
generalized Wigner crystal of holes at fillings n = 2/3, 3/4,
etc. At filling n = 1/2 the long-range repulsion favors stripe
order [57]. At all of these fractional fillings a correlated insu-
lator state has been observed in WSe2/WS2 [24–27].

Because the onsite repulsion U is large, to leading order we
can project out double occupancy. As a first step to identify
various forms of charge order across the phase diagram, we
use self-consistent Hartree theory for long-range interacting
spinless electrons, with screened Coulomb interaction V (r) =
V0
r e(r−1)/d where r is measured in moiré lattice constants, d =

20 nm the screening length, and we choose V0 = 30 meV (Ap-
pendix B). The zero-temperature free energy of various charge
ordering patterns is shown in Fig. 2, left. Here we compare
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FIG. 2. Results of the self-consistent Hartree calculation for charge ordering with V0 = 30 meV: net free energy gain for various charge
patterns, including the stripe phase, and generalized Wigner crystal phases at n = 1/3, 1/4, and 1/7. On large 12 × 12 unit cells we also
considered the possibility of amorphous charge states, which have the lowest free energy in some ranges of filling.

the free energy of five different possible charge patterns as a
function of filling n. The most robust of these configurations is
the Wigner-Mott crystal with three sublattice sites, yielding a
triangular Wigner crystal at n = 1/3 and a honeycomb crystal
at n = 2/3. Similarly structures appear at n = 1/4, 1/7, and
other fractional fillings. In addition, we confirm the presence
of the n = 1/2 stripe phase [27,57].

Throughout the entire range of filling 0 < n < 1, we fur-
ther compare these Wigner crystal states with aperiodic frozen
charge patterns, also known as amorphous states. For this
we used a large 12×12 unit cell, equivalent to 144 moiré
unit cells, and found a local minimum of the Hartree free
energy corresponding to an inhomogeneous charge distribu-
tion. While most electron crystal states are stable upon small
doping, there appears between each rational filling a regime
where amorphous patterns are the most stable ones. If the
system is cooled fast enough and with infinitesimal disorder,
however, crystalline orders or macroscopic phase separation
can be avoided at all fillings. The electrons then freeze into an
amorphous solid, behavior that has been observed in θ -organic
materials [58–60], consistent with recent theory [57]. The
emergence of similar metastable amorphous structures has
also been reported in various TMD layered materials featuring
Wigner crystals and glasses made of “star of David” polarons
[61,62].

The results presented in Fig. 2 were obtained for the
interaction strength V/W ≈ 2; nearest-neighbor repulsion is
about twice the noninteracting bandwidth. This ratio is highly
dependent on the dielectric environment and the strength
of the moiré potential. With the parameters used here we
find that the n = 1/3 Wigner crystal is stable up to Tc ≈
12 meV, which is a factor 2–3 higher than observed in
experiments [24,26]. It is therefore likely that in real mate-
rials V/t ≈ 5, which would correspond to U/t ≈ 15. Since
mean-field theory systematically overestimates the tendency

to order, these approximations for U/t and V/t are lower
bounds.

IV. DOPED WIGNER-MOTT INSULATORS

Having established various forms of charge order present,
we now investigate their impact on Mott-Hubbard correla-
tions, within a setup based on DMFT [63,64]; a detailed
description of our calculation methods can be found in
Appendix C. Representative results for the resistivity as a
function of temperature are shown in Fig. 3, and the corre-
sponding spectral functions are shown in Fig. 4.

Our starting point is the Wigner-Mott insulator, such as the
state we find at n = 1/3 filling. In our system, the on-site
repulsion U is generally larger than the gap induced by the
charge order, so the resulting Wigner-Mott state can therefore
be recognized as a charge-transfer insulator [13,65,66]. Here
the electronic states below the Fermi level are Mott-localized
on the occupied sublattice, whereas the states above the Fermi
level reside on the unoccupied honeycomb-like sublattice.
This is illustrated in Fig. 4(b), where for n = 1/3 we indicate
the charge transfer (CT) gap, and the upper and lower Hubbard
band (UHB/LHB).

Exactly at fractional filling, the strong onsite repulsion
leads to three distinct transport regimes, shown in Fig. 3(b).
At high temperatures above the crystalline ordering transition
T > Tc we find a typical ρ = A + BT linear resistivity bad
metal regime with resistivity comparable or even above the
Mott-Ioffe-Regel limit. Just below the charge-ordering transi-
tion (T � Tc) the resistivity jumps up and the system becomes
insulating. When the interactions are weaker, in our model
for U/t = 12.8, we find an intermediate situation where the
charge order can form but the onsite U is not strong enough
to open a Mott gap, leading to low T Fermi-liquid behavior
with well-defined quasiparticles. Note that this is in contrast
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(a)

(c) (d)

(b)

FIG. 3. DC resistivity in the vicinity of the n = 1/3 moiré-Wigner-Mott insulator (a–c) and for amorphous states close to n = 1/2 (d).
Exactly at n = 1/3 (a) we find a strange metal phase at high temperatures, followed by activated behavior after charge order sets in. For weak
interactions, the Hubbard-Mott gap closes, and a Fermi liquid forms at low temperature. Heavy Fermi liquid behavior remains the dominant
low-temperature behavior upon electron doping (c); for hole doping (a), Fermi liquid condensation occurs only at extremely low temperatures
(not shown). In contrast, the amorphous state (d, shown for U/t = 38.3, at n = 1/2) is characterized by a weakly temperature-dependent
resistivity turning from insulating to bad metallic behavior. The dashed line indicates the Mott-Ioffe-Regel limit.

to Ref. [37], where it is assumed that the Mott and the charge
order transition always happen simultaneously. In our picture,
as in previous work on Wigner-Mott systems [21–23], the
weakly first-order Mott-like metal-insulator transition occurs
within the charge-order state. Our scenario is actually realized
in many real materials [61,62] featuring Wigner crystalliza-
tion in lattice systems, which can lead to either insulating or
metallic charge-ordered ground states.

Let us now turn our attention to doping the Wigner-Mott
state. For weaker interactions (U/t = 12.8), doping a metallic
charge density wave retains the conventional Fermi liquid be-
havior. However, when the onsite Mott correlations are large
we see different behavior, depending on whether we dope with
holes or electrons.

For electron-doping [n = 1/3 + δ with δ > 0, Figs. 3(c)
and 4(c)], the dopants appear in an otherwise empty hon-
eycomb sublattice. As a result, the dopants are moderately
interacting and form pinball liquid [46,47] with a renormal-
ized Fermi liquid regime at low temperature. We find that the
associated Fermi liquid coherence temperature vanishes lin-
early as we approach Wigner-Mott insulator, TF ∼ |n − nc|.
This is a clear prediction of our theory that can be tested
in experiment, similar to recent measurements of bandwidth-
controlled Mott criticality [19,67].

This Fermi liquid regime evolves at intermediate tempera-
ture into an incoherent high-resistivity phase. Here the shifting
of the chemical potential into the charge ordering gap com-
petes with the loss of quasiparticle coherence, resulting in
nonmonotonic behavior of the resistivity. Finally, as is the
case at fractional filling, when charge order is lost the high
temperatures, linear-T bad metal behavior is recovered.

Upon hole doping [n = 1/3 − δ, Figs. 3(a) and 4(a)], the
dopants are populating the sites of the triangular Wigner-Mott
lattice. While at extremely low temperatures a FL regime does
appear (not shown), for most temperatures the Fermi level lies
within the incoherent lower Hubbard band, leading to bad
metal behavior. As the temperature increases, the chemical
potential shifts into the charge-transfer gap leading to alternat-
ing weakly insulating and weakly metallic states. More details
of the transport behavior within the entire regime of dopings
and temperatures around the Wigner-Mott regime are given in
Appendix D.

V. ELECTRON SLUSH

As shown in Fig. 2, however, for the largest part of the
phase diagram, at most incommensurate fillings, the system
is likely to freeze in an amorphous charge pattern. Because
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(a)

(c) (d)

(b)

FIG. 4. Density of states (DOS) as a function of energy for various doping and temperature. We show here data only for U/t = 19.1.
At n = 1/3 (b), the spectrum is clearly split into a lower Hubbard band (LHB), a middle band consisting of the states on the unoccupied
honeycomb sublattice, and the upper Hubbard band (UHB). The gap at the Fermi level is therefore a charge-transfer (CT) gap. Consequently,
electron doping (c) leads to the formation of a quasiparticle peak at the Fermi level, whereas hole doping (a) puts the Fermi level in the
incoherent lower Hubbard band. Bad metal behavior, as shown in Fig. 3, is due to a shifting chemical potential, which can be clearly seen in
the left figure. Upon increasing temperature the charge-transfer gap closes, and a strange metal phase appears. The DOS for the amorphous
state (d) has similar features (LHB, CT gap, UHB) but its features are smeared out due to the inhomogeneous charge patterns, leading to a soft
gap in the spectrum and consequently bad metal behavior (Fig. 3).

any amorphous charge order results in a random distribution
of internal electrostatic potentials, within our DMFT setup
the rest of the calculation reduces to solving an appropriate
Hubbard-like (i.e., charge-transfer) model supplemented with
random site energies, which we tackle within the well-known
CPA-DMFT approach [68] (see Appendixes C and E). In
the following we focus on the amorphous states at n = 1/2
and for U/t = 19.1, shown in Figs. 3(d) and 4(d); within
our setup, the qualitative behavior at other fillings and other
(comparable) values of U/t is essentially the same. Note that
n = 1/2 is a fractional and not an incommensurate filling. We
performed our DMFT calculations at this filling for conve-
nience; the properties of the electron slush are the same at
fractional and incommensurate fillings.

Even though the electrons clearly develop local frozen
charge order, this does not lead to the opening of a hard gap
in the spectrum. This situation reminds us of the formation of
a soft “Coulomb” gap in electron glasses [69–72]. However,
here the screening of the long-range Coulomb interaction (due
to the presence of gate on the TMD heterobilayer) causes a
further ”filling” of the soft gap. As a result, despite the frozen
charge order, there is no gap towards transport: the amorphous
ordered state can still conduct, although it does so very poorly.
Our DMFT results indicate at low temperatures the formation
of weakly developed quasiparticles around the Fermi level,
with spectral features reflecting the amorphous charge back-
ground in question. This combination of frozen charge order

with motion of electrons reminds us of the popular “slush”
drinks which are liquids (conducting) yet frozen. We therefore
propose to call this novel phase an electron slush.

Note that the amorphous charge order of the electron slush
can be characterized by the presence of short-range stripe
correlations, which has also been observed in Monte Carlo
simulations [26,43,57]. Therefore, scanning tunneling mi-
croscopy (STM) [28,29] topography should reveal the frozen
charge configurations. A measurement of the local density of
states (LDOS), however, leads to an interesting local realiza-
tion of the soft gap feature. As shown in Fig. 1, the LDOS
at the Fermi level is dominated by a few localized peaks at
large distances, whereas at energies away from the Fermi level
the amorphous structure is more spread out. This stark dif-
ference between topography and LDOS is another predicted
feature of the electron slush phase, which awaits experimental
verification.

VI. OUTLOOK

Summarizing, we show that, for most fillings, an amor-
phous charge ordered metallic state—the electron slush—
appears in strongly correlated TMD heterobilayers. Our
results suggest performing transport and STM experiments on
TMD heterobilayers to study the interplay between doping a
Wigner-Mott insulator and amorphous charge order.
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Note that in this paper we have ignored the role of spin-
orbit coupling (SOC) in the moiré flat bands [17]. Also, in this
work we did not include the role of quenched disorder. It is
known that TMD mono- and bilayers have significantly more
disorder than other van der Waals materials such as graphene,
notably in the form of vacancies [73]. Since disorder strongly
affects the zero-temperature limit of the resistivity, our trans-
port results apply only at intermediate to high temperature.
On the other hand, disorder is likely to further stabilize the
electron slush phase since it promotes amorphous charge
configurations. Our work sheds light on the interesting but
mysterious amorphous phase, which could very well play a
central role in strongly correlated TMD heterobilayers at low
band filling. Here we took the first steps to theoretically de-
scribe the likely features of this exotic regime, although more
accurate treatments of the interplay between strong correla-
tions and induced/effective disorder effects may be necessary,
especially at the lowest temperatures. This research direction
remains a challenge for future work.
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APPENDIX A: MODEL PARAMETERS

A particularly insightful way to understand the flat bands in
heterobilayers is the continuum model proposed by Wu et al.
[12]. Here we apply their method to WS2/WSe2 heterobilay-
ers.

In a single TMD monolayer the top of the valence band has
a parabolic dispersion around the K and K′ point. Strong spin-
orbit coupling causes a spin-valley splitting, so that the states
at K/K′ are only singly degenerate and carry opposite spin.
The band structure in a single valley can thus be approximated
as

ε(q) = − h̄2|q|2
2m∗ , (A1)

where q = k − K/K′ and the effective mass m∗ = 0.36m0 for
WSe2.

Let us now look at a bilayer system. A monolayer WSe2

has a lattice constant of approximately a1 = 3.325 Å, whereas
monolayer WS2 has a2 = 3.191 Å. Therefore even when the
two layers are aligned, a moiré pattern emerges due to the
lattice mismatch. The length scale of this pattern is given by

1

aM
=

√
1

a2
1

+ 1

a2
2

− 2 cos θ

a1a2
, (A2)

where θ is a twist angle. When the twist angle is small, and
writing a2 ≡ a1(1 − δ), we obtain

aM = a1/
√

δ2 + θ2. (A3)

An aligned (θ = 0) WS2/WSe2 heterobilayer therefore has a
moiré length of approximately aM = 7.9 nm. Note that only
heterobilayers where the chalcogenides are different in the
two layers lead to a Moiré pattern when aligned. Furthermore,
the Moiré length is maximal for our combination of S and
Se: WS2/WTe2 has aM = 3.2 nm, whereas WSe2/WTe2 has
aM = 5.0 nm. This makes the platform WS2/WSe2 likely the
most correlated among all aligned TMD heterobilayers.

Electronically, monolayer WS2 has a larger bandgap than
monolayer WSe2, and the bilayer will have a type II band
alignment of the two layers. This means that the top of the
valence band of the bilayer consists of electronic states con-
fined to the WSe2 layer only. Note that a perpendicular electric
field can change the band alignment of the two layers, thus
bringing the WS2 valence band at the same energy as the
WSe2 valence band, as was done recently in MoTe2/WSe2

bilayers [20]. Here, however, we study the WS2/WSe2 bilayer
in the absence of an electric field. In that case, the electronic
states in the WSe2 feel a position-dependent Moiré potential
	(r) due to the presence of the WS2 layer.

The Moiré potential can be approximated using plane
waves

	(r) =
∑
GM

i

Vie
iGM

i r, (A4)

where GM
i with i = 1, . . . , 6 are the six reciprocal Moiré

vectors. Without loss of generality, we set GM
1 = 4π

3aM
(1, 0)

and the other five are just sixfold rotations of the first recipro-
cal vector. Because 	(r) must be real, and it has threefold
rotational symmetry, we have V1 = V2 = V5 and V1 = V ∗

4
[12,50,51], which means we can parametrize the Moiré po-
tential using only two parameters (V, ψ ) such that V1 = Veiψ .

The actual magnitude of the Moiré potential can be esti-
mated using ab initio density functional theory. For this we
use Quantum Espresso [74,75] with a Coulomb cutoff [76] to
reproduce the two-dimensional nature of the heterostructures.
We used a lattice structure where the interlayer distance, as
measured by the z distance between the W atoms, is dW −W =
6.6 Å, and the z distance between the W and chalcogenides is
1.65 Å. The idea, following Refs. [12,50,51], is to calculate
the energy of the top of the valence band in a small unit
cell WS2/WSe2 bilayer where the top layer is shifted with a
displacement d. In the full Moiré unit cell, the Moiré potential
follows the same energy dependence as the top of the valence
band in the small unit cell. For aligned WS2/WSe2 bilayers
we obtained (V, ψ ) = (7.7 meV,−106◦); see Fig. 5(a). This
corresponds to a Moiré potential peaked where the Se atoms
are above the W atoms in the other layer, consistent with scan-
ning tunneling microscopy (STM) measurements [15]. Note,
however, that the accuracy of the magnitude V is debatable.
Recently, STM measurements revealed a Moiré potential in
excess of 100 meV [52], whereas theoretical work suggests a
complete absence of a Moiré potential [16]. Additionally, the
magnitude is very sensitive to the precise interlayer distance
(and can thus be tuned using pressure as was done in twisted
bilayer graphene [53]). Therefore, throughout this work, one
should bear in mind that the provided values for the electronic
bandwidth can be significantly different in real systems.
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FIG. 5. (a) Moiré potential in aligned WS2/WSe2 heterobilayers, based on the continuum model from Ref. [12] using our ab initio density
functional calculations. There is a clear maximum at the W/Se2 stacking in the Moiré unit cell. (b) The resulting band structure contains a flat
band with bandwidth W = 15.8 meV separated from the other bands. (c) Wannier orbital corresponding to the flat band is approximately a
Gaussian centered at the maximum of the Moiré potential.

The potential (A4) causes backfolding of the band struc-
ture Eq. (A1) into the mini-Brillouin zone. At the edge of
the mini-Brillouin zone the potential opens up a gap, lead-
ing to the formation of flat bands. The band structure of
aligned WS2/WSe2 is shown in Fig. 5(b). Since we are
dealing with a single band (per valley), a straightforward
Fourier transform provides us with the tight-binding param-
eters. The nearest-neighbor hopping is t = 1.9 meV, and
the next-nearest-neighbor hopping t ′ = −0.4 meV. Longer-
ranged hopping parameters fall off exponentially and can be
safely ignored.

Similarly, Wannierization [54] using a projection onto a
Gaussian wave packet ansatz yields the Wannier orbitals,
which, in this case, reduces to approximately Gaussian around
the W/Se stacking center with width σ = 0.125aM . This sim-
ple shape of the Wannier orbital allows us to directly extract
the onsite repulsion U and longer-ranged Coulomb interac-
tion parameters V . For this, we use the standard screened
Coulomb potential Vsc(r) = e2

4πε
( 1

r − 1√
r2+d2 ) from having a

screening layer at distance d from the TMD heterobilayer.
With a screening length of d = 20 nm, this provides an onsite
repulsion of εU = 1.7 eV and a nearest-neighbor repulsion of
εV = 0.6 eV. Even with quite large values for the dielectric
constant the onsite repulsion is stronger than the bandwidth
and, indeed, even V � t . Because both the bandwidth (via the
Moiré potential and interlayer coupling) and the interaction
strength (via engineering of the dielectric environment) are
tunable, in the remainder of this paper we vary the ratio U/t .
Our choices are U/t = 38.3, 19.1, and 12.8, corresponding
roughly to dielectric constants of ε = 23.4, 46.8, and 70.2, re-
spectively. For the strongest choice of U/t , the corresponding
nearest-neighbor repulsion becomes V/t = 13—large enough
to induce nontrivial charge order.

Note that the size of the Wannier orbital changes upon
changing the moiré length. In the literature, both σ ∼ aM[77]
and σ ∼ √

aM[12] have been reported. The latter limit is valid
in the limit where the moiré potential V is larger than the ki-
netic energy associated with the reciprocal moiré lattice vector
h̄2G2

2m∗ , whereas the linear dependence is valid when V is small.

For untwisted WS2/WSe2, we find h̄2G2

2m∗ ≈ 87 meV, whereas
V = 7.7 meV, clearly placing WS2/WSe2 in the regime where

the Wannier orbital size is proportional to the moiré length,
σ ∝ aM .

APPENDIX B: SPINLESS HARTREE METHODS

The Hartree self-energy is defined as 
H (r) = ∑
r′ V (r −

r′)〈nr〉 where the Coulomb interaction is approximated as
V (r) = V0

r e(r−1)/d where r is measured in Moiré lattice con-
stants, d = 20 nm the screening length and we choose V0 =
30 meV. Including the Hartree self-energy, the total free en-
ergy is given by

F = −1

2

∑
i j

〈ni〉V (ri − r j )〈n j〉

− T
∑

k

Tr log[1 + e−(ĥ(k)+
̂H )/T ], (B1)

which is iteratively minimized, starting from a random initial
configuration at low T = 0.1 meV, on various large supercells
containing multiple moiré unit cells.

To obtain the free energy of commensurate charge ordering
patterns (Fig. 2), we take small supercells containing two,
three, four, or seven moiré unit cells. For these supercells there
is a unique configuration that yields the lowest free energy.
For example, for the curve corresponding to “1/3” order, we
calculated the Hartree solution where the lattice symmetry is
broken to a larger supercell containing three moiré unit cells.
This means the charge density can be different on the three
moiré unit cells contained in the supercell; let us call them
n1, n2, and n3. The average filling is n = (n1 + n2 + n3)/3. At
exactly n = 1/3 filling, the solution exists where n1 = 1 and
n2 = n3 = 0, which is shown in the side panel of Fig. 2. At
other fillings, the “1/3 order” curve corresponds to the lowest
free energy possible given any choice of n1, n2, and n3.

To obtain the free energies at incommensurate charge or-
derings, we considered supercells containing L × L moiré
unit cells with L = 8, 12, 24, and 36. For each system size
we started with a random initial configuration and found a
(meta)stable mean-field solution at zero T . After that, we
increased temperature starting in each configuration to find
the evolution of the charge order at finite temperature.
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FIG. 6. The Hartree code allows for many different amorphous charge configurations. We show 10 different such configurations for V0 =
30 meV, at T = 0.1 meV, n = 1/2, and L = 12.

There are exponentially many different metastable config-
urations that can be found in this way. An indication of this
is shown in Fig. 6 for L = 12. The onsite Hartree energies
act as input for the subsequent DMFT calculation, for which
we calculated 100 metastable amorphous configurations at
L = 12.

APPENDIX C: DYNAMICAL MEAN-FIELD
THEORY METHODS

Following the previous Appendix, we know that the flat
valence band in TMD moiré materials can be treated as an
extended Hubbard model on a triangular lattice

H = −
∑
i j,σ

ti jc
†
i,σ c j,σ +

∑
i

Uni,↑ni,↓ +
∑

i, j �=i,σ1,σ2

Vi jni,σ1 n j,σ2 ,

(C1)

where c†
i,σ , ci,σ are the fermionic creation and annihilation

operators, i, j site labels to be summed over, niσ ≡ c†
iσ ciσ the

density operator, ti j the hopping amplitude, Vi j the intersite
long-range Coulomb interaction strength, and U the onsite
Coulomb interaction strength. The Hamiltonian (C1) differs
from the single-band Hubbard model by considering also in-
tersite correlations, which can be reduced to a local form using
Hartree theory by replacing the density operator n j,σ with the
spinless expectation value 〈nj〉

∑
i, j �=i,σ1,σ2

Vi jni,σ1 n j,σ2 →
∑
i,σ1

ni,σ1

⎛
⎝ ∑

j �=i,σ2

Vi j〈n j〉
⎞
⎠ =

∑
i,σ

ni,σ εi,

(C2)

where the effective site energy εi is written as

εi ≡
∑

j �=i,σ2

Vi j〈n j〉. (C3)

By using the Hartree approximation (C2), all interactions in
the extended Hubbard model (C1) are now local:

Heff = −
∑
i j,σ

ti jc
†
i,σ c j,σ +

∑
i,σ

ni,σ εi +
∑

i

Uni,↑ni,↓. (C4)

In the framework of single-site DMFT, Eq. (C4) is solved
first by identifying the corresponding Anderson impurity
problems then subject to DMFT self-consistency conditions
on the bath 	(ω). Below we will outline the general single-
site DMFT procedure to solve Eq. (C4) for all commensurate
fillings.

Except at n = 1, the corresponding Anderson impurity
problem consists of m > 1 individual sites in the unit cell,
depending on the Wigner crystal configuration in Fig. 2, and
hence we have

	i=1,2,...,m(ω) → AIM solver → 
i=1,2,...,m(ω), (C5)

which is then subject to m DMFT self-consistency equations

�1(ω) = ω + μ − ε1 − 
1 − G−1
11 (ω),

· · · · · ·
�m(ω) = ω + μ − εm − 
m − G−1

mm(ω). (C6)

Specifically, in Eq. (C5), we use real frequency Iterative Per-
turbation Theory (IPT) for arbitrary filling as the Anderson
Impurity Solver (AIM solver) [78]. The term Gii(ω) is com-
puted from the local Green’s function G(ω)

Gii(ω) =
[

1

Nk

∑
k

G(ω, k)

]
ii

, (C7)

where

G(ω, k) = 1

(ω + μ + iη)I − E(k) − �(ω)
, (C8)

η is the broading term, I is the identity matrix, E(k) is the
dispersion matrix, and �(ω) is the diagonal self-energy matrix

�(ω) :=

⎛
⎜⎝
1 · · · 0

...
. . .

...

0 · · · 
m

⎞
⎟⎠. (C9)

A solution is obtained iteratively by (1) starting from initial
ansatzes 	i(ω), (2) solving the corresponding Anderson im-
purity problems to obtain 
i, and (3) using self-consistency
condition (C6) to calculate 	i(ω) for the next iteration.
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FIG. 7. Histogram for amorphous state at T =
1.2 K, 35.9 K, 165 K.

Specifically for the triangular lattice at 1/3 filling in this
paper, the exact form of the band structure is the following:

E(k, εA, εB) =
⎡
⎣εA 0 0

0 εA 0
0 0 εB

⎤
⎦ + ε(k)

=
⎡
⎣ εA E12 E13

E∗
12 εA E23

E∗
13 E∗

23 εB

⎤
⎦, (C10)

where

E12 = −t
(
eikδ

(1)
ab + eikδ

(2)
ab + eikδ

(3)
ab

)
,

E13 = −t
(
eikδ(1)

ac + eikδ(2)
ac + eikδ(3)

ac
)
,

E23 = −t
(
eikδ

(1)
bc + eikδ

(2)
bc + eikδ

(3)
bc

)
, (C11)

and

δ(1)
ac = (a, 0), δ(2)

ac =
(

−a

2
,

√
3a

2

)
,

δ(3)
ac =

(
−a

2
,−

√
3a

2

)
, δ

(1)
ab = δ

(1)
bc = (−a, 0),

δ
(2)
ab = δ

(2)
bc =

(
a

2
,

√
3a

2

)
, δ

(3)
ab = δ

(3)
bc =

(
a

2
,−

√
3a

2

)
,

(C12)

and a is the lattice spacing.
In the case of an amorphous moire lattice, there is no

periodicity; hence the system cannot be reduced to repeating
unit cells (for n = 1/2 see Fig. 2). Calculations indicate that
the Hartree site energy is essentially randomly distributed
and follows a certain probability distribution P(ε), shown in
Fig. 7. A possible mean-field description of such a system is
the coherent potential approximation (CPA). In CPA, spatial
variation is disregarded, such that the impurity within the
DMFT framework is replaced by the average impurity, de-
scribed by the average Green’s function Ḡ(ω)

Ḡ(ω) =
∫

dεP(ε)G(ε, ω)

=
∫

dε
P(ε)

ω + μ − ε − 	(ω) − 
(ω, ε) + iη
, (C13)

where − 1
π

ImG(ε, ω) gives the LDOS depending on the local
Hartree site energy. Equation (C13) leads to the effective self-
energy


̄(ω) = ω + μ − ε̄ − 	(ω) − Ḡ−1(ω) + iη. (C14)

The DMFT self-consistency equation is closed by

	(ω) = ω + μ − ε̄ − 
̄(ω) − G−1
loc (ω). (C15)

where Gloc(ω) = 1
Nk

∑
k[ω + μ − ε̄ − 
̄(ω) − Ek + iη]−1

and Ek = −2t[cos(kx ) + 2cos(
√

3/2ky)cos(1/2ky)].
To sum up, the DMFT+CPA recipe for amorphous system

is as follows:
(1) Input hybridization function 	(ω)
(2) Solve 
(ω, ε) for each Hartree site energy ε, using

AIM impurity solver [Eq. (C5)]
(3) Compute average Green’s function Ḡ(ω) [Eq. (C13)]
(4) Compute effective self-energy 
̄(ω) [Eq. (C14)]
(5) Find 	(ω) for the next iteration and repeat from 1 till

convergence [Eq. (C15)]
(6) Adjust chemical potential μ so that n = 1/2 with 10−3

accuracy
To get a good statistic, in step 2, we need to sample at

least 100 Hartree site energies (solve for 100 impurity prob-
lems). Each DMFT loop takes 30 iterations on average, and
on top of the DMFT loop, in step 6, the chemical potential
μ needs to be adjusted 5–10 times to keep n fixed. So, to
sum up, for one histogram P(ε), we need to solve roughly
100 × 30 × 5 = 15 000 impurity problems.

To obtain the LDOS mapping of large area shown in Fig. 1
and Fig. 8, one first obtains how exactly the electrons freeze
in an amorphous charge ordered pattern, in other words, the
exact location (xi, yi ) of each Hartree site energy εi, via mini-
mizing the total free energy on multiple Moiré unit cells. Then
the LDOS for the states at energy ω is

LDOS(ω)=
∑

i

− 1

π
�G(εi, ω)exp

[
− (x − xi )2

2δ2
x

− (y − yi )2

2δ2
y

]
,

(C16)
where δ2

x , δ
2
y are chosen to be 0.12aM , so that the width of the

Gaussians is approximately the width of the Wannier func-
tions, which is 0.125aM .

APPENDIX D: PHASE DIAGRAM AND TRANSPORT
PROPERTIES AROUND n = 1/3

For transport calculations, the DC conductivity is calcu-
lated via the Kubo formula [79]:

σμν = 2e2

π�

∫
dω[− f ′(ω)]

×
∑

k

Tr

{
∂E(k)

∂kμ

�G(ω, k)
∂E(k)

∂kν

ImG(ω, k)

}

(D1)
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(a) (b) (c)

(d) (e) (f)

5a5a

FIG. 8. Spatial variations in the LDOS over an area of 36 × 36 unit cells, for the states below (a and b), at (c), and above (d–f) the Fermi
level. The spectroscopic mapping use the same color scale for all panels. T = 1.2K, n = 1/2, U/t = 38.3.

with

vμ(k) = ∂E(k)

∂kμ

=

⎡
⎢⎣ 0 −it

∑
n

(
δ

(n)
ab

)
μ

eikδ
(n)
ab −it

∑
n

(
δ

(n)
ab

)
μ

eikδ
(n)
ac

it
∑

n

(
δ

(n)
ab

)
μ

e−ikδ
(n)
ab 0 −it

∑
n

(
δ

(n)
ab

)
μ

eikδ
(n)
bc

it
∑

n

(
δ

(n)
ab

)
μ

e−ikδ
(n)
ac it

∑
n

(
δ

(n)
ab

)
μ

e−ikδ
(n)
bc 0

⎤
⎥⎦.

(D2)

We focus on only the xx component of the conductivity. For
the amorphous state, E(k) is replaced by ε(k).

In our results (Fig. 9), we find in the homogeneous case a
Wigner-Mott insulating state around the commensurate filling
at low temperature, while at high temperature charge order is
lost and the system becomes that of a bad metal with resis-
tivity exceeding that of the Mott-Ioffe-Regel limit. We also
investigate the effects of doping away from the commensurate
filling, which results in a Fermi liquid at low temperatures and
bad metal at higher temperatures. Exactly at n = 1/3 filling,
the system becomes insulating due to a combination of charge
order and Mott localization leading to a large charge-transfer
gap. At temperatures where the charge order vanishes, linear
resistivity is found, indicating bad metal behavior. Electron
or hole doping yields different phases due to the asymmetric
nature of the charge-transfer gap. Upon electron doping, the
low-temperature phase is a heavy Fermi liquid with TFL van-
ishing linearly with doping. On the hole-doped side, the Fermi
liquid is pushed to extremely low temperatures. Figure 10
shows the DC resistivity curves at n = 1/3 for various U
across the transition. The MIT here has an essentially contin-
uous character, similarly as for the Mott f = 1 state. We also

extract the activation gap from the Arrhenius plot. We can see
the activation gap smoothly goes down, but it extrapolates to
zero at lower U/t than where the quasiparticles arise [red star
in Fig. 10(c)], since it is a weakly first-order transition.

APPENDIX E: STABILITY OF THE ELECTRON SLUSH

In this Appendix we discuss whether the electron slush is
a stable phase if we would include higher order corrections to
our approximation scheme for the electron self-energy.

bad metal

bad metal

bad metal

in
su

la
to

r

Fermi Liquid

FIG. 9. Phase diagram around the n = 1/3 moiré Mott-Wigner
frozen state in twisted TMDs.
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(a) (b)

(c)

FIG. 10. (a) DC resistivity curves for various U at n = 1/3;
(b) the Arrhenius plot for the insulating curves in (a), dashed lines
are obtained from linear fitting; (c) the activation gap extracted from
(b), the red star ping points where metallic quasiparticles arise.

Note that in the classical limit of very small t , the existence
of amorphous metastable states is well established. This has
been discussed in, for example, Ref. [72]. Such amorphous
metastable states on a triangular lattice with Coulomb inter-
actions have even been observed in organic compounds; see
Refs. [59,60].

This charge order is stable with respect to the introduction
of a quantum hopping t . As such, introducing higher order
corrections to the electron self-energy will inevitably lead to
a reduction of the charge order but not to a complete sup-
pression. Since charge order has been very clearly observed
in WS2/WSe2 (see Refs. [24–32]), we are certainly in a range
where nonlocal corrections to the electron self-energy affect
quantitatively but not qualitatively the charge order.

What is left is the interplay between the developed charge
order and the local onsite correlations as captured by DMFT.
The question is whether the Hartree static mean-field theory
for the charges is affected by the nonstatic local self-energy.

To check this, we calculated the occupation number n
versus different Hartree site energies ε for the amorphous

FIG. 11. Occupation number of a collection of sites in the elec-
tron slush phase at T = 1.2 K, based on either the Hartree self-energy
only (in blue) or inclusion of the local self-energy calculated by
DMFT (in orange).

state for T = 1.2 K (see Fig. 11) and compared them with
the occupation numbers after taking into account the DMFT
solutions. The Hartree site energies were extracted from the
distribution P(ε) as shown in Fig. 7. Note that the average
occupation number equals n = ∫

dε P(ε) n(ε) is 1/4 in the
spinful model.

In Fig. 11 we see that while the DMFT rounds the charge
occupations in a ∼10 meV window, it does not qualita-
tively change the unequal site occupations characteristic of
amorphous charge order. The randomness of nHartree mainly
comes from the randomness of a specific bath chosen in
each calculation. This is consistent with earlier works that
fully self-consistently contained both onsite U and nearest-
neighbor V on a square lattice [21]: the inclusion of large U
does not change the charge order transition.

Nevertheless, more quantitative accuracy is expected when
one uses a technique that also includes the nonlocal dynamic
self-energies, such as EDMFT.
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Dobrosavljević, Glassy dynamics in geometrically frustrated
Coulomb liquids without disorder, Phys. Rev. Lett. 115, 025701
(2015).

[58] F. Kagawa and H. Oike, Quenching of charge and spin de-
grees of freedom in condensed matter, Adv. Mater. 29, 1601979
(2017).

[59] T. Sato, F. Kagawa, K. Kobayashi, A. Ueda, H. Mori, K.
Miyagawa, K. Kanoda, R. Kumai, Y. Murakami, and Y. Tokura,
Systematic variations in the charge-glass-forming ability of ge-
ometrically frustrated θ -(BEDT-TTF)2X organic conductors, J.
Phys. Soc. Jpn. 83, 083602 (2014).

[60] F. Kagawa, T. Sato, K. Miyagawa, K. Kanoda, Y. Tokura, K.
Kobayashi, R. Kumai, and Y. Murakami, Charge-cluster glass
in an organic conductor, Nat. Phys. 9, 419 (2013).

[61] Y. A. Gerasimenko, P. Karpov, I. Vaskivskyi, S. Brazovskii, and
D. Mihailovic, Intertwined chiral charge orders and topological
stabilization of the light-induced state of a prototypical transi-
tion metal dichalcogenide, npj Quantum Mater. 4, 32 (2019).

[62] Y. A. Gerasimenko, I. Vaskivskyi, M. Litskevich, J. Ravnik, J.
Vodeb, M. Diego, V. Kabanov, and D. Mihailovic, Quantum

jamming transition to a correlated electron glass in 1T-TaS2,
Nat. Mater. 18, 1078 (2019).

[63] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[64] J. Zang, J. Wang, J. Cano, A. Georges, and A. J. Millis, Dy-
namical mean-field theory of moiré bilayer transition metal
dichalcogenides: Phase diagram, resistivity, and quantum crit-
icality, Phys. Rev. X 12, 021064 (2022).

[65] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Band gaps and
electronic structure of transition-metal compounds, Phys. Rev.
Lett. 55, 418 (1985).

[66] L. Rademaker and P. Mellado, Charge-transfer insulation
in twisted bilayer graphene, Phys. Rev. B 98, 235158
(2018).

[67] A. Ghiotto, E.-M. Shih, G. S. S. G. Pereira, D. A. Rhodes,
B. Kim, J. Zang, A. J. Millis, K. Watanabe, T. Taniguchi,
J. C. Hone et al., Quantum criticality in twisted tran-
sition metal dichalcogenides, Nature (London) 597, 345
(2021).

[68] M. C. O. Aguiar, V. Dobrosavljević, E. Abrahams, and G.
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