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The concept of local symmetry dynamics has recently been used to demonstrate the evolution of discrete
symmetries in one-dimensional chains leading to emergent periodicity. Here we go one step further and show
that the unboundedness of this dynamics can lead to chains that consist of subunits of ever-increasing lengths
which results in a scaled chain. Mapping this scaled chain onto a corresponding tight-binding Hamiltonian we
investigate its spectral and transmission properties. Varying the off-diagonal coupling the eigenvalue spectrum
shows different branches with characteristic transitions and peaks in the corresponding density of states. The
fluctuations of the energy levels exhibit a hierarchy of minigaps each one accompanied by a characteristic
sequence of energy spacings. We develop a local resonator model to describe the spectral properties and gain
a deeper understanding of it in the weak-to-intermediate coupling regime. Eigenstate maps together with the
inverse participation ratio are used to unravel the characteristic (de)localization properties of the scaled chain
with varying coupling strength. Finally, we probe the energy-dependent transmission profile of the scaled chain.
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I. INTRODUCTION

The structure, design, and applications of materials that
follow a certain order principle represents a central theme
in modern quantum physics [1–3]. Symmetries play in this
context a pivotal role since they provide an important charac-
teristic for the classification and description of the systems
under investigation. A prime example are periodic crystals
based on the existence of a discrete translation symmetry
that provides us with the Bloch theorem and the celebrated
concept of band structure analysis [4,5] with vast applica-
tions in modern material science. Quasicrystals and aperiodic
structures [6–9], however, fall into the gap between perfectly
periodic crystals and disordered structures and have been
intensely explored in the past decades [10–14]. Quasiperi-
odic order adds new categories to the spectral classification
chart, such as singular continuous energy spectra and lat-
tice Fourier transforms, and lead to novel physical properties
emerging from the fractal nature of their energy spectra. Al-
ready simple quasiperiodic one-dimensional setups, such as
tight-binding Hamiltonian, can show a rich behavior, includ-
ing the critical localization of eigenstates and fractal spectral
structures [15]. According to the richness of the spectral prop-
erties a diversity of tools have been employed to analyze them,
such as renormalization procedures, multifractal analysis, or
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symmetry considerations [16–18]. A feature of many ape-
riodic lattices is the clustering of the corresponding energy
eigenvalues in quasibands reminescent of the Bloch bands of
periodic systems [19]. These quasiband structures are in many
cases intimately connected to the underlying localization of
the eigenstates on repeated substructures of the long-range
ordered aperiodic system [20–24]. Opposite to periodic crys-
tals quasicrystals are not based on global symmetries, such as
a discrete translation group, but typically exhibit a plethora
of local symmetries [25] embedded into their self-similar
structure.

Structures built on basis of the concept of local symme-
tries, i.e., symmetries that hold only in a limited domain
of space, are very well-suited to further fill the above-
mentioned gap between global order and disorder. Indeed,
several recent works [26–30] have been focusing on the
development of a theoretical framework of the impact of
local symmetries for both continuous and discrete systems.
Among others, it has been demonstrated that local symme-
tries lead to invariant nonlocal currents which allow for a
generalization of the Bloch theorem [26]. Sum rules im-
posed on these invariants can serve as a tool to classify
resonances in wave scattering [27]. These invariants and the
corresponding control of local symmetries have been de-
tected in lossy acoustic waveguides [31] and were observed
in coupled photonic wave guide lattices [32]. Systematically
introducing more and more of local symmetries into one-
dimensional disordered finite chains has been demonstrated
to enhance the corresponding transfer efficiency across the
chain [33]. An important aspect of the presence of local
symmetries in the strong coupling regime is the “formation”
of so-called local resonators on which the localization of
eigenstates takes place. This characteristic was developed and
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used in Ref. [34] to analyze the eigenstate properties and edge
state appearance for quasiperiodic chains of different spectral
category.

Inspired by the substitution rules used to generate
quasiperiodic chains very recently the concept of local sym-
metry dynamics (LSD) has been put forward [35] (see also
Ref. [25]) to obtain one-dimensional lattices with a plethora
of local symmetries that do not belong to the periodic or
quasiperiodic case. The idea here is to generate a lattice by
applying successive reflection operations on an initial seed of
the lattice consisting of a finite number of sites. The rules gen-
erating the LSD can be manifold, but the first case explored
in Ref. [35] are the so-called n : m rules. n and m indicate
the number of sites of the lattice involved in the reflection
operations and are applied alternatingly in the course of the
LSD. It has been shown that the such created one-dimensional
lattice shows emergent periodic behavior, i.e., it consists of a
transient whose length depends on the concrete values of n, m
followed by a subsequent periodic behavior. By construction,
the local symmetries of this lattice are strongly overlapping.
A spectral analysis of the tight-binding (TB) realization of the
n : m LSD chains demonstrated the control possibilities of the
localization properties of the eigenstates by the nested local
symmetries.

In the present work we go one step further and establish
a type of rule which does not possess emergent periodicity
but leads to a scaling behavior of the chain. As a conse-
quence we have similar repeating units along the lattice but,
in each step, they are stretched with respect to their lengths,
i.e., the number of sites is correspondingly increased. We
perform a detailed spectral analysis of a TB implementation
of the scaled chain. The eigenvalue spectrum shows a dis-
tinct transition from two to three branches and finally to a
single branch with increasing off-diagonal coupling strength.
The fluctuations of the energy level spacings cover several
orders of magnitude and exhibit minigaps. A density of state
analysis shows a strongly peaked behavior at the crossover
points of the branches. We develop a local resonator model
which allows us to interpret and understand this spectral
behavior. Our eigenstate analysis demonstrates the unique
localization properties of this scaled chain and in particular
their variation with changing coupling strength. Finally, we
investigate the energy-dependent transmission profile by at-
taching leads to the scaled chain. It shows a transition from
few to many isolated complete transmission peaks and finally,
for smaller values of the coupling, we observe a decreasing
spectral transmission window with an irregular fluctuating
behavior.

This work is structured as follows. In Sec. II we introduce
our LSD rule and the resulting scaled chain and map it onto
a TB Hamiltonian. Section III presents an analysis of the
energy eigenvalue spectrum of scaled chains including the
energy spacing distributions and density of states. In Sec. IV
we develop the local resonator model which offers a deeper
understanding of the spectral properties and we compare it to
the TB results. Section V provides an analysis of the eigen-
states including their localization behavior. The transmission
properties of our scaled chain are explored in Sec. VI with
varying coupling strength. Finally, in Sec. VII we present our
conclusions.

II. SCALED LSD CHAIN: SETUP AND HAMILTONIAN

The local symmetry dynamics (LSD) represents a concept
which allows us to generate lattices with local symmetries
starting from a given initial condition, i.e., from an initial finite
segment of a lattice. One important way to achieve this is to
perform reflection operations of a certain domain size at the
end of a given finite lattice. In Ref. [35] the special case of
the n : m rules, where n, m stand for the number of sites to
be reflected alternatingly, has been investigated: it provides us
with emergent periodicity in the sense that a spatially evolving
transient is followed by a periodic behavior of the lattice. By
construction, the resulting lattice exhibits a plethora of local
overlapping symmetries.

Employing a symbolic code we focus here on the rule
n, (n + 1), (n + 2), (n + 3), ... which represents an LSD with
monotonically increasing sizes of the reflection domains. The
initial seed has to be n elements and we use here n = 2, i.e.,
the seed AB. As an example, we provide the tenth generation
of the application of this rule which reads as follows:

AB|2BA|3ABB|4BBAA|5AABBB|6BBBAAA

|7AAABBBB|8BBBBAAAA|9AAAABBBBB

|10BBBBBAAAAA|11AAAAABBBBBB

|12BBBBBBAAAAAA|13AAAAAABBBBBBB,

where |k stands for the reflection operation exerted on
k sites to the left of its position. Obviously, our rule leads
to a scaling behavior in the sense that we have alternating
sequences of A and B sites whose lengths increase with
increasing generation of the chain. Alternatively, this can
be noted as 1A, 2B, 2A, 4B, 4A, 6B, 6A, ....2nB, 2nA which
amounts to a total length of N = 1 + 2n(n + 1). Here nA
and nB stand for an n-fold repetition of the symbols A and
B, respectively, such as, e.g., 4A corresponds to AAAA. We
therefore call this chain a scaled chain (SC).

In order to explore the spectral and transmission properties
of the SC we map it onto a corresponding TB Hamilto-
nian [36]. We hereby assume a constant off-diagonal coupling
t between nearest neighbors 〈i, j〉 of a discrete chain of length
N with sites {i|i = 1, ..., N}. The corresponding onsite ener-
gies εi follow the LSD of the SC. Specifically, we will use
in the following the values εA = 1.0, εB = 2.0 for the sites of
type A, B, respectively. Our TB Hamiltonian reads therefore
as follows:

H =
N∑

i=1

εi|i〉〈i| +
∑
〈i, j〉

t |i〉〈 j|. (1)

Note that we are using open boundary conditions for the
SC all over this work.

III. ENERGY EIGENVALUE SPECTRA

Let us analyze in this section the energy eigenvalue spectra
of the SC for varying off-diagonal t from weak to strong
couplings. First we inspect the global spectral behavior and
subsequently the fluctuations in terms of the energy level
spacing will be discussed. We hereby focus on a SC of
length 1861 which corresponds to subchains of purely A or
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FIG. 1. Spectrum of the energy eigenvalues for a SC. Subfigures
(a–d) show the evolution of the spectrum with increasing value for
the off-diagonal coupling: a transition occurs from two separate
branches (a) which interconnect (b) to the case of three branches (c).
In the strong coupling limit, naturally, a single branch is encountered
(d). The onsite values used are εA = 1, εB = 2 and the off-diagonal
coupling is varied according to 0.1,0.25,0.5,50.0 from panel (a) to
panel (d), respectively. Open boundary conditions and the length of
the chain is 1861.

B sites of maximal lengths 30. For t = 0 we have only the
two highly degenerate eigenvalues εA = 1.0 and εB = 2.0.
Switching on the coupling we observe in Fig. 1(a) for t = 0.1
an energetically lower and upper branch of the spectrum (we
refrain from using the terminology of a band, due to the
nonperiodic structure of our chain) which are separated by
an energetical gap. Increasing the value of t the size of this
gap decreases until at t ≈ 0.25 the gap closes, which can be
observed in Fig. 1(b). Then, the low- and high-energy branch
are connected while possessing a similar behavior of their
slopes with varying energy. With further increasing coupling
strength t a third branch appears and persists for a broad
range of values of t . The crossovers between the branches
is characterized by a cusp. This can be observed in Fig. 1(c)
for t = 0.5 where the intermediate energy branch occupies,
like the low- and high-energy branch, a substantial part of
the spectrum. With increasing value of the coupling the in-
termediate energy branch widens until at t ≈ 30 (not shown
here) it has taken over almost all of the spectrum. Figure 1(d)
shows the spectrum for t = 50 where only a single branch has
survived. In this case we are close to the limit of a negligible
onsite energy compared to the large coupling value, which
yields a single branch (t → ∞) with the spectrum given by
Em = 2t cos( mπ

N+1 ) with 1 � m � N [37–39].
The above discussion relates exclusively to the envelope

or mean behavior of the spectrum. Let us now address the
fluctuations of the energy levels which are well-characterized
by the spacing of the energy levels. Figure 2 shows the spacing
of the energy levels in a window of the spectrum between
the energy levels 1570 to 1730. Notably we observe that the
energy spacing covers several orders of magnitude. Interdis-
persed into seemingly irregular oscillations there is two types
of prominent features. First we encounter minigaps in the
spectrum corresponding to well-isolated distinguished peaks
in Fig. 2. Second, before and after those peaks we observe

FIG. 2. A finite spacing sequence (levels 1570 to 1730) of the
energy eigenvalue spectrum for a SC. Interdispersed into the spacing
spectrum is a hierarchical sequence of minigaps as well as sequences
of small spacings adjacent to the minigaps which form arcs due to
their “scaling.” Arrows indicate two of the positions of the minigaps
and four of the small spacing sequences located on corresponding
arcs. The onsite values are εA = 1, εB = 2 and the off-diagonal cou-
pling is 1.0. Open boundary conditions and the length of the chain is
1861.

sequences of very small energy spacings lying on arcs. Exam-
ples for both features are indicated by arrows in Fig. 2. Their
origin will become clear in the context of the local resonator
model to be developed in the next section.

In Fig. 3 the energy spacing is shown for the complete
eigenvalue spectrum for four different values of the coupling,

FIG. 3. Spacing of the energy eigenvalue spectrum for a SC.
The spacing distributions undergo an evolution from a two-hump
structure separated by a dominant peak (a) to a three hump structure
separated by two dominant peaks and showing abrupt transitions
between the humps. For even stronger coupling (c) the single central
hump dominates and only side flanks of two further humps are ob-
served. Finally, for very strong coupling a single hump remains (d).
The onsite values are εA = 1, εB = 2 and the off-diagonal coupling
is varied according to 0.2,0.5,5.0,50.0 from panel (a) to panel (d),
respectively. Open boundary conditions and the length of the chain
is 1861.
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i.e., for t = 0.2, 0.5, 5.0, 50.0 in Figs. 3(a)–3(d), respectively.
For t = 0.2 the eigenvalue spectrum is still gapped which
reflects itself in a dominant peak of the spacing distribution
at the position 930, whose value is out of the scale provided
in Fig. 3(a). Left and right to this central peak there are two
broad subdistributions with strongly fluctuating values for the
spacings. On top of these subdistributions there is a central
dominant peak as well as a number of additional prominent
peaks which correspond to the above-mentioned minigaps in
the spectrum. Those two branches of the spacing distributions
are single humped and show monotonically decreasing spac-
ings toward their edges.

Figure 3(b) corresponds to the case t = 0.5 for which the
eigenvalue spectrum possesses three branches [see Fig. 1(c)].
Here the energy spacing distribution possesses also three
distinct regions with abrupt transitions between them: the
position of the transition points correspond to the positions
of the cusps of the energy spectrum. At these positions of the
cusps dominant peaks of the energy spacing occur followed by
a collapse of the spacing behavior with further increasing de-
gree of excitation in the spectrum. Overall the three branches
encountered consist of two narrow semihumps connected to
the edges of the distribution and a complete broad hump in the
center of the spacing distribution. With increasing coupling
strength t the central single-humped branch of the spacing
distribution expands and finally represents the complete dis-
tributions. On this pathway the central branch bends upwards
as is clearly visible in Figs. 3(c) and 3(d) for t = 5.0, 50.0
implying that the spectrum of the spacing values possesses
an increasing lower bound with increasing coupling strength.
Finally, for t = 50.0 in Fig. 3(d) the spacing distribution is al-
ready rather similar to the one expected from the off-diagonal
only case: it possesses a narrow width and only small fluc-
tuations around the spacing values belonging to the spectrum
Em = 2t cos( mπ

N+1 ) with 1 � m � N .
Let us conclude this section by analyzing the energetical

density of states (DOS) belonging to the SC for varying cou-
pling strength t . For a periodic crystal of monomers the DOS
can be obtained analytically to N (E ) ∝ 1√

1−( E
2t )2

possessing

two singularities at the band edges and in between a smooth
decrease followed by a corresponding increase. Figure 4(a)
shows the case t = 0.1 for which a sizable gap between a
low- and high-energy branch of the eigenvalue spectrum exists
(see discussion of Fig. 1). Correspondingly, we observe four
pronounced peaks for N (E ) at the edge points of those two
branches. In between the first two and the second two peaks
a smooth decrease followed by a corresponding increase is
encountered. The gap in the corresponding spectrum shows
here up, of course, as a region of zero valued N (E ). Fig-
ure 4(b) presents the DOS for t = 0.5. Here the eigenvalue
spectrum consists of three branches [see Fig. 1(c)] and we
observe two edge localized peaks and two peaks localized
around the center of the DOS. The latter correspond to the
positions of the cusps in the eigenvalue spectrum. Note that
abrupt transitions occuring for the left and right side of the
second and third peak of the DOS, respectively. For t = 1.0
[Fig. 4(c)] the central branch of the DOS has widened, i.e.,
the corresponding central peaks have been moving toward the
edges of the DOS thereby maintaining their narrow character.

FIG. 4. Density of states for a SC. The density of states shows a
metamorphosis. For weak couplings (a) we observe two side wings
each with two sharp peaks at their boundaries and a central zero
density region, due to the energy gap, between them. For interme-
diate couplings (b, c) a central branch evolves with strong peaks
at its boundaries, which move to the boundaries of the spectrum
with increasing coupling strength. Finally, panel (d) shows the ex-
pected behavior for very strong couplings. The onsite values are
εA = 1, εB = 2 and the off-diagonal coupling is varied according
to 0.1,0.5,1.0,50.0 from panel (a) to panel (d), respectively. Open
boundary conditions and the length of the chain is 5101.

Finally, for t = 50.0 only two peaks remain and are edge
localized, as to be expected from the single branch case of
an (approximately) off-diagonal only TB Hamiltonian.

IV. LOCAL RESONATOR MODEL

To develop a profound understanding of the above-
discussed features of the eigenvalue spectrum, we develop
a so-called local resonator model (LRM) for our SC. This
model is inspired by the local symmetry theory of resonator
structures developed in Ref. [34]. In the latter work a quanti-
tative analysis of the localization behavior of the eigenstates
for strong and intermediate contrast has been provided for
aperiodic binary chains based on substitution rules thereby
focusing on the quasiperiodic case.

Our SC 1A, 2B, 2A, 4B, 4A, 6B, 6A, ....2nB, 2nA consists
of a sequence of purely A and B subchains of increasing length
with increasing size of the SC. We will call these subchains
local resonators. Starting out with small values for the off-
diagonal coupling t we model the SC as a superposition of the
spectra of these local A and B resonators. This is motivated
by the fact that for zero coupling the resonators exhibit a
degenerate spectrum which is split for small but finite cou-
pling whereas the coupling between two different resonators
is suppressed due to the substantial difference of their onsite
energies εA = 1.0 and εB = 2.0. Employing open boundary
conditions we therefore have the sequence of spectra for the
local resonators as follows:

E1
A = EA,

E2
m(A) = EA + 2t cos

(mπ

3

)
m = 1, 2,
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E2
m(B) = EB + 2t cos

(mπ

3

)
m = 1, 2,

E4
m(A) = EA + 2t cos

(mπ

5

)
m = 1, ..., 4,

E4
m(B) = EB + 2t cos

(mπ

5

)
m = 1, ..., 4,

...................................

En
m(A) = EA + 2t cos

(
mπ

(n + 1)

)
m = 1, ..., n,

En
m(B) = EB + 2t cos

(
mπ

(n + 1)

)
m = 1, ..., n. (2)

The corresponding eigenstates are therefore localized res-
onator eigenstates. Note that their superposition is in general
not an (even approximate) eigenstate of the SC, since the
resonators possess different lengths. The total spectrum of the
SC within this local resonator picture is given by{

EA,

{
EA + 2t cos

(
mπ

(n + 1)

)
|n = 2k, k ∈ [1, l],

m ∈ [1, n]

}}
,

{
EB + 2t cos

(
mπ

(n + 1)

)
|n = 2k,

k ∈ [1, l], m ∈ [1, n]

}}
, (3)

where the length of the SC, i.e., the number of sites, is given
by N = 1 + 2l (l + 1) and the number of resonators in the
SC is 2l + 1. The largest resonator consists of 2l sites. The
envelope or mean behavior of the spectrum provided by our
LRM agrees with many of the envelope features of the exact
SC spectrum. For example, it can describe the weak coupling
broadening of the two bands, the subsequent closing of the
energy gap as well as the emergence and widening of the
third branch with increasing coupling. Even in the t → ∞
limit which corresponds to a single branch case the spectral
envelope behavior can qualitatively be reproduced. From the
LRM we can draw some general conclusions. The size of
the energy gap for not too strong coupling t amounts to ap-
proximately 1 − 4t which means that the closing of the gap
occurs for t ≈ 0.25. The width of the central third branch for
t > 0.25 amounts to 4t − 1. Figure 5(a) shows a comparison
of the LRM and the exact TB spectrum for a SC of length 221
and for t = 1.0: while the overall qualitative behavior is very
similar one realizes significant deviations on smaller energy
scales.

For this reason let us now analyze the energy eigenvalue
spacing distribution of the LRM which provides us with
the fluctuations of the energy levels. Figure 5(b) shows the
spacing distribution for both the LRM and the exact TB
spectrum for t = 0.1. While the overall rough behavior is
certainly similar, a closer look reveals remarkable deviations.
The fluctuations are much stronger for the LRM compared to
the TB results even for these small values of the coupling.
A substantial number of the peak spacings agree within the
two approaches and in particular the “arclike” accumulation
of small spacings around the main peaks is reproduced well.
However, an eye-catching difference is the fact that the LRM
shows zero spacings, corresponding to degeneracies in the
LRM, whereas this is not the case for the TB spectrum.

FIG. 5. Comparison of the (a) eigenvalue spectrum and (b) en-
ergy spacing of the TB chain (blue) and its corresponding local
resonator model (orange). While there is a good agreement of the
two approaches for the energy spectrum on a qualitative level (a) a
detailed view at the spacings (b) reveals a mix of quantitative agree-
ment and even major qualitative differences such as the nonexistence
of certain zeros for the TB chain as compared to the local resonator
model. The onsite values are εA = 1, εB = 2 and the off-diagonal
coupling is 1.0 for (a) and 0.1 for (b). Open boundary conditions
and the length of the chain is 221.

Considering the spectrum of the LRM in eq.(3) these degen-
eracies can be shown to occur for the set of 2-tuples satisfying
for a given m and k and for varying α,(

αm
α(2k + 1)

)
α odd, α ∈ N, m � 2k, k � l. (4)

Note that the eigenstates belonging to these degenerate
eigenvalues belong in general to different local resonators.
The lifting of these degeneracies in the TB spectrum is, of
course, due to the interresonator coupling which is neglected
within the LRM. An important remark is in order concerning
the regime of stronger couplings t > 1. In Sec. III it has been
shown that the center branch of the eigenvalue spacings ex-
hibits an increasing upward bending with increasing coupling
t [see Figs. 3(c) and 3(d)], meaning that the energy spacings
systematically “avoid small values.” This behavior cannot be
described by the LRM, which shows its inadequacy in the
strong coupling regime.

V. LOCALIZATION VERSUS DELOCALIZATION OF
EIGENSTATES

Let us now focus on the analysis of the eigenstate proper-
ties of the SC for varying coupling strength t with a particular
emphasis on their localization properties. As described above
in the framework of the LRM we expect for weak coupling
strengths that the local resonator picture represents a good ap-
proximation and therefore the eigenstates should be localized
within these resonators whose lengths increase monotonically
along the SC. Figure 6 (upper left panel) shows the eigenstate
map, i.e., a grayscale image of the magnitudes of the compo-
nents of the eigenstates with varying degree of excitation for
the complete spectrum of a SC of length 221 for t = 0.1.

The ground state of the SC is localized on the largest A
local resonator of length 20 appearing at the right end of the
SC. The first excited state of the SC is localized on the second
largest A local resonator to the left of the ground state. This
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FIG. 6. Eigenstate maps showing the absolute values of the eigenvector components of the scaled TB chain. For weak couplings (upper
left) the localization pattern of the eigenstates consists of an energetically upper and lower branch. Each of these branches show sequences
of series of localized eigenstates, where the localization occurs on locally symmetric domains, i.e., on individual resonators. With increasing
coupling strength (upper right,lower left) delocalized states emerge from the center of the spectrum and the corresponding regime broadens.
For strong couplings (lower right) the delocalized part of the eigenstates dominates. The onsite values are εA = 1, εB = 2. The off-diagonal
coupling is 0.1 (upper left), 0.5 (upper right), 5.0 (lower left), and 50.0 (lower right). Open boundary conditions and the length of the chain is
221.

sequence continues [see Fig. 6 (upper left panel)] such that
with increasing degree of excitation the corresponding eigen-
states localize on local A resonators with decreasing size,
thereby moving from the right end toward the left end of the
SC. This series of localized states are then intermingled with
excited states of the local resonators which adds to the local-
ization patterns observed in Fig. 6 (upper left panel). However,
the spectrum can alternatively be described as follows. It con-
sists of vertical series of localized resonator eigenstates whose
energy spacings decrease with increasing size of the corre-
sponding resonator. Series of localized resonator eigenstates
of A character belong to the low energy part of the spectrum
whereas those of B character belong to the high-energy part.
According to their occurrence in the SC they are spatially
shifted w.r.t. each other.

Inspecting the case t = 0.5 in Fig. 6 (upper right panel) a
branch of delocalized states can be observed for intermediate
energies. This branch intensifies and broadens in energy with
increasing coupling strength t . Indeed, for Figs. 6 (lower left
and right panel) corresponding to t = 5.0, 50.0 the majority of
eigenstates are delocalized over the complete SC. In conclu-
sion, we obtain a distinct transition from series of localized
resonator states for weak couplings to delocalized SC states
for strong couplings which is controlled by the interresonator
coupling of A (low-energy) and B (high-energy) character.

To quantify the above observations let us determine the
inverse participation ratio (IPR) for the eigenstates on an SC

with N sites, which is defined as r = ∑N
i=1 |ψi|4 ∈ [N−1, 1]

for a normalized eigenvector
∑N

i=1 |ψ |2 = 1. The maximal
value for the IPR is one for an eigenvector localized on a
single site of the chain and the minimal value 1

N is encountered
for a state which is uniformly extended over the chain. The
IPR neither depends on the position at which a state is local-
ized nor is it very sensitive to the details of its distribution.

Figures 7(a)–7(d) shows the IPR for all eigenstates of the
SC with length 221 for four different values of the coupling
strength t = 0.1, 0.5, 1.0, 5.0. For t = 0.1 in Fig. 7(a) the IPR
has a lower bound of approximately 7 · 10−2 compared to the
principally possible minimum of approximately 4.5 × 10−3.
Most values are in the interval [0.07,0.5] which indicates
that the eigenstates are very localized. The sequence of local
resonator localized states with increasing energy which have
been analyzed in the context of the discussion of Fig. 6 for t =
0.1 can be seen here as a sequence of subsequent monotoni-
cally increasing IPR values. One can also observe sequences
of almost constant values of the IPR which correspond to
energetically nonneighboring eigenstates, i.e., among others
involving the vertical series of localized states seen in Fig. 6.

For t = 0.5 we observe a rather sharp decrease and a
regime of low-values of the IPR in the central part of the
spectrum. The latter branch of eigenstates corresponds to the
delocalized states observed in the corresponding eigenstate
maps of Fig. 6. With further increasing values of t [see
Figs. 7(c) and 7(d)] the IPR value of that average central
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FIG. 7. Inverse participation ratio (IPR) for all eigenstates of the
SC. With increasing coupling strength the inverse participation ratio
shows a transition from predominantly larger values to small values
indicating the delocalization of the eigenstates. The onsite values
are εA = 1, εB = 2. The off-diagonal coupling is 0.1,0.5,1.0,5.0 for
the subfigures (a–d), respectively. Open boundary conditions and the
length of the chain is 221.

plateau decreases monotonically and the fluctuations on top
of it systematically decrease. Finally, at t = 5.0, apart from a
small window of states for very low and high energies, the IPR
value is to a very good approximation constant and its value is
close to the minimum possible value, i.e., it is approximately
6.5 × 10−3.

VI. TRANSMISSION PROPERTIES
OF THE SCALED TB CHAIN

In this section we explore the energy-dependent transmis-
sion through our scaled tight-binding chain. To this end we
attach two leads in the form of semi-infinite discrete chains
to the left and right of our SC. Determining the transmis-
sion follows then the standard formalism of wave function
matching [40] which folds the infinite leads into the SC and
extends it by a single site to the left and to the right. In the
language of Greens functions this corresponds to the inclusion
of the corresponding self-energy into the Hamiltonian matrix
problem: we map the closed system eigenvalue problem to a
linear system of equations with an inhomogeneity [40–42].
Note that the transmission is obtained as the absolute value
squared of the n + 1-st element of the vector obtained from
the resulting linear equations.

As a result of the above procedure we have now the pa-
rameters εL, tL, εR, tR, tLD, tDR and t, εA, εB. Here, L, R stand
for the corresponding quantities in the left and right lead, ε

being the onsite energies and t referring to the off-diagonal
couplings, respectively. tLD is the coupling of the left lead to
the scattering chain and tDR is the coupling of the scattering
chain to the right lead, respectively. As done before we will
use εA = 1.0, εB = 2.0.

The leads possess due to their semi-infinite structure a con-
tinuum of k values. We focus on the case tL/R = 1.0, εL/R =
1.0, tLD = 1.0, tDR = 1.0. As a consequence the energy ac-
cessible in the left and right leads correspond to E = εL/R +

FIG. 8. Transmission as a function of energy for the parame-
ters tL/R = εL/R = tLD = tDR = 1.0 and for εA = 1.0, εB = 2.0 for the
scaled TB chain. Within the spectral window the transmission be-
havior changes from a few narrow peaks for strong couplings (a) to a
sequence of almost energetically equidistant peaks (b). Subsequently,
i.e., for even weaker couplings the background transmission rises and
the irregularity of the transmission spectrum becomes pronounced
due to the many overlapping peaks (c, d). The off-diagonal cou-
pling is 50.0,10.0,3.0,1.0 for the subfigures (a–d), respectively. Open
boundary conditions and the length of the chain is 221.

2tL/Rcos(kL/R). Therefore we have k ∈ [0, 2π ] and the lead
energy window is E ∈ [−1.0, 3.0]. We will then vary the
coupling t of the SC in the range [0.1,50.0] and analyze the
resulting transmission T (E ). For large values of t the lead en-
ergy width will be small compared to the energetical width of
the SC, whereas for small values of t the opposite holds true.

In Figs. 8(a)–8(d) we show transmission spectra for the val-
ues t = 50.0, 10.0, 3.0, 1.0. For t = 50.0 in Fig. 8(a) the en-
ergy interval of the SC is approximately [−99.0, 102.0] and,
as mentioned above, the lead energy interval is [−1.0, 3.0].
Within this energy window the eigenstates of the isolated
SC are all completely delocalized; see Fig. 6. In this case
the transmission spectrum shows three sharp peaks which
are located approximately at the energies E = 0.0, 1.5, 3.0.
In between those peaks the transmission reaches approxi-
mately zero, i.e., the three peaks are well-isolated. This can
be explained by projecting the energy window of the lead
onto the stationary energy eigenvalue spectrum of the SC
without leads only for the above parameters: Only three eigen-
states located at the energies of the transmission peaks are
encountered.

If we now decrease the value of the coupling to t = 10.0
[see Fig. 8(b)], we have an energy window of approximately
[−19.0, 22.0] for the SC, and we observe 14 distinct peaks. In
between this dense sequence of well-isolated peaks the trans-
mission does not completely decrease to the value zero due to
the finite overlap of the resonances. As a result the transmis-
sion peaks “live” on a background of low transmission. Again,
this series of transmission peaks can be understood by project-
ing the energy window of the lead E ∈ [−1.0, 3.0] onto the
energy eigenvalue spectrum of the SC for t = 10.0. The corre-
sponding eigenstates of the SC without leads are assignable to
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the transmission one peaks and are of completely delocalized
character. The above trend continues with, e.g., for t = 5.0 28
peaks (not shown) being present in the transmission spectrum.
The background transmission increases consequently. Also
for t = 3.0 [see Fig. 8(c)] we address with the lead energy
window only delocalized states. The transmission spectrum
shows still a series of distinct peaks, but with a larger more
irregular appearing background formed by the overlapping
resonances.

For t = 1.0 [see Fig. 8(d)] the transmission profile
has changed qualitatively. Now, the lead energy window
[−1.0, 3.0] covers a large part of the energy eigenvalue spec-
trum and the corresponding states are for low energy purely
localized, whereas for E � 0.2 they become delocalized and
contribute to the highly irregular transmission profile. The
delocalized part of the eigenstates ends at E ≈ 3.0 which is
also the end of the transmission energy window. While the
transmission spectrum is irregular, there is, in many cases,
a clear assignment to the behavior of the inverse participa-
tion ratio: low values of the IPR correspond to delocalization
which leads to high transmission values. For t = 0.5 (not
shown here) the transmission profile is even more fragmented
into irregular series of narrow peaks and finally, for t = 0.3,
the transmission is essentially zero in the complete spectral
window.

VII. SUMMARY AND CONCLUSIONS

The concept of local symmetry dynamics provides a
systematic pathway of generating lattices covered with over-
lapping local symmetries. While this pathway has very
recently been pursued to show that the class of so-called n : m
rules provide us with emergent periodic behavior [35], we
show here that the local symmetry dynamics according to
the rule n, (n + 1), (n + 2), (n + 3), ... leads (for n = 2) to a
scaling behavior. The resulting chain consists therefore of the
concatenation of alternating subchains of increasing lengths.

Mapping the scaled chain onto a tight-binding Hamiltonian
the focus of the present work has been on the analysis of the
spectral and transmission properties of this Hamiltonian. The
energy eigenvalue spectrum shows with increasing strength
of the off-diagonal coupling a transition from two to three and
finally to a single branch. A closer look at the spectrum reveals
minigaps accompanied by a characteristic accumulation of
eigenvalues in their neighborhood. The eigenvalue spacings
exhibit a crossover from the case of a two to a three and finally
a single humped distribution. The cusps connecting the differ-
ent branches go along with sharp peaks in the corresponding
density of states. Many of the features occuring for the eigen-
value spectrum could be explained and understood via a

local resonator model which applies for weak-to-intermediate
values of the coupling and which treats the subchains possess-
ing the same onsite energies as independent resonators. The
spectrum and eigenstates of the complete chain are then com-
posed of the independent resonator spectra and eigenstates.
Indeed, an eigenstate analysis via so-called eigenstate maps
demonstrates the localization of the eigenstates in terms of
resonator eigenmodes for weak couplings. The transition to
delocalization with increasing coupling strengths occurs in an
expanding manner starting from the center of the spectrum
and has been analyzed via the corresponding behavior of the
inverse participation ratio. Finally, we have investigated the
transmission properties of the scaled chain and found, with
decreasing coupling, a transition from the case of a few reg-
ularly arranged isolated transmission one peaks to the case
of many such peaks on an enhanced background. Finally, for
sufficiently small coupling strengths, the transmission profile
becomes highly irregular and probes the complete delocalized
eigenstate portion of the scaled chain.

The presently investigated case of a scaled chain is
certainly only a specific case out of many possible local sym-
metry dynamics generated chains which are asymptotically
nonperiodic. Indeed, one can think of many different ways of
modifying the applied rule such that a rich interplay of scaled
subchains with intermediate ones appear. The common feature
of all of those chains is the presence of the extensive local
reflection symmetries of overlapping character. It is left to fu-
ture investigations to possibly arrive at a classification of those
local symmetry dynamics generated lattices and the physical
properties of their resulting tight-binding realizations.

Finally, let us briefly address the possibility of an ex-
perimental realization of the scaled tight-binding chain. A
promising optics-based platform are evanescently coupled
waveguides (see Ref. [43] and in particular the references
therein). Due to the extended control of the underlying optical
materials the propagation of light and the coupling among the
waveguides can be varied in a wide range and the dynamical
evolution has many commons with the corresponding time
evolution for a single particle quantum system. The coupling
among the waveguides can be encoded into the bulk material
using femtosecond laser pulses. A limiting factor for the cur-
rent application to the scaled chain is certainly the number of
waveguides accessible which would correspondingly limit the
largest possible resonator in the chain.

ACKNOWLEDGMENTS

This work has been supported by the Cluster of Excellence
“Advanced Imaging of Matter” of the Deutsche Forschungs-
gemeinschaft (DFG)-EXC 2056, Project ID No. 390715994.

[1] J. P. Sethna, 1991 Lectures in Complex Systems, edited by L.
Nagel, and D. Stein, Santa Fe Institute Studies in the Sciences
of Complexity, Proc. Vol. XV (Addison-Wesley, Boston, MA,
1992).

[2] The rise of quantum materials, Editorial, Nat. Phys. 12, 105
(2016).

[3] D. J. Gross, The role of symmetry in fundamental physics, Proc.
Nat. Acad. Sci. USA 93, 14256 (1996).

[4] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-
Saunders, Philadelphia, PA, 1976).

[5] J. Singleton, Band Theory and Electronic Properties of Solids,
Oxford Master Series in Condensed Matter Physics (Oxford
University Press, Oxford, UK, 2001).

[6] E. Maciá-Barber, Aperiodic Structures in Condensed Matter,
Fundamentals and Applications, Series in Condensed Matter
Physics (CRC Press, Boca Raton, FL, 2009).

043189-8

https://doi.org/10.1038/nphys3668
https://doi.org/10.1073/pnas.93.25.14256


SCALED TIGHT-BINDING CRYSTAL PHYSICAL REVIEW RESEARCH 5, 043189 (2023)

[7] E. Maciá-Barber, Quasicrystals, Fundamentals and Applica-
tions (CRC Press, Boca Raton, FL, 2021).

[8] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic
phase with long-range orientational order and no translational
symmetry, Phys. Rev. Lett. 53, 1951 (1984).

[9] J. B. Suck, M. Schreiber, and P. Häussler, Quasicrystals: An
Introduction to Structure, Physical Properties and Applications
(Springer Science & Business Media, Cham, 2002).

[10] T. Janssen, Crystallography of quasi-crystals, Acta Crystallogr.
A 42, 261 (1986).

[11] C. Berger, T. Grenet, P. Lindqvist, P. Lanco, J. Grieco,
G. Fourcaudot, and F. Cyrot-Lackmann, The new AlPdRe
icosahedral phase: Towards universal electronic behaviour for
quasicrystals? Solid State Commun. 87, 977 (1993).

[12] A. P. Vieira, Low-energy properties of aperiodic quantum spin
chains, Phys. Rev. Lett. 94, 077201 (2005).

[13] D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin, A. Lemaitre,
E. Galopin, I. Sagnes, A. Amo, J. Bloch, and E. Akkermans,
Fractal energy spectrum of a polariton gas in a Fibonacci
quasiperiodic potential, Phys. Rev. Lett. 112, 146404 (2014).

[14] A. Jagannathan, The Fibonacci quasicrystal: Case study of hid-
den dimensions and multifractality, Rev. Mod. Phys. 93, 045001
(2021).

[15] E. Maciá, The role of aperiodic order in science and technology,
Rep. Prog. Phys. 69, 397 (2006).

[16] M. de Boissieu, Ted Janssen and aperiodic crystals, Acta
Crystallogr. A 75, 273 (2019).

[17] Q. Niu and F. Nori, Renormalization-group study of one-
dimensional quasiperiodic systems, Phys. Rev. Lett. 57, 2057
(1986).

[18] N. Macé, A. Jagannathan, and F. Piéchon, Fractal dimensions
of wave functions and local spectral measures on the Fibonacci
chain, Phys. Rev. B 93, 205153 (2016).

[19] L. Dal Negro, R. Wang, and F. Pinheiro, Structural and spectral
properties of deterministic aperiodic optical structures, Crystals
6, 161 (2016).

[20] E. de Prunelé and X. Bouju, Fibonacchi, Koch and Penrose
structures: Spectrum of finite subsystems in three-dimensional
space, Phys. Status Solidi B 225, 95 (2001).

[21] E. de Prunelé, Penrose structures: Gap labeling and geometry,
Phys. Rev. B 66, 094202 (2002).

[22] M. A. Bandres, M. C. Rechtsman, and M. Segev, Topological
photonic quasicrystals: Fractal topological spectrum and pro-
tected transport, Phys. Rev. X 6, 011016 (2016).

[23] P. Vignolo, M. Bellec, J. Böhm, A. Camara, J. M. Gambaudo,
U. Kuhl, and F. Mortessagne, Energy landscape in a Penrose
tiling, Phys. Rev. B 93, 075141 (2016).

[24] E. Maciá, Clustering resonance effects in the electronic energy
spectrum of tridiagonal Fibonacchi quasicrystals, Phys. Status
Solidi B 254, 1700078 (2017).

[25] C. Morfonios, P. Schmelcher, P. A. Kalozoumis, and F. K.
Diakonos, Local symmetry dynamics in one-dimensional aperi-
odic lattices: A numerical study, Nonlinear Dyn. 78, 71 (2014).

[26] P. A. Kalozoumis, C. Morfonios, F. K. Diakonos, and P.
Schmelcher, Invariant of broken discrete symmetries, Phys.
Rev. Lett. 113, 050403 (2014).

[27] P. A. Kalozoumis, C. Morfonios, F. K. Diakonos, and P.
Schmelcher, Local symmetries in one-dimensional quantum
scattering, Phys. Rev. A 87, 032113 (2013); P. A. Kalozoumis,
C. Morfonios, N. Palaiodimopoulos, F. K. Diakonos, and P.
Schmelcher, Local symmetries and perfect transmission in ape-
riodic photonic multilayers, ibid. 88, 033857 (2013).

[28] C. Morfonios, P. A. Kalozoumis, F. K. Diakonos, and P.
Schmelcher, Nonlocal discrete continuity and invariant currents
in locally symmetric effective Schrödinger arrays, Ann. Phys.
385, 623 (2017).

[29] P. Schmelcher, S. Krönke, and F. K. Diakonos, Dynamics of lo-
cal symmetry correlators for interacting many-particle systems,
J. Chem. Phys. 146, 044116 (2017).

[30] V. E. Zambetakis, M. K. Diakonou, P. A. Kalozoumis, F. K.
Diakonos, C. V. Morfonios, P. Schmelcher, Invariant current
approach to wave propagation in locally symmetric structures,
J. Phys. A 49, 195304 (2016).

[31] P. A. Kalozoumis, O. Richoux, F. K. Diakonos, G. Theocharis,
and P. Schmelcher, Invariant currents in lossy acoustic waveg-
uides with complete local symmetry, Phys. Rev. B 92, 014303
(2015).

[32] N. Schmitt, S. Weimann, C. V. Morfonios, M. Röntgen, M.
Heinrich, P. Schmelcher, and A. Szameit, Observation of lo-
cal symmetry in photonic systems, Laser Photonics Rev. 14,
1900222 (2020).

[33] C. V. Morfonios, M. Röntgen, F. K. Diakonos, and P.
Schmelcher, Transfer efficiency enhancement and eigenstate
properties in locally symmetric disordered finite chains, Ann.
Phys. 418, 168163 (2020).

[34] M. Röntgen, C. V. Morfonios, R. Wang, L. Dal Negro, and P.
Schmelcher, Local symmetry theory of resonator structures for
the real-space control of edge states in binary aperiodic chains,
Phys. Rev. B 99, 214201 (2019).

[35] P. Schmelcher, Evolution of discrete symmetries, Phys. Rev. E
108, 044141 (2023).

[36] C. M. Goringe, D. R. Bowler, and E. Hernández, Tight-
binding modelling of materials, Rep. Prog. Phys. 60, 1447
(1997).

[37] S. Kouachi, Eigenvalues and eigenvectors of tridiagonal matri-
ces, Electr. J. Lin. Alg. 15, 115 (2006).

[38] D. Kulkarni, D. Schmidt, and S.-K. Tsui, Eigenvalues of tridi-
agonal pseudo-Toeplitz matrices, Linear Algebra Appl. 297, 63
(1999).

[39] A. R. Willms, Analytic results for the eigenvalues of certain
tridiagonal matrices, Siam J. Matrix Anal. Appl. 30, 639 (2008).

[40] M. Zwierzycki, P. Khomyakov, A. A. Starikov, K. Xia, M.
Talanana, P. X. Xu, V. Karpan, I. Marushchenko, I. Turek,
E. W. Bauer, G. Brocks, and P. J. Kelly, Calculating scattering
matrices by wave function matching, Phys. Status Solidi B 245,
623 (2008).

[41] S. Datta, Electronic Transport in Mesoscopic Systems (Cam-
bridge University Press, Cambridge, UK, 1995).

[42] D. K. Ferry and S. M. Goodnick, Transport in Nanostructures
(Cambridge University Press, Cambridge, UK, 1997).

[43] A. Szameit and S. Nolte, Discrete optics in femtosecond-laser-
written photonic structures, J. Phys. B 43, 163001 (2010).

043189-9

https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1107/S0108767386099324
https://doi.org/10.1016/0038-1098(93)90543-V
https://doi.org/10.1103/PhysRevLett.94.077201
https://doi.org/10.1103/PhysRevLett.112.146404
https://doi.org/10.1103/RevModPhys.93.045001
https://doi.org/10.1088/0034-4885/69/2/R03
https://doi.org/10.1107/S2053273318016765
https://doi.org/10.1103/PhysRevLett.57.2057
https://doi.org/10.1103/PhysRevB.93.205153
https://doi.org/10.3390/cryst6120161
https://doi.org/10.1002/(SICI)1521-3951(200105)225:1<95::AID-PSSB95>3.0.CO;2-S
https://doi.org/10.1103/PhysRevB.66.094202
https://doi.org/10.1103/PhysRevX.6.011016
https://doi.org/10.1103/PhysRevB.93.075141
https://doi.org/10.1002/pssb.201700078
https://doi.org/10.1007/s11071-014-1422-1
https://doi.org/10.1103/PhysRevLett.113.050403
https://doi.org/10.1103/PhysRevA.87.032113
https://doi.org/10.1103/PhysRevA.88.033857
https://doi.org/10.1016/j.aop.2017.07.019
https://doi.org/10.1063/1.4974096
https://doi.org/10.1088/1751-8113/49/19/195304
https://doi.org/10.1103/PhysRevB.92.014303
https://doi.org/10.1002/lpor.201900222
https://doi.org/10.1016/j.aop.2020.168163
https://doi.org/10.1103/PhysRevB.99.214201
https://doi.org/10.1103/PhysRevE.108.044141
https://doi.org/10.1088/0034-4885/60/12/001
https://doi.org/10.1016/S0024-3795(99)00114-7
https://doi.org/10.1137/070695411
https://doi.org/10.1002/pssb.200743359
https://doi.org/10.1088/0953-4075/43/16/163001

