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Thermodynamics and fluctuations in finite-time quantum heat engines under reservoir squeezing
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We investigate the thermodynamics and fluctuations of a finite-time quantum Otto engine alter- natively
driven by a hot-squeezed and a cold thermal reservoir. We show that reservoir squeezing significantly enhances
the performance by increasing the thermodynamic efficiency and the power and enables higher stability by
decreasing the relative power fluctuations and speeding up the convergence of quantum efficiency to its most
probable value. We also demonstrate the counterintuitive result that the efficiency can be larger than the Otto
limit in the finite-time operation. Experimental demonstration of this quantum heat engine can be available,
based on a single-electron spin pertaining to a trapped 40Ca+ ion [D. von Lindenfels et al., Phys. Rev. Lett.
123, 080602 (2019)]. We provide a general framework for reliably studying the finite-time nanoengine in
finite-time operation which accounts for quantum friction and coherence, deriving important insights into the
thermodynamic behaviors beyond the classical thermal machines.

DOI: 10.1103/PhysRevResearch.5.043185

I. INTRODUCTION

Quantum heat engines have become a laboratory reality,
notably the recent experiments realizing quantum Otto heat
engines on nuclear magnetic resonance [1,2] and nitrogen-
vacancy centers in diamond [3]. These thermal machines
wherein, apart from the working substance, the reservoirs may
be finite-dimensional and thus nonthermal [4,5], have access
to nanoscale open systems in which quantum effects manifest
themselves, such as coherence [6–18], entanglement [19–23],
correlations [24–27], quantum measurements [28–32], and
squeezing [33–39]. The quantum engines in the presence
of these additional freedoms may outperform their classical
counterparts [10,40–50]. This constitutes one of the central
issues in quantum thermodynamics.

For microscopic systems, heat and work are no longer de-
terministic [51–61], as is the case for macroscopic systems. As
a result, the efficiency and power for quantum heat engines are
stochastic, and both are fluctuating. The power fluctuations,
together with the efficiency fluctuations [62,63], as a limiting
factor for the practical usefulness in heat engines, measure
the machine stability [53]. Ideally, the quantum heat engine
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should have high efficiency (small entropy production), large
power, and small fluctuations for these thermodynamic vari-
ables measuring performance. Strong emphasis has been put
on the finite-time thermodynamics of the quantum heat en-
gines and particularly on fluctuations of power and efficiency
[63–70].

Unlike the previous studies considering nanoengines
[1,2,33,34,48,49,71], where quasistatic and local-equilibrium
approximations were required, and thus, some quantum ef-
fects were tied to ignoring, we develop a formalism for
analyzing the performance and stability for quantum heat
engines by overcoming these limitations. We show that both
efficiency and power are enhanced by reservoir squeezing
with the advantage of decreasing fluctuations of efficiency and
power, which is the generic case for finite-time cyclic heat
engines driven by nonthermal reservoirs. The result that the
efficiency can be enhanced by speeding up the machine even
in the absence of squeezing is in stark contrast to previous
reports [17,72–74]. We find the counterintuitive result that the
efficiency can beat the Otto limit when and only when the
unitary driving proceeds in finite time. The result relies only
on purely quantum origin, and it would not hold when either
unitary driven stroke or thermal-contact process satisfies the
quasistatic limit.

II. FINITE-TIME QUANTUM OTTO ENGINE MODEL

Consider a quantum Otto engine cycle working between
a hot-squeezed and a cold thermal bath [see Fig. 1(a)].
This engine cycle consists of two unitary and two isochoric
strokes. Firstly, unitary compression from state ρt0 to ρt1 with
t0 = 0: The energy gap is enlarged by a spin- 1

2 system with
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FIG. 1. Illustration of a spin- 1
2 system operating with a quantum

Otto cycle alternatively driven by a hot-squeezed and a cold thermal
bath. The system states at times t = ti with i = 0, 1, 2, and 3 are
denoted by ρti , where ρti are the initial states of the four strokes
in a cycle, respectively. In each cycle, the machine produces the
total work −〈wtot〉 by absorbing average heats from the hot and cold
baths, 〈qh〉 and 〈qc〉, where 〈qh〉 = −〈wtot〉 − 〈qc〉 due to the energy
conservation

Hamiltonian Hch(t ) = h̄ω(t )
2 {cos[πt/(2τch)]σx +

sin[πt/(2τch)]σz}, where ω(t ) = ωc(1 − t/τch) + ωh(t/τch),
with τch = t1 and 0 � t � τch, and σx,y,z are the Pauli
matrices. The driven Hamiltonian does not commute at
different times, generating quantum coherence in the energy
basis of the system. Secondly, isochoric heating from state
ρt1 to ρt2 : The system is weakly coupled to a hot-squeezed
reservoir at inverse temperature βh during time duration τh,
with τh = t2 − t1, while its Hamiltonian keeps a constant as
Hh(t ) = Hch(t1) = h̄ωhσz/2. Thirdly, unitary expansion from
state ρt2 to ρt3 : The driven Hamiltonian Hhc(t3 − t ) = Hch(t )
is realized by reversing the protocol used in the unitary
compression, such that the expansion Hamiltonian takes
the same time as the compression Hamiltonian, namely,
τdri = τhc = τch. Lastly, isochoric cooling from state ρt3 to
ρt3+τc : The system is weakly coupled with a cold thermal
reservoir at inverse temperature βc in time period τc, and its
Hamiltonian is kept constant at Hc(t ) = Hch(0) = h̄ωcσx/2.
These times τh, τc, and τdri set the total cycle period τcyc,
namely, τcyc = τh + τc + 2τdri. We consider the machine
working in the limit cycle [75] where a periodic steady state
is achieved with all the periodic variables.

The dynamics of a quantum system weakly coupled to a
heat reservoir of inverse temperature β can be described by
quantum master equation in Lindblad form [76,77]:

dρ

dt
= − i

h̄
[H, ρt ] + LD(ρt ), (1)

where LD is the Lindblad superoperator describing heat dis-
sipation responsible for driving the system to the thermal
equilibrium state, where ρt = ρ

eq
t = e−βH/Tr(e−βH ). It is

noted that, in the hot isochoric stroke, where the reservoir
is squeezed with squeezing parameter r, the dynamics in
Eq. (1) still holds by setting ρt = Ŝ (r)ρt Ŝ†(r), with Ŝ (r) =
exp(r∗σ− − rσ+) being dependent on both r and σ± =
(σx ± iσy)/2. Specifically, in the isochoric stroke where the

Hamiltonian is static, the master Eq. (1) turns out to be [77,78]

d

dt
ρt ≡ Lsq

D (ρt )

= γh
(
N ss

h + 1
)(

σ−ρtσ+ − 1

2
σ+σ−ρt − 1

2
ρtσ+σ−

)
+ γhN ss

h

(
σ+ρtσ− − 1

2
σ−σ+ρt − 1

2
ρtσ−σ+

)
− γhMσ+ρtσ+ − γhM∗σ−ρtσ−, (2)

where we have used

N ss
h = N th

h [cosh2(r) + sinh2(r)] + sinh2(r) (3)

to denote the excitation number of the system, which
reaches the steady state with the squeezed bath [77]. Here,
N th

h = [exp(βhh̄ωh) − 1]−1, and M = − 1
2 sinh(2r)eiθ (2N th

h +
1), with the phase factor θ , and with the vacuum decay rate
γh, which indicates the system-bath interaction strength.

From Eq. (2), one can find [78] that the time-dependent
state ρ(t ) along the hot isochore can be determined according
to

ρt =
(

1+〈σz (t )〉
2 X
X ∗ 1−〈σz (t )〉

2

)
, (4)

where X = exp(−iωht )[exp(γhat ) + 1]exp[−γh(2N ss
h + 1 +

a)t/2]〈σ−(t1)〉/2 + sinh(γhat/2)exp[iθ − γh(2N ss
h + 1)t/2]

〈σ+(t1)〉, with a = sinh(2r)(1 + 2N th
h ), and 〈σz(t )〉 =

exp[−γh(2N ss
h + 1)t]〈σz(t1)〉 − {1 − exp[−γh(2N ss

h + 1)t]}/
(2N ss

h + 1). The density matrix at the end of hot isochore ρt2
can be determined by Eq. (4) if we set t = t2.

If the hot isochore is slow enough such that τh � τh,relax,
where τh,relax is the relaxation time of the system with the hot
bath, the steady state ρss

t of the system can be reached at the
end of this stroke, and it can obtained by setting dρss

t /dt = 0.
In such a case, the density matrix Eq. (4) reduces to

ρss
h ≡ ρss

t2

∣∣∣
τh�τh,relax

=
(

pe,ss
t2 0

0 pg,ss
t2

)
, (5)

where pe,ss
t2 = N ss

h /(2N ss
h + 1) and pg,ss

t2 = 1 − pe,ss
t2 . If we in-

troduce the effective inverse temperature:

βeff
h = 1

h̄ωh
ln

N ss
h + 1

N ss
h

, (6)

to rewrite the excitation number as N ss
h = 1/[exp(βeff

h h̄ωh) −
1], the detailed balance is restored in the squeezing
case owing to the relation 〈e(t2)|ρt2 |e(t2)〉/〈g(t2)|ρt2 |g(t2)〉 =
exp(−βeff

h h̄ωh), with τh � τh,relax. When τh � τh,relax, the
system could be fully thermalized along the hot isochore,
and all the coherence produced in the compression would be
erased [see Eq. (5)]. However, for incomplete thermalization
with τh � τh,relax, a residual amount of the coherence is re-
tained, and thus, the parameter X in Eq. (4) is nonzero. Such
coherence that endures in this finite-time isochoric process
will be present in the next driven stroke.

Along the isochoric cooling stroke, where no squeezing
is present and r = 0, the dynamics of the state ρt is given
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by [77]

d

dt
ρt = γc

(
N th

c + 1
)(

σ−ρtσ+ − 1

2
σ+σ−ρt − 1

2
ρtσ+σ−

)
+ γcN th

c

(
σ+ρtσ− − 1

2
σ−σ+ρt − 1

2
ρtσ−σ+

)
, (7)

where N th
c = [exp(βch̄ωc) − 1]−1 is the excitation number of

the system at thermal equilibrium with the cold bath, and γc

is the interaction strength between the system and the cold
thermal bath. Using Eq. (7), we can obtain the density operator
ρt of the system along the cold isochore and then make a
unitary transformation of the density matrix from the σz basis
to the σx basis to arrive at

ρt = R
(

1+〈σz (t )〉
2 Ye−iωct

Y∗eiωct 1−〈σz (t )〉
2

)
R†, (8)

where the transformation matrix R =[〈e(t1)|e(t0)〉 〈g(t1)|e(t0)〉
〈e(t1)|g(t0)〉 〈g(t1)|g(t0)〉

]
, Y = exp[−γc(2N th

c + 1)t/2]

〈σ−(t3)〉, and 〈σz(t )〉 = exp[−γc(2Neq
c + 1)t]〈σz(t3)〉 − {1 −

exp[−γc(2Neq
c + 1)t]}/(2Neq

c + 1). Setting t = t0, the density
matrix at the end of cold isochore ρt0 can be determined by
Eq. (8).

When the time duration τc is much larger than the re-
laxation time τc,relax, Y becomes vanishing, and the system
reaches thermal equilibrium at the end of the cooling stroke,
and then the state of the system takes the form (in the σx basis):

ρeq
c ≡ ρt0

∣∣∣
τc�τc,relax

=
(

1
2

pe,eq
t0

−pg,eq
t0

2
pe,eq

t0
−pg,eq

t0
2

1
2

)
, (9)

where pe,eq
t0 = Neq

c /(2Neq
c + 1) and pg,eq

t0 = 1 − pe,eq
t0 .

For a unitary driven stroke where the system is isolated
from the heat reservoir, Eq. (1) describing the system dy-
namics turns out to be dρt/dt = − i

h̄ [H, ρt ]. After obtaining
density matrices of the system at the respective ends of the two
isohcoric strokes ρt2 and ρt0 , the system states at the respective
ends of the two unitary driven strokes ρt1 and ρt3 can be de-
rived by using ρt1 = Uchρt0U

†
ch, ρt3 = Uhcρt2U

†
hc, where Uch =

T> exp{− i
h̄

∫ t1
t0

dtHch(t )} and Uhc = T> exp{− i
h̄

∫ t3
t2

dtHhc(t )},
with the time-ordering operator T>.

III. STATISTICS OF HEAT AND WORK

In a realistic scenario, we consider that the interaction
between the system and the external field is weak, and the
change of internal energy is equal to the work extracted from
the system. We then use a full counting statistics method
[79,80] to obtain the work distribution along the driving com-
pression as

p(wch) =
∑

n,n′,m

U mn
ch 〈n(t0)|ρt0 |n′(t0)〉U n′m†

ch

×δ

[
wch −

(
εh

m − εc
n + εc

n′

2

)]
, (10)

where we have used Hch(t0)|n(t0)〉 = εc
n|n(t0)〉,

Hch(t0)|n′(t0)〉 = εc
n′ |n′(t0)〉, Hch(t1)|m(t1)〉 = εh

m|m(t1)〉,
U mn

ch = 〈m(t1)|Uch|n(t0)〉, and U n′m†
ch = 〈n′(t0)|U †

ch|m(t1)〉.

Here, the term |〈n(t0)|Uch|m(t1)〉|2 denotes the transition
probability between the system eigenstates |n(t0)〉 and |m(t1)〉,
and 〈n(t0)|ρt0 |n(t0)〉 is the probability of the system being in
state |n(t0)〉. For the two-level system under consideration, we
use |g〉 and |e〉 (n, m = g, e) to denote the ground and excited
eigenstates, respectively. When the driven stroke is quantum
adiabatic, transition between any two eigenstates will not
happen, and therefore, |〈n(t0)|Uch|m(t1)〉|2 = δnm. However,
along the finite-time driven stroke, the inner friction causes
the transitions among the instantaneous energy eigenstates,
resulting in the irreversible work.

As no work is produced along the hot isochoric process,
the stochastic heat injection is equivalent to the increase of
the system eigenenergy. The transition probability from eigen-
state k to l along the hot isochore |〈k(t1)|Uh(t )|l (t2)〉|2, with
the time evolution operator Uh(t ), can be obtained by using
ρt = Uh|k(t1)〉〈k(t1)|U †

h to arrive at |〈k(t1)|Uh(t )|l (t2)〉|2 =
〈l|ρt |l〉. Using Hh(t )|l (t2)〉 = εh

l |l (t2)〉 and Hh(t )|k(t1)〉 =
εh

k |k(t1)〉, it follows that the probability distribution for the
heat absorbed during this stroke reads

p(qh|wch) =
∑
k,l

δ
[
qh − (

εh
l − εh

k

)]〈l (t2)|ρt2 |l (t2)〉δkm, (11)

where 〈l (t2)|ρt2 |l (t2)〉 is the probability of finding the system
to be in eigenstate |l (t2)〉.

Like in the first stroke, the internal friction (due to fi-
nite time evolution) will bring coherence and result in the
transition between the eigenstates of the Hamiltonian Hhc(t3)
and Hhc(t2). The quantum work distribution along the driven
stroke can be expressed as

p(whc|wch, qh) =
∑
i,i′, j

U j,i
hc 〈i(t2)|ρt2 |i′(t2)〉U i′ j†

hc

× δ

[
whc −

(
εc

j − εh
i + εh

i′
2

)]
δi,l , (12)

where we have used Hhc(t2)|i(t2)〉= εh
i |i(t2)〉, Hhc(t2)|i′(t2)〉=

εh
i′ |i′(t2)〉, Hhc(t3)| j(t3)〉 = εc

j | j(t3)〉, U ji
hc = 〈 j(t3)|Uhc|i(t2)〉,

and U i′ j
hc = 〈i′(t2)|U †

hc| j(t3)〉. The term |〈i(t2)|Uhc| j(t3)〉|2 is
the transition probability from state |i(t2)〉 to | j(t3)〉, and
〈i(t2)|ρt2 |i′(t2)〉δi,i′ denotes the probability for finding the sys-
tem in state |i〉.

The stochastic work extracted from the system in a single
cycle is −wtot = −(wch + whc), and the stochastic efficiency
reads η = −wtot/qh. The joint distribution for the work output
wch, whc and heat qh can be determined according to Eqs. (10),
(11), and (12) to arrive at

p(wch, qh, whc) = p(whc|wch, qh)p(qh|wch)p(wch)

=
∑

n,n′m,i,i′, j

δ

[
wch −

(
εh

m − εc
n + εc

n′

2

)]
× δ

[
qh − (

εh
i − εh

m

)]
× δ

[
whc −

(
εc

j − εh
i + εh

i′
2

)]
×U mn

ch 〈n(t0)|ρt0 |n′(t0)〉U n′m†
ch

×U ji
hc〈i(t2)|ρt2 |i′(t2)〉U i′ j†

hc . (13)
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FIG. 2. (a) Transition probability as a function of driving time τdri. (b) Coherence and Kullback-Leibler divergence at t = t2, with τh = 0.2
and τdri = 5 × 10−4. (c) Transitionless work, frictional work, and coherent work as a function of squeezing parameter r with τh = 0.2, τdri =
5 × 10−4; (d) Transitionless work, frictional work, and coherent work as a function of thermal-contact time with τdri = 5 × 10−4, r = 0. The
parameters are h̄ = 1, ωc/2π = 1000, ωh/2π = 2250, βc = 2/(h̄ωc ), βh = 1/(h̄ωh ), τc = 3, and γc = γh = 3.

This sets the joint distribution of the total work wtot for a cycle
with quantum heat injection qh:

p(qh, wtot ) =
∫

dwchdwhcδ[wtot − (wch + whc)]

×p(wch, qh, whc). (14)

Based on Eq. (14), we find that the average work 〈wtot〉,
average injection 〈qh〉, and work fluctuations δw2

tot = 〈w2
tot〉 −

〈wtot〉2 are given by

−〈wtot〉 = h̄(ωh − ωc)(〈nt2〉 − 〈nt0〉)

+ 2h̄ξ (ωc〈nt2〉 + ωh〈nt0〉)

− 2h̄ωhζch − 2h̄ωcζhc, (15)

〈qh〉 = h̄ωh[〈nt2〉 + 〈nt0〉(2ξ − 1) − 2ζch], (16)

δw2
tot = h̄2ω2

h

{
1
2 − 〈nt2〉2 − [〈nt0〉(1 − 2ξ ) + 2ζch]2

}
+ h̄2ω2

c

{
1
2 − 〈nt0〉2 − [〈nt2〉(1 − 2ξ ) + 2ζhc]2

}
+ h̄2ωcωh{2〈nt0〉[〈nt0〉(1 − 2ξ ) + 2ζch]

+ 2〈nt2〉[〈nt2〉(1 − 2ξ ) + 2ζhc] + 2ξ − 1}, (17)

where we have used 〈nti〉 := Tr(ρti H )/(h̄ωi ), with ωh = ω2

and ωc = ω0, to denote the average populations at times t = ti.
Here, ζch := −Re[U gg

ch ρmn
t0 U eg†

ch ], ζhc := −Re[U gg
hc ρ

i j
t2 U eg†

hc ],
and ξ ≡ |〈n(t0)|Uch|m(t1)〉|2 = |〈i(t2)|Uhc| j(t3)〉|2, with

U mn
ch,hc = 〈m(t1,3)|Uch,hc|n(t0,2)〉(m, n, i, j = e, g). The

detailed derivation of Eqs. (15), (16), and (17) is presented
in Appendix A. The Hamiltonian-dependent parameter ξ that
denotes the level transition probability [1] during expansion
or compression for the spin system decreases with increasing
driving time τdri, though not monotonically, and it tends to
be zero when the time is long enough to satisfy quantum
adiabatic condition, as shown in Fig. 2(a).

The parameters ζhc and ζch in Eq. (15) are associated with
the quantum coherence, of which the amount is quantified
by the relative entropy of coherence [81]: C(ρ) = S[E (ρ)] −
S(ρ)(with S(ρ) = −Tr[ρlnρ]). Here, E (·) = ∑

n �n(·)�n is
the dephasing map by removing all coherence in the energy
basis, with �n := |n〉〈n| being the projection operator of ρ.
The residual coherence at the end of the hot isochore C(ρt2 ) in-
creases as r increases, as shown in Fig. 2(b), where the relative
entropy D(ρt2 ||ρss

h ) = Tr[ρt2 (ln ρt2 − ln ρss
h )], with ρss

h = ρss
t2 ,

increases with increasing r, as it should. Quantum coherence
generated during in the unitary expansion (compression) in-
terferes with residual coherence after the finite-time hot (cold)
isochore. To reveal the effect of such a dynamical interference
on the thermodynamic quantities of the machine, our quantum
engine is compared with an alternative cycle, where a full
dephasing operation [8] is performed to completely remove
all coherence after the hot isochore with any value of thermal-
contact time τh. In what follows, we use the superscript deph
to describe the quantities corresponding to the dephased en-
gine cycle.

043185-4
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The average work −〈wtot〉 in Eq. (15) can be split up into
the two terms: −〈wtot〉 = 〈wdeph〉 + 〈wcoh〉, where 〈wdeph〉 =
〈wtrls〉 + 〈wfri〉, with 〈wtrls〉 =: h̄(ωh − ωc)(〈nt2〉 − 〈nt0〉) and
〈wfri〉 =: 2h̄ξ (ωc〈nt2〉 + ωh〈nt0〉), is the average work in the
dephasing case, and 〈wcoh〉 = −2h̄ωhζch − 2h̄ωcζhc is the av-
erage work associated with quantum coherence. Here, 〈wtrls〉
indicates the work in the transitionless case, where the transi-
tions in the instantaneous energy eigenstates are removed, and
〈wfri〉 represents the additional work that overcomes the inner
friction causing unwanted diabatic transitions in instantaneous
energy eigenstates. The squeezing results in an increase in the
transitionless work and the coherent work but a decrease in
the amount of frictional work which is always negative, as
shown in Fig. 2(c). The transitionless work 〈wtrls〉 increases
with increasing thermal-contact time τh to reach the maximum
value at which the system approaches the thermal state, but
the effects of τh on both frictional work 〈wfri〉 and coherent
work 〈wcoh〉 are particularly small, as shown in Fig. 2(d).
The coherent work displays the oscillations in quick isochoric
stroke since the coherence C(ρt2 ), which interferes with the
coherence generated during the unitary expansion, is only
partially erased.

IV. EFFICIENCY BOUND AND STATISTICS

When the open quantum system evolves along an isochoric
process, the external field is frozen, and the control parameter
is fixed, leading to a static system Hamiltonian H (t ) = H . The
irreversibility of this system can be well described by the so-
called nonadiabatic entropy production rate:

〈�̇〉 = − d

dt
D

(
ρt

∣∣∣∣ρss
t

) = Ṡt − �̇t , (18)

where D(ρt ||ρss
t ) = Tr[ρt (ln ρt − ln ρss

t )] is the Kullback-
Leibler-Umegaki divergence (also called the relative entropy)
[82]. In Eq. (18), Ṡt can be given by Ṡt = −Tr(ρ̇t ln ρt + ρ̇t ) =
−Tr(ρ̇t ln ρt ), and it indicates the rate of change of the von
Neumann entropy of the system St = −Tr(ρt ln ρt ). The sec-
ond contribution �̇, called the excess entropy production rate,
is determined by [83] �̇ = −Tr(ρ̇t ln ρ

eq
t ), which defines the

effective rate of entropy flow into the system from its sur-
roundings. Under squeezing, this excess entropy production
rate can be expressed as �̇sq = −Tr(ρ̇t ln ρss

t ).
The working substance returns to its initial state after a

single cycle, and thus, its entropy change is zero [8], which
means

∫ τcyc

0 Ṡ(t )dt = 0, with τcyc = τh + τc + 2τdri. We there-
fore find that, for the cyclic engine, the nonadiabatic entropy
〈�〉 is equivalent to the excess entropy, and it is coming
exclusively from the two system-bath interaction intervals. As
emphasized, the working system in the long time intervals of
system-bath interaction should reach the thermal state ρ

eq
c in

Eq. (9) in the absence of reservoir squeezing or steady state
ρss

h in Eq. (5) in the presence of squeezing. For the engine
cycle, the total entropy production turns out to be 〈�tot〉 =∫ τcyc

0 〈�̇〉dt = − ∫ t2
t1

�̇sqdt − ∫ τcyc

t3
�̇dt .

Hence, the irreversible production 〈�tot〉 of the cycle can
be calculated as 〈�tot〉 = [Tr(ρt2 ln ρss

h ) − Tr(ρt1 ln ρss
h )] +

[Tr(ρt0 ln ρ
eq
c ) − Tr(ρt3 ln ρ

eq
c )]. It then follows that the total

entropy production is given by

〈�tot〉 = −βeff
h [Tr(ρt2 Hh) − Tr(ρt1 Hh)]

−βc[Tr(ρt0 Hc) − Tr(ρt3 Hc)]

= −βeff
h 〈qh〉 − βc〈qc〉, (19)

where we have used 〈qh〉 = Tr(ρt2 Hh) − Tr(ρt1 Hh) and
〈qc〉 = Tr(ρt0 Hc) − Tr(ρt3 Hc). By very simple algebra, the
total entropy production in Eq. (19) can be rewritten as
〈�tot〉= D(ρt0 ||ρeq

t0 )+D(ρt2 ||ρss
t2 )−D(ρt1 ||ρss

t1 ) − D(ρt3 ||ρeq
t3 ) =

D[E (ρt0 )||ρeq
t0 ]+C(ρt0 ) + D[E (ρt2 )||ρss

t2 ] +C(ρt2 ) − D[E (ρt1 )||
ρss

t1 ] − C(ρt1 ) − D[E (ρt3 )||ρeq
t3 ] − C(ρt3 ). Using Eq. (19), we

derive the machine efficiency as ηth = 1 + 〈qc〉/〈qh〉 = 1 −
(βeff

h 〈qh〉 + 〈�tot〉)/(βc〈qh〉), where βeff
h , defined by Eq. (6), is

given by βeff
h = ln({2 cosh 2r + [exp(βhh̄ωh) − 1](cosh 2r +

1)}/{2 cosh 2r + [exp(βhh̄ωh) − 1](cosh 2r − 1)])/(h̄ωh).
Introducing the so-called generalized efficiency η

gen
C =

1 − βeff
h /βc, we then obtain

ηth = η
gen
C − 〈�tot〉

βc〈qh〉 , (20)

which is bounded by the generalized Carnot efficiency η
gen
C =

1 − βeff
h /βc due to positive entropy production 〈�tot〉 and

average heat injection 〈qh〉, as it should be. In the limit of ei-
ther high temperature or small squeezing, ηth = sinh(2r)ηC −
�tot/(βc〈qh〉), where ηC = 1 − βh/βc, showing that the reser-
voir squeezing improves the efficiency, but the irreversible
entropy production deteriorates the performance. Since the
system state may not be thermal even in the quasistatic limit,
the efficiency is irrelevant to the Carnot bound, and it is
bounded by the generalized Carnot value η

gen
C due to positive

entropy production �tot and average heat injection 〈qh〉. While
this efficiency in Eq. (20) is irrelevant to the Carnot bound
[7], another type of the efficiency, in which excess work and
housekeeping heat is introduced to consider the additional
energy cost for maintaining reservoir squeezing, is bounded
by the Carnot value (see Appendix B for details).

By using Eqs. (15) and (16), we derive the thermodynamic
efficiency ηth = −〈wtot〉/〈qh〉 to obtain

ηth = ηOtto + 2(ωc/〈qh〉)[ξ (〈nt0〉 + 〈nt2〉) − ζhc − ζch], (21)

where ηOtto = 1 − ωc/ωh is the so-called Otto efficiency. Be-
cause the times taken for two isochoric and two unitary strokes
are finite, the quantum coherence and inner friction are cre-
ated, resulting in that the efficiency depends on both these two
kinds of quantum effects. Quite interestingly, the efficiency
ηth for the heat engine may surpass the Otto efficiency ηOtto

[1], if ξ (〈nt0〉 + 〈nt2〉) > ζhc + ζch. It is of interest to note the
two cases (see Appendix C): (i) While the efficiency is inde-
pendent of squeezing in the case of large difference between
two reservoir temperatures, it is sensitively dependent on the
squeezing parameter r in the linear response regime, where
the difference between two reservoir temperatures is small;
(ii) the efficiency depends on the degree of squeezing in the
low-temperature and high-temperature limits.

In contrast to the average work, the average efficiency of
the quantum Otto engine may be ill defined due to the possible
divergence of the stochastic efficiency [63,64]. Hence, we
resort to large deviation theory associated with the exponential
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(a) (b) (c)

FIG. 3. (a) Power (up) and thermodynamic efficiency (bottom) as a function of driving time with τh = 0.5. (b) Power (up) and thermo-
dynamic efficiency (bottom) as a function of thermal-contact time with τdri = 0.0005. (c) Power (up) and efficiency (bottom) as a function of
squeezing parameter with given τh under τdri = 0.0005. In (b), the dephased engine cycles (labeled deph) are indicated by the red dotted line,
blue dashed line, and black dot-dashed line, respectively. The other parameters are same as in Fig. 2.

decay of probabilities of large fluctuations, assuming that the
quantum engine proceeds in the long time limit.

We use large deviation theory [59] to analyze the efficiency
statistics. We recall that the large deviation functions of the
joint distribution p(qh, wtot ) and the efficiency distribution
pK (η) for a large number of cycles (K � 1) are gov-
erned by the respective asymptotic forms of pK (qh, wtot ) �
exp[−KI (qh, wtot )], and pK (η) � e−KJ (η). The large devia-
tion functions I (qh, wtot ) and J (η) describe the exponentially
unlikely deviations of qh, wtot, and η from their most prob-
able values. The rate function J (η) can be obtained from
I (qh, wtot ) by the contraction J (η) = min

qh

I (qh,−ηqh). When

defining q(K )
h := ∑K

j=1 q( j)
h /K , w(K ) := ∑K

j=1 w( j)
tot /K [60,61],

we have φ(ϕ1, ϕ2) = lim
K→∞

1
K ln〈exp{K[ϕ1q(K )

h + ϕ2w(K )]}〉 =
ln〈exp(ϕ1qh + ϕ2wtot )〉, where we have used 〈exp(ϕ1qh +
ϕ2wtot )〉 = ∫∫

dqhdwtot exp(ϕ1qh + ϕ2wtot )p(qh, wtot ). Using
the Legendre-Fenchel transform, one then obtains the large
deviation function of quantum efficiency as

J (η) = −min
ϕ2

φ(ϕ2η, ϕ2), (22)

where φ(ϕ1, ϕ2) = ln〈exp(ϕ1qh + ϕ2wtot )〉.

V. NUMERICAL RESULTS FOR EFFICIENCY AND POWER

In Fig. 3(a), the power oscillates as a function of the driving
time τdri, and very quick driving speed results in poor power
output. In our model, where the driving time τdri is much
smaller than the thermal-contact time τh (τc), and thus, the
total cycle period τcyc is dominated by τh,c, the contribution
of the driving time to the power mainly comes from quantum
inner friction which is responsible for irreversible work. The
efficiency increases with increasing driving time, although not
monotonically.

We observe from Fig. 3(b) that the power first increases
in small τh and then decreases with further increase in τh.
During the fast hot isochoric stroke, the decoherence of the
system is suppressed, yielding the additional, coherent work
〈wcoh〉 which is responsible for the oscillation. Because the
transitionless work 〈wtrls〉 dominating the total work increases
faster than linearly with increasing τh, the power increases
with increasing τh to a certain maximum value and then
decreases gradually. The shapes of the efficiency and power
curves are similar, except that ηth increases with τh to reach
its maximum value consistent with η

gen
C . Interestingly, in the

large squeezing case, (r = 1) leads to large coherence [see
Fig. 2(b)] and thus large interference effect, which accounts
for large oscillations of the power and efficiency, but these
two performance measures become equivalent to their re-
spective dephased counterparts in the long time τh, where
coherence is full erased, as they should be [see Fig. 2(d)].
By suitably controlling over the driving and thermalization
times, the quantum engine may run in a favorable regime
where both efficiency and power can be enhanced, as shown in
Fig. 3(b).

The coherent work 〈wcoh〉 in Fig. 2(d) may contribute
to the increase of the extracted net work. If the machine
parameters are properly adjusted, the faster the unitary and
thermal-contact processes are performed, the greater the
contribution of the coherence to the total work extracted
since coherent work increases with speeding up these pro-
cesses. The increase of the extracted work with shortening
of time may lead to increase power [see Fig. 3(c) (up)]
and, surprisingly, causes efficiency to surpass the Otto limit
that is reached when coherence is fully erased, or it is
not generated along the unitary stroke. Thus, the main
message from Fig. 3(c) (bottom), confirms our theoretical
prediction in Eq. (21) that quantum coherence, of purely
quantum origin, can lead to a marked difference in machine
performance.
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(a) (b)

(c)

FIG. 4. Root-mean-square relative fluctuation of power
√

δP2/P as functions of (a) driving time τdri and (b) thermalization time τh. In (a),
the green dash-dotted line indicates the lower bound csch[ f (〈�〉)] (dot-dot-dash line), where f (〈�〉) is the inverse function of 〈�〉 tanh(〈�〉).
A logarithmic scale is used in the root-mean-square relative fluctuation (ordinate axis) in (a) and (b). (c) Large deviation function of efficiency
J (η) as a function of stochastic efficiency η. While the vertical dash-double-dot line patterns (black, red, and blue) represent the values of the
stochastic efficiency η equivalent to the thermodynamic efficiencies (ηth|r=0 = 0.461, ηth|r=0.3 = 0.485, and ηth|r=0.6 = 0.512), the vertical
dash-dotted lines (black, red, and blue) indicate the values of the stochastic efficiency η corresponding to the generalized Carnot efficiencies
(ηgen

C |r=0 = 0.778, η
gen
C |r=0.3 = 0.817, and η

gen
C |r=0.6 = 0.884). In (a), τh = 0.5, in (b), τdri = 0.0005, and in (c), τdri = 0.001 and τh = 5. The

other parameters are same as in Fig. 2.

The root-mean-square relative fluctuation of power√
δP2/P is equivalent to the coefficient of variation of

the work
√

δw2
tot/〈wtot〉. It measures the dispersion of the

probability distribution and thus describes the machine sta-
bility. The relative power fluctuation decreases quickly as
squeezing parameter r increases, as shown in Figs. 4(a)
and 4(b). Note that the total stochastic entropy produc-
tion �, �(qh, wtot ) = (βc − βeff

h )qh + βcwtot, is distributed
according to the probability distribution p(�). This distri-
bution and its counterpart for the time-reversed cycle [the
clockwise direction in Fig. 1(a)] satisfy the fluctuation theo-
rems p(�) = pR(−�)e� [56]. These theorems always imply
the generalized thermodynamic uncertainty relation for the
stochastic work of the form δw2

tot/〈wtot〉2 � csch2[ f (〈�〉)]
[57,58], where f (x) is the inverse function of x tanh(x). The
coefficient of variation of power is therefore bounded by√

δP2/P � csch[ f (〈�〉)], with the total entropy production
〈�〉 = −(βc〈qc〉 + βeff

h 〈qh〉), as can been seen from Fig. 4(a).
Figure 4(b) shows that the oscillation time scale of power
fluctuation with respect to the thermal-contact time τh agrees
with the corresponding power and efficiency in Fig. 3(b). The
relative power fluctuation

√
δP2/P decreases while thermal-

contact time τh or driving time τdri increases. In physical

terms, the larger the thermal-contact time or driving time
(quick driving accounting for quantum coherence), the closer
the system to the stationary state, so the nonequilibrium ther-
mal fluctuation of the power is expected to decrease.

We plot the large deviation function of stochastic effi-
ciency in Fig. 4(c), where the curve has a maximum when the
stochastic efficiency η = η

gen
C (ηgen

C reduces to the Carnot ef-
ficiency ηC = 1 − βh/βc if r = 0) and a minimum at η = ηth.
Since the work and heat are fluctuating quantities, the negative
values of the stochastic efficiency η, with η = wtot/qh, occur
when the heat qh is positive with negative work wtot or vice
versa, and the values of the efficiency >1 happen when the
heat qc is positive. The function J (η) is situated between
a maximum at the generalized Carnot efficiency η

gen
C and a

minimum at the thermodynamic efficiency ηth, which recovers
the case of no squeezing [65,67]. We find that the standard
thermodynamic efficiency is the most likely value, and the
generalized Carnot efficiency is the least likely. Furthermore,
the rate function J (η) is strictly larger in the presence of
squeezing than the case without squeezing, with the exception
of the point η = ηth. Figure 4(c) shows that the convergence
of the heat engine toward the thermodynamic efficiency is
improved by including the reservoir squeezing. This may be
understood by noting that quantum efficiency fluctuations,

043185-7



YANG XIAO et al. PHYSICAL REVIEW RESEARCH 5, 043185 (2023)

which can be related to machine stability, are suppressed
under reservoir squeezing.

VI. DISCUSSIONS AND CONCLUSIONS

Experimentally, a quantum Otto engine alternatively driven
by a thermal and a squeezed bath can be implemented by
employing the spin of the valence electron pertaining to a
single trapped 40Ca+ ion [84,85] confined in a Paul trap. As
the magnetic field along the z direction yields a Zeeman split-
ting, the Hamiltonian of the spin system can be given by H =
h̄ωzσz/2. The coupling between the spin and harmonic motion
is mediated via an optical standing wave by a spin-dependent
optical dipole force along the oscillation (x) direction, which
reads h̄�sw sin(kswx̂)σz/2, with the amplitude of the standing
wave �sw and effective wave number ksw. The unharmonic
term h̄�sw sin(kswx̂)σz/2 will be responsible for realization
of the squeezed state of the motion [85,86]. The machine
performance can be observed when choosing experimental
parameters, which confirms our theoretical prediction based
on the choice of values for ωc and ωh falling into a relatively
large range (see Appendix D).

The efficiency at maximum power, the focus of field of
finite-time thermodynamics, is the quantity of great interest
for practical applications. Under an endoreversible condition
[87], where the irreversibility originates exclusively from the
thermal-contact processes due to finite heat currents, both
unitary strokes satisfy the quantum adiabatic condition, and
thus, the parameters ξ and ζhc,ch are vanishing. In such a case,
the dynamics of the system along the hot isochore with t1 �
t � t2 and the cold isochore with t3 � t � t3 + τc, Eqs. (2)
and (7), takes the form:(

ṗe
t 0

0 ṗg
t

)
= �−

α

(−pe
t 0

0 pe
t

)
+ �+

α

(
pg

t 0
0 −pg

t

)
, (23)

where the subscripts α = h, c correspond to the hot and cold
isohoric strokes, respectively. Here, �+

h = γhN ss
h and �−

h =
γh(1 + N ss

h ), with N ss
h defined in Eq. (3); �+

c = γhN th
c and

�−
c = γh(1 + N th

c ), with N th
c = [exp(βhh̄ωh) − 1]−1. Based on

Eq. (23), we obtain the explicit expressions of the power
as a function of the time allocations to the four processes
and then maximize the power in the two consecutive steps,
showing that the expression for the efficiency at maximum
power [33,34] ηmp = 1 − √

sech(2r)βh/βc is reproduced in
the high-temperature limit (see Appendix C for more details).

A natural extension of our approach allows us to discuss
another quantum engine model that works with a harmonic
system. Unlike the case in our previous model, where the
working substance is a two-level system, in the present ma-
chine, there are many energy levels for the harmonic system.
In the case when a harmonic system with constant Hamil-
tonian H is weakly coupled to a heat reservoir, we start
our analysis by using Eq. (1), dρ

dt = − i
h̄ [H, ρt ] + LD(ρt ).

Since we cannot directly determine the time-dependent den-
sity matrix as we did for the spin system, we determine the
expectation value of an operator X̂ which is not explicitly time
dependent by using the Lindblad equation, which reads

d〈X̂ 〉
dt

= − i

h̄
〈[H, X̂ ]〉 + Tr[X̂LD(ρt )]. (24)

Here, the dissipation term LD(ρt ) can be written in terms of
annihilation and creation operators (â and â†) [75]:

LD(ρt ) = γ (n̄ + 1)
[
âρt â

† − 1
2

{
â†â, ρt

}]
+ γ n̄

[
â†ρt â − 1

2 {ââ†, ρt }
]
. (25)

If the reservoir is squeezed, â (â†) in Eq. (25) is
replaced by âs (â†

s ), with âs = â cosh(r) + â† sinh(r) [75],
leading to LD(ρt ) = γ (n̄ + 1)[âsρt â†

s − 1
2 {â†

s ρt âs, ρt }] +
γ n̄[â†

s ρt âs − 1
2 {âsâ†

s ρt }]. To describe the instantaneous
state of the harmonic oscillator, we introduce three
operators: the Hamiltonian H = 1

2mP2 + m
2 ω2Q, the

Lagrangian L = 1
2mP2 − m

2 ω2Q, and the position momentum
correlation C = 1

2ω(QP + PQ). These operators are

given by H = 1
2 h̄ω(ââ† + â†â), L = − h̄ω

2 (â2 + â†2
), and

C = −i h̄ω
2 (â2 − â†2

), respectively. With these, we can obtain
the resulting finite-time performance and fluctuations in the
harmonic quantum engines, demonstrating that the findings
from the two-level heat engines can be translated into the
harmonic thermal machines (see Appendix E).

In summary, we have presented a unified thermody-
namic theory for a squeezed-bath-driven quantum Otto engine
whereby all the variables are periodic and the efficiency is
irrelevant to the Carnot value. We have shown that the engine
under squeezing can outperform its nonsqueezing counterpart
by dramatically enhancing efficiency and power output and
even that the efficiency at positive power may beat the quan-
tum Otto limit. We have demonstrated that reservoir squeezing
significantly decreases relative power fluctuations and leads
to faster convergence of the machine efficiency to its most
probable value. Our findings demonstrate the potential of
quantum engines fueled by nonthermal reservoirs [88] to real-
ize ideal nanoscale engines with more efficient, larger power,
and higher stability.

ACKNOWLEDGMENTS

This work was supported by NSFC under Grants No.
11875034, No. 12174461, No. 12234012, No. 12334012,
and No. 52327808. J.H W. also acknowledges support from
the Major Program of Jiangxi Provincial Natural Science
Foundation under Grant No. 20224ACB201007 and the
Opening Project of Shanghai Key Laboratory of Special
Artificial Microstructure. W.-M.L. also acknowledges sup-
port from National Key R&D Program of China under
Grants No. 2021YFA1400900, No. 2021YFA0718300, and
No. 2021YFA1402100, and Space Application System of
China Manned Space Program.

APPENDIX A: AVERAGE WORK
AND WORK FLUCTUATIONS

The joint distribution of quantum work wtot and heat qh

determines the distribution functions of work and heat, re-
spectively. For the two-level system, the ground and excited
eigenenergies are εα

g = −h̄ωα and εα
e = h̄ωα , where α = c, h

correspond to the cold and hot isochores, respectively. Let ξ ≡
|〈n(t0)|Uch|m(t1)〉|2 = |〈i(t2)|Uhc| j(t3)〉|2(m, n, i, j = e, g) [1]
be the level transition probability during expansion or com-
pression for the two level system. When the unitary driven
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stroke is not slow, ξ is positive due to the population exchange
between the levels, but it would be vanishing when the uni-
tary stroke proceeds slowly enough for the quantum adiabatic

condition to be satisfied. Using Eq. (14), the probability dis-
tributions of work and heat can be calculated as

p(wtot ) =
∫

dqh p(wtot, qh)

= [
pe

t0 pe
t2 + pg

t0 pg
t2 − 2

(
pe

t0 pe
t2 + pg

t0 pg
t2

)
ξ + ξ 2

]
δ(wtot ) + 2ζhc

(
ξ − pg

t0

)
δ

(
wtot + h̄ωh

2

)
+ pe

t0 pe
t2ξ

2δ(wtot + h̄ωc + h̄ωh) + pg
t0 (1 − ξ )ξδ(wtot − h̄ωc) + 2pg

t0ζhc(1 − ξ )δ

(
wtot − h̄ωc + h̄ωh

2

)
+ pe

t2 (1 − ξ )ξδ(wtot + h̄ωh) + pg
t0 pe

t2 (1 − ξ )2δ(wtot − h̄ωc + h̄ωh) + 2ζch
(
ξ − pg

t2

)
δ

(
wtot + h̄ωc

2

)
+ 4ζchζhcδ

(
wtot + h̄ωc + h̄ωh

2

)
+ 2ζch

(
pe

t2 − ξ
)
δ

(
wtot − h̄ωc

2

)
− 4ζchζhcδ

(
wtot − h̄ωc − h̄ωh

2

)
− 2pe

t2ζchξδ

(
wtot + h̄ωc

2
+ h̄ωh

)
+ 2pe

t2ζch(ξ − 1)δ

(
wtot − h̄ωc

2
+ h̄ωh

)
+ pg

t2 (1 − ξ )ξδ(wtot − h̄ωh)

+ 2ζhc
(
pe

t0 − ξ
)
δ

(
wtot − h̄ωh

2

)
+ pg

t0 pg
t2ξ

2δ(wtot − h̄ωc − h̄ωh) + 2pg
t0ζhcξδ

(
wtot − h̄ωc − h̄ωh

2

)
+ 2pg

t2ζch(1 − ξ )δ

(
wtot − h̄ωh + h̄ωc

2

)
− 4ζchζhcδ

(
wtot − h̄ωh − h̄ωc

2

)
+ 2pg

t2ζchξδ

(
wtot − h̄ωc

2
− h̄ωh

)
+4ζchζhcδ

(
wtot − h̄ωc + h̄ωh

2

)
+ pe

t0 (1 − ξ )ξδ(wtot + h̄ωc) − 2pe
t0ζhcξδ

(
wtot + h̄ωc + h̄ωh

2

)
+pe

t0 pg
t2 (1 − ξ )2δ(wtot − h̄ωh + h̄ωc) + 2pe

t0ζhc(ξ − 1)δ

(
wtot − h̄ωh

2
+ h̄ωc

)
, (A1)

and

p(qh) =
∫

dwtot p(wtot, qh)

= {[
pg

t0 (1 − ξ ) + pe
t0ξ − 2ζch

]
pg

t2 + [
pe

t0 (1 − ξ ) + pg
t0ξ + 2ζch

]
pe

t2

}
δ(qh)

+[
pg

t0 (1 − ξ ) + pe
t0ξ − 2ζch

]
pe

t2δ(qh − h̄ωh) + [
pe

1(1 − ξ ) + pg
t0ξ + 2ζch

]
pg

t2δ(qh + h̄ωh). (A2)

In deriving these, we have used pg
t0 = 〈g(t0)|ρt0 |g(t0)〉, pe

t0 = 〈e(t0)|ρt0 |e(t0)〉, pg
t2 = 〈g(t2)|ρt2 |g(t2)〉, pe

t2 = 〈e(t2)|ρt2 |e(t2)〉, ζch =
−Re[U gg

ch 〈g(t0)|ρt0 |e(t0)〉U eg†
ch ], and ζhc = −Re[U gg

hc 〈g(t2)|ρt2 |e(t2)〉U eg†
hc ]. Integrating over the probability distribution function

Eq. (A1) allows us to find the expressions for the first two central moments of quantum work. The average work Eq. (1) is
derived as

−〈wtot〉 = −
∫

dwtot p(wtot )wtot

= h̄(ωh − ωc)
(
pg

t0 pe
t2 − pe

t0 pg
t2

) − 2h̄ωhζch − 2h̄ωcζhc − [
h̄(ωc − ωh)

(
pe

t0 pg
t2 − pg

t0 pe
t2

) + h̄(ωc + ωh)
(
pg

t0 pg
t2 − pe

t0 pe
t2

)]
ξ

= h̄(ωh − ωc)(〈nt2〉 − 〈nt0〉) + 2h̄ξ (ωc〈nt2〉 + ωh〈nt0〉) − 2h̄ωhζch − 2h̄ωcζhc

= 〈wtrls〉 + 〈wcoh〉 + 〈wfri〉, (A3)

where 〈wtrls〉 = h̄(ωh − ωc)(〈nt2〉 − 〈nt0〉), 〈wcoh〉 = −2h̄ωhζch − 2h̄ωcζhc, and 〈wfri〉 = 2h̄ξ (ωc〈nt2〉 + ωh〈nt0〉) correspond to the
transitionless work, coherent work, and frictional work, respectively. The work fluctuations are obtained as

〈w2
tot〉 =

∫
dwtot p(wtot )w

2
tot

= h̄2ω2
c

[
pg

t0 pe
t2 + pe

t0 pg
t2 + (

pe
t0 − pg

t0

)(
pe

t2 − pg
t2

)
ξ − 2

(
pe

t0 − pg
t0

)
ζhc

]
+h̄2ω2

h

[
pg

t0 pe
t2 + pe

t0 pg
t2 + (

pe
t0 − pg

t0

)(
pe

t2 − pg
t2

)
ξ − 2

(
pe

t2 − pg
t2

)
ζch

] + h̄2ωhωc
[
2
(
pg

t0 pe
t2 + pe

t0 pg
t2

)
(2ξ − 1)

+ 2
(
pe

t0 − pg
t0

)(
pe

t2 − pg
t2

)
ξ 2 + 2ζhc

(
pe

t0 − pg
t0

) + 2ζch
(
pe

t2 − pg
t2

) − 4ζhcξ
(
pe

t0 − pg
t0

) − 4ζchξ
(
pe

t2 − pg
t2

) + 8ζchζhc
]

= ω2
h

[
1

2
− 2〈nt2〉(〈nt0〉 + 2ζch − 2〈nt0〉ξ )

]
+ ω2

c

[
1

2
− 2〈nt0〉(〈nt2〉 + 2ζhc − 2〈nt2〉ξ )

]
+ωcωh

[
2ξ − 1 + 4ζch〈nt2〉(1 − 2ξ ) + 4ζhc〈nt0〉(1 − 2ξ ) + 4〈nt0〉〈nt2〉(2ξ 2 + 1 − 2ξ ) + 8ζchζhc

]
. (A4)
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In deriving Eqs. (A3) and (A4), we have used 〈nt0〉 =
(pe

t0 − pg
t0 )/2 and 〈nt2〉 = (pe

t2 − pg
t2 )/2, which are average

populations of the system at time t = t0 and t = t2, re-
spectively. By very simple algebra, we use Eq. (A2) to
obtain the macroscopic heat injection 〈qh〉 = ∫

dqhqh p(qh) =
h̄ωh[pg

t0 pe
t2 − pe

t0 pg
t2 + (pe

t0 − pg
t0 )ξ − 2ζch], which in terms of

the populations 〈nt0〉 and 〈nt2〉, can be re-expressed by
Eq. (16). By combining Eqs. (A3) and (A4), we can obtain
the work fluctuations, δw2 = 〈w2〉 − 〈w〉2 [cf. Eq. (17)].

APPENDIX B: CARNOT-UNIVERSAL THERMODYNAMIC
BOUND FOR THE ENGINE FOLLOWING FROM
ANOTHER DEFINITION OF THE EFFICIENCY

For quantum heat engines driven by nonthermal reservoirs,
the additional energetic cost necessary to maintain the non-
Gibbsian state may be considered. The definition of heat
should be modified to account for the additional energy which
is responsible for maintaining a squeezed, nonequilibrium
steady state, thereby implying that the definition of the effi-
ciency could be modified.

We start our analysis with the total entropy production
for a system with Hamiltonian H weakly coupled to a sin-
gle thermal reservoir of constant inverse temperature β with
β = 1/(kBT ), which was discussed in Sec. III A. For a given
external control parameter, the system would reach thermal
equilibrium state ρ

eq
t = e−βH/Z , with the partition function

Z = Tr(e−βH ), provided that the time duration is much larger
than the relaxation time. From Eq. (18), the total entropy
production is given by 〈�〉 = S − �, and the differential form
of this relation reads

〈δ�〉 = dS − d� � 0. (B1)

By using �̇ = −Tr(ρ̇t ln ρ
eq
t ), we find that the infinitesimal

change of entropy flow is

d� = −Tr
(
δρt ln ρ

eq
t

) = βd (E − F ), (B2)

where E = Tr(ρH ) is the internal energy of the system, and
F = −T ln Z is the free energy. Since the infinitesimal change
in internal energy of the system dE reads

dE = 〈δw〉 + 〈δq〉 = Tr(ρδH ) + Tr(Hδρ), (B3)

where 〈δw〉 = Tr(ρδH ) and 〈δq〉 = Tr(Hδρ), Eq. (B2) can be
written as

d� = Tr(δρH ) = β〈δq〉. (B4)

This holds in the reversible and irreversible processes, in
contrast to 〈dS〉 � βTr(Hδρ), in which equality is adopted
only in the reversible case [71]. Substitution of Eq. (B2) into
Eq. (B1) gives rise to

〈δ�〉 = dS − βd (E − F ) = dS − β〈δq〉. (B5)

If the reservoir is nonthermal due to quintessential quantum
effects, such as the squeezing under consideration, the system
can only reach the nonequlibrium steady state in the long time
limit. As in the classical systems, the total heat for an open
system is divided into two parts [52,89–91]: One part is called
housekeeping heat responsible for maintaining a nonequilib-
rium steady state; the other part is an excess heat which is only

associated with the entropic cost, namely,

〈q〉 = 〈q〉hk + 〈q〉ex. (B6)

In what follows, we will use •̃ to denote a physical quantity
for the system in contact with the nonthermal reservoir. Ac-
cordingly, the first law of thermodynamics can be expressed
as

dẼ = 〈δw〉ex + 〈δq〉ex, (B7)

where Ẽ is the internal energy for the system, and 〈w〉ex is the
average excess work input. In such a situation, the irreversible
entropy production can be obtained via Eq. (18), leading to

δ�̃ = dS̃ − d�̃, (B8)

where S̃ = −Tr(̃ρt ln ρ̃t ) and �̃ = −Tr(̃ρt ln ρ̃ss
t ), with ρ̃ss

t be-
ing the nonequilibrium steady state. As an example, for a
spin- 1

2 system under reservoir squeezing, ρ̃ss
t becomes ρss

t ,
given as the solution of dρss

t /dt = Lsq
D(ρss

t ) = 0, where Lsq
D

was defined by Eq. (2). Considering Ẽ = Tr(̃ρH ), we have

�̃ = −Tr
(̃
ρt ln ρ̃ss

t

) + Tr
(̃
ρt ln ρ

eq
t

) − Tr
(̃
ρt ln ρ

eq
t

)
= −Tr

(̃
ρt ln ρ

eq
t

) − [
Tr

(̃
ρt ln ρss

t

) − Tr
(̃
ρt ln ρ

eq
t

)]
= β(Ẽ − F̃ ), (B9)

where we have used F̃ = F + TD (̃ρt , ρ̃
ss
t , ρ

eq
t ) by intro-

ducing D (̃ρt , ρ̃
ss
t , ρ

eq
t ) ≡ Tr(̃ρt ln ρss

t ) − Tr(̃ρt ln ρ
eq
t ). Inter-

estingly, if the process the system is undergoing is qua-
sistatic with ρ̃t → ρ̃ss

t , the function D (̃ρt , ρ̃
ss
t , ρ

eq
t ) reduces to

D(̃ρss
t ||ρeq

t ) defined by Eq. (18) as the relative entropy. In such
a case, F̃ becomes the information free energy [92,93]. Using
Eq. (B9), we obtain

d�̃ = βTr(Hδρt ) − β[dF̃ − Tr(ρtδH )]

= β(〈δq〉 − 〈δq〉hk )

= β〈δq〉ex, (B10)

where we have identified 〈δq〉 ≡ Tr(Hδρt ) and 〈δq〉hk ≡
dF̃ − Tr(ρtδH ) as the total heat and housekeeping heat, re-
spectively. This identification confirms the fact that the excess
entropy �̃ is associated with the excess heat 〈q〉ex. As empha-
sized, Eq. (B10) is always valid for an open system evolving
in an irreversible or a reversible thermodynamic process.

We now turn to the discussion on the the thermodynamic
efficiency for our quantum Otto engine discussed in the main
text, by considering the effects of the additional energy cost
for creating quantum squeezing on the efficiency. Consider-
ing that the thermodynamic entropy S of the system is state
dependent, we find that the entropy S must satisfy the relation
S(t ) = S(t + τcyc), with cycle period τcyc. That is, the change
in the thermodynamic entropy of the system over a cycle is
vanishing, yielding the inequality 〈�tot〉 = −(�̃h + �c) � 0,
with �̃h = βh〈qh〉ex and �c = βc〈qc〉, or

−βh〈qh〉ex − βc〈qc〉 � 0. (B11)

Since no heat is exchanged along the two unitary strokes
where the system is isolated from a heat reservoir, the excess
work extracted from the system during a cycle −〈wtot〉ex is
then given by

−〈wtot〉ex = 〈qh〉ex + 〈qc〉, (B12)
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with 〈qh〉ex = 〈qh〉 − 〈qh〉hk. When the machine efficiency
is defined as the ratio of the total excess work produced
−〈wtot〉ex to the excess heat during the hot isochore 〈qh〉ex,
namely, η̃ = −〈wtot〉ex/〈qh〉ex [71], we can obtain by using
Eq. (B12)

η̃ = −〈wtot〉ex

〈qh〉ex
= 1 + 〈qc〉

〈qh〉ex
. (B13)

Combination of Eqs. (B11) and (B13) leads to

η̃ � ηC, (B14)

with the Carnot efficiency ηC = 1 − βh/βc. We therefore con-
clude that, unlike the efficiency given as in Eq. (20) where its
upper bound is irrelevant to the Carnot efficiency, the machine
efficiency η̃ is bounded by the Carnot limit due to the second
law of thermodynamics.

APPENDIX C: EFFICIENCIES IN SEVERAL
SPECIAL CASES

1. Efficiencies for large and small differences between two
reservoir temperatures

The thermodynamic efficiency, defined by the ratio of the
total work to heat injection along the isochore, can be obtained
by Eqs. (15) and (16):

ηth = 1 + ωc

ωh

〈nt0〉 + 〈nt2〉(2ξ − 1) − 2ζhc

〈nt2〉 + 〈nt0〉(2ξ − 1) − 2ζch
. (C1)

In the case of the small ratio of the cold bath temperature
to the hot bath temperature, βhh̄ωh � βch̄ωc, one has N ss

h �
N th

c , where N ss
h and N th

c were defined in Eqs. (3) and (7),
respectively. When N ss

h � 1, X and 〈σz〉 defined in Eq. (4) are
particularly small, as both exhibit exponential decay functions
of N ss

h . The density matrix ρt2 given by Eq. (4) with t = t2 can
thus be approximated by

ρt2 ≈
(

pe
t2 0

0 pg
t2

)
, (C2)

where the occupation probability at the excited state pe
t2 is

close to that at the ground state pg
t2 . This, together with the

relation of 〈nt 〉 = Tr(ρt H )/(h̄ω), implies that the absolute
value |〈nt2〉| should be close to zero. By contrast, as N th

c �
N ss

h , we find that |〈nt2〉| � |〈nt0〉|. We also note that, as the
parameter ζhc defined in Eq. (A1) is a monotonic increasing
function of X , a small X leads to a negligible parameter ζhc.
As a result, the thermodynamic efficiency in Eq. (C1) can be
approximately rewritten as

ηth ≈ 1 + ωc

ωh

〈nt0〉
〈nt0〉(2ξ − 1) − 2ζch

. (C3)

Because of the insensitive dependence of the average popula-
tion 〈nt0〉 and the parameter ξch [defined in Eq. (A1)] on the
squeezing parameter, for the large ratio βh/βc, the efficiency
tends to be the expression in Eq. (C3), which is independent
of the squeezing parameter, as shown in Fig. 5(a).

By contrast, in the linear response regime where the differ-
ence between the reservoir temperatures is small, the sensitive
dependence of the efficiency on squeezing parameter r is
observed in Fig. 5(a). This can be understood by the fact that

FIG. 5. Efficiency as a function of (βhh̄ωh )−1. In (a), βc =
2/(h̄ωc ), and in (b), βc = 4.5βh. The parameters are τc = 3, τh =
0.2, and τdri = 0.0005, γc = γh = 3.

〈nt2〉 and ζhc, both of which cannot be neglected in the linear
response regime, are strongly dependent on the squeezing
parameter.

2. Efficiencies at low and high temperatures

We now examine the thermodynamic efficiency in the
high- and low-temperature regimes. In the high-temperature
limit βα h̄ωα � 1 (α = c, h), we find with ζch → 0 and ζhc →
0 that the efficiency in Eq. (C1) becomes

η
high
th = 1 + ωc

ωh

〈nt0〉 + 〈nt2〉(2ξ − 1)

〈nt2〉 + 〈nt0〉(2ξ − 1)
. (C4)

In view of the fact that the derivation of exactly analytical
expressions of 〈nt0〉 and 〈nt2〉 is a formidable task even at high
temperatures, we assume the two isochoric processes to be
quasistatic to estimate the effects of reservoir squeezing on
〈nt0〉 and 〈nt2〉. At the quasistatic limit, the mean population
〈nt0〉 (〈nt2〉) approaches the value of the thermal (steady) state
〈nt0〉 → 〈neq

c 〉 (〈nt2〉 → 〈nss
h 〉), leading to

η
high
th,quasi = 1 + ωc

ωh

βcωc + sech(2r)βhωh(2ξ − 1)

sech(2r)βhωh + βcωc(2ξ − 1)
, (C5)

which is thus dependent on squeezing parameter r. Be-
yond the quasistatic limit, where the mean population 〈nt2〉,
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though not solved analytically, should be dependent on the
squeezing parameter r, we therefore conclude that the thermo-
dynamic efficiency ηth is an increasing function of squeezing
parameter r.

On the other hand, in the low-temperature limit βα h̄ωα �
1 (α = c, h), the quantum coherence related to ζch and ζhc

cannot be neglected, and the efficiency at low temperatures
is still given by Eq. (C1), where the time-dependent func-
tions 〈nt0〉 and 〈nt2〉 cannot be obtained analytically. As in the
high-temperature case, we consider the quasistatic isochores
to find an analytical expression for the efficiency in terms
of squeezing parameter r in the low-temperature limit where
tanh(β h̄ω/2) ≈ 1 − 2 exp(−β h̄ω), and the effective inverse
temperature in Eq. (6) is approximated by βeff

h ≈ log{[1 +
sinh2(r)]/ sinh2(r)}/(h̄ωh). With consideration of Eq. (C1),
we obtain the explicit r-dependent expression for the effi-
ciency, which reads

ηlow
th,quasi = 1 + ωc

ωh

1 − 2e−βc h̄ωc + [2sech2(r) − 1](2ξ − 1)

2sech2(r) − 1 + (1 − 2e−βc h̄ωc )(2ξ − 1)
.

(C6)

As emphasized, ζhc ≈ 0 and ζch ≈ 0 have been used in deriv-
ing Eq. (C6). This follows from the fact that the coherence
generated in the two unitary strokes should be fully erased
after the two quasistatic isochoric processes. Unlike in the
high-temperature limit where ζch and ζhc become negligible
even beyond the quasistatic limit, these two parameters at low
temperatures are finite in the finite-time machine operation.
Since ζch, ζch, and 〈nt2〉 are dependent on r at low tempera-
tures, we can extend the analytic approximation in Eq. (C6)
to the finite-time domain, deducing the dependence of the
efficiency on the squeezing at low temperatures.

While our analysis focuses on the quasistatic limit, we
illustrate in Fig. 5(b) that the efficiency for the finite-
time engine, determined by exactly numerical calculation, is
dependent on reservoir squeezing, within the inverse tempera-
ture regime ranging from βhh̄ωh = 0.01 to βhh̄ωh = 30, with
βc = 4.5βh.

3. Efficiency at maximum power in the high-temperature limit

Under the endoreversible condition, according to Eq. (23),
the motion of the system along the hot isochore process 〈ṅt 〉 =
Tr(ρ̇t Ht 〉/(h̄ωh) can be derived as

〈ṅt 〉 = ṗe
t − ṗg

t

2

= −�h
(〈nt 〉 − 〈

nss
h

〉)
, (C7)

where �h = �+
h + �−

h , 〈nss
h 〉 = (�+

h − �−
h )/[2(�−

h + �+
h )] =

−tanh(βeff
h h̄ωh/2)/2, with βeff

h defined in Eq. (6). By follow-
ing the same method, we find that the motion of the system
during the cold isochoric stroke with t3 � t � t3 + τc takes
the form:

〈ṅt 〉 = −�c
(〈nt 〉 − 〈

neq
c

〉)
, (C8)

where we have used �c = �+
c + �−

c and 〈neq
c 〉 = (�+

c −
�−

c )/[2(�−
c + �+

c )] = −tanh(βch̄ωc/2)/2, with �+
c = γcNeq

c

and �−
c = γc(1 + Neq

c ).

Combining Eqs. (C7) and (C8) and using boundary condi-
tions of 〈nt1〉 = 〈nt0〉 and 〈nt3〉 = 〈nt2〉, we have

〈nt2〉 = 〈
nss

h

〉 + (〈nt0〉 − 〈
nss

h

〉)
exp(−�hτh), (C9)

〈nt0〉 = 〈
neq

c

〉 + (〈nt2〉 − 〈
neq

c

〉)
exp(−�cτc). (C10)

It follows that the total work extracted per cycle and average
heat injection along the hot isochore, Eqs. (5) and (6), turn out
to be

−〈wtot〉 = G(τh, τc)h̄(ωh − ωc)
(〈

nss
h

〉 − 〈
neq

c

〉)
, (C11)

and

〈qh〉 = G(τh, τc)h̄ωh
(〈

nss
h

〉 − 〈
neq

c

〉)
, (C12)

respectively, with G(τh, τc) = [exp(�hτh) − 1][exp(�cτc) −
1]/[exp(�cτc + �hτh) − 1]. In the endoreversible case, the
machine efficiency ηth = −〈wtot〉/〈qh〉 simplifies to the Otto
value:

ηth = ηOtto = 1 − ωc

ωh
. (C13)

From Eq. (C11), we find that the power output P =
−〈wtot〉/τcyc is expressed as a product of two functions:
G(τc, τh)/τcyc, a function of the time variables only, and
h̄(ωh − ωc)(〈nss

h 〉 − 〈neq
c 〉), the other one depending only on

the external fields. The optimization by maximizing the power
output can be present in the two consecutive steps. We
firstly maximize the time-dependent function G(τc, τh)/τcyc

by setting ∂[G(τc, τh)τ−1
cyc ]/∂τc = ∂[G(τc, τh)τ−1

cyc ]/∂τh = 0 to
determine the optimal protocols of the machine cycle and then
consider the optimization on the external constrains of heat
engine to obtain maximum power. In the high-temperature
limit where tanh(β h̄ω/2) ≈ β h̄ω/2, we set ∂〈wtot〉/∂ωh =
0 and ∂〈wtot〉/∂ωc = 0 to obtain the optimal values of ex-
ternal fields, leading to ωh/ωc =

√
βeff

h /βc . This, together
with Eq. (C13) and βeff

h ≈ sech(2r)βh at the high-temperature
limit, gives rise to the efficiency at maximum power ηmp =
1 − √

sech(2r)βh/βc, which reduces to the so-called Curzon-
Ahlborn efficiency [87] ηCA = 1 − √

βh/βc in the absence of
squeezing.

APPENDIX D: MACHINE PERFORMANCE BASED ON
THE CHOICES OF THEORETICAL

EXPERIMENTAL PARAMETERS

1. The choice of the values of the parameters
in numerical simulation

All the parameters we have adopted in our numerical
simulation are dimensionless. When ξ = |〈n|Uch|m〉|2 =
|〈i|Uhc| j〉|2(m, n, i, j = e, g) is set to be fixed, the
unitary transformation operator, defined as Uch =
T> exp{− i

h̄

∫ t1
t0

dtHch(t )} or Uhc = T> exp{− i
h̄

∫ t3
t2

dtHhc(t )},
should change very slightly. The driving time τdri(= t1 − t0 =
t3 − t2) decreases as the frequencies ωc,h since the unitary
operators Uhc,ch are almost kept constant. When N ss

h and Neq
c

are given, the divergence function D(ρt2 ||ρss
h ) [D(ρt0 ||ρeq

c )]
that measures the distance between state ρt2 (ρt0 ) and reference
state ρss

h (ρeq
c ) is insensitive to the selection of frequencies

ωc and ωh, though its oscillation frequency is determined
by ωc and ωh, as shown in Fig. 6. The divergence function
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FIG. 6. The Kullback-Leibler-Umegaki divergence D(ρt0 ||ρeq
c ) or D(ρt0 ||ρeq

c ) as a function of the thermal-contact time τh. In (a)–(d),
ωc = 2π , 20π , 200π , and 2000π , respectively. For instance, for given ξ = 0.02318, these four values correspond to τdri = 0.5, 0.05, 0.005,

and 0.0005, respectively. The other parameters are τc = 0.5, ωh = 2.25ωc, βc = 2/(h̄ωc ), βh = 1/(h̄ωh ), r = 1, and γc = γh = 3.

D(ρt2 ||ρss
h ) is also observed to become vanishing around

τh = 5.0, at which the system approaches the steady state
ρss

h . This results in the fact that the values of ωc,h in our
numerical simulation have a trivial impact on the thermal
contact time τh but an important effect on the driving time τdri.
For instance, if ωc/2π = 1 and ωh = 2.25ωc, with no change

in other parameters, the adiabaticity parameter ξ becomes
vanishing when τdri ≈ 2.5, which means that the total cycle
period τcyc is contributed by both thermal-contact and unitary
driving times. In such a choice of parameters, except that the
power as a function of driving time τdri goes from increasing
to decreasing [see Fig. 7(a)], the behaviors of the power as

FIG. 7. (a) Power P (up) and thermodynamic efficiency ηth (bottom) as a function of driving time τdri, with τh = 0.5. (b) Power P (up)
and thermodynamic efficiency ηth (bottom) as a function of thermal-contact time τh, with τdri = 0.5. In (b), the cases of r = 0, 0.5, 1 in the
dephased engine cycle (labeled deph) are represented by the red dotted line, blue dashed line, and black dash-double-dot line, respectively. The
parameters are ωc = 2π , ωh = 2.25ωc, βc = 2/(h̄ωc ), βh = 1/(h̄ωh ), τc = 3, and γc = γh = 3.
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(a) (d)

(e) (f)

FIG. 8. (a) Power P (up) and thermodynamic efficiency ηth (bottom) as a function of driving time τdri. (b) Power P (up) and thermodynamic
efficiency ηth (bottom) as a function of thermal-contact time τh. In (b), the cases of r = 0, 0.5, 1 in the dephased engine cycle (labeled deph)
are represented by the red dotted line, blue dashed line, and black dash-double-dot line, respectively. Root-mean-square relative fluctuation of
power

√
δP2/P as functions of (c) driving time τdri and (d) thermalization time τh. A logarithmic scale is used in the root-mean-square relative

fluctuation (ordinate axis) in (c) and (d). (e) Efficiency as a function of squeezing parameter with given τh. (f) Large deviation function of
efficiency J (η) as a function of stochastic efficiency η, with τh = 5. The vertical dash-double-dot line patterns (black, red, and blue) indicate
the values of the stochastic efficiency η equal to the thermodynamic efficiencies (ηth|r=0 = 0.46, ηth|r=0.3 = 0.48, and ηth|r=0.6 = 0.51), and
the vertical dash-dotted lines (black, red, and blue) represent the quantum efficiencies equivalent to the generalized Carnot values (ηgen

C |r=0 =
0.78, η

gen
C |r=0.3 = 0.82, and η

gen
C |r=0.6 = 0.88). In (a) and (c), τh = 0.5, and in (b) and (d)–(f), τdri = 0.05. The other parameters are h = 1,

ωc/2π = 10, ωh = 2.25ωc, βc = 2/(h̄ωc ), βh = 1/(h̄ωh ), τc = 3, and γc = γh = 3.

a function of thermal contact time and the efficiency as a
function of τh (or τdri) in Fig. 7(b) are like those reported in
Fig. 3(d). As another example, if we adopt ωc/2π = 10, with
ωh = 2.25ωc, all results obtained in the main text would be
changed quantitatively but not qualitatively [see, for example,
Fig. 8]. Therefore, the selection of values for ωc and ωh falls
into a relatively large range that produces similar results.
However, the difference between the scales of driving time
and thermal-contact time based on the choice of the values of
the frequencies ωc,h in the main text can be compatible with
the realizable experiment in Sec. D 2.

2. Power and efficiency based on the choice
of the experimental parameters

The Hamiltonian of the harmonic oscillator is HHO =
h̄ωt n̂t , with the number operator n̂t and the trap frequency
ωt along x. Since �sw � ωz, the spin system is adopted
as the working substance, and the system with Hamiltonian
HHO + h̄�sw sin(kswx̂)σz/2 plays the role of the bath which
is squeezed due to the presence of the unharmonic term
h̄�sw sin(kswx̂)σz/2. Because both the direction and value of
the Zeeman splitting are determined by the external magnetic
field, the compression and expansion can be implemented by
changing the magnetic field. In each experimental cycle, the
standing wave is switched on (off) at the initial (final) instant
of the hot isochoric stroke, and the magnetic field is changed
such that the Hamiltonian of the spin system satisfies the form

in the main text. For example, the frequencies of the spin
system, determined by magnetic field which may be along
the x or z direction, vary from 2π × 8 to 2π × 14.4 MHz in
each cycle. That is, the frequencies for the spin system along
the hot and cold isochoric strokes are ωz = 2π × 14.4 and
ωx = 2π × 8 MHz, respectively. The inverse temperatures of
the hot and cold baths, which are associated with the exci-
tation numbers N ss

h and Neq
c , are set to be βh = 8.385 × 10−6

and βc = 6.037 × 10−5 (peV)−1. By using thermal interaction
strengths γh = γc = 1 MHz, we show how the power and effi-
ciency behave for finite and vanishing squeezing r, as shown
in Fig. 9. We see that the results of both the power and
thermodynamic efficiency based on choice of experimental
parameters agree well with corresponding theoretical predic-
tions, supporting an argument in favor of our approach.

APPENDIX E: THE PERFORMANCE AND
FLUCTUATIONS OF FINITE-TIME QUANTUM OTTO
ENGINES WORKING WITH A HARMONIC SYSTEM

The instantaneous state can be captured by the set of
three operators: the Hamiltonian H = 1

2mP2 + m
2 ω2Q, the

Lagrangian L = 1
2mP2 − m

2 ω2Q, and the position momen-
tum correlation C = 1

2ω(QP + PQ). These operators can be
written in terms of annihilation and creation operators (â
and â†): H = 1

2 h̄ω(ââ† + â†â), L = − h̄ω
2 (â2 + â†2

) and C =
−i h̄ω

2 (â2 − â†2
), respectively. It follows, using Eqs. (24) and

(25), that the dissipation term for an operator X̂ is

L̃D(X̂ ) = γ (n̄ + 1)

[
â†X̂ â − 1

2
{â†â, X̂ }

]
+ γ n̄

[
âX̂ â† − 1

2
{ââ†, X̂ }

]
= γ

2
(n̄ + 1){â†[X̂ , â] + [â†, X̂ ]â} + γ

2
n̄{â[X̂ , â†] + [â, X̂ ]â†}. (E1)
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FIG. 9. (a) Power P (up) and thermodynamic efficiency ηth (bottom) as a function of driving time τdri in unit of ns. (b) Power P (up) and
thermodynamic efficiency ηth (bottom) as a function of thermal-contact time τh in units of µs. In (a), τh = 0.9 µs, and in (b), τdri = 80 ns. In
(b), the cases of r = 0, 0.5, and 1 in the dephased engine cycle (labeled deph) are represented by the red dotted line, blue dashed line, and
black dot-dashed line, respectively. The other parameters based on the choice of experiment are ωz = 2π × 14.4 MHz, ωx = 2π × 8 MHz,
γc = γh = 1 MHz, βh = 8.385 × 10−6 (peV)−1, βc = 6.037 × 10−5 (peV)−1, and τc = 8 µs.

(a) (b)

(c) (d)

FIG. 10. (a) The thermodynamics efficiency as a function of thermalization time τh for different values of squeezing parameter r, with
τdri = 1. (b) The thermodynamics efficiency as a function of driving time τdri for different values of squeezing parameter r, with τh = 0.6.
(c) The output power and (d) the thermodynamics efficiency as a function of squeezing parameter r for different values of thermalization τh,
with τdri = 1. The parameters are h̄ = 1, ωc = 2, ωh = 3.8, βc = 0.6, βh = 0.2, τc = 1, and γc = γh = 1.
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FIG. 11. The root-mean-square relative fluctuation of power as
a function of driving time τdri for different values of squeezing
parameter r, with τh = τc = 4. The ordinate axis is logarithmically
spaced. Same parameters as in Fig. 10.

This implies Heisenberg equation dX̂
dt = − i

h̄ [H, X̂ ] + L̃D(X̂ ).
The set of operators (H, L, C, I )T , where I is the identity
operator and the superscript T stands for transpose of the
matrix, determines the state of the harmonic system. Notice
that, in the unitary stroke, L̃D(X̂ ) is vanishing. By substitut-
ing X̂ ≡ (H, L, C, I )T into the Heisenberg equation, we can
numerically obtain the time-dependent set of operators X̂ ,
which reaches a periodic state in each cycle [i.e., X̂ (t ) =
X̂ (t + τcyc)], with the cycle period τcyc = τh + τc + 2τdri. We
therefore obtain the thermodynamic quantities, such as aver-
age work output −〈wtot〉 = 〈Ht0〉 − 〈Ht1〉 + 〈Ht3〉 − 〈Ht2〉 and
average heat injection 〈qh〉 = 〈Ht2〉 − 〈Ht1〉, where 〈Hti〉 de-
notes the expectation of system Hamiltonian at time t = ti(i =
0, 1, 2, 3), with ti being sketched in Fig. 1.

Using the same approach as adopted in the main text,
we can determine the machine performance parameters such
as the average power P = −〈wtot〉/τcyc and thermodynamic
efficiency ηth = −〈wtot〉/〈qh〉. To investigate the work fluctu-
ations, we obtain the characteristic functions of the work prob-
ability distribution along the unitary compression and expan-
sion as Gcom(u) = Tr{Uch exp(−iuHt0 )ρt0 [exp(−iuHt1 )Uch]†},
and Gexp(u) = Tr{Uhc exp(−iuHt2 )ρt2 [exp(−iuHt3 )Uhc]†}, re-
spectively, where Uch and Uhc were defined below Eq. (9).
Since no work is produced along the two isochoric strokes
along each cycle, the characteristic function for the total
work produced can be written as the product of characteris-
tic functions for the two driven strokes, leading to G(u) =
Gcom(u)Gexp(u) [2]. The average work and the work fluctu-
ation can be determined according to 〈wtot〉 = −i ∂lnG(u)

∂u |u=0

and δw2
tot = − ∂2lnG(u)

∂u2 |u=0, respectively. The relative fluc-

tuation of power is then obtained by using
√

δP2/P =
−

√
δw2

tot/〈wtot〉.
As an example, we see in Fig. 10(a) that the thermody-

namic efficiency ηth as a function of thermalization time τh

oscillates due to the interference between the residual co-
herence after the second stroke and the coherence generated
in the third stroke and that the efficiency may surpass the
Otto limit in the finite-time isochoric stroke where coherence
is only partially erased. The thermodynamic efficiency ηth

increases as driving time τdri increases, though not monotoni-
cally, as shown in Fig. 10(b). The oscillation of the efficiency
in Fig. 10(b) originates from the quantum inner friction along
the two unitary strokes. We also observe from Figs. 10(c) and
10(d) that the squeezing leads to an increase in both power
output and efficiency. Finally, the squeezing can enhance the
machine stability as the relative power fluctuations decreases
as squeezing parameter increases, as can been seen in Fig. 11.
These suggest that the findings of our study in the main text
based on a spin system can thus be translated into the case of
the harmonic system.
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nonadiabatic quantum harmonic Otto engine and refrigerator
under a squeezed thermal reservoir, Phys. Rev. E 102, 062123
(2020).

[36] Y. N. You and S. W. Li, Entropy dynamics of a dephasing
model in a squeezed thermal bath, Phys. Rev. A 97, 012114
(2018).

[37] G. Manzano, Squeezed thermal reservoir as a generalized equi-
librium reservoir, Phys. Rev. E 98, 042123 (2018).

[38] R. J. de Assis, J. S. Sales, J. A. R. da Cunha, and N. G. de
Almeida, Universal two-level quantum Otto machine under a
squeezed reservoir, Phys. Rev. E 102, 052131 (2020).

[39] O. Arısoy, J. T. Hsiang, and B. L. Hu, Quantum-parametric-
oscillator heat engines in squeezed thermal baths: Foundational
theoretical issues, Phys. Rev. E 105, 014108 (2022).

[40] M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber, P.
Skrzypczyk, N. Brunner, and A. Acín, Extractable work from
correlations, Phys. Rev. X 5, 041011 (2015).

[41] W. Niedenzu, D. Gelbwaser-Klimovsky, A. G. Kofman, and
G. kurizki, On the operation of machines powered by quantum
non-thermal baths, New J. Phys. 18, 083012 (2016).

[42] R. Dillenschneider and E. Lutz, Energetics of quantum correla-
tions, Europhys. Lett. 88, 50003 (2009).

[43] M. N. Bera, A. Riera, M. Lewenstein, and A. Winter, Gener-
alized laws of thermodynamics in the presence of correlations,
Nat. Commun. 8, 2180 (2017).

[44] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti,
and M. Polini, Extractable work, the role of correlations, and
asymptotic freedom in quantum batteries, Phys. Rev. Lett. 122,
047702 (2019).

[45] L. Buffoni, A. Solfanelli, P. Verrucchi, A. Cuccoli, and M.
Campisi, Quantum measurement cooling, Phys. Rev. Lett. 122,
070603 (2019).

[46] C. Elouard, D. Herrera-Martí, B. Huard, and A. Auffèves, Ex-
tracting work from quantum measurement in Maxwell’s demon
engines, Phys. Rev. Lett. 118, 260603 (2017).

[47] C. Elouard and A. N. Jordan, Efficient quantum measurement
engines, Phys. Rev. Lett. 120, 260601 (2018).

[48] J. H. Wang, J. Z. He, and Y. L. Ma, Finite-time performance
of a quantum heat engine with a squeezed thermal bath, Phys.
Rev. E 100, 052126 (2019); H. G. Liu, J. Z. He, and J. H. Wang,
Optimized finite-time performance of endoreversible quantum
Carnot machine working with a squeezed bath, J. Appl. Phys.
131, 214303 (2022).

[49] B. Xiao and R. f. Li, Finite time thermodynamic analysis
of quantum Otto heat engine with squeezed thermal bath,
Phys. Lett. A 382, 3051 (2018); Y. C. Zhang, Optimization
performance of quantum Otto heat engines and refrigerators
with squeezed thermal reservoirs, Physica A 559, 125083
(2020); R. J. de Assis, J. S. Sales, U. C. Mendes, and N. G.
de Almeida, Two-level quantum Otto heat engine operating
with unit efficiency far from the quasi-static regime under a
squeezed reservoir, J. Phys. B: At. Mol. Opt. Phys. 54, 095501
(2021).

043185-17

https://doi.org/10.1103/PhysRevA.86.043843
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevE.97.042120
https://doi.org/10.1103/PhysRevLett.125.180603
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/PhysRevE.100.032129
https://doi.org/10.1126/science.1078955
https://doi.org/10.1103/PhysRevA.75.062102
https://doi.org/10.1103/PhysRevA.88.052319
https://doi.org/10.1103/PhysRevA.80.054301
https://doi.org/10.1103/PhysRevA.99.042320
https://doi.org/10.1103/PhysRevA.77.012108
https://doi.org/10.1103/PhysRevLett.89.180402
https://doi.org/10.1038/nature10123
https://doi.org/10.1103/PhysRevLett.111.230402
https://doi.org/10.1103/PhysRevA.84.042313
https://doi.org/10.1103/PhysRevE.89.042134
https://doi.org/10.1088/1367-2630/17/6/065006
https://doi.org/10.1038/srep22174
https://doi.org/10.1103/PhysRevE.103.032144
https://doi.org/10.1103/PhysRevA.104.062210
https://doi.org/10.1103/PhysRevLett.112.030602
https://doi.org/10.1103/PhysRevX.7.031044
https://doi.org/10.1103/PhysRevE.102.062123
https://doi.org/10.1103/PhysRevA.97.012114
https://doi.org/10.1103/PhysRevE.98.042123
https://doi.org/10.1103/PhysRevE.102.052131
https://doi.org/10.1103/PhysRevE.105.014108
https://doi.org/10.1103/PhysRevX.5.041011
https://doi.org/10.1088/1367-2630/18/8/083012
https://doi.org/10.1209/0295-5075/88/50003
https://doi.org/10.1038/s41467-017-02370-x
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevLett.122.070603
https://doi.org/10.1103/PhysRevLett.118.260603
https://doi.org/10.1103/PhysRevLett.120.260601
https://doi.org/10.1103/PhysRevE.100.052126
https://doi.org/10.1063/5.0091215
https://doi.org/10.1016/j.physleta.2018.07.033
https://doi.org/10.1016/j.physa.2020.125083
https://doi.org/10.1088/1361-6455/abcfd9


YANG XIAO et al. PHYSICAL REVIEW RESEARCH 5, 043185 (2023)

[50] G. Manzano, F. Galve, R. Zambrini, and J. M. R. Parrondo,
Entropy production and thermodynamic power of the squeezed
thermal reservoir, Phys. Rev. E 93, 052120 (2016).

[51] K. Sekimoto, Stochastic Energetics (Spinger, Springer, 2010).
[52] U. Seifert, Stochastic thermodynamics, fluctuation theorems

and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[53] Q. Bouton, J. Nettersheim, S. Burgardt, D. Adam, E. Lutz, and
A. Widera, A quantum heat engine driven by atomic collisions,
Nat. Commun. 12, 2063 (2021).

[54] A. Smith, Y. Lu, S. M. An, X. Zhang, J. N. Zhang, Z. P.
Gong, H. T. Quan, C. Jarzynski, and K. Kim, Verification of
the quantum nonequilibrium work relation in the presence of
decoherence, New J. Phys. 20, 013008 (2018).

[55] H. Ge and H. Qian, Physical origins of entropy production,
free energy dissipation, and their mathematical representations,
Phys. Rev. E 81, 051133 (2010).

[56] G. E. Crooks, Nonequilibrium measurements of free energy
differences for microscopically reversible Markovian systems,
J. Stat. Phys. 90, 1481 (1998).

[57] A. M. Timpanaro, G. Guarnieri, J. Goold, and G. T. Landi,
Thermodynamic uncertainty relations from exchange fluctua-
tion theorems, Phys. Rev. Lett. 123, 090604 (2019).

[58] S. Saryal and B. K. Agarwalla, Bounds on fluctuations for
finite-time quantum Otto cycle, Phys. Rev. E 103, L060103
(2021).

[59] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[60] G. Verley, T. Willaert, C. Van den Broeck, and M. Esposito,
Universal theory of efficiency fluctuations, Phys. Rev. E 90,
052145 (2014).

[61] S. K. Manikandan, L. Dabelow, R. Eichhorn, and S.
Krishnamurthy, Efficiency fluctuations in microscopic ma-
chines, Phys. Rev. Lett. 122, 140601 (2019).

[62] V. Holubec and A. Ryabov, Cycling tames power fluctua-
tions near optimum efficiency, Phys. Rev. Lett. 121, 120601
(2018).

[63] T. Denzler and E. Lutz, Efficiency fluctuations of a quantum
heat engine, Phys. Rev. Res. 2, 032062(R) (2020).

[64] G. Jiao, Y. Xiao, J. He, Y. Ma, and J. Wang, Quantum Otto re-
frigerators in finite-time cycle period, New J. Phys. 23, 063075
(2021).

[65] G. Verley, M. Esposito, T. Willaert and C. Van den Broeck,
The unlikely Carnot efficiency, Nat. Commun. 5, 4721
(2014).

[66] J. H. Jiang, B. K. Agarwalla, and D. Segal, Efficiency statistics
and bounds for systems with broken time-reversal symmetry,
Phys. Rev. Lett. 115, 040601 (2015).

[67] T. Denzler and E. Lutz, Efficiency large deviation func-
tion of quantum heat engines, New J. Phys. 23, 075003
(2021).

[68] G. Q. Jiao, S. B. Zhu, J. Z. He, Y. Ma, and J. H. Wang, Fluctu-
ations in irreversible quantum Otto engines, Phys. Rev. E 103,
032130 (2021).

[69] R. Luo, G. Benenti, G. Casati, and J. Wang, Thermodynamic
bound on heat-to-power conversion, Phys. Rev. Lett. 121,
080602 (2018).

[70] J. Lu, Z. Wang, J. Peng, C. Wang, J.-H. Jiang, and J. Ren,
Geometric thermodynamic uncertainty relation in a periodically

driven thermoelectric heat engine, Phys. Rev. B 105, 115428
(2022).

[71] B. Gardas and S. Deffner, Thermodynamic universality
of quantum Carnot engines, Phys. Rev. E 92, 042126
(2015).

[72] R. Kosloff and A. Levy, Quantum heat engines and refriger-
ators: Continuous devices, Annu. Rev. Phys. Chem. 65, 365
(2014).

[73] J. Gonzalez-Ayala, J. Guo, A. Medina, J. M. M. Roco, and
A. C. Hernández, Energetic self-optimization induced by stabil-
ity in low-dissipation heat engines, Phys. Rev. Lett. 124, 050603
(2020).

[74] P. Pietzonka and U. Seifert, Universal trade-off between power,
efficiency, and constancy in steady-state heat engines, Phys.
Rev. Lett. 120, 190602 (2018).

[75] Y. Rezek and R. Kosloff, The quantum harmonic Otto cycle,
Entropy 19, 136 (2017).

[76] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 2012), Vol. 13.

[77] H.-P. Breuer and F. Petruccione, The Theory of Open Quan-
tum Systems (Oxford University Press on Demand, New York,
2002).

[78] R. Srikanth and S. Banerjee, Squeezed generalized amplitude
damping channel, Phys. Rev. A 77, 012318 (2008).

[79] P. Solinas and S. Gasparinetti, Full distribution of work done on
a quantum system for arbitrary initial states, Phys. Rev. E 92,
042150 (2015).

[80] P. P. Hofer and A. A. Clerk, Negative full counting statistics
arise from interference effects, Phys. Rev. Lett. 116, 013603
(2016).

[81] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying co-
herence, Phys. Rev. Lett. 113, 140401 (2014).

[82] V. Vedral, The role of relative entropy in quantum information
theory, Rev. Mod. Phys. 74, 197 (2002).

[83] M. Esposito and C. Van den Broeck, Three faces of the second
law. I. Master equation formulation, Phys. Rev. E 82, 011143
(2010).

[84] L.-L. Yan, J.-W. Zhang, M.-R. Yun, J.-C. Li, G.-Y. Ding, J.-F.
Wei, J.-T. Bu, B. Wang, L. Chen, S.-L. Su et al., Experimental
verification of dissipation-time uncertainty relation, Phys. Rev.
Lett. 128, 050603 (2022).

[85] D. von Lindenfels, O. Grab, C. T. Schmiegelow, V. Kaushal, J.
Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G.
Poschinger, Spin heat engine coupled to a harmonic-oscillator
flywheel, Phys. Rev. Lett. 123, 080602 (2019).

[86] Y. Wu and X. Yang, Jaynes-Cummings model for a trapped ion
in any position of a standing wave, Phys. Rev. Lett. 78, 3086
(1997).

[87] F. Curzon and B. Ahlborn, Efficiency of a Carnot engine at
maximum power output, Am. J. Phys. 43, 22 (1975).

[88] Like squeezing, the quantum coherence and correlation change
the diagonal and nondiagonal matrix elements and modify the
detailed balance between the two energy levels, thereby ef-
fectively changing the temperature of the system [17,18,42].
This calls for an extension of the quantum nanoengines to
nonequilibrium reservoirs in presence of quantum coherence
and correlation.

[89] Y. Oono and M. Paniconi, Steady state thermodynamics, Prog.
Theor. Phys. Suppl. 130, 29 (1998).

043185-18

https://doi.org/10.1103/PhysRevE.93.052120
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1038/s41467-021-22222-z
https://doi.org/10.1088/1367-2630/aa9cd6
https://doi.org/10.1103/PhysRevE.81.051133
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1103/PhysRevLett.123.090604
https://doi.org/10.1103/PhysRevE.103.L060103
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1103/PhysRevE.90.052145
https://doi.org/10.1103/PhysRevLett.122.140601
https://doi.org/10.1103/PhysRevLett.121.120601
https://doi.org/10.1103/PhysRevResearch.2.032062
https://doi.org/10.1088/1367-2630/ac08e4
https://doi.org/10.1038/ncomms5721
https://doi.org/10.1103/PhysRevLett.115.040601
https://doi.org/10.1088/1367-2630/ac09fe
https://doi.org/10.1103/PhysRevE.103.032130
https://doi.org/10.1103/PhysRevLett.121.080602
https://doi.org/10.1103/PhysRevB.105.115428
https://doi.org/10.1103/PhysRevE.92.042126
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1103/PhysRevLett.124.050603
https://doi.org/10.1103/PhysRevLett.120.190602
https://doi.org/10.3390/e19040136
https://doi.org/10.1103/PhysRevA.77.012318
https://doi.org/10.1103/PhysRevE.92.042150
https://doi.org/10.1103/PhysRevLett.116.013603
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevLett.128.050603
https://doi.org/10.1103/PhysRevLett.123.080602
https://doi.org/10.1103/PhysRevLett.78.3086
https://doi.org/10.1119/1.10023
https://doi.org/10.1143/PTPS.130.29


THERMODYNAMICS AND FLUCTUATIONS IN … PHYSICAL REVIEW RESEARCH 5, 043185 (2023)

[90] T. Hatano and S. I. Sasa, Steady-state thermodynamics of
Langevin systems, Phys. Rev. Lett. 86, 3463 (2001).

[91] J. M. Horowitz and T. Sagawa, Equivalent definitions of the
quantum nonadiabatic entropy production, J. Stat. Phys. 156,
55 (2014).

[92] S. Deffner and E. Lutz, Information free energy for nonequilib-
rium states, arXiv:1201.3888.

[93] S. Deffner and C. Jarzynski, Information processing and the
second law of thermodynamics: An inclusive, Hamiltonian ap-
proach, Phys. Rev. X 3, 041003 (2013).

043185-19

https://doi.org/10.1103/PhysRevLett.86.3463
https://doi.org/10.1007/s10955-014-0991-1
http://arxiv.org/abs/arXiv:1201.3888
https://doi.org/10.1103/PhysRevX.3.041003

