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Missing information search with deep learning for mass estimation
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We introduce DeeLeMa, a deep learning-based network for the analysis of energy and momentum in high-
energy particle collisions. This novel approach is specifically designed to address the challenge of analyzing
collision events with multiple invisible particles, which are prevalent in many high-energy physics experiments.
DeeLeMa is constructed based on the kinematic constraints and symmetry of the event topologies. We show
that DeeLeMa can robustly estimate mass distribution even in the presence of combinatorial uncertainties and
detector smearing effects. The approach is flexible and can be applied to various event topologies by leveraging
the relevant kinematic symmetries. This work opens up exciting opportunities for the analysis of high-energy
particle collision data, and we believe that DeeLeMa has the potential to become a valuable tool for the high-
energy physics community.
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I. INTRODUCTION

Despite the numerous neutrinos generated during particle
collisions, the detectors at the Large Hadron Collider (LHC)
are unable to observe them directly [1,2]. In addition to
neutrinos, other elusive particles such as dark matter candi-
dates, including weakly interacting massive particles (WIMP)
[3,4], axions [5,6], are also challenging to detect as they pass
through the detector without leaving discernible signals [7,8].
Such entities are termed as “invisible particles” in the realm of
collider physics. Their existence isn’t directly observed but is
inferred by leveraging the principles of energy and momentum
conservation, which highlight discrepancies in momentum or
energy within an event.

The LHC, like other hadronic collider experiments, mea-
sures the scattering processes involving the partonic con-
stituents of hadrons. Within this context, the reconstruction
of the longitudinal component of missing momentum along
the beam axis (referred to as the longitudinal direction)
poses a substantial challenge. Furthermore, the formidable
nature of this endeavor becomes particularly pronounced
when multiple invisible particles are simultaneously generated
within the same event. This challenging issue is convention-
ally called the “missing information problem” of invisible
particles.

Researchers commonly employ “transverse” quantities
to address the challenge from the longitudinal information.
These transverse quantities are defined along directions
perpendicular to the beam axis and include the transverse
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momentum pT =
√

�p2
⊥ and transverse energy ET ≡√

m2 − p2
T as observable parameters. Over the past decade

or more, many kinematic variables have been devised and
proposed, primarily tailored for the experiments at the LHC,
such as the stransverse mass or the Cambridge MT 2 [9–11],
M2 [12–14], and their extensions [11,15–18]. However, it
is worth noting that introducing more complex kinematic
variables while aiding in obtaining missing information
can also introduce additional complexities in data analysis.
The precision of these variables may not always meet the
desired level due to inherent complexities and uncertainties,
including combinatorial errors and detector effects. For a
comprehensive overview, see e.g., Ref. [19].

This paper introduces an innovative approach to address
the challenges posed by missing information problems in col-
lider physics [20–26]. Instead of relying on intricate kinematic
variables, our proposed method leverages the power of deep
neural networks (DNNs), capitalizing on the recent rapid ad-
vancements in machine learning techniques [27–36].

DNNs have emerged as a versatile tool capable of han-
dling vast datasets and capturing intricate correlations among
diverse features. This capability renders them exceptionally
well suited to tackle the complexities associated with miss-
ing information. Our newly developed kinematics-solving
machine, which integrates the physical conditions and sym-
metries inherent in event shapes, is named “DeeLeMa .”
This acronym, derived from “Deep Learning for Mass Esti-
mation,” encapsulates the essence of our machine’s function.
DeeLeMa represents a cutting-edge approach to the problem
of kinematics estimation in collider physics, promising more
robust and accurate results compared to traditional methods
reliant on complex kinematic variables. The detail of the ar-
chitecture is presented in the GitHub page [37] where one can
download DeeLeMa code with examples.
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FIG. 1. General event shape with visible ({pi}i=1,2,...,Nvis ) and in-
visible ({qj} j=1,2,...,Ninv ) momenta in the final state.

II. DEELEMA FRAMEWORK

Our study is dedicated to unveiling concealed informa-
tion within the complex landscape of high-energy collider
events. We aim to achieve this objective by harnessing observ-
able data, specifically the four-momenta of detected particles.
Event topology, symmetry principles, and the steadfast ap-
plication of conservation laws furnish constraints on the
kinematic variables governing these events.

To illustrate, we examine a cascade event configuration
consisting of Nvis visible particles and Ninv invisible particles
in the final state, which can be succinctly represented as

pp →
Nvis︷ ︸︸ ︷

v1v2 · · · vNvis

Ninv︷ ︸︸ ︷
i1i2 · · · iNinv .

Our primary goal is to utilize the input information encap-
sulated in the four-momenta of visible particles, denoted as
pi for i = 1, 2, . . . , Nvis, to precisely determine the momenta
of each invisible particle in the final state, which we desig-
nate as q j for j = 1, 2, . . . , Ninv. Nonetheless, it is crucial
to notice that this kinematic problem becomes mathemati-
cally underdetermined when the count of unknown variables
Ninv surpasses the constraining relationships governing each
event’s momenta.

Utilizing a physics-informed machine learning approach,
we build a model that decodes concealed information in col-
lider events under a given event topology. Central to this
approach are two functions: L, our loss function for neural
optimization, and the function K serves as a mechanism that
encapsulates kinematic relationships crucial for reconstruct-
ing the momenta of invisible particles. These functions are
based on physical relations such as the on-shell mass condi-
tions for the intermediate particles and the constraints on the
transverse momentum. The structure of our DNN machine is
schematically depicted in Fig. 1:

(i) The event topology of the specific event is T , and the
kinematic relations among momenta are encapsulated in K.

(ii) The input for DeeLeMa is the visible information
from the measured momenta {pi}, i = 1, 2, . . . , Nvis.

(iii) The expected output from DeeLeMa is the re-
constructed momenta of the invisible particles {qj}, j =
1, 2, . . . , Ninv.

FIG. 2. Symmetric event topology for Nvis = 4, Ninv = 2.

(iv) The loss function L enforces the machine to learn to
reconstruct the invisible information under the given event
topology T and the kinematic relations K.

Additionally, we introduce the auxiliary parameters x̃
which act to force target physical variables x (i.e., invariant
mass) to converge into a single value for all training events.
The corresponding auxiliary parameters x̃ appear globally
in all events, allowing the neural network to learn that the
events come from the same physical process. Thus, they are
introduced as global, trainable parameters based on prior
knowledge from T . Consequently, DeeLeMa works to op-
timize the reconstruction of invisible momenta by minimizing
the loss function L, which is defined in terms of the recon-
structed kinematic quantities q̂ and the auxiliary parameters
x̃, subject to the kinematic relations K.

III. DEELEMA FOR PAIR PRODUCTION PROCESS

In this section, our primary focus lies on the pair produc-
tion of mother particles during particle collisions, where each
of these particles subsequently decays, following identical
decay chains. Under such circumstances, the scenario involves
an even number of both visible and invisible particles, denoted
as (Nvis, Ninv) = (2n, 2m). Here, the terms n and m correspond
to the visible and invisible particles in each respective branch.
Exploiting the inherent symmetry of this situation, we find
that there are precisely 8m unknown components originating
from the 2m invisible four-momenta, along with (n + m + 2)
constraints stemming from kinematic relations.

Mathematically speaking, the system becomes solvable
when the condition (n + m + 2) � 8m or equivalently n �
7m − 2 is satisfied. A pertinent illustration is the case of
m = 1, wherein a single invisible particle emerges in each of
the decay chain branches. In this scenario, the system can be
effectively solved when n � 5. It is noteworthy to mention
that earlier analyses on systems involving n = 3, m = 1 have
been documented in previous works (see Refs. [23–25]), par-
ticularly when multiple events of the identical process were
considered.

We now delve into a challenging “unsolvable” problem
characterized by the parameters n = 2 and m = 1, visually
represented in Fig. 2. This specific configuration corresponds
to an event topology of (Nvis, Ninv ) = (4, 2). A prominent
example of this event topology is found in the dilepton process
of t t̄ events, where both top quarks undergo leptonic decay,
leading to t → bW → b(�ν�). In a more general context, we
contemplate the pair production of mother particles, denoted
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as A1 and A2, with subscripts 1 and 2 signifying the respective
branches of decay. Each Ai subsequently decays into a visible
particle ai and an intermediate heavy state Bi. Ultimately, Bi

undergoes a semi-invisible decay into a visible particle bi and
an invisible particle Ci in branches i = 1 and i = 2. The event
can be succinctly expressed as

pp → A1A2 → (a1(pa1 )B1)(a2(pa2 )B2),

B1 → b1(pb1 )C1(q1), B2 → b2(pb2 )C2(q2).

Here, pai and pbi symbolize the momenta of visible parti-
cles, while qi represents the momentum of the corresponding
invisible particles Ci. Despite the apparent simplicity of this
event topology, it is fundamentally underdetermined from a
kinematic perspective, rendering the separate measurement of
each invisible particle’s momentum unattainable.

To define the loss function, we first select a set of “target
variables” {x}, such as the invariant masses of the intermedi-
ate states and invisible out-coming particles. For our specific
example

E←−−−−−−−−−−−−−−−−→

B

⎧⎪⎨
⎪⎩

x#1 = (mA1 , mB1 )#1 ⊕ (mA2 , mB2 )#1

...

x#N = (mA1 , mB1 )#N ⊕ (mA2 , mB2 )#N .

Consider a batch of dataset consisting of N training events.
The event-wise information, denoted as E , is derived from the
symmetric event topology. This implies that identical particle
masses are consistent, making E an independent piece of
information for each event.
On the other hand, the batch-wise information, represented
by B, signifies that all training events are associated with the
same physical event. We introduce auxiliary parameters, like
m̃A and m̃B, to ensure that the masses across all events in a
batch remain consistent (e.g., mA1 of all events are the same,
and so on). This B information is dependent on the entire
batch of events. Finally, our loss function is defined as

Ltot ≡ 1

|B|
|B|∑
i=1

⎡
⎣ ∑

f ∈{A,B}
L#i

f

⎤
⎦,

L#i
f ≡ dE

(
m#i

f1
, m#i

f2

) + [
dB

(
m̃ f , m#i

f1

) + dB
(
m̃ f , m#i

f2

)]
, (1)

where |B| represents the batch size, indicating the number of
events in a batch B, #i denotes the event index, and f is the
target variable, either A or B. The functions dE (x1, x2) and
dB(x1, x2) are distance functions for event-wise and batch-
wise information, respectively. They satisfy mathematical
conditions: (d1) d (x1, x2) > 0 if x1 	= x2, d (x1, x1) = 0, (d2)
d (x1, x2) = d (x2, x1), (d3) d (x1, x2) � d (x1, y) + d (y, x2) for
any y in the sample. Various distance functions can be used,
such as d (x1, x2) = |x1 − x2|, |x1 − x2|2, or |x2

1 − x2
2 |. The

appropriate choice depends on the specific physical process
under study.
We illustrate the training procedure of DeeLeMa in Fig. 3. The
target variable points x#i

1 , x#i
2 are represented within spaces

X1 and X2, accompanied by the scalar value of the auxiliary
parameter x̃. By minimizing the loss function in Eq. (1) from

FIG. 3. Schematic representation of the role of the loss function
in simultaneously bringing dE (blue double-headed arrow) and dB
(red double-headed arrow) closer throughout the learning process
t = 0 to t = T .

the initial learning step at t = 0 to the end of training at t = T ,
we ensure that spaces X1 and X2 come closer together. Addi-
tionally, the overall distribution of points within these spaces
becomes more compact, leading to a reduction in their spread
or dispersion. This compactness and reduction in dispersion
are facilitated by the inclusion of the auxiliary parameter x̃.
For a comprehensive model implementation of DeeLeMa,
refer to Appendix.

IV. TEST OF DEELEMA PERFORMANCE

In pair production, practical experiments often encounter
issues with the misidentification of branches. Termed the com-
binatorics problem, this complication can result in erroneous
kinematic relations, leading to substantial uncertainties in the
derived solutions. To quantify the extent of this contamina-
tion, we introduce the parameter EC , defined as the fraction of
incorrectly assigned events relative to the overall number of
events, expressed as

EC ≡ wrong

wrong + correct
. (2)

We assess the efficacy of DeeLeMa through three distinc-
tive test runs:

(i) Test run (A) is conducted using a toy model featuring
fixed values of mA = 1000 GeV, mB = 800 GeV, and mC =
700 GeV, with no combinatorial errors (EC = 0).

(ii) Test run (B) mirrors (A) but incorporates
varying rates of combinatorial errors, specifically
EC = 0, 10%, 20%, 50%. This test aims to investigate
the influence of combinatorial errors on the performance of
DeeLeMa.

(iii) Test run (C) is executed on the standard model t t̄ and
t → W b → (�ν)b processes, encompassing EC = 20% and
accounting for detector smearing effects. We consider this test
run to closely simulate a realistic scenario.

We compare the results with those obtained using other
existing methods: the transverse mass variable MT 2 and
the on-shell constrained invariant mass variables M2CC , which
use similar constraints as DeeLeMa. We use the YAM2 pack-
age [38] to calculate M2 optimally.
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FIG. 4. [Toy] The correlation heatmap of the reconstructed momenta and the true momenta from the DeeLeMa (left) and M (ab)
2CC (right) for

the toy example with EC = 0.

A. Toy model

1. Toy model test with no contamination (EC = 0)

We selected narrow width values for mA, mB, and mC at
1000 GeV, 800 GeV, and 700 GeV, respectively. The cor-
relation heatmap in Fig. 4 displays the relationship between
the reconstructed momenta (horizontal axis) and the true mo-
menta (vertical axis) for the DeeLeMa method (left) and the
M (ab)

2CC method (right) applied to the toy example with EC = 0.
Ideally, the diagonal line (red, solid line) should represent
perfect efficiency with precon. = ptrue. As shown in the fig-
ure, the DeeLeMa method (left) exhibits a strong diagonal
correlation pattern, indicating high accuracy in reconstructing
the momenta. In contrast, the M (ab)

2CC method (right) shows a
weaker and more scattered correlation pattern, implying a
lower accuracy in momentum reconstruction. This demon-
strates the superior performance of DeeLeMa over traditional
methods.

The upper panel of Fig. 5 shows the reconstructed mass
distributions of B and A obtained with DeeLeMa for the
toy example with EC = 0. The blue dashed lines indicate
the reconstructed masses of mB1,2 and mA1,2 , respectively. The
red vertical lines indicate the true masses, and the black
dot-dashed line shows the auxiliary mass after training. In
the bottom panel, we compare the results with two existing
methods based on MT 2 (gray) and M2CC with suitable sub-
systems (b) and (ab) (orange and green), respectively [15].

We can see that the reconstructed mass distributions with
DeeLeMa are well centered around the true values, while the
MT 2 distribution shows the physical mass at the endpoint of

FIG. 5. [Toy] The reconstructed mass distributions of B and A
using DeeLeMa (upper), and MT 2, M (b)

2CC , and M (ab)
2CC (bottom) for the

toy example with EC = 0.
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TABLE I. The summary table for combinatorial efficiency EC .

EC m̃X [ GeV ] mX ± σ [ GeV ]

[ % ] m̃A m̃B mA1 mA2 mB1 mB2

0 1001.34 799.95 1000.45 ± 13.31 999.93 ± 13.59 799.59 ± 8.95 799.42 ± 9.05
10 1001.46 800.47 1007.41 ± 32.21 1007.18 ± 31.90 802.26 ±16.79 802.11 ± 16.55
20 1005.16 802.25 1013.56 ± 43.24 1013.14 ± 42.24 804.59 ± 21.82 804.41 ± 21.75
50 1010.73 807.61 1028.94 ± 62.56 1029.27 ± 61.39 810.87 ± 31.80 810.97 ± 31.59

the distribution, which often causes errors. The M (b)
2CC for mB

and the M (ab)
2CC for mA show slightly improved performances,

but still DeeLeMa provides the best results.
The disparity arises from the manner in which global in-

formation is assimilated during the machine learning training
phase, primarily facilitated through the auxiliary parameter x̃.
Conversely, in the context of the MT 2 or M2 method, global
information is solely derived from statistical outcomes, pri-
marily centered around kinematic endpoints. While numerous
events are typically clustered around these endpoints, leading
to a reconstruction of momenta close to the actual values,
there is a lack of subsequent optimization within the MT 2- or
M2-based reconstruction process.

Consequently, the precision is notably diminished, with the
kinematic endpoints becoming less distinct, particularly when
grappling with combinatorial ambiguities and accounting for
the effects of detector smearing. Subsequently, this degra-
dation in accuracy will be demonstrated in the subsequent
sections.

2. Toy model test with contamination (EC > 0)

To explicitly see the effect of combinatorics contamina-
tion, we conducted comprehensive test runs incorporating the
possibility of combinatorial errors, with a concise summary
of DeeLeMa’s performance presented in Table I. In these
instances, the peak positions have displayed a slight shift
towards larger values, owing to the influence of inaccurately
assigned data implying a relatively higher mass. Despite ac-
commodating up to 20% in combinatorial errors, DeeLeMa
exhibits sustained resilience and commendable performance,
accurately reconstructing masses within the 5 − 10% range of
the true values.

Notably, for cases where EC � 20%, the reconstructed
masses are within the vicinity of O(1)% of the true values,
attesting to DeeLeMa’s remarkable ability to mitigate the im-
pacts of combinatorial challenges effectively. Collectively, our
findings underscore DeeLeMa’s reliability and robustness as
a method proficient in the precise reconstruction of masses,
even in the face of demanding conditions prevalent in collider
environments.

B. Realistic test with standard model tt̄

We finally present the results of our investigation on a more
realistic case, the top quark pair production at the LHC, where
top quarks decay semileptonically as t t̄ → (b W +) (b̄ W −) →
(b �+ ν) (b̄ �− ν̄). In this case, we consider finite width effects
with σt = 1.4915 GeV, σW = 2.0476 GeV, and mt = 173.0
GeV, mW = 80.4190 GeV for the top quark and W boson,

respectively. Moreover, we also account for the uncertainties
related to the detector resolution. We simulated detector
effects by applying Gaussian smearing to the momenta. How-
ever, to achieve more accurate results, we encourage the
use of a more realistic detector simulation. For the two b
jets, we applied Gaussian smearing with jet pT values of
{10, 20, 30, 50, 100, 400, 1000} GeV and energy resolutions
of {40, 28, 19, 13, 10, 6, 5}%, respectively [26,39]. We took
the combinatorial ambiguity at EC = 20% for our simulation.

We present the results obtained using DeeLeMa in Fig. 6
(upper). The distributions for the reconstructed masses (mt ,
mW ) show robust peaks near the true values (red vertical
line), albeit slightly widened. To compare the performance
of DeeLeMa with conventional methods, we also present
the results obtained using M (ab)

2CC and MT 2 variables (lower).
DeeLeMa provides more accurate results compared to con-
ventional methods. In conventional methods, we need to read
the endpoints in the lower distributions, which can be chal-
lenging in practice due to realistic effects from finite widths,
detector smearing, and combinatorial mismatches.

V. CONCLUSION

We introduce DeeLeMa, a deep learning-based approach
to analyze high-energy particle collisions with multiple invis-
ible particles. DeeLeMa can reconstruct the event’s invisible

FIG. 6. [Realistic t t̄] The reconstructed mass distributions of B
and A using DeeLeMa (upper), and MT 2, M (b)

2CC and M (ab)
2CC (bottom)

for the t t̄ example.
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TABLE II. Hyperparameters used for the result plots in IV. Nnode denotes the number of nodes in each hidden layer, Nlayer represents the
number of hidden layers, η refers to the learning rate, |B| is the batch size, and epoch signifies the number of epochs.

Model Nnode Nlayer η |B| epoch mC �minit
B �minit

A d

Toy 256 5 10−2 2048 100 700 0.3 0.3 L1

t t̄ 256 5 5 × 10−4 2048 100 0 0.3 0.3 L1

momenta and masses, even when multiple invisible particles
are involved. Focusing on a challenging problem with
(Nvis, Ninv ) = (4, 2), we demonstrate the efficiency of
DeeLeMa : compared to conventional methods that rely on
kinematic variables such as MT 2 or M2, DeeLeMa deliv-
ers a significant improvement in accuracy. The reconstructed
masses show sharp peaks in the distribution, and the results
are robust against the combinatorial problem of misidentifi-
cation of final state particles and detector-smearing effects.
In conclusion, DeeLeMa has the potential to contribute to
advances in the field as a new solid tool.
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APPENDIX: THE DETAIL OF MODEL

The DeeLeMa is constructed using the PyTorch package
[40] and the Lightning library [41] as the front end, with the
Adam optimizer [42] for training. The model is trained on
GPUs with a specified batch size and number of epochs as
summarized in Table II. Additionally, we employ the GELU
(Gaussian Error Linear Unit) activation function [43] with a
tanh approximation and apply batch normalization. The de-
tailed architecture and hyperparameters are available on the
associated GitHub page [37].
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