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Low-temperature quantum thermometry boosted by coherence generation
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The precise measurement of low temperatures is significant for both the fundamental understanding of
physical processes and technological applications. In this work, we present a method for low-temperature
measurement that improves thermal range and sensitivity by generating quantum coherence in a thermometer
probe. Typically, in temperature measurements, the probes thermalize with the sample being measured. However,
we use a two-level quantum system, or qubit, as our probe and prevent direct probe access to the sample by
introducing a set of ancilla qubits as an interface. We describe the open system dynamics of the probe using
a global master equation and demonstrate that while the ancilla-probe system thermalizes with the sample,
the probe per se evolves into a nonthermal steady state due to nonlocal dissipation channels. The populations
and coherences of this steady state depend on the sample temperature, allowing for precise and wide-range
low-temperature estimation. We characterize the thermometric performance of the method using quantum Fisher
information and show that the quantum Fisher information can exhibit multiple and higher peaks at different
low temperatures with increasing quantum coherence and the number of ancilla qubits. Our analysis reveals
that the proposed approach, using a nonthermal qubit thermometer probe with temperature-dependent quantum
coherence generated by a multiple qubit interface between a thermal sample and the probe qubit, can enhance
the sensitivity of temperature estimation and broaden the measurable low-temperature range.
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I. INTRODUCTION

The achievement of precise measurements of a broad range
of low temperatures is a key challenge in implementing quan-
tum technologies [1–7]. Quantum thermometry is a promising
field of quantum metrology that can provide solutions for
low-temperature measurements through the use of quantum
thermometers [8–23]. An ideal quantum thermometer should
be significantly smaller than the sample being measured and
its coupling to the sample should not alter its temperature.
Recent attention has been focused on quantum two-level sys-
tems, or qubits, as the smallest possible thermometer [7,24–
31], which has been demonstrated for ultracold gases [32]. In-
creasing the dimensionality of the probe does not significantly
improve the thermometer’s thermal sensitivity [33]. In fact, an
N-level optimal probe at thermal equilibrium must have N −
1-fold degeneracy in the excited state, effectively reducing it
to a two-level system [34]. Such an optimal probe exhibits
high-precision estimation only for a specific temperature, in-
dicated by a single peak in the quantum Fisher information.
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One of the primary challenges in thermometry is to
find a specific probe that can accurately measure a broad
range of low temperatures [1,18,35–40]. Strong system-
bath coupling can enhance a probe’s range of thermal
sensitivity, but the quantum Fisher information still ex-
hibits a single peak, indicating that the probe remains
optimal for only a single temperature [10,41,42]. Achiev-
ing broader range thermal precision measurements requires
extremely large degeneracy in the higher excited states of
the probe [33], which is difficult to achieve in physical
implementations. Alternative proposals suggest applying ex-
ternal periodic control to the probe to obtain multiple peaks
in the quantum Fisher information, but this comes at the
cost of making the thermometer nonautonomous [42,43].
In a different approach, the global [18,35] and Bayesian
[36–40] quantum thermometry schemes take into account
the statistical properties of measurement outcomes and in-
corporate prior knowledge to broaden the thermal sensitivity
range.

Recent studies in quantum thermodynamics have provided
a deeper understanding of the interplay between heat, work,
quantum information, and, specifically, quantum coherence
[44–48]. In line with these quantum thermodynamical per-
spectives, several schemes have been proposed in quantum
thermometry that exploit nonclassical features to enhance
thermal sensitivity [16,19,26–30,41,49–53]. However, most
of these proposals require a dynamical approach, where
temperature is measured in the transient regime [28,30]. This
is because the probe eventually thermalizes in the steady
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state, which is a diagonal (Gibbs) state devoid of coherence,
resulting in the loss of all nonclassical features and quantum
advantages. Moreover, for a probe in thermal equilibrium,
temperature information is encoded solely in the popula-
tions, and quantum Fisher information equals classical Fisher
information [34,54]. Previous studies have also not taken
coherence or entanglement into account when considering
the enhancement of the thermal sensitivity range, resulting
in only a single peak being observed in the quantum Fisher
information [26–28,30].

We propose a method for precise and wide-range low-
temperature measurement utilizing a multiqubit system ther-
malizing with a sample in thermal equilibrium. Our scheme
measures temperature on a single probe qubit, taking advan-
tage of its quantum coherence. The probe qubit is isolated
from the sample and only interacts with the ancilla qubits,
which bridge the probe and sample, generating coherence
in the probe qubit in the steady state based on the sample’s
temperature. We analyze the open system dynamics of the
ancilla-probe system connected to the thermal sample, de-
riving a global Markovian master equation that is consistent
with the laws of thermodynamics in the Secular approxima-
tion [55]. The nonlocal jump operators in this global master
equation allow the sample to indirectly influence the probe
qubit, encoding temperature information into both the diago-
nal (population) and off-diagonal (coherence) elements of the
probe’s density matrix. By judicious selection of the system
parameters, the temperature-dependent coherence gives rise
to multiple peaks in the quantum Fisher information, allowing
for high-precision estimation across a range of temperatures.
This approach, which enhances the probe’s thermal sensitivity
at very low temperatures, is consistent with dynamical ancilla-
assisted quantum thermometry for a single-peak enhanced
quantum Fisher information [28]. It is worth noting that at
thermal equilibrium, the thermal sensitivity of the combined
system comprising the ancilla and the probe is necessarily
greater than the probe alone. However, in the case of a many-
body probe, it might be experimentally challenging to perform
the energy measurements required to achieve the Cramér-Rao
bound [1]. In such scenarios, our proposed scheme, which
exclusively relies on measurements performed over a single-
qubit probe, can be useful, particularly in scaling problems
that demand a many-body quantum system for probing the
temperature [22]. Additionally, a prominent feature of our
scheme is that the reduced state of the probe in the local basis,
obtained after tracing out the ancilla qubits, is a nonthermal
state, which assists in enhancing the thermal sensitivity range.

The rest of the paper is organized as follows: In Sec. II A,
we introduce our model of quantum thermometer and employ
the global master equation approach to describe the open
system dynamics of the model. In addition, we briefly discuss
quantum Fisher information (QFI), a figure of merit in quan-
tum metrology (Sec. II B). In Sec. III, we present and discuss
the QFI for the case of single and two ancilla qubits. Further-
more, we discuss the case when the probe has direct access
to the sample, such as ancilla qubits, in Sec. IV. We discuss
the results for all the thermalized qubits and describe the two
cases for identical and nonidentical qubits in Secs. IV A and
IV B, respectively. The concluding remarks of this study are
given in Sec. V.

FIG. 1. A schematic illustration of our quantum thermometry
model. The ancilla qubits with transition frequencies ωk are coupled
to a thermal bath (sample) at temperature T . The probe qubit with
transition frequency ωp has no direct access to the thermal bath;
instead, it is coupled with the ancilla qubits and indirectly probes the
temperature of the thermal sample. The probe qubit, lying outside the
bath, is used for the estimation of T , and the energy measurements
are only performed over the probe qubit.

II. MODEL AND PRELIMINARIES

In this section, we introduce our theoretical model, which
can boost the thermal sensitivity of a two-level system probe
at low temperatures via coherence generation. Then, we
briefly discuss QFI, a key figure of merit for the thermal
sensitivity of a quantum thermometer.

A. Model description

We consider a qubit probe of transition frequency ωp cou-
pled to N ancilla qubits of frequency ωk (k = 1, 2, . . . , N).
The ancilla qubits are coupled directly to a thermal bath
(thermal sample) of temperature T whose temperature is to
be estimated. The qubit probe is outside the thermal sample
and does not have direct access to it, as shown in Fig. 1. The
Hamiltonian of the ancilla-probe system is given by [28,56–
58] (we take h̄ = 1)

Ĥ = 1

2
ωpσ̂

z
p +

N∑
k=1

1

2
ωk σ̂

z
k +

N∑
k=1

gk σ̂
z
k σ̂ x

p , (1)

where gk is the coupling strengths between the ancilla and
probe, and σ̂

ζ
j ( j = p, k) with ζ=x, y, z are the Pauli ma-

trices. In Eq. (1), the first, second, and third terms denote
the Hamiltonians of the probe, ancilla, and their interaction,
respectively. We note that the asymmetric interaction between
the qubits given in Eq. (1) has previously been employed for
the proposals of ancilla-assisted thermometry [28], quantum
thermal diode [56], quantum absorption refrigerator [57], and
quantum heat manager [58]. Recently, Kolář et al. considered
a similar asymmetric interaction between two-level systems
where they showed that the quantum coherence appears by a
different mechanism, whereas the system-bath coupling does
not have to be engineered [59]. This is done by formulating a
necessary condition for the autonomous generation of nonzero
local coherence in the individual two-level system (TLS).
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(a)

(b)

FIG. 2. (a) Quantum Fisher information FQ associated with the
reduced state of the probe qubit ρ̂p by performing local measure-
ments on the two-level system probe as a function of the temperature
T for different coupling strengths between the ancilla and probe
qubits. (b) The absolute values of coherence |c| as a function of
thermal bath temperature T for different coupling strengths between
the ancilla and probe qubits. The solid, dot-dashed, dashed, and
dotted curves are for g1 = 0.01, 0.02, 0.03, 0.04, respectively. In
both panels, the other system parameters are the same: ωp = 1 and
ω1 = 0.04. In the weak ancilla-probe coupling limit, the location of
the two peaks in (a) can be determined by using Eq. (23), and given
by T ∗

1 = γω1 and T ∗
p = γωp. Here, γ is a constant and determined

by Eq. (22).

We consider asymmetric interaction between the ancilla
and probe qubits, which leads to temperature-dependent
coherences in the probe [see Eq. (19)]. Such temperature-
dependent coherences lead to the enhancement of the thermal
sensitivity of the probe (Fig. 2). We note that initial coher-
ences or coherent driving on the probe to induce coherence do
not enhance the thermal sensitivity of the probe because the
coherences, in this case, are temperature independent [34]. In
addition, other symmetric or antisymmetric interactions be-
tween the ancilla and probe qubits may not generate coherence
in the probe. For instance, we have shown in Appendices A
and B that dipole-dipole interaction and Dzyaloshinskii-
Moriya interaction do not generate any coherence in the probe
qubit, respectively. For the implementation of the Hamiltonian
given in Eq. (1), we provide some examples for the realization
and possible directions for such asymmetric interactions in
Appendix E. We emphasize that quantum coherence is not the
only resource for enhancing thermal sensitivity, and its role on
the thermal range and sensitivity can depend on the model; for
instance, in our model, it is the asymmetric type of interaction
between the probe and ancilla qubits that generates coherence

in the probe’s state, which widens the range and boosts the
sensitivity of low-temperature measurements.

To investigate the dynamics of the ancilla-probe system,
we employ the standard Born-Markov master equation [60].
The derivation of the master equation for coupled systems
requires diagonalization of the total system Hamiltonian. The
Hamiltonian of the ancilla-probe system can be diagonalized
using the unitary transformation [56],

U := exp

[
− i

2

N∑
k=1

θk σ̂
z
k σ̂ y

p

]
, (2)

where the angle θk is defined as

θk := arctan

(
2gk

ωp

)
. (3)

This gives the diagonalized Hamiltonian in the form

H̃ =
N∑

k=1

ωk

2
σ̃ z

k + �

2
σ̃ z

p. (4)

The transformed frequency � of the probe qubit depends on
the number of ancilla qubits and, for a single and two ancilla
qubits, the explicit expressions are given in Eqs. (13), and
(26), respectively. After the transformation, the Pauli matrices
of the ancilla and probe qubits take the form

σ̃ x
k = cos θk σ̂

x
k + sin θk σ̂

y
k σ̂ y

p,

σ̃
y
k = cos θk σ̂

y
p − sin θk σ̂

x
k σ̂ y

p, σ̃ z
k = σ̂ z

k ,

σ̃ x
p = cos θk σ̂

x
p − sin θk σ̂

z
k σ̂ z

p, σ̃ y
p = σ̂ y

p,

σ̃ z
p = cos θk σ̂

z
p + sin θk σ̂

z
k σ̂ x

p . (5)

As an example, we assume a bosonic thermal bath, whose
temperature is to be probed, coupled to ancilla qubits. The
interaction Hamiltonian of the ancilla and bath has the form

Ĥint =
∑
l,k

gl,k σ̂
x
k (âl + â†

l ), (6)

where âl (â†
l ) is the annihilation (creation) bosonic operator of

the lth bath mode, and gk,l indicates the coupling strength be-
tween the lth bath mode with the kth ancilla qubit. The global
master equation for the coupled ancilla-probe system after
the Born-Markov and Secular approximations can be written
as [56–58] (For notational simplicity, we use the summation
convention to drop the summation sign such that summation
over repeated index k is implied.)

˙̃ρ = − i[H̃, ρ̃] + cos2 θkG(ωk )(D[σ̃−
k ] + e−ωk/TD[σ̃+

k ])

+ sin2 θkG(ω−k )(D[σ̃−
k σ̃+

p ] + e−ω−k/TD[σ̃+
k σ̃−

p ])

+ sin2 θkG(ω+k )(D[σ̃−
k σ̃−

p ] + e−ω+k/TD[σ̃+
k σ̃+

p ]). (7)

Here, ω±k = ωk ± �, and mixing angle θk depend on the
number of ancilla qubits; for a single and two ancilla qubits,
θk is given in Eqs. (13), and (27), respectively. In Eq. (7), D[c̃]
is the Lindblad superoperator and is defined as

D[c̃] = c̃ρ̃c̃† − 1
2 (c̃†c̃ρ̃ + ρ̃c̃†c̃). (8)

The raising (lowering) spin operators σ̃+(σ̃−) are defined as

σ̃±
k,p = 1

2

(
σ̃ x

k,p ± iσ̃ y
k,p

)
. (9)
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The bath spectral response function is denoted by G(ωk ) in
Eq. (7). An appealing feature of our scheme is that the thermal
sensitivity of the probe does not depend on the bath spectrum.
The ancilla-probe system evolves to a steady state indepen-
dent of the bath spectrum (see Sec. III for details). In the
master equation (7), we have neglected cross dissipators of the
form D[σ̃k, σ̃k′ ]; this is well justified if the distance between
the ancilla qubits is much larger compared to the wavelength
of the bath quanta (for example, photons) [61–63].

B. Quantum Fisher information

In quantum thermometry, one requires a quantum system
for the estimation of the unknown temperature of a sample.
A small thermometer is desired compared to the sample so
that it should not significantly affect the temperature of the
sample. In this respect, the smallest possible thermometer can
be a two-level quantum system (such as a qubit) which is
small yet efficient as a probe for estimation purposes [7,26–
31]. The qubit probe initially prepared in a state ρ̂p allows
interaction with a bath whose temperature is to be estimated.
The bath information is imprinted onto the probe state to be
mapped via some estimator T̂ [64]. Fundamental bounds limit
the precision of parameter estimation. The optimal estimators
in quantum estimation theory are those saturating the quantum
Cramér-Rao bound inequality such that [65–67]

	T 2 � 1

NFQ(T )
. (10)

Here, 	T 2 is the temperature variance and N denotes the
number of measurements. FQ(T ) is the quantum Fisher in-
formation which quantifies the information about temperature
T encoded onto the state of the probe, and it is defined as

FQ(T ) = Tr
[
ρ(T )L2

T

]
. (11)

Here, LT is the symmetric logarithmic derivative satisfying
the equation 2∂Tρ(T ) = {LT, ρ(T )}. As depicted in Fig. 1,
our quantum thermometer is a single qubit probe interacting
indirectly with the thermal bath via an interface of ancilla
qubits. Accordingly, we will only focus on the QFI of a single
qubit, which is given by [68,69]

FQ(ρ̂ ) = Tr

[(
∂ρ̂

∂T

)2]
+ 1

Det(ρ̂)
Tr

[(
ρ̂

∂ρ̂

∂T

)2]
. (12)

The mathematical basis of our scheme can be seen in this
expression, which can be used for both thermal and nonther-
mal qubit states. If there are any bath temperature-dependent
coherences in the probe-qubit state, they can be used to induce
multiple peaks and enhancements in QFI.

III. RESULTS

In this section, we present results for the low-temperature
quantum thermometry for the model described in Fig. 1 by
considering one (Sec. III A) and two (Sec. III B) ancilla qubits.
We show that multiple peaks in the quantum Fisher informa-
tion can be obtained by harvesting quantum coherence in the
probe induced by ancilla qubits.

A. Enhancement of low-T sensitivity with a single
ancilla qubit (N = 1)

In the case of a single ancilla qubit, there is no summa-
tion and k = 1 in the master equation (7). The diagonalized
Hamiltonian of the ancilla-qubit system H̃ is given in Eq. (4).
The transformed frequency of the probe qubit and the mixing
angle θ1 are given by

� =
√

ω2
p + 4g2

1 and θ1 = arctan

(
2g1

ωp

)
, (13)

respectively. The second term in the master equation (7)
describes the energy exchange between the ancilla and the
thermal bath via the local dissipation channel. The last two
terms, on the contrary, correspond to the nonlocal dissipation
channels between the bath and ancilla-probe system. These
two terms show that the probe qubit can exchange energy
with the bath via nonlocal dissipation processes, though it
is not directly coupled with the bath. We emphasize that the
Lindblad dissipators D[σ̃−

k σ̃−
p ] and D[σ̃+

k σ̃+
p ] in the master

equation (7) are different from the squeezed-like dissipa-
tors. The nonlocal squeezed-like dissipators, e.g., D[Ã, Ã] :=
Ãρ̃Ã − 1

2 (ÃÃρ̃ + ρ̃ÃÃ), where Ã ∈ [σ̃−
k σ̃−

p , σ̃+
k σ̃+

p ], if present
in the master equation, might generate entanglement between
the ancilla and probe qubits. However, the dissipative terms
representing dissipation in a common thermal squeezed-like
bath are not present in the master equation (7). This absence
is expected since, in our scheme, one of the coupled qubits
weakly interacts with a single thermal bath in the absence
of any external control drive. In our approach, we perform
a microscopic derivation of the Lindblad Markovian master
equation using the diagonalized system Hamiltonian, which is
expressed in the dressed basis [Eq. (4)]. This derivation leads
to the equilibrium steady state of the system (in the dressed
basis), represented by [60]

ρ̃ss = ρ̃1 ⊗ ρ̃p. (14)

Here, ρ̃1 and ρ̃p are the reduced states of the ancilla and probe
qubits, which are given by

ρ̃1 = e− 1
2 βω1σ̃

z
1

Z1
and ρ̃p = e− 1

2 β�σ̃ z
p

Zp
, (15)

respectively. Here, Z1 = Tr[exp(−βω1σ̃
z
1/2)] and Zp =

Tr[exp(−β�σ̃ z
p/2)] are the partition functions of the ancilla

and probe qubits, respectively; and β = 1/kBT is the inverse
temperature. Henceforth, we take the Boltzmann constant
kB = 1. The steady-state density matrix is written in the eigen-
states of the dressed Hamiltonian H̃ [for example, see Eq. (4)],
and these are given by the individual eigenstates of the ancilla
and probe qubits as

|1〉 = cos
θ1

2
|++〉 − sin

θ1

2
|+−〉 ,

|2〉 = sin
θ1

2
|++〉 + cos

θ1

2
|+−〉 ,

|3〉 = cos
θ1

2
|−+〉 + sin

θ1

2
|−−〉 ,

|4〉 = cos
θ1

2
|−−〉 − sin

θ1

2
|−+〉 , (16)
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with their corresponding eigenvalues ε1 = (ω1 + �)/2, ε2 =
(ω1 − �)/2, ε3 = (−ω1 + �)/2, and ε4 = (−ω1 − �)/2, re-
spectively. However, in the basis of the individual qubits, the
steady state of the ancilla and probe qubits does not necessar-
ily equal a product state ρ̂ss �= ρ̂1 ⊗ ρ̂p.

Our probe is a single qubit placed outside the thermal bath
(Fig. 1) and we wish to perform local measurements on this
probe qubit. Therefore, by using the transformation given in
Eq. (2), the reduced state of the probe qubit in the local basis
is given by

ρ̂p = Tr1[U ρ̃ssU
†] = 1

2

(
1 − χ c

c 1 + χ

)
, (17)

where the diagonal (populations) and off-diagonal (coher-
ences) terms are determined by

χ = cos(θ1) tanh

(
�

2T

)
and (18)

c = sin(θ1) tanh

(
�

2T

)
tanh

(
ω1

2T

)
, (19)

respectively. In addition to the free Hamiltonian and coher-
ent interaction parameters ωp, ω1, and g1, through θ1 and �,
both the coherence and populations of the probe qubit carry
information on the temperature of the sample. In contrast
to thermalized probes with the sample, such a nonthermal
probe state allows us to manipulate QFI with additional terms
associated with the temperature-dependent coherences. We
shall explore different system parameter regimes to search for
multiple peaks and enhanced thermal sensitivity effects in the
low-temperature regimes in QFI, computed by using Eq. (12).
It is worth noting that the QFI is computed by considering the
local measurements on our probe qubit.

The complete expression for the QFI is too cumbersome to
report here. We depict QFI FQ, and absolute coherence |c| in
the probe as a function of the bath temperature T for different
values of coupling strength g in Figs. 2(a) and 2(b), respec-
tively. It is immediately evident that the lower peak in the QFI
is associated with the coherence developed in the probe qubit.
By increasing the ancilla-probe coupling strength, coherence
in the probe qubit become larger, thus enhancing the probe’s
thermal sensitivity at lower temperatures. It is often useful to
evaluate the relative error bound in estimating the temperature
for the performance of a given probe [42,43]. We discuss the
relative error bound in the case of our scheme in Appendix C.

We emphasize that for a two-level system probe at thermal
equilibrium with the bath, it is not possible to have multiple
peaks in the QFI. To get better insight into the underlying
working mechanism of our probe and find the locations of the
peaks in the QFI, we first briefly revisit a two-level system
probe at thermal equilibrium. For a two-level system probe of
frequency ω0 at thermal equilibrium with the bath of temper-
ature T , the density matrix of the probe is given by

ρ̂TLS = 1

2

(
1 − tanh

(
ω0
2T

)
0

0 1 + tanh
(

ω0
2T

)). (20)

The QFI associated with this two-level system probe can be
evaluated using Eq. (12), which yields

FTLS = ω2
0sech2

(
ω0
2T

)
4T 4

. (21)

This expression indicates that the QFI associated with a two-
level system probe at thermal equilibrium has a single peak.
Accordingly, a two-level system with a given energy gap ω0

can only be an optimal probe for a single temperature [33].
At this temperature T ∗, QFI has a maximum value, and the
temperature T ∗ can be found by [33]

T ∗ = γω0, where 2γ = tanh

(
1

γ

)
. (22)

The diagonal elements of our probe-qubit density matrix
appear like the two-level system probe at thermal equilibrium,
except for an additional factor of cos θ1. This should not be
surprising, as the nonlocal dissipation channels in the master
equation (7) provide indirect access of the thermal bath to our
probe. Accordingly, the information about the temperature T
of the bath is partially imprinted on the diagonal elements
of our probe qubit. This is witnessed by the emergence of
a peak in the QFI associated with higher bath temperature
T ∗

p [see the right peak in Fig. 2(a)]. The coherent interaction
between the probe and ancilla provides an additional channel
of indirect energy exchange between the bath and the probe.
This information is imprinted on the off-diagonal elements
of our probe’s density matrix, which is responsible for the
emergence of an additional peak at lower temperature T ∗

1 in
the QFI.

In the weak coupling limit of ancilla and probe qubits,
g � (ωp, ω1), we can replace sinθ1 ≈ θ1, and cosθ1 ≈ 1 in
the master equation (7). In this case, we can write a simple
approximate expression for the QFI,

FQ ≈ F0 + F1, where (23)

F0 = ω2
psech2

( ωp

2T

)
4T 4

, F1 =
1
2θ2

1 ω2
1sech2

(
ω1
2T

)
4T 4

. (24)

This approximate expression of the QFI can be used to find the
location of the peaks in the QFI. Note that the two contribu-
tions F0 and F1 in Eq. (23) are related to the populations and
coherences in the probe. The temperatures associated with the
left and right peaks in Fig. 2(a) are given by T ∗

1 = γω1, and
T ∗

p = γωp, respectively.
In Fig. 3, we depict the approximate and exact QFI, given

in Eq. (23) and Fig. 2(a), respectively. It is evident that our
approximate results for QFI overlap with the exact QFI within
the weak coupling limit. The location of the lower peak can
be controlled by the ancilla-qubit energy gap ω1, and baths
at lower temperatures can be probed with increased accuracy
by making the energy gap smaller. In addition, the coupling
strength between the ancilla and probe qubits can be used to
enhance the amplitude of the lower peak, thus enhancing the
thermal sensitivity of the probe. The right peak in Fig. 3 is
identical to the QFI for a two-level system probe at thermal
equilibrium.

It is important to note that for a single ancilla qubit, the
QFI can be approximately given by the sum of two sech2θ

functions with different amplitudes and centers [Eq. (23)].
As a result, two peaks emerge in the QFI, each of which
can be identified by the frequencies of the ancilla and probe
qubits. This hints that including additional ancilla qubits may
increase the number of peaks in the QFI. Similar results
are reported in a periodically driven probe [43]; however,
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FIG. 3. Quantum Fisher information FQ associated with the
qubit probe—considering weak coupling between the ancilla and
probe—as a function of temperature T of the thermal bath. The blue-
dashed and red-solid lines correspond to approximate and exact QFI,
respectively. The approximate expression for the QFI in the weak
coupling limit is given by Eq. (23), and the exact QFI is evaluated by
considering the full expression of QFI, which is too cumbersome to
report here. Parameters: ωp = 1, ω1 = 0.04, and g = 0.01.

the physical mechanism of multiple peaks in the QFI is en-
tirely different in these nonautonomous schemes. In the next
section, we will investigate the possibility of increasing the
optimal sensing points of the probe by increasing the number
of ancilla qubits.

B. Multiple peaks in QFI with two ancilla qubits (N = 2)

To reveal the full advantage of our scheme for the enhance-
ment of low-temperature thermal sensitivity, here we consider
two ancilla qubits. In this case, the diagonalized Hamiltonian
of the ancilla-probe system is given by

H̃ = 1

2

2∑
k=1

ωk σ̃
z
k + 1

2
�̃σ̃ z

p, (25)

where the transformed Pauli matrices are given in Eq. (5). The
transformed frequency of the probe qubit is given by

�̃ = �+ + �−, where �± =
√

ω2
p ± 4(g1 + g2)2. (26)

The master equation for this case remains the same as given
in Eq. (7), only the mixing angle θk is changed to

θ1 = 1

2

[
arctan

(
2(g1 + g2)

ωp

)
+ arctan

(
2(g1 − g2)

ωp

)]
,

θ2 = 1

2

[
arctan

(
2(g1 + g2)

ωp

)
− arctan

(
2(g1 − g2)

ωp

)]
.

(27)

At the steady state, the ancilla-probe system reaches an
equilibrium state under the dissipative dynamics governed
by the master equation (7). We are only interested in the
reduced state of the probe, as we wish to perform local mea-
surements on the probe qubit. The state of the probe in a
local basis is given in Appendix D, which shows the presence

FIG. 4. Quantum Fisher information FQ with respect to the bath
temperature T in the case of two ancilla qubits. The solid, dot-
dashed, and dashed lines are for ωp = 0.26, ωp = 0.3, and ωp = 0.4,
respectively. We have added the QFI (blue dashed line) of a two-
level system at thermal equilibrium for comparison. The rest of the
parameters are ω1 = 0.09, ω2 = 0.17, g1 = 0.003, and g2 = 0.05.

of temperature-dependent coherence induced by both ancilla
qubits. By the judicious choice of system parameters, QFI
exhibits three peaks, as shown in Fig. 4. The emergence of the
third peak is associated with additional ancilla qubits in this
case. The addition of further ancilla qubits will enhance the
number of peaks in the QFI, hence enhancing the accuracy of
temperature estimation and broadening the range of thermal
sensitivity.

IV. GLOBAL THERMALIZATION SCENARIO

So far, we have employed a scheme to estimate the temper-
ature of the sample through local measurements performed
on the nonthermal probe qubit, which has a frequency of ωp

and has no direct access to the sample. What happens if the
probe qubit also has access to the sample like ancilla qubits?
To answer this question, we consider a case where all the
qubits including the probe are directly coupled to the sample.
In this context, we assume that all qubits are coupled with the
sample and that the interaction between the sample and qubits
is weak. This interaction is weak enough to allow the total
system (composed of the qubits) to reach a global Gibbs state.
Since the probe and the ancilla qubits are considered together,
they are described by a Gibbs thermal state (GTS) which is
given by

ρ̂GTS = exp(−βĤ )

Tr[exp(−βĤ )]
. (28)

We calculate the QFI of the probe using Eq. (12) by tracing
out the N ancilla qubits and considering the reduced state of
one qubit (probe). We first consider the case of two qubits
coupled to the sample and trace out one of them. Therefore,
the reduced state of the probe is given by

ρp = Tr1[ρGTS] =
(

1
2 (1 − χ ′) c′

c′ 1
2 (1 + χ ′)

)
, (29)
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FIG. 5. (a) Quantum Fisher information FQ as a function of
temperature T for a single ancilla qubit. The green and red-dashed
lines represent the approximate and exact Fisher information. The
parameters are ωp = 1, ω1 = 0.02, g = 0.02. (b) The QFI with re-
spect to T for different number of qubits. The QFI increases as N
is increased, which is denoted by the curves from bottom to top
with increasing N; the parameters are ωp = 1, ω = 0.03, g = 0.01,
and N = 10. (c),(d) The QFI and coherence for low temperatures
with respect to the number of qubits attached to the sample. The
blue curve corresponds to the QFI and the corresponding scaling is
represented by red dotted points. The parameters chosen here are as
follows: ωp = 1, ω = 0.03, and g = 0.01.

where the diagonal and off-diagonal terms are, respectively,
given as

χ ′ = �′ tanh

(
�′

2T

)
and (30)

c′ = g

�′ tanh

(
�′

2T

)
tanh

(
ω1

2T

)
, (31)

where �′ =
√

ω2
p + 4g2 . The density matrices of the probe

[see Eq. (17) and Eq. (29)] are quite similar for both the local
and global thermalization cases. The full expression for QFI
is too cumbersome again; however, if we do not consider an
ultrastrong coupling regime and remain within a weak regime
ωp � ω1 � g, the QFI for the qubit probe [69] can be written
as [see Eq. (12)]

FQ ≈ Flow + Fhigh, where (32)

Flow = 8g2ω2
1 sinh6

(
ω1
2T

)
T 4 sinh4

(
ω1
2T

) , (33)

Fhigh = ω2
psech2

( ωp

2T

)
4T 4

{
1 + 2g2

[
1 + cosh

( ωp

2T

)]} . (34)

These approximate expressions of QFI are related to the pop-
ulations and coherences of the probe and denote the peaks
for lower and higher temperatures in Fig. 5(a), respectively.
Figure 5(a) depicts both the approximate and exact QFI, and it

is evident that they agree well within the considered parameter
range. The QFI shows two peaks when there is a single ancilla
qubit. In the limit of g → 0, the QFI reduces to the Fisher in-
formation of a single qubit in a thermal state, as expected. The
approximate expression for the QFI enables us to determine
the optimal temperature T ∗

lower for the lower peak, where the
QFI is maximum. Specifically, we find that T ∗

lower ≈ ω1/4. In
the subsequent two sections, we discuss the results for the case
of thermalized identical and nonidentical qubits.

A. Identical qubits

We study the effect of many qubits on the information
flow from the sample and observe how the number of qubits
affects the QFI. To this end, we assume that all the qubits
are identical such that ωk = ωp = ω and gk = g and observe
how the behavior of QFI changes as one increases the number
of qubits for low-T sensitivity. This effect is presented in
Fig. 5(b), where the peak of QFI at low temperature increases
with N . To better understand this phenomenon, we plotted
QFI as a function of the number of qubits, N , in Fig. 5(c),
where the QFI of the probe increases with N as depicted by
the cubic behavior. Since one of the features of our model
is the coherence generation in the probe state, therefore we
observe that the coherence in the probe linearly scales with N .
In the strong coupling regime, coherence does not exhibit a
linear behavior and instead saturates at an upper limit of 1/2
for a relatively small N . The QFI behavior and coherence in
this regime are interrelated. The QFI is represented by a solid
blue line that approximately scales as aN3, where a ∼ 0.5. For
N = 10, coherence increases linearly with ∼N , resulting in an
increase in QFI that scales as ∼aN3.

B. Nonidentical qubits

The presence of multiple peaks in QFI can still be detected
in scenarios where all qubits connected to the sample are
thermalized with the bath, and each qubit possesses a distinct
frequency and coupling strength. Figure 6 shows the multiple
peaks in QFI for the case of N = 4. With the help of proper
tuning of the parameters, one can set the desired range for low
and high temperatures. In this case, the peak at lower T has
more amplitude than in the previous case. Continuing with
this same strategy, we can increase the thermal sensitivity at
higher temperatures, but we do not report the results here. If
we increase the number of qubits, the peaks of QFI become
smoother and the dips begin to disappear, resulting in an
enhancement of low-T sensitivity.

V. CONCLUSION

Our study has demonstrated the potential of quantum co-
herence to enhance the thermal sensitivity of a two-level
system probe and broaden its range of low-temperature es-
timation. We have proposed a simple and precise scheme
where ancilla qubits indirectly couple the probe to a sample
in thermal equilibrium. The ancilla qubits generate coherence
in the probe, which encodes temperature information on both
the diagonal and off-diagonal elements of its density matrix,
leading to multiple peaks in the QFI at low temperatures
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FIG. 6. Quantum Fisher information FQ with respect to the
bath temperature T for N = 4 when the qubits are noniden-
tical. The dashed magenta, the brown dotted, the solid black,
and the dot-dashed blue curves corresponds to the parameters
g2 = 0.15, g2 = 0.2, g2 = 0.3, and g2 = 0.3, with ω1 = 0.85.
The other parameters are ωp = 1, ω1 = 0.09, ω2 = 0.2, ω3 = 0.5,
g1 = 0.003, and g3 = 0.008.

depending on the number of ancilla qubits. Typically, a probe
is assumed to be in thermal equilibrium with the sample. In
this case, temperature information is encoded only on the
diagonal elements of the probe’s density matrix. Accordingly,
the QFI becomes equal to the classical information and, other
than the discreteness of energy level, the quantum probe does
not exhibit any quantumness. A two-level system probe at
thermal equilibrium can only estimate a single temperature
with optimal accuracy, which can be seen by the existence
of a single peak in the QFI. On the contrary, we have shown
that in the presence of ancilla qubits, nonlocal dissipation
channels in the global master equation imprint temperature
information on the populations and on the coherence of the
probe. Furthermore, our global master equation approach is
consistent with the laws of thermodynamics and does not
require highly degenerate excited states or energetically costly
nonautonomous schemes. Finally, to study the many qubit
effects (such as ancilla qubits) on the QFI of the probe, we
presented the results when all the qubits, including the probe,
have direct access to the sample where the probe qubit is
coupled to all the ancilla qubits. We summarized that the QFI
of the probe at thermal equilibrium scales as ∼aN3, meaning
that the sensitivity at low temperatures increases with the
number of ancilla qubits.

Our findings have broad implications for the develop-
ment of quantum thermometry and can be extended to other
physical systems such as multimode optomechanical sys-
tems [70,71], which is another asymmetric interaction, i.e.,
a bosonic version of the one we considered here. The im-
plementation of precision thermometry is also crucial to
understanding Fermi gases where ultra-low-temperature mea-
surements are significant for the practical realization and
applications of degenerate Fermi gases [72]. The ability to
precisely measure a broad range of low temperatures is
crucial for various quantum technological applications and
our proposed scheme can contribute to advancing these fields.
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APPENDIX A: THE STATE OF PROBE FOR SYMMETRIC
ANCILLA-PROBE INTERACTION

Here we consider the dipole-dipole interaction between the
probe and ancilla qubit to analyze whether such a symmetric
interaction can generate coherence in the probe. The Hamil-
tonian of the probe-qubit system interacting via dipole-dipole
interaction is given by

Ĥdd = 1
2ωpσ̂

z
p + 1

2ω1σ̂
z
1 + g(σ̂+

1 σ̂−
p + σ̂−

1 σ̂+
p ). (A1)

In its diagonal form, the above Hamiltonian can be written as
[55]

H̃dd = ω+
2

σ̃ z
p + ω−

2
σ̃ z

1 , (A2)

where the transformed frequencies ω± and the angle θ are
given by

ω± = ω1 + ωp

2
±

√(ω1 − ωp

2

)2
+ g2, (A3)

cos2 θ = ω1 − ωp

ω+ − ω−
. (A4)

The transformed Pauli operators in Eq. (A2) have the form

σ̃ z
α = 2σ̂+

α σ̂−
α − 1, σ̃−

p = σ̂−
p cosθ + σ̂−

1 sinθ, (A5)

σ̃−
1 = σ̂−

1 sinθ − σ̂−
p cosθ. (A6)

Recall that only the ancilla is coupled to the thermal bath in
our scheme; in such a setup, the joint state of the ancilla-probe
system can be found by writing a global master equation [55].
At the steady state, the joint state of the ancilla-probe system
is diagonal because of the imposition of rotating wave approx-
imation in the derivation of the master equation, and it is given
by [55]

ρ̃dd = ρ̃p ⊗ ρ̃1, (A7)

where ρ̃p and ρ̃1 are the reduced states of the probe and ancilla
qubit in the transformed basis and these are given by

ρ̃p =
(

1
1+eβω+ 0

0 1 − 1
1+eβω+

)
, (A8)

ρ̃1 =
(

1
1+eβω− 0

0 1 − 1
1+eβω−

)
, (A9)

where the frequencies ω± are given in Eq. (A4). We are
interested in the state of the probe in a local basis, as we wish
to perform local measurements on the probe for temperature
estimation. The reduced state of the probe in the local basis
can be found by using the transformation given in Eq. (A5)
to convert the global master equation into the local master
equation. At the steady state, the state of the probe in the local
basis is given by [55]

ρ̂p =
(

1
2 0
0 1

2

)
, (A10)
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which is a maximally mixed state. Therefore, it is evident that
in our scheme, the dipole-dipole interaction does not generate
coherences in the state of probe qubit.

APPENDIX B: THE STATE OF PROBE FOR
ANTISYMMETRIC ANCILLA-PROBE INTERACTION

In Appendix A, we showed that it is not possible to gener-
ate coherences in the probe qubit by considering symmetric
interaction like dipole-dipole interaction. Here we consider
the antisymmetric interaction between the ancilla and probe
qubits and investigate the possibility of coherence generation
in the probe qubit. To this end, we consider Dzyaloshinskii-
Moriya (DM) interaction between the ancilla and probe
qubits. For simplicity, we assume that the anisotropy field
is aligned in the z direction, so that the Hamiltonian of the
system is given by [73]

ĤDM = 1
2ω1σ̂

z
1 + 1

2ωpσ̂
z
p + g

(
σ̂ x

1 σ̂ y
p − σ̂

y
1 σ̂ x

p

)
. (B1)

The Hamiltonian of two qubits with such interaction can be
transformed into its diagonal basis with the help of the fol-
lowing transformation:

Û = cos2(θ/2) + sin2(θ/2)σ̂ z
1 σ̂ z

p + i
sin θ

2

(
σ̂ x

1 σ̂ x
p + σ̂

y
1 σ̂ y

p

)
,

(B2)

and the diagonalized Hamiltonian for two qubits coupled via
DM interaction has the following form:

H̃DM = (ωS + �)

2
σ̃ z

p + (ωS − �)

2
σ̃ z

1 , (B3)

where

ωS := ω1 + ωp

2
, � :=

√
ωD + 4g2, (B4)

with ωD := (ω1 − ωp)/2 introduced as a notation for the sake
of convenience. In the local basis, the eigenvectors associated
with the eigenvalues are expressed as

|1〉 = |++〉 , (B5)

|2〉 = cos θ |+−〉 + i sin θ |−+〉 , (B6)

|3〉 = cos θ |−+〉 + i sin θ |+−〉 , (B7)

|4〉 = cos θ |−−〉 , (B8)

where the angle θ is defined by

cos θ = 2g√
4g2 + (ωD − �)2

, (B9)

sin θ = ωD − �√
4g2 + (ωD − �)2

. (B10)

The global master equation for two qubits coupled via DM
interaction can be found in Ref. [73]. In the basis in which
Hamiltonian is diagonal, the joint state of the ancilla and
probe qubits at the steady state is similar to Eq. (A7), with a
difference that the frequencies ω+ and ω− are replaced by ωs

and �, respectively. The joint state of ancilla-probe qubits can
be transformed back to the local basis using the transformation
in Eq. (B2). At the steady state, the reduced state of the probe
in the local basis is given by [73]

ρ̂p = 1

K

(
e�/T + eωs/T

(
e2�/T cos2θ + sin2θ

)
0

0 eωs/T
(
e(ωs+�)/T + cos2θ + e2�/T sin2θ

)), (B11)

where we define K as

K = (
e�/T + eωs/T

)(
1 + e(ωs+�)/T

)
. (B12)

FIG. 7. The relative error bound δT/T = 1/(T
√
FQ) for the

estimation of bath temperature T for different coupling strengths
between the probe and ancilla qubit. The dot-dashed, dashed, and
solid curves correspond to g = 0.2, 0.1, 0.01, respectively. For com-
parison, we superimposed the red dotted curve for a two-level system
at thermal equilibrium with the bath of temperature T . The other
parameters are ωp = 1 and ω1 = 0.04.

The reduced density matrix of the probe shows that anti-
symmetric DM interaction does not generate coherence; as a
result, it cannot enhance the thermal sensitivity of the probe if
employed in our scheme.

APPENDIX C: RELATIVE ERROR BOUND
FOR PROBE QUBIT

In Fig. 7, we plot the relative error bound δT/T =
1/(T

√
FQ) for the probe qubit as a function of bath tem-

perature T for different values of coupling strength g. It is
immediately evident from the results that the range of thermal
sensitivity is enhanced by considering our scheme based on
asymmetric interaction between the probe and ancilla qubits.
In contrast, the relative error bound for a two-level system
probe at thermal equilibrium (red dotted curve in Fig. 7)
diverges at much higher temperatures. Hence we conclude
that implanting our thermometry scheme based on asym-
metric interaction between the probe and ancilla qubits can
significantly boost the probe’s thermal sensitivity at lower
temperatures. Unlike QFI, no additional peak can be observed
in this quantity since this feature is not general for any number
of qubits, N .
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ULLAH, NASEEM, AND MÜSTECAPLIOĞLU PHYSICAL REVIEW RESEARCH 5, 043184 (2023)

APPENDIX D: THE REDUCED STATE OF PROBE
QUBIT FOR N = 2

If the probe qubit is coupled to two ancilla qubits, then
the analytical expression of the reduced density matrix for the
probe qubit can be calculated from the steady state of the joint
ancilla-probe density matrix. At the steady state, the joint state
of the ancilla-probe qubits in the global basis is given by

ρ̃ss = ρ̃1 ⊗ ρ̂2 ⊗ ρ̃p. (D1)

The reduced density matrix of the probe qubit in the local
basis can be obtained by first writing the joint density matrix
in the local basis using the transformation given in Eq. (2).

Then, taking a partial trace over the ancilla qubits, the result-
ing reduced state of the probe qubit is given by

ρ̂p = Tr1,2[ρ̃ss] (D2)

and

ρ̂p =
(

1
2 (1 − αβ ) c′

c′ 1
2 (1 + αβ )

)
, (D3)

where α, β, and c′ are given by

α = tanh

(
�̃

2T

)
, (D4)

β =
[

cos(θ1) cos(θ2) − sin(θ1) sin(θ2) tanh

(
ω1

2T

)
tanh

(
ω2

2T

)]
, (D5)

c′ = (e
�̃
T − 1)

[
sin(θ1 − θ2)

(
eω1/T − eω2/T

) + sin(θ1 + θ2)
(
e

ω1+ω2
T − 1

)]
2
(
eω1/T + 1

)(
eω2/T + 1

)(
e

�̃
T + 1

) . (D6)

APPENDIX E: EXPERIMENTAL FEASIBILITY

Our model of the many-qubit system is based on asym-
metric interaction, which is responsible for the generation of
coherence in the probe. In terms of Hamiltonian implementa-
tions [i.e., Eq. (1)], we provide some examples of realization
and possible paths for such interactions.

(i) The asymmetric interaction given in Eq. (1) can be real-
ized in a system comprised of a mechanical resonator coupled
to an optical resonator [74,75]. By applying the Holstein-
Primakoff transformation to the bosons and phonons under
the assumptions of weakly excited spins, this bosonic optome-
chanical model can be mapped to the asymmetric spin-spin
coupling model, where only the two lowest vibronic levels are
accessible [76].

(ii) The coupled Raman model, consisting of a three-
level atom in a single-mode cavity, is another possible route
for such interactions [77]. To obtain the desired asymmetric
qubit-qubit interaction, assume the weak excitation of the

cavity mode and replace the bosonic operators (â†â) with spin
operators σ̂ z.

(iii) Another suitable scheme is the circuit QED (see
Ref. [78]), where the junction parameters are tuned to obtain
the phase-gate term described in Ref. [50]. This term takes the
form of σ̂ zσ̂ x when the resonator is only slightly excited.

(iv) Trapped ions can be utilized to simulate the quan-
tum walk on a circle, whereby the walker’s movements are
carried out in the quantum optical phase space using a sin-
gle step generator [U = exp (ipσ zH )] [79]. If the vibrational
excitation is significantly small, the step generator’s effec-
tive Hamiltonian corresponds to an asymmetric spin-spin
interaction.

(v) Based on the parameter range we considered, another
possible example can be the spin-boson model, which has
been studied extensively for metrological purposes. Under
weak excitation conditions, the spin-boson model’s interac-
tion term can also be considered as an asymmetric interaction.
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