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Development of an ab initio method for exciton condensation and its application to TiSe2
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Exciton condensation is a phenomenon that indicates the spontaneous formation of electron-hole pairs, which
can lead to a phase transition from a semimetal to an excitonic insulator by opening a gap at the Fermi surface.
Although the idea of an excitonic insulator has been proposed for several decades, current theoretical approaches
can only provide qualitative descriptions, and a quantitative predictive tool is still lacking. To shed light on this
issue, we developed an ab initio method based on finite-temperature density functional theory and many-body
perturbation theory to calculate the critical behavior of exciton condensation. Utilizing our methodology on
monolayer TiSe2, we identify a phase transition involving lattice distortion and nontrivial electron-hole correla-
tion at a temperature exceeding the critical temperature of phonon softening. By breaking down the components
within the gap equation, we demonstrate that exciton condensation, mediated by electron-phonon interaction,
is the underlying cause of the charge-density-wave state observed in this compound. Overall, the methodology
introduced in this work is general and sets the stage for searching for potential excitonic insulators in natural
material systems.
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I. INTRODUCTION

The formation of fermion pairs can break the limit of
the Pauli exclusion principle, accepting particles to occupy
the same quantum state. At low temperatures, the coherent
occupation can reshape the electronic structure and lead to a
phase transition. The most well-known example in metallic
materials is the Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity [1], where the paired electrons, known as
Cooper pairs, create a gap that enables frictionless transport
and triggers superconductivity. In contrast, in a semimetal or
a semiconductor with a narrow band gap, an electron in the
conduction band may pair with a hole in the valence band
to produce an. exciton. The condensation of excitons in the
ground state leads to the formation of the excitonic insulator
(EI) [2–5].

The phenomenon of EI has been extensively investi-
gated under various pairing conditions, spanning from weak
coupling BCS-like scenarios [4] to strongly coupled Bose-
Einstein condensation [6–8], with pairing forces beyond the
Coulomb attraction [9–11]. Researchers have proposed meth-
ods as an analogy of superconductivity theory by replacing
the superconducting order parameter χ = 〈ψeψe〉 with the
thermal expectation value of exciton operator χ ex = 〈ψeψh〉.
However, after several decades since its inception, the ex-
perimental search for excitonic insulators still lags behind.
At present, exciton condensation is primarily observed in
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artificial quantum well and bilayer structures or induced by
pressure and photoexcitation [12–21]. Conversely, natural
cases are only found in the pristine crystals of some transition
metal compounds [22–27].

Among them, 1T -TiSe2 in the bulk form is known to
undergo structural phase transition from a disorder state to
a commensurate 2 × 2 × 2 charge-density-wave (CDW) state
when the temperature is decreased below the critical value
Tc ∼ 190 K [27–32]. The phase transition is characterized by
the mixing of the Se 4p and Ti 3d bands observed by ARPES
[31,32] and the occurrence of phonon softening, as revealed
by x-ray diffuse scattering [33]. However, these observations
are insufficient and sometimes controversial for understanding
the fundamental mechanism behind the CDW order, for which
theorists argued between the band Jahn-Teller effect [34–36]
and exciton condensation [23,27,32,37–43]. This puzzle
lasted until the recent experiment, where a soft-plasmon mode
that appears exclusively in the EI phase was observed using
the momentum-resolved electron energy-loss (EEL) spec-
troscopy [27]. In recent years, with the development of the
two-dimensional synthesis technique, 1T -TiSe2 in its mono-
layer form is raising a new trend to study the EI/CDW
properties [44–50] and its relation to superconductivity
[51].

In contrast to the versatile model development and boun-
tiful experimental evidence, numerical methods to compute
EI from first principles are remarkably lacking. Current ap-
proaches using density functional theory (DFT) based on the
local exchange-correlation (XC) function such as the local
density approximation (LDA), generalized gradient approx-
imation (GGA), or hybrid functional [52–55] are capable
of describing the ground-state structure of ordered and dis-
order phases [56–59] but not the evolution as a function
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FIG. 1. The structure and workflow of this paper. Upper-right panel: We extend Kohn-Sham’s formalism of DFT by incorporating the
nonlocal (NL) charge density and potential. Using the linked-cluster expansion, we demonstrate that the NL potential contributes to an energy
modification equivalent to the GW correction and derive a gap equation with mass renormalization that can describe the exciton condensation
phenomenon accompanied by lattice distortion, as discussed in Secs. II and III. Upper-left panel: We implement the gap equation with
numerical data from standard DFT and DFPT, including the KS energy, anharmonic phonon frequency, e-ph coupling, and screened Coulomb
interaction, computed by existing first-principles packages. Bottom panel: Combining the theory and numerical inputs, we investigate the
exciton condensation in monolayer TiSe2. We perform computations by considering different corrections within the formalism step by step
and present the EI/CDW phase diagram as the final result. The detailed discussion is presented in Sec. IV C.

of temperature. Some examples extend DFT with electron
and hole in equal footing to construct the XC function for
studying excitonic superfluid [60,61]. Another study uses the
GW and Bethe-Salpeter equation (BSE) method to construct
the Bogoliubov–de-Gennes equation and calculate the EI gap
function at finite temperature [62]. However, these approaches
only consider the Coulomb attraction, overlooking the inter-
play between electron density and crystal structure.

In this paper, we present a systematic approach to studying
exciton condensation by promoting the EI order parameter
to a generalized nonlocal (NL) density and constructing a
DFT scheme, as inspired by superconductivity density func-
tional theory (SCDFT) [63,64]. To investigate the possible
atomic displacement in the ordered phase, we adopt the Born-
Oppenheimer approximation with additional linear potential
and take into account the anharmonicity. Treating the electron
and phonon on equal footing, we use the many-body perturba-
tion method to compute the self-consistent NL XC functional
and derive the gap equation to investigate the critical behavior.
We perform numerical implementation for monolayer TiSe2

based on the formalism and discuss the critical component
for calculating the transition temperature. Our calculations
demonstrate that the critical temperature for exciton conden-
sation induced by electron-phonon coupling is higher than the
temperature at which phonon softening occurs. This outcome
supports the conclusion that the lattice distortion and CDW
order in monolayer TiSe2 are primarily driven by exciton con-
densation, rather than the instability of anharmonic phonons.

Our work presents a broadly applicable approach to access the
microscopic mechanism of exciton condensation and sheds
light on the numerical method for revealing the EI phase in
materials.

The paper is organized as follows. In Sec. II we develop
our ab initio method to describe exciton condensation and
provide a brief review on phonon self-energy. In Sec. III
we derive the gap equation for the EI/CDW state caused by
electron-phonon (e-ph) coupling and the Coulomb interaction.
In Sec. IV we applied the formalism and carry out numer-
ical calculation to study the EI/CDW phase in monolayer
TiSe2. We summarize the results and discuss future research in
Sec. V. In the Appendices, we left derivations and numerical
details in the appendices. Overall, the structure of this paper
and the workflow of the framework is summarized in Fig. 1.

II. THEORY

In this section, we will describe the formulation used in
this work. We introduce a DFT formalism with a generalized
NL density that characterizes spontaneous fermion pairing.
The XC functional and ground-state structure can be obtained
self-consistently at finite temperature using the thermodynam-
ical method. We then extend the discussion by including the
phonon degree of freedom. In order to study CDW, we intro-
duce a linear distortion potential in the phonon Hamiltonian.
Before proceeding, we provide a brief summary of phonon
self-energy and the self-consistent phonon (SCP) theory [65],
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which is dominated by the anharmonic phonon-phonon in-
teraction. Ultimately, the theories we develop and use here
will be applied to investigate exciton condensation from first
principles in the following section.

A. DFT with generalized nonlocal density

The ab initio approach adopted in this work is based
on the multicomponent DFT [66]. By generalizing the
electronic density, this approach has opened the gate to
computing molecule bonding length, magnetization, and su-
perconductivity from first principles [66–68]. Starting from
the many-electron interacting Hamiltonian

Ĥ = T̂ + Û ee + V̂ext, (1)

where the T̂ is the electronic kinetic energy, Û ee is the
Coulomb interaction among electron gas, and V̂ext is the
external field including the potential from the nuclei. The
Kohn-Sham (KS) method [69] replaces the many-body
interaction by a local potential and writes an effective single-
particle Hamiltonian:

ĤKS = T̂ + V̂KS = T̂ [n] + V̂H [n] + V̂XC[n] + V̂ext[n] (2)

where V̂H is the Hartree term, V̂XC is the XC potential, and
V̂ext comes from the external field. The Eq. (2) can reproduce
the same ground-state energy as Eq. (1) with the same local
electronic density according to the Hohenberg-Kohn theorem
[70]. Thus, if we have the true XC potential, then we can
obtain the exact solution for the target system, but V̂XC can
only be acquired approximately.

In correlated systems, like superconductor [64,68], the
local potential is insufficient to represent the many-body in-
teraction, and NL potential and density must be adopted to
characterize the electronic order. Here we start from a DFT
with the NL charge densities χ (r, r′) in the form:

χ (r, r′) =
∑

σ

〈�†
σ (r)�σ (r′)〉, (3)

where �σ is the electron operator, σ denotes the spin index,
and 〈A〉 = Tr[e−βH A] defines the thermal expectation value
[71]. Note that when the two position are identified, Eq. (3)
reduces to the local density, χ (r, r) = n(r). Therefore, fol-
lowing the KS construction of DFT, we can include possible
external potential acting on the NL charge density by consid-
ering the Hamiltonian:

Ĥ = T̂ + Û ee + �̂ext, (4)

where

�̂ext =
∑

σ

∫
d3r�†

σ (r)�ext (r, r′)�σ (r′). (5)

At finite temperature, this Hamiltonian reproduces the ther-
modynamic potential as a functional NL charge density:

�[χ ] = F [χ ] − μ

∫
d3rd3r′δ(r − r′)χ (r, r′)

+
∫

d3rd3r′[χ (r, r′)�ext (r, r′) + H.c.], (6)

where the free energy F [χ ] is universal and independent from
external potentials and μ is the chemical potential acting on
the local part of χ (r, r′) [72].

Compared to the interacting Hamiltonian, Eq. (4), we can
write the corresponding KS Hamiltonian of noninteracting
orbitals [69]:

ĤKS = T̂ + �̂KS, (7)

and the thermodynamic potential becomes

�KS[χ ] = F KS[χ ] +
∫

d3rd3r′�KS(r, r′)χ (r, r′)

− μ

∫
d3rd3r′δ(r − r′)χ (r, r′), (8)

where F KS[χ ] is the free energy of noninteracting KS system.
To make the KS Hamiltonian, Eq. (7), reproduce the same
thermal ground state as the interacting system, both thermody-
namic potentials must be minimized by the same ground-state
densities:

∂�

∂χ (r, r′)
= ∂F

∂χ (r, r′)
+�ext (r, r′) − μδ(r − r′) = 0

∂�KS

∂χ (r, r′)
= ∂F KS

∂χ (r, r′)
+ �KS(r, r′)−μδ(r − r′) = 0. (9)

By defining the XC-free energy to satisfy the relation:

F [χ ] = F KS[χ ] + FXC[χ ] + 1

2

∫
d3rd3r′ n(r)n(r′)

|r − r′| (10)

and the exchange-correlation potential:

�xc[χ ](r, r′) ≡ ∂FXC

∂χ (r, r′)
(11)

we identify the nonlocal potential of the two systems:

�KS(r, r′) = �ext (r, r′) + �xc(r, r′)

+ δ(r, r′)
∫

d3r′′ n(r′′)
|r − r′′| . (12)

Therefore, by taking �ext = 0, we can write the generalized
KS equation [73]:[

−∇2

2
+

∫
d3r′ n(r′)

|r − r′| − μ

]
φi(r)

+
∫

d3r′�xc(r, r′)φi(r′) = Eiφi(r). (13)

To compare with the standard KS equation [74]:[
−∇2

2
+

∫
d3r′ n(r′)

|r − r′| + vxc(r) − μ

]
ψi(r) = ξiψi(r),

(14)

where the potential is local

vxc[n](r) ≡ ∂FXC

∂χ (r, r)

∣∣∣∣
χ (r �=r′ )=0

(15)
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and generally evaluated with LDA or GGA method, we isolate
vxc(r) from the nonlocal part in Eq. (13) and obtain[

−∇2

2
+

∫
d3r′ n(r′)

|r − r′| + vxc(r) − μ

]
φi(r)

+
∫

d3r′[�xc(r, r′) − δ(r − r′)vxc(r)]φi(r′) = Eiφi(r).

(16)

This is the major result of this section. The first line in Eq. (16)
is identical to the standard KS-equation, Eq. (14), while the
second line represents the contribution from fully nonlocal
part, r �= r′, and causes mixing among standard KS orbitals,
ψi’s. Using the eigenfunctions of Eq. (14) as a basis set, we
can project Eq. (16) on ψi and obtain:

ξ jt
i
j +

∑
k

t i
k

∫
d3rd3r′ψ∗

j (r)

× [�xc(r, r′) − δ(r − r′)vxc(r)]ψk (r′) = Eit
i
j, (17)

where we defined the mixing coefficient t i
j :

t i
j =

∫
d3rψ∗

j (r)φi(r), (18a)

φi(r) =
∑

j

t i
jψ j (r), (18b)

such that the solving Eq. (16) reduces to a linear algebra prob-
lem, with eigenvector t i

j and eigenvalue Ei. This derivation is
general for all NL-densities beyond the definition in Eq. (3).
For example, by choosing χ (r, r′) = 〈�↑(r)�↓(r′)〉, i.e., the
Cooper pairing, we can obtain the DFT for superconductivity
[64,68].

Based on Eq. (16), once the form of the XC potential
is known, we can determine the ground-state structure. In
this study, we adopted a similar approach to SCDFT [63,64]
and employed the KS perturbation theory [75] to determine
the �xc. By identifying the KS Hamiltonian, Eq. (7), as the
unperturbed part from the interacting Hamiltonian, Eq. (4),
we obtain a perturbation theory:

Ĥ0 = ĤKS; ĤI = Û ee − �̂KS. (19)

Using Eq. (19) the difference between the interacting and KS
thermodynamic potential can be expanded using the linked-
cluster theorem [76–78] as:

� = �KS − 1

β

∞∑
l=1

Ul , (20)

where Ul are different connected Feynman diagrams gener-
ated by ĤI [79]. According to Eq. (9), both thermal potentials
are minimized by the ground-state density such that the
derivative of Eq. (20) must vanish:

∂

∂χ
(� − �KS) = 0 =

∞∑
l=1

∂Ul

∂χ
. (21)

This is one of the major condition in this work that will be ap-
plied to derive the gap equation in Sec. III. In Appendix A, we
demonstrate that this method can also be utilized to obtain the
GW correction, which is typically derived from the Green’s
function approach [80].

B. DFT with generalized density from phonon
degree of freedom

To discuss the structural transition, we must consider a
theory that involves the atomic degree of freedom. In this
work, we restrict the discussion to the Born-Oppenheimer
approximation, which employs the phonon vibration to rep-
resent atomic motion. The standard approach expands the
interatomic potential from the equilibrium structure in the
Taylor series, where the lowest quadratic term defines the
noninteracting phonon normal mode while higher-order terms
take account of the anharmonic phonon-phonon (ph-ph) inter-
actions [81]. Consequently, the spontaneous lattice distortion
can be characterized by the thermal average of the phonon op-
erator, which is proportional to the static atomic displacement.

To accommodate the lattice deformation, we extend the KS
Hamiltonian by introducing a phonon Hamiltonian:

Ĥph = Ĥ0,ph + Û ph
anh. + Û e-ph + �̂b (22)

where the free phonon Hamiltonian Ĥ0,ph, ph-ph anharmonic
interaction Û ph

anh., and e-ph interaction Û e-ph are defined as
standard forms as in literature [65,82]. The last term denotes
a linear deformation potential of the form:

�̂b =
∑
qν

(�∗
b,qν b̂qν + �b,qν b̂†

qν ), (23)

which can push atoms away from their equilibrium position
without phonon softening when the phonon frequency re-
mains real, ω2 > 0. Therefore, the phonon operator acquires
a finite thermal average:

〈b̂qν〉 = χb,qν (24)

such that if we treat χb,qν on the same footing as the densities
in Eq. (3), the �b’s can be determined by the perturbation
expansion method introduced in the previous section where
the Hamiltonian now includes the phonon degree of freedom:

Ĥ = Ĥ0 + ĤI, (25a)

Ĥ0 = T̂ + �̂KS + Ĥ0,ph + �̂b, (25b)

ĤI = Û ee − �̂KS + Û ph
anh. + Û e-ph − �̂b. (25c)

This is the general formalism used to describe lattice de-
formation at finite temperature. The distorted pattern follows
the phonon normal vector, which is denoted by the mode
index ν. The displacement amplitude is proportional to the
absolute value of χb,qν , and the momentum q determines the
periodicity of the new crystal structure. In Sec. III, we will
apply Eqs. (25a)–(25c) to derive the gap equation for the
exciton condensation phenomenon.

C. Phonon self-energy from first principles

This section provides a discussion of the phonon prop-
erties obtained through first-principles approaches. The ab
initio phonon vibration can be calculated by diagonalizing the
dynamical matrix, which describes the total energy change
when atoms move away from their equilibrium positions. The
dynamical matrix can be computed practically using den-
sity functional perturbation theory (DFPT) [81] or the frozen
phonon method [83]. Phonon frequencies obtained by these
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methods contain the “bare” part as well as the renormalization
effect [84–86]:

ω2
qν = ωbare

qν

2 + 2ωbare
qν �bare

qν (T ), (26a)

�bare
qν (T ) = 2

Nk

∑
kmn

∣∣gbare
mnν (k, q)

∣∣2 fk+q,m − fk,n

ξm
k+q − ξ n

k

, (26b)

where gbare
mnν (k, q) is the bare e-ph matrix element:

gbare
mnν (k, q) =

(
h̄

2ωbare
qν

)1/2

〈ψmk+q|∂qνV |ψnk〉. (27)

In Eq. (26b), �bare
qν is the self-energy due to the Coulomb

screening, where the superscript “bare” denotes that we used
the bare coupling constant from Eq. (27), and the factor of
2 appears for the spin degeneracy [87]. Nk is the number
of k points, ξ n

k is the electron energy of the nth band with
momentum k measured from the chemical potential, and
fk,n = 1/(eβξ n

k + 1) is the Fermi-Dirac distribution function.
Here we note that although the self-energy depends on the
phonon frequency via the coupling constant, the renormaliza-
tion only depends on the deformation potential ∂qνV and the
electronic occupations fk,n. Therefore, for later use, we define
a frequency-independent factor,

Xqν (T ) = h̄

Nk

∑
kmn

|〈ψmk+q|∂qνV |ψnk〉|2 fk+q,m − fk,n

ξm
k+q − ξ n

k

, (28)

such that the phonon frequency difference between two tem-
peratures due to the screening effect can be written as

ω2
qν (T1) − ω2

qν (T2) = 2Xqν (T )|T1
T2

, (29)

where we neglect the temperature dependence in the deforma-
tion potential.

In general, experimental observables are fully renormal-
ized quantities, so researchers typically focus on explaining
the direct results ω as experimental measurements, while the
isolation between the bare frequency ωbare and self-energy is
rarely studied [88]. However, when a single phonon momen-
tum q connects the electron pocket and hole pocket in some
metallic systems, �qν tends to diverge. This divergence forces
the corresponding renormalized phonon to become soft with
imaginary frequency, as the self-energy is always negative.
This so-called Fermi-surface nesting effect destabilizes the
crystal structure, resulting in lattice distortion and causing a
transition into a CDW phase.

The phonons obtained from the above method are re-
stricted to the harmonic approximation, which expands the
energy variation up to the second order of atomic displace-
ment. While the harmonic phonon approach has achieved
considerable success in studying transport properties, carrier
relaxation, and polaronic systems [89–91], it is inadequate
in describing many critical properties associated with lattice
anharmonicity, such as thermal expansion, lattice transition,
temperature-dependent phonon frequency, and prediction of
critical temperature for superconductivity [92–97].

In this work, we adopt the SCP theory [65,98] to compute
the anharmonic phonon frequency. The SCP theory expands

the energy to quartic order of the atomic displacement [99]:

Un = 1

n!

(
h̄

2

) n
2 ∑

{qn}
δ(�qn, G)

�(q1, · · · qn)√
ωq1 · · · ωqn

Âq1 · · · Âqn (30)

where Un is the energy manifold when moving n atoms
away from their equilibrium position, q = (q, ν) is the collec-
tive index, δ(�qn, G) imposes the momentum conservation,
�(q1, · · · qn) is the interatomic force constant, and Âq is the
displacement operator. To the lowest order, the self-energy
comes from the loop diagram of the four-points vertex:

�q,νν ′ = −1

2

∑
q1

h̄�(qν,−qν ′, q1,−q1)

4
√

ω
scp
qν ω

scp
−qν ′ω

scp
q1

× [
1 + 2nB

(
ωscp

q1

)]
,

(31)
where nB is the Bose-Einstein distribution function. This
anharmonic self-energy contribution contains the mixing be-
tween different phonon normal modes ν, ν ′ such that it
modifies both the phonon frequency and the vibration pattern.
When the off-diagonal term can be neglected, the SCP equa-
tion can be simplified as:

ωscp
qν

2 = ω2
qν + 2ωscp

qν �q,νν . (32)

It has been shown that the SCP equation requires a real so-
lution for all �’s such that the self-consistent solution breaks
down when any phonon becomes soft.

III. EXCITON CONDENSATION

We apply the methods introduced in the previous section to
study the EI/CDW phase. For a direct application to be
discussed in the next section, we focus on the exciton for-
mation between electron and hole with momentum (ke, kh) =
(k, k + M), where the transition momentum M is chosen as
G/2, half of the reciprocal vector. The generalization to other
transition momentum is straightforward and can be carried
out following the same logic flow of this section. Focusing
on the mixing among states of momentum k and k + M, we
rewrite the mixing function Eq. (18b) in the form of Bloch
wave function:

φn
(k) =

∑
v

t n
vkψvk +

∑
c

t n
ck+Mψck+M =

∑
i

t n
i(k)ψi(k), (33)

where we use v to denote the band index for states with
momentum k, c to denote the band index for states with
momentum k + M, and (k) for the mixed momentum k and
k + M and make the notation as a convention throughout the
paper. We note that, in this setting, we treat the occupied states
and unoccupied states on an equal footing, and the c, v indices
are not restricted to valance bands or conduction bands. On
the other hand, applying Eq. (33) to Eq. (3), the NL density
becomes

χ (r, r′) =
∑
i j(k)

χ
i j
(k)ψ

∗
i(k)(r)ψ j(k)(r′), (34a)

χ
i j
(k) ≡

∑
n

fn(k)t
n∗
i(k)t

n
j(k), (34b)
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where χ
i j
(k) evaluates the mixing between the ith and jth or-

bitals. The corresponding potential can be written as

�
i j
(k) =

∫
d3rd3r′ψ∗

i(k)(r)�(r, r′)ψ j(k)(r′)

−
∫

d3rψ∗
i(k)(r)vxc(r)ψ j(k)(r). (35)

For the mixing between states of momentum k and k + M,
the second line vanishes since∫

d3rψ∗
vk(r)vxc(r)ψck+M(r)

=
∑
n∈N

e−inM·a
∫

BZ
d3ru∗

vk(r)vxc(r)uck+M(r) = 0, (36)

where we use the periodic property of vxc(r) = vxc(r + a)
and a is the lattice constant in normal phase. On the other
hand, for the mixing between states of the same momentum,
we follow the GWA which accounts only for the diagonal
part as presented in Appendix A. In the following, we will
simplify the subscription χ

i j
(k),�

i j
(k) → χ

i j
k ,�

i j
k for density

and potential without raising any confusion.
For the phonon sector we attribute the phase transition

to a single phonon mode ν0 such that the phonon distortion
potential Eq. (23) can be reduced to the subspace:

�̂b = �∗
bb̂Mν0 + �bb̂†

Mν0
. (37)

In practical implementation, we do not directly use Eq. (25a)–
(25c). Since the DFPT calculation will always provide a
screened phonon frequency as discussed in Sec. II C, we
extract the screening part from ĤI and define the frequency
adopted in the unperturbed Hamiltonian as

ωDFPT
qν =

√
ωbare

qν
2 + 2Xqν (T = 0 K), (38)

which becomes imaginary when the phonon is soft. Besides,
for the ph-ph anharmonic interactions, we take into account
their contributions only in phonon frequency but neglect other
scattering effects. Consequently, we can write an effective
Hamiltonian for the perturbation theory:

Ĥ0 =
∑

k

ξ n
k ĉ†

nkĉnk +
∑
q,ν

ωDFPT
qν b̂†

qν b̂qν + �̃, (39a)

ĤI =
∑

kq,mn

gDFPT
nmν (k, q)ĉ†

nk+qĉmk(b̂†
−qν + b̂qν ) + c.c.

+
∑
q,νν ′

�̃q,νν ′ (T )b̂†
qν b̂qν ′ − �̃ + (Coulomb), (39b)

where (Coulomb) denotes Û ee − �̂XC in Eq. (19), and we use
the shorthands:

�̃ =
∑
nmk

�nm
k ĉ†

nk+Mĉmk + �∗
bb̂Mν0 + c.c., (40a)

�̃q,νν ′ (T ) = �qν�q,νν ′ (T ) − δνν ′Xqν (T = 0 K)

ωDFPT
qν

, (40b)

where gDFPT is the e-ph coupling constant we obtain from first-
principles calculation:

gDFPT
mnν (k, q) =

(
h̄

2ωDFPT
qν

)1/2

〈ψmk+q|∂qνV |ψnk〉, (41)

which is different from Eq. (27) by a scaling prefactor de-
pending on the phonon frequency. The self-energy �(T ) is
required to be computed by Eq. (31), and the energy correction
Eq. (40b) is chosen for the dressed phonon in this effective
Hamiltonian matching the finite-temperature phonon such that
the frequency satisfying the self-consistent equation:

�2
qν = ωDFPT

qν

2 + 2Xqν (T )|TT =0 + 2�qν�qν (T ) (42)

similarly to Eq. (32) in the diagonal approximation (see
Appendix B).

Because the �qν (T ) is the physical pole of the phonon
Green’s function and corresponds to the frequency measured
in experiments, in the rest discussion, we will simply refer
to “frequency” for this temperature-depending quantity with-
out further specification and replace ωDFPT

qν by �qν (T ) when
computing the thermal average. Note that this substitution also
changes the e-ph coupling constant due to the dependence on
the phonon frequency via the relation:

gnmν (k, q; T ) = gDFPT
nmν (k, q) ×

√
ωDFPT

qν

�qν (T )
, (43)

where we neglect the temperature effect on the deformation
potential and normal mode eigenvector. This replacement of
thermal quantities is already adopted in materials with anhar-
monic dynamics to study the carrier mobility [95].

In the following, we utilize Eqs. (39a) and (39b) to de-
rive the formula for studying EI/CDW through computing
diagrams presented in Fig. 2. We divide Fig. 2 into three
categories and investigate their contribution separately. Fig-
ure 2(a) presents the lowest order diagrams consisting static
terms of density and potentials, while Figs. 2(b)–2(e) are the
self-energy part and bubble diagrams, which will provide the
mass renormalization correction. Figures 2(f) and 2(g) repre-
sents the contribution due to the Coulomb interaction.

A. Gap equation

We first focus on Fig. 2(a) and derive the basic structure of
the gap equation. The mathematical representation for the di-
agram is derived from the first line of Eq. (39b) and Eq. (40a):

U (a) =
∑
cvk

gcvν0 (k, M)〈ĉ†
ck+Mĉvk〉〈b̂†

−Mν0
+ b̂Mν0〉

−�cv
k 〈ĉ†

ck+Mĉvk〉 − �∗
b〈b̂Mν0〉 + c.c.

=
∑
cvk

gcvν0 (k, M)χ cv
k (χb,Mν0 + χ∗

b,Mν0
)

−�cv
k χ cv

k − �∗
bχb,Mν0 + c.c., (44)

where we have used the property b̂M = b̂−M and Eq. (43) for
the temperature depending on the e-ph coupling. We note that
since all operators are equal time in terms of the Heisenberg
picture, there is no propagator but only density. Applying
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FIG. 2. Feynman diagrams based on the interacting Hamiltonian,
Eq. (39b). (a) The lowest order diagrams in the linked-cluster ex-
pansion, containing products of MF density and potentials, from
which we can derive the MF gap equation, Eq. (45). [(b)–(e)] Next-
to-leading-order bubble diagrams resulting from the e-ph coupling,
where �̃ is the self-energy defined in Eq. (40b). These diagram con-
tribute to the mass renormalization terms, Zb and Zcv

k . The bottom
column presents diagrams due to the Coulomb interaction. In (f), we
consider the screened Coulomb interaction Wq while in (g) the bare
Coulomb interaction is used. This choice of Coulomb interaction is
inspired by Ref. [62]. The meaning of the symbols are summarized
as follows: χ is the NL density [Eq. (34b)], χb is the phonon dis-
placement [Eq. (24)], � is the NL potential [Eq. (35)], �b is the
phonon linear potential [Eq. (23)], Gk is the standard propagator
without band change and momentum transfer [Eq. (52)], Fk is the
anomalous propagator connecting state of momentum k and k + M
[Eq. (46)], and Dq is the phonon propagator.

Eq. (44) to the minimum condition Eq. (21) in the lowest
order, U1=l = U (a), and keeping χb,M(χb) and χ∗

b,M(χ∗
b ) as

independent variables, we can obtain:

�b =
∑
cv,k

gcvν0 (k, M)χ cv
k + g∗

cvν0
(k, M)χ cv

k
∗
, (45a)

�cv
k = gcvν0 (k, M)(χb,Mν0 + χ∗

b,Mν0
). (45b)

These two equations are the same gap equations derived
from the mean-field approach [9], and we will refer them
as “MF gap equation” for the rest discussion. They can be
solved consistently using the solution of Eq. (39a) and the
definition in Eq. (24) and Eq. (34b). To present the detail, we
carry out an example of an analytically solvable model in a
one-dimensional system and discuss in Appendix C.

In the next order expansion of the linked cluster, Fig. 2(b) is
induced by phonon-exchanging and consists of the anomalous

Green’s function [100]:

F̂n(k)(iωn) =
∑

cv

t n∗
vkt n∗

ck+M|vk〉〈ck + M| + H.c.

iωn − En(k)
. (46)

This diagram contains internal phonon propagator, Dq, of
general momentum q and contributes to the gap equation by a
term proportional to

∝ 1

Nq

∑
c′v′,q,ν

gvv′ν (k − q, q)g∗
cc′ν (k + M, q)χ cv

k−q. (47)

However, in the studies with phonon softening, we can ignore
Eq. (47) in computing the gap equation since the e-ph cou-
pling for the soft-mode, gcvν0 (k, M), is boosted by Eq. (43)
and makes Eqs. (45a) and (45b) the dominant contributions.

B. Mass renormalization in �b

The mass renormalization effect can be separated into two
parts corresponding to the gap function �b and �k, respec-
tively, and here we focus on the �b. We isolate the q = M part
[Fig. 2(d)] from the bubble diagram [Fig. 2(e)] and combine
it with the contribution from the effective self-energy term.
To compute Fig. 2(d), we note that due to the �̂ potential
term, the phonon operator b̂(†)

M in the unperturbed Hamilto-
nian, Eq. (39a), acquires a nonzero thermal average such that
its thermal Green’s function becomes (see Appendix D)

Dν (q, iωn) = −2�qν

ω2
n + �2

qν

− δωn,0δq,Mδν,ν0

β(�∗
b + �b)2

�2
qν

.

(48)
The Green’s function now takes an additional static (ωn = 0)
term for the ν0 phonon with q = M which is quadratically
proportional to the potential �b. Therefore, the �b-relevant
part of Figs. 2(c) and 2(d) becomes

U (c+d) = (�∗
b + �b)2

�2
Mν0

�Mν0 (T )

+ |�b|2
�2

Mν0

[�q,νν ′ (T ) − �Mν0 (T = 0 K)], (49)

where �Mν0 is defined as Eq. (26b) with the e-ph coupling
replaced by Eq. (43). Using the relation Eq. (D2) and taking
the derivative respective to χ∗

b , we can obtain

∂U (c+d)

∂χ∗
b

= −2�b

�2
Mν0

[
2�Mν0�Mν0 (T ) + 2XMν0 (T )

∣∣T
T =0

]
≡ −Zb�b. (50)

The mass renormalization for the phonon displacement po-
tential can thus be obtained by including Eq. (49) as the
next-to-leading order correction in Eq. (21). Adding Eq. (50)
to the right-hand side of Eq. (45a), the gap equation is modi-
fied by a overall ratio:

�b ≡ λb

⎡
⎣∑

cv,k

gcvν0 (k, M)χ cv
k + g∗

cvν0
(k, M)χ cv

k
∗

⎤
⎦, (51)

where λb = 1/(1 + Zb). Since the factor Zb is always posi-
tive, the mass renormalization will reduce the displacement
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potential and thus decrease the critical temperature for exciton
condensation.

C. Mass renormalization in �k

The mass renormalization on the NL potential �k can be
obtained from Fig. 2(e) which is the bubble diagram involving
only normal propagators, and here we include all the phonon
momentum q and normal modes ν. To compute Fig. 2(e), we
first note that for the state of Eq. (33), the Green’s function
can be written as

Ĝn(k)(iωn) =
∑

cv

|t n
vk|2|vk〉〈vk| + |t n

ck|2|ck + M〉〈ck + M|
iωn − En(k)

,

(52)

which already mixes states of momentum k and k + M fol-
lowing the Hamiltonian Eq. (39a). Therefore, Fig. 2(e) can be
expressed as

U (e) =
∑

kq,nm,ν

I
(
Em(k+q),En(k) ,�qν

)

×
[∑

viv j

∣∣t n
vik

∣∣2∣∣tm
v j k+q

∣∣2∣∣gv jviν (k, q)
∣∣2

+
∑
cic j

∣∣t n
cik

∣∣2∣∣tm
c j k+q

∣∣2∣∣gcj ciν (k + M, q)
∣∣2], (53)

where we define

I (E1, E2, ω) =
∑
ωnωm

1

iωn − E1

1

iωm − E2

−2ω

(ωn − ωm)2 + ω2
,

(54)

which is the common expression appearing in the bubble
diagram including two fermions and one boson propagator.
However, in a general system with bands of more than two,
there is no analytical expression of coefficient t n

vk’s in terms
of coupling potential �k. As a result, we take the small �k
approximation and use the perturbation theory to expand the
coefficients. In the linear order, since the eigenvalue is the
same as the diagonal entries, we can use the original band
index to denote the new states such that

En=vi (k) = ξ
vi
k ; t n=vi

v j k
= δvi,v j ; t n=vi

c j k
= �

c jvi

k

ξ
vi
k − ξ

c j

k+M

En=ci (k) = ξ
ci
k+M ; t n=ci

c j k
= δci,c j ; t n=ci

v j k
= �

v j ci

k

ξ
ci
k+M − ξ

v j

k

.

(55)

However, the linear order is insufficient to express the eigen-
vector terms in U (e) since the terms always appear as an
absolute square, |t n

c,v|2. We compute the perturbation expan-
sion to the second order for the explicit �cv

k dependence and
take the derivative on Eq. (53). The algebraic detail is left to
the Appendix E, and we quote the result here. The derivative

of the bubble diagram respective to NL densities can be writ-
ten as

∂U (e)

∂χ cv
k

= �cv
k(

ξ c
k+M − ξ v

k

)
( fk+M,c − fk,v )

×
∑
q,ν

[∑
v2

I
(
ξ

v2
k+q, ξ

v
k ,�qν

)|gv2vν (k, q)|2

+
∑

c2

I
(
ξ

c2
k+M+q, ξ

c
k+M,�qν

)|gc2cν (k + M, q)|2
]

≡ −Zcv
k �cv

k . (56)

By adding Eq. (56) to the right-hand side of Eq. (45b), the gap
equation is then modified by an overall ratio from the mass
renormalization term:

�cv
k ≡ λcv

k gcvν0 (k, M)
(
χb,Mν0 + χ∗

b,Mν0

)
, (57)

where λcv
k = 1/(1 + Zcv

k ). Due to the occupation difference
in the denominator, Zk diverges and suppresses the potential
�k for pairing between electron-electron (e-e) and hole-hole
(h-h), such that the remaining configuration can only contain
one electron and one hole (e-h pairing).

In summary, Eq. (51) and Eq. (57) determine the gap that
characterizes the excitonic insulator, which is induced by the
e-ph coupling in a distorted lattice structure. The derived
results contain the essential mass renormalization factors for
the electronic and atomic sectors, which are absent in the
conventional MF approach.

D. Gap equation due to Coulomb interaction

The third column of Fig. 2 contribute to the gap equa-
tion due to the Coulomb interaction. For Fig. 2(f), we can
write

U ( f ) =
∑

c1v1c2v2,k,q

χ
c1v1∗
k χ

c2v2
k+M−qW M

c1c2v2v1
(k, q), (58)

where the screened Coulomb interaction W M is in a general
form and subjects to all approaches adopted in different nu-
merical calculations. On the other hand, in Sec. IV, we will
use the static limit for the screened Coulomb interaction for
simplicity:

W M
c1c2v2v1

(k, q) =
∑
G,G′

ε−1
GG′ (q)ρG

v1v2
(k, q)ρG′∗

c1c2
(k + M, q)

|q + G||q + G′| ,

(59)
with the dipole element:

ρG
nm(k, q) =

∑
G1

uG1+G∗
nk uG1

mk−q, (60)

where the uG
nk is the periodic part of Bloch wave function

in momentum space. In practice, we restrict to RPA-type
Coulomb screening and ignore the quenching effect due to the
band deformation in the ordered phase [101]. This assumption
is available for determining the Tc since at the critical point
the band deformation is infinitesimal. Below the Tc, how the
quenching effect modifies the exciton condensation is pre-
sented in Refs. [60,61].
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FIG. 3. (a) Band structure of monolayer TiSe2 in disordered phase computed in DFT (gray) and the GW approximation (deep red) with
spin-orbit coupling included. The electron pocket at the M point and the hole pocket at the � point shrink after the GW correction included.
(b) The temperature dependence of the SCP phonon dispersion is encoded by the color map. The black line is computed by DFPT in the
harmonic approximation, for which the appearance of the soft mode at the M point indicates the instability of the crystal structure against the
formation of 2 × 2 CDW at zero temperature. Inset: The normal vibration mode of the soft mode at the M point. (c) Temperature-dependent
phonon frequency of the soft mode at q = M. The blue line represents the frequency obtained from DFPT and corrected by the Coulomb-
screened self-energy [Eqs. (28) and (29)]. The orange line represents the frequency obtained from the SCP theory with anharmonic effect
included [Eqs. (31) and (32)]. The green line represents the frequency obtained from the SCP theory along with the Coulomb screened
self-energy [Eq. (42)]. Since the green line denotes the fully renormalized phonon frequency without exciton correlation, it indicates a phase
transition at T IP

c = 190 K where lattice distorts due to phonon softening in independent particle (IP) approximation. When calculating the gap
equation of exciton condensation, we adopt the fully renormalized phonon frequency to correct the e-ph coupling by Eq. (43).

On the other hand, Fig. 2(g) is the local Hartree potential
from the anomalous density and can be written as

U (g) = −
∑

v1c1c2v2,k′,k

χ
c1v1∗
k χ

c2v2
k′ vM

c1v1v2c2
(k, k′), (61)

where

vM
c1v1v2c2

(k, k′) =
∑

G

ρG∗
v2c2

(k′, M)ρG
v1c1

(k, M)

|M + G|2 . (62)

Combining the two diagrams and taking the derivative, we can
obtain:

∂U ( f +g)

∂χ cv
k

=
∑

c1v1,q

χ
c1v1∗
k−M+qW M

c1cvv1
(k − M + q, q)

−
∑

c1v1,k′
χ

c1v1∗
k′ vM

c1v1vc(k′, k), (63)

which will contribute to the right-hand side of Eq. (45b) when
we include the Coulomb interaction to compute the gap equa-
tion. Equation (63) is not restricted to q = M but for band
mixing between states of general momentum pairing, k and
k + q. For the special case with q = 0, Eq. (63) reduces to
the gap equation derived in Ref. [62].

IV. EXCITON CONDENSATION IN MONOLAYER TiSe2

This section presents the results for the EI/CDW phase
in monolayer TiSe2. Although the debate on the nature of
the CDW in bulk TiSe2 has been resolved by EEL experi-
ments [27], a similar measurement for its monolayer crystal
is still missing in the literature. Furthermore, current ab initio
studies cannot incorporate electron and phonon coupling in
a unified approach [46,57,102], and the e-h pairing mediated
by phonon coupling has yet to be elucidated. Therefore, to

reveal the underlying mechanism of the unconventional CDW
in monolayer TiSe2, we apply the formalism developed in
the last section to carry out numerical simulations of exciton
condensation and discuss all the factors affecting the critical
temperature from first principles.

A. Electronic structure of monolayer TiSe2 in disordered phase

The first-principles electronic structure of monolayer TiSe2

can be found in the literature [46], and here we present our
calculation as a starting point. We perform the DFT calcula-
tion on the relaxed hexagonal structure using the QUANTUM
ESPRESSO package [103], with the Perdew-Burke-Ernzerhof
exchange-correlation functional and fully relativistic norm-
conserving pseudopotentials generated with Pseudo Dojo
[53,104,105]. Going beyond DFT, we use the VASP code to
include the GW correction in an additional calculation [106].
All the computational details are summarized in Appendix F.

We present the computed DFT band structures along with
GW correction in Fig. 3(a). To match the results, we align
the Fermi level at 0 eV and connect isolated data points by
the Wannier interpolation method using the interface between
VASP and WANNIER90 [107]. Both DFT and GW calculations
show that monolayer TiSe2 is a semimetal, with a hole pocket
near the � point and electron pocket in the M point while the
Fermi surface is much smaller in the GW bands. By resolving
the orbital in the band structure [46], we found that, with
respect to the Fermi level, bands containing the Se p orbitals
tend to be suppressed to lower energy while the bands with the
Ti d orbitals can be promoted to higher energy in the GW cor-
rection. Near the � point, two kinds of orbital are entangled,
leading to Mexican hatlike dispersions of the bands. Away
from the � point, the overall vertical stretch between occupied
and unoccupied bands is about 1 eV.

043183-9



CHEN, NOMOTO, AND ARITA PHYSICAL REVIEW RESEARCH 5, 043183 (2023)

B. Temperature depending phonon dispersion

In bulk TiSe2 a soft phonon with imaginary frequency
has been observed and computed with wave vector q = L =
( π

2 , π
2 , π

2 ), which corresponds to the formation of 2 × 2 × 2
CDW in three-dimensional crystal [33,108,109]. The soft
phonon can be “hardened” by increasing the environment
temperature. However, first-principles studies that used oc-
cupation broadening to simulate the finite-temperature effect
showed that a substantial broadening is required for dynami-
cal stability, leading to unrealistic high transition temperatures
for both bulk and monolayer structures [46,108]. The failure
of this approach indicates a strong anharmonicity in TiSe2

beyond the harmonic approximation, which is highlighted in
a recent study [102].

Here we apply the method introduced in Sec. II C to
compute the self-consistent anharmonic phonon frequency
and study the phonon softening in monolayer TiSe2. In the
practical procedure, we carry out the DFPT calculation us-
ing QUANTUM ESPRESSO to obtain the dynamical matrix
and compute the e-ph matrix element with PERTURBO code
[110]. We then use this matrix element in Eq. (26b) to
compute the screened self-energy. To compute the phonon
anharmonicity, we first use the ab initio molecular dynamics
method implemented in VASP to generate the interatomic
force and then compute the anharmonic phonon frequency by
the ALAMODE code [65].

We present the temperature-dependent phonon dispersion
in Fig. 3(b), where we plot the imaginary frequency in the
minus axis. The black line represents a robust soft mode at the
M point, which is the direct result of DFPT and is consistent
with the formation of the 2 × 2 CDW in monolayer TiSe2. The
corresponding normal mode for the soft phonon is shown in
the inset, which has an atomic displacement perpendicular to
the wave vector. In the hexagonal Brillouin zone (BZ), there
are three M points, and the condensation of these three normal
modes can build up the lattice distortion observed in the CDW
phase. Beyond the harmonic approximation, we observe that
the soft phonon is the only mode sensitive to the anharmonic
effect, while disregarding some temperature-independent cor-
rection. These results validate the single-mode assumption
applied in Sec. III.

In Fig. 3(c), we analyze the soft-phonon at the M point.
We present the phonon frequency as a function of tempera-
ture. We consider three different cases: (1) considering the
correction only from the screening [Eqs. (28) and (29)], (2)
considering the correction only from the anharmonic effect
[Eqs. (31) and (32)], and (3) considering both the two ef-
fects [Eq. (42)]. First, we note that, at zero temperature,
the harmonic DFPT gives us a phonon frequency ωDFPT

M =
116i cm−1. When considering the temperature dependence in
the Coulomb screened self-energy, the frequency varies by
30i cm−1 from 0 K to 600 K (blue line), which indicates that
the phonon will always be soft in the harmonic approximation.
On the other hand, the pure anharmonic effect can raise the
phonon frequency dramatically, forcing the phonon mode to
become “hard” above T = 270 K (orange line). This critical
temperature can even be reduced to T = 190 K when we
combine the contribution from the two effects and solve the
phonon frequency self-consistently (green line). In Fig. 4, we
present the Coulomb screened self-energy with respect to its

FIG. 4. Coulomb screened self-energy correction at finite tem-
perature, Eq. (28), measured with respect to the zero-temperature
value. Although the Fermi surface nesting is not significant (circle vs
oval), remarkable temperature dependence can be found for phonon
near M = (π/2, 0) connecting the electron packet and hole pocket.

zero-temperature value for phonon momentum q along the
high symmetry line M-� under different temperatures. We
note that the most significant temperature dependence does
not occur for the momentum q = M since the Fermi surface
is not ideally “nesting.” Instead, it is approximately a constant
for q near the M point within a specific range and gradually
decreases outside.

C. Gap equation

Based on the discussion in the last section, the EI/CDW
lattice distortion is attributed to the combined effect of the
three M phonons which requires to be treated explicitly. This
“triple-q” effect requires us to extend the “single-q” formal-
ism presented in Sec. III. More explicitly, we write the new
wave function by introducing the pairing direction in Eq. (33):

φn
(k) =

∑
v

t n
vkψvk +

∑
c,I

t n
ck,Iψck+MI , (64)

where I = 1, 2, 3 is the index for the three M directions. In
a simplified two-band model, the mixing coefficients can be
obtained by solving the triple-q version of the Hamiltonian
Eq. (39a):⎛
⎜⎜⎝

ξ c
k+M1

0 0 �cv
k,1

0 ξ c
k+M2

0 �cv
k,2

0 0 ξ c
k+M3

�cv
k,3

�vc
k,1 �vc

k,2 �vc
k,3 ξ v

k

⎞
⎟⎟⎠
⎛
⎜⎜⎝

t n
ck,1

t n
ck,2

t n
ck,3
t n
vk

⎞
⎟⎟⎠ = En(k)

⎛
⎜⎜⎝

t n
ck,1

t n
ck,2

t n
ck,3
t n
vk

⎞
⎟⎟⎠,

(65)
where we neglect the pairing between states of k + MI and
k + MJ for which the momentum transfer exceeds the first BZ
[111]. It can be shown that the effect of triple-q will decouple
from each other in the limit of �k → 0 and reduce to the
single-q scenario in the linear order as Eq. (55). This property
reflects that the inclusion of the triple-q effect only changes
the finite �k behavior but maintains the critical temperature,
Tc, where �k = 0. The same extension is applicable to the
gap equations when incorporating the triple-q effect. Among
all the expressions presented in Sec. III, we implement the
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extension(
�b,�

cv
k , χb,M, χ cv

k

) → (
�b,I ,�

cv
k,I , χb,MI , χ

cv
k,I

)
(
λb, λ

cv
k ,W M, vM) → (

λb,I , λ
cv
k,I ,W MI , vMI

)
gcvν0 (k, M) → gcvν0 (k, MI ) (66)

by introducing the I index to address the three directions
comprehensively. In the rest of the section, we will self-
consistently solve Eq. (65) of general �vc

k,I ’s along with the
extended gap equations to discuss the phase transition in
monolayer TiSe2.

To comprehensively understand the role of each com-
ponent in the gap equation, we note that the temperature
dependence in the EI/CDW gap equations lies in electronic
occupation, phonon frequency, electron-phonon coupling, and
mass renormalization coefficients, and each factor is crucial
to compute the critical temperature. To emphasize their im-
portance, we first apply the MF gap equations, Eq. (45a) and
Eq. (45b), as a baseline and use the DFT band structure with
the phonon frequency near the experimental critical temper-
ature, T exp.

c = 220 K. However, the result yields an extreme
high Tc, since the small frequency, �M(T exp.

c ) = 27.4 cm−1,
can boost the phonon thermal average with small potential
�b and enhance the coupling constant by Eq. (43). These two
effects make the critical temperature higher than 106 K.

To analyze how the phonon frequency affects the critical
temperature, we restrict discussions in the MF gap equa-
tion and study three different scenarios. First, we restore
the temperature dependence in the anharmonic phonon fre-
quency without correction on Coulomb screened self-energy
[orange line in Fig. 3(c)]. A great improvement in the crit-
ical temperature is obtained (see blue line in Fig. 5), which
gives Tc ∼ 3300 K with the critical phonon frequency �c

M =
308 cm−1. Compared to the fixed-frequency case, a 10-times
enhancement on �M can suppress the critical temperature
by three orders of magnitude. This modification reflects that
in a BCS-like mean-field theory, Tc ∼ exp(1/U ), where the
pairing potential U is characterized by |g2

M|/�M here [7,112].
Next we add the GW correction to increase the relative

energy between occupied and unoccupied states. The result
with a modified band structure differs from the calculation
with DFT bands only at temperatures higher than 1200 K (see
the orange line in Fig. 5); on the other hand, at temperatures
lower than 1200 K, the coupling �cv

k is much larger than
1 eV, which makes the GW correction irrelevant. Last, fixed
on the GW band, we use the phonon frequency dressed by the
temperature-dependent polarization screening [green line in
Fig. 3(c)], which can suppress the lattice distortion potential
in the whole temperature ranges and lower the Tc to 1950 K.
We found that although the Tc is significantly reduced, the
critical frequency �c

M is merely changed (see the table in
Fig. 5). Thus, we conclude that in the mean-field approach,
the major temperature-dependent factor in EI/CDW phase
transition is dominated by the phonon frequency; disregard-
ing the temperature, as long as the phonon has a frequency
lower than ∼275 cm−1, the lattice structure becomes unstable
and transit into the distorted 2 × 2 superlattice.

The critical frequency �c
M ∼ 275 cm−1 obtained above is

extremely high, since the highest phonon mode in the full

FIG. 5. Temperature depending phonon displacement potential
computed under different corrections. The inclusion of the phonon
mass renormalization term suppresses the potential in the whole
temperature range, while other corrections provide a rigid shift.
Table: Summaries of critical temperature and corresponding phonon
frequency of each correction type.

dispersion is about 300 cm−1 [see Fig. 3(b)]. This indicates
that using the MF gap equation is insufficient. In the follow-
ing, we discuss the mass renormalization effect by considering
Eq. (51) and Eq. (57) beyond the MF approach. In Fig. 6(a),
we present the electron mass renormalization coefficient λcv

k
as a function of energy transition. The result shows a sym-
metric pattern with respect to the zero-energy transition since
we involve the same number of bands for states with wave
vector k and k + M; for each vk and ck + M, there is always
a corresponding vk + M and ck + 2M which has the opposite
energy difference. Overall, λcv

k can be categorized into three
types. The first is the zero values ranging from −2.0 to 2.0 eV.
They correspond to the mixing between bands below (h-h) or
above (e-e) the Fermi level as discussed in Sec. III C. The
second is the smooth change from 1.0 to 0.0 when ξ c

k+M − ξ v
k

approaches zero. This behavior is controlled by the divergence
of Zcv

k due to the energy difference term in the denominator
in Eq. (56). It should be noted that for cases with small
ξ c

k+M − ξ v
k the vanishing λcv

k will not forbid the pairing as
long as occupation difference fk+M,c − fk,v is finite. Taking
Eq. (65) as an example, although the pairing potential �cv

k
is weak in this scenario, the relative spacing among diagonal
terms ξ i

k is also small such that the resultant eigenvector t n
ik can

still create a significant pairing effect. The third is the vertical
scattered distribution near ξ c

k+M − ξ v
k ≈ ±2.0 eV which is the

intermediate type of the previous two. λcv
k of this kind comes
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(a)

(b)

FIG. 6. Mass renormalization coefficients near the critical tem-
perature. (a) The exciton condensation mass renormalization coef-
ficients can be categorized into three kinds: those coming from the
e-e(h-h) pairing, energy modulation, and pairing involving states near
the Fermi surface, respectively. The overall values decrease when
temperature rises. (b) Phonon displacement mass renormalization
coefficient increases along with temperature.

from the pairing involving states near the Fermi-surface where
the pairing configuration can easily change from e-h to e-e or
h-h pairing and reduce the λcv

k within a small energy variation.
Overall, Fig. 6(a) shows that raising the temperature from
T = 300 K to T = 420 K decreases λcv

k and weakens the
pairing potential, thereby accelerating the onset of the critical
temperature during heating. Conversely, Fig. 6(b) illustrates
the behavior of the mass renormalization coefficient λb from
the phonon sector, which increases with temperature. The
result is in the opposite trend from the λcv

k ’s because the Zb

factor is inversely proportional to the phonon frequency such
that smaller �M can result in a smaller λb and vice versa.

To examine the renormalization effect, we work out the
renormalized gap equation, Eq. (51) and Eq. (57), with the
computed coefficients λcv

k but keeping λb = 1. The corre-
sponding gap function is presented as the red line in Fig. 5.
Compared with the MF result (green line), for �b > 0.3,
λcv

k contributes a rigid shift lowering the �b by 0.1 while,
for �b < 0.3, �b becomes unstable and drop to zero within
�T = 200 K, such that the critical temperature is reduced by
∼800 K, and the character of second-order transition becomes
more significant [113]. Next, we turn on the λb and obtain the
fully renormalized gap function (purple line in Fig. 5). Be-
sides reducing the critical temperature, λb modifies the atom

FIG. 7. EI/CDW potential calculated from first principles. The
computed critical temperature is Tc = 418 K while the experimental
measure is T exp.

c = 220 K. The fitted critical component b = 0.56 is
in great agreement with the square root trend in the experiment [48].

displacement potential within the EI/CDW phase. Without λb,
�b will blow up exponentially as temperature decreases, but
λb can significantly suppress the �b at a lower temperature.
So that the �b − T curve becomes flat except near the critical
temperature. Now, at the critical temperature, Tc = 400 K,
the corresponding critical frequency �c

M = 103 cm−1 which
is comparable to the folded phonon frequency computed at �

point �M→� ∼ 75 cm−1 in the 2 × 2 CDW phase [46].
Last, to include all factors that could affect the Tc, we

restore the e-h Coulomb attraction into the gap equation by
using Eq. (63) where the screened Coulomb matrix elements
are extracted using the BSE subroutine in the YAMBO codes
[114]. We present the result as one of the main conclusions in
this work in Fig. 7, where we plot the distortion potential �b

along with the averaged e-h pairing potential,
√〈|�cv

k |2〉. The
inclusion of the Coulomb force only raises the critical tem-
perature by 20 K. We note that with the Coulomb attraction
as the only mechanism in the MF approach, the critical tem-
perature is ∼600 K, much lower than the Tc = 1950 by e-ph
coupling. Besides, the Coulomb kernel is restricted to pairing
near the Fermi surface, which is thus easier to be restrained
by the mass renormalization factor. Therefore, we conclude
that the underlying mechanism causing the formation of the
CDW order in monolayer TiSe2 is the strong electron-phonon
coupling mixing the occupied and unoccupied states. At the
same time, the screened Coulomb attraction can only provide
a minor contribution during the phase transition. Fitting the
discrete data near the critical point, we obtain the critical tem-
perature Tc = 418 K with a critical component b = 0.56 in the
temperature dependence �b ∼ (Tc − T )b, which is consistent
with the experimental observation [48].

D. Discussion

Before concluding, we make some remarks regarding the
comparison of theoretical calculations and real material mea-
surements. First, we note that in a two-dimensional system,
the Mermin-Wagner theorem [115] states that there can be
no phase transition due to continuous symmetry breaking,
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and, instead, a Kosterlitz-Thouless transition occurs for the
formation of quasi-long-range ordering [116], which makes
a BCS-like MF approach overestimate the critical tempera-
ture of a 2D phase transition. Consequently, some criticisms
may arise regarding the applicability of our approach to
two-dimensional systems, considering the Mermin-Wagner
theorem. However, it is pertinent to emphasize that the no-go
theorem imposed by Mermin and Wagner does not apply for
the EI/CDW transition in monolayer TiSe2. This distinction
is demonstrated in the work of Kohn et al. [117], where
they establish that, in a general exciton condensation, only
a diagonal long-range order is feasible for the formation of
a charge-density wave, but no continuous symmetry breaking
occurs [118,119] [120]. Furthermore, the experiment [48] in-
deed observed a BCS-like transition, allowing us to apply a
mean-field-like approach without considering the Kosterlitz-
Thouless transition. Overall, these insights underscore the
robustness of our approach and provide a basis for further
investigating the intriguing properties of two-dimensional
systems.

Another factor that needs to be considered is the presence
of synthesized defects at the Se site or charge transfer from
the substrate, which can cause a finite electron-doping effect
in experimental measurements. In bulk, this effect is found
to reduce the Tc of CDW [121], and anharmonic calculations
suggest the same effect for the monolayer [102]. We want
to emphasize that the methodology presented in this work is
capable of producing the same trend when taking into account
electron-doping at each numerical step, as summarized in
Fig. 1. However, since a nondoped sample can be obtained
through exfoliation [122] and the computation cost for the
DFPT and anharmonicity calculation in a doped system is too
heavy, we will leave the detailed study of the doping effect for
future work.

V. CONCLUSION

In this work, we have presented a ab initio approach that
extends DFT to describe structural phase transitions caused by
exciton condensation. Our approach introduces the nonlocal
density to encode the spontaneous formation of exciton pairs
by Coulomb attraction and e-ph interaction. We also included
phonon anharmonicity in the phonon sector by using self-
consistent phonon theory to harden the soft-phonon appearing
in DFPT. In addition, we bring in a linear distortion potential
to measure the lattice deformation. The exchange-correlation
function in this generalized DFT can be computed by the
many-body perturbation theory with the assistance of the
linked-cluster expansion such that a gap equation to describe
the EI/CDW can be derived self-consistently.

In practical application, we use the formalism to study
the 1T-TiSe2 monolayer crystal. The numerical results favor
our method over the mean-field approach by crucial mass
renormalization effects in both electron and phonon states. We
obtained a second-order phase transition between a semimetal
and a 2 × 2 CDW caused by e-ph coupling with critical tem-
perature Tc = 420 K compared to the experimental value of
220 K. Compared to the standard anharmonic phonon calcu-
lation, our results present a lattice distortion at the temperature
region without phonon softening.

To the best of our knowledge, this work is the first ab initio
study that analyzes the role of ph-ph, e-ph, and e-e interactions
on the same footing for TiSe2. Our work provides a framework
for predicting exciton condensation and studying its relation
to lattice instability from first principles, and the methodology
can be generalized to other excitonic insulators beyond the
example studied in this work. These calculations can guide
the future search for candidate material with the excitonic
insulating phase.
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APPENDIX A: GW CORRECTION FROM NL DENSITY

Here we use Eq. (19) to derive the correction due to the
NL XC potential �̂XC and show the agreement between this
approach and the GW correction. Based on the assumption
of GWA that the XC potential can be diagonalized by the
KS wave function, we can identify the function of Eq. (14)
and Eq. (16) such that φn(r) = ψn(r) and the second line in
Eq. (16) becomes

∫
d3rd3r′ψ∗

n (r)[�xc(r, r′) − δ(r − r′)vxc(r)]ψm(r′)

≡ δnm(�n − 〈n|vxc|m〉), (A1)

which provides a linear correction on KS eigenenergy:

En = ξ n + �n − 〈n|vxc|n〉. (A2)

To evaluate the NL XC potential, we consider the Feynman
diagram in Fig. 2(f). To be consistent with GWA, unlike the
static approximation adopted in the main text, we consider the
dynamical screening here. In the periodic system, we utilize
the Bloch wave function:

ψn(r) → ψnk(r) =
∑

G

uG
nkei(G+k)r, (A3)

where G is the unit vector in reciprocal lattice. Thus, we
are able to write the Green’s function using the Matsubara
representation for a thermal system:

G(r, r′; ωn) = −
∫ β

0
dτeiωnτ 〈T �(r, τ )�†(r′, 0)〉

=
∑
nk

ψnk(r)ψ∗
nk(r′)

iωn − Enk
=

∑
nk

Gnk(r, r′; ωn)

(A4)
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with ωn = (2n + 1)π/β being the Matsubara frequency. And
we can compute the diagram by the Feynman rule:

U ( f ) =
∑

n,m,k,q
ωn,νn

∫
d3rd3r′W (q, νn − ωn, r′, r)

× Gmk−q(r, r′; ωn)Gnk(r′, r; νn)

=
∑ ε−1

GG′ (q, ωn − νn)ρG
nm(k, q)ρG′∗

nm (k, q)

(iωn − Enk )(iνn − Emk−q)|q + G||q + G′| .
(A5)

The dynamical Coulomb screening can be approximated by
the plasmon pole approximation (PPA) [80,123,124] as

ε−1
GG′ (q, ω) ≈ δGG′ + Rq,GG′

×
[

1

ω − �q,GG′ + i0+ − 1

ω + �q,GG′ − i0+

]
,

(A6)

where the residue Rq,GG′ and the effective plasmon frequency
can be obtained by fitting Eq. (A6) with the real dielectric
constant computed at ω = 0 and a chosen PPA imaginary fre-
quency ω = iωp [123]. By summing the Matsubara frequency,
we can obtain:

U ( f ) =
∑

GG′kqnm

ρG
nm(k, q)ρG′∗

nm (k, q)

|q + G||q + G′|

{
δG,G′ fk,n fk−q,m

− Rq,GG′

[
fk,n fk−q,m + fk−q,mN+

q,GG′ + fk,nN−
q,GG′

�q,GG′ − Enk + Emk−q

]

+ Rq,GG′

[
fk,n fk−q,m+ fk−q,mN−

q,GG′ + fk,nN+
q,GG′

−�q,GG′ − Enk+Emk−q

]}
.

(A7)

where we use the shorthand N±
q,GG′ for the bosonic occu-

pation nB(±�q,GG′ ). In the limit when the dielectric tensor
contains only diagonal term and no frequency dependence,
i.e., Rq,GG′ = 0, Eq. (A7) reduces to the case without dynam-
ical screening derived in Ref. [64]. Based on the fact that
χnn

k = fnk when φn(r) = ψn(r), we can take the derivative
on Eq. (A7) and obtain the energy correction from the NL
potential:

�nk =
∑

GG′qm

ρG
nm(k, q)ρG′∗

nm (k, q)

|q + G||q + G′|

×
{

fk−q,m

[
δG,G′ + 2�q,GG′Rq,GG′

(Enk − Emk−q)2 − �2
q,GG′

]

+Rq,GG′

[
N−

q,GG′

−�q,GG′ + Enk − Emk−q
− (� → −�)

]}
.

(A8)

Consequently, Eq. (A2) and Eq. (A8) reproduce the GW
correction [80,125] where in Eq. (A8) the first occupation
depending term gives the screened exchange part, �SEX, while
the second term produces the electron-hole part �COH [126].

FIG. 8. The phonon self-energy diagrams due to the interacting
term, Eq. (39b) where n, m are the band index for the electron loops
and ωm and νn are the Matsubara frequency of electron and phonon,
respectively.

APPENDIX B: DRESSED PHONON FREQUENCY IN
EFFECTIVE HAMILTONIAN EQ. (39a) AND EQ. (39b)

Here we present the detail to derive the renormalized
phonon frequency in the diagonal approximation, Eq. (42),
based on the unperturbed Hamiltonian Eq. (39a) under the
effect of interacting Hamiltonian Eq. (39b). In terms of Feyn-
man’s diagram, the lowest-order phonon self-energy can be
presented by the one-particle irreducible Feynman’s diagrams
as in Fig. 8 where the first diagram is the effective term from
anharmonic ph-ph interaction subtracted by the screened part
at zero temperature, and the second term is the contribution
from the screening effect at finite temperature.

Using the Feynman rule, the effective self-energy can be
written as

�eff
qν (iνn) = �̃q,νν + 2

∑
nm,kωm

∣∣gDFPT
nmν (k, q)

∣∣2

× 1

iωm − ξm
k

1

i(ωm − νn) − ξ n
k+q

, (B1)

where the factor of two in the second line appears to take
into account the spin degree of freedom. Summing over the
Matsubara frequency and taking the analytical continuation to
a negligible phonon frequency iνn → ωqν ≈ 0, we can obtain

�eff
qν = �̃q,νν + Xqν (T )

ωDFPT
qν

. (B2)

Therefore, the dressed phonon frequency becomes Eq. (42)

�2
qν = ωDFPT

qν

2 + 2ωDFPT
qν �eff

qν

= ωDFPT
qν

2 + 2Xqν (T )
∣∣T
T =0 + 2�qν�qν (T ), (B3)

which is designed to be consistent with the phonon frequency
computed by SCP theory.

APPENDIX C: ONE-DIMNESIONAL TWO-BAND MODEL

In this Appendix, we work out the MF gap equa-
tions Eq. (45a) and Eq. (45b) in the most simplified case in
one-dimensional system with two isolated bands and present
the connection between our formalism and the approach
introduced in Ref. [9] and Ref. [62]. By focusing on a sin-
gle transition momentum q = M = π/2, the system can be
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described by a reduced Hamiltonian:

H =
∑

k

ξ c
k ĉ†

k ĉk + ξ v
k f̂ †

k f̂k + �b̂†
Mb̂M

+
∑

k

(gkĉ†
k+M f̂k + H.c.)(b̂†

−M + b̂M ), (C1)

where we consider only one vibration mode and keep e-ph
interaction for phonon with momentum q = M. gk is the e-ph
matrix element describing the scattering between holes in
an occupied state f and electrons in an unoccupied state c
by phonon exchanging. In the exciton condensation phase,
the electron and hole operator acquires a finite thermal ex-
pectation value, 〈ĉ†

k+M f̂k〉, accompanied by a finite 〈b̂M〉 for
phonon operator such that the electronic ground state becomes
unstable and atoms distort from their equilibrium position.
Following the procedure introduced in the main text, we first
work on Eq. (39a) by solving the eigenvalue problem:(

ξ c
k+M �cv

k
�vc

k ξ v
k

)(
t n
ck

t n
vk

)
= En(k)

(
t n
ck

t n
vk

)
, (C2)

which gives the eigenenergy:

E±k = ξ c
k+M + ξ v

k

2
± Wk (C3)

and eigenvectors:

t+
ck = eiθk

√
2

√
1 + ξ c

k+M − ξ v
k

2Wk
, t+

vk = 1√
2

√
1 − ξ c

k+M − ξ v
k

2Wk

t−
ck = −1√

2

√
1 − ξ c

k+M − ξ v
k

2Wk
, t−

vk = e−iθk

√
2

√
1 + ξ c

k+M − ξ v
k

2Wk
,

(C4)

where

Wk =
√(

ξ c
k+M − ξ v

k

2

)2

+ ∣∣�cv
k

∣∣2; θk = arg
(
�cv

k

)
. (C5)

Based on the solution, we can write the NL density as follows:

χ cv
k = t+∗

ck t+
vk fk,+ + t−∗

ck t−
vk fk,− = �cv

k
∗

2Wk
( fk,+ − fk,−). (C6)

On the other hand, for the phonon, we take the result, Eq. (D2)
from the next section:

χb = 〈bM〉 = −�b

�
. (C7)

As a result, using Eq. (C6) and Eq. (C7) for Eq. (45a) and
Eq. (45b), we can obtain the gap function:

1 =
∑

k

2|gk|2
�

fk,− − fk,+
Wk

, (C8)

which reduces to the result in Ref. [9] when we neglect the
momentum dependence in e-ph coupling by taking gk ≡ g.

Last, to compare with the BSE approach presented in
Ref. [62], we apply Eq. (C6) to Eq. (63) and replace the M

transition by the vertical � transition such that we obtained

∂U ( f +g)

∂χk
=

∑
k′

χ∗
k′[Wccvv (k′, k′ − k) − vcvvc(k′, k)]. (C9)

By simplifying the expression with W̃ (k′, k) = v − W , we
can add Eq. (C9) to the right-hand side of Eq. (45b) and
turn-off the e-ph coupling, such that, at 0 K, the gap equa-
tion becomes

�k =
∑

k′

�k′

2Wk′
W̃ (k′, k). (C10)

Using the notation, ϕk = �k
2Wk

, we can recover the Eq. (33) in
the supplementary material of Ref. [62].

APPENDIX D: PHONON GREEN’S FUNCTION WITH
DISPLACEMENT POTENTIAL

In this section, we derive the phonon Green’s function
when the phonon operator is applied by an external field �b.
Consider a phonon Hamiltonian:

H0 = �b†b + �bb† + �∗
bb. (D1)

Due to �b, the phonon operator has a nonzero expectation
value:

〈b〉 = 1

Z
Tr

[
be−β�(b†+�∗

b/�)(b+�b/�)+β|�b|2/�]
= 1

Z
Tr[(b + �b/� − �b/�)

× exp[−β�(b† + �∗
b/�)(b + �b/�) + β|�b|2/�]]

= −�b

�
, (D2)

where Z = Tre−βH0 is the partition function. Similarly, we can
obtain the thermal average of two-point operators:

〈b†b〉 =
〈(

b† + �∗
b

�

)(
b + �b

�

)
− �∗

bb + �bb†

�
− |�b|2

�2

〉

= nb(�) + |�b|2
�2

(D3)

and

〈b†b†〉 =
〈(

b† + �∗
b

�

)(
b† + �∗

b

�

)
− 2�∗

bb†

�
− �∗

b
2

�2

〉
= �∗

b
2

�2

〈bb〉 = �b
2

�2
. (D4)

Based on these relations, we can compute the phonon Green’s
function:

D(τ ) ≡ −〈Tτ A(τ )A(0)〉, (D5)

where

A(τ ) = eτ�(b†+ �∗
b

�
)(b+ �b

�
)(b + b†)e−τ�(b†+ �∗

b
�

)(b+ �b
�

)

=
(

b† + �∗
b

�

)
eτ� +

(
b + �b

�

)
e−τ� − �∗

b + �b

�
.

(D6)

Thus for τ > 0, we have
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D(τ ) = −
〈[(

b† + �∗
b

�

)
eτ� +

(
b + �b

�

)
e−τ� − �∗

b + �b

�

]
(b† + b)

〉

= −
〈(

b† + �∗
b

�

)
eτ�b +

(
b + �b

�

)
e−τ�b†

〉
+ (�∗

b + �b)〈b† + b〉
�

= −{nB(�)eτ� + [1 + nB(�)]e−τ�} − (�∗
b + �b)2

�2
, (D7)

such that we can obtain the Green’s function in terms of
Matsubara frequency by the Fourier transformation:

D̃(iωn) =
∫ β

0
dτeiωnτ D(τ )

=
(

1

iωn − �
− 1

iωn + �

)
− δωn,0

β(�∗
b + �b)2

�2
.

(D8)

APPENDIX E: DERIVATION OF EQ. (56)

In this section, we present the steps to obtain Eq. (56). We
first apply the perturbation theory to second order such that
for a state with eigenenergy ξ v1 we can write the eigenvector
as follows:

tv1
v2k = δv1v2

⎛
⎝1 − 1

2

∑
c1

∣∣�c1v1
k

∣∣2∣∣ξ v1
k − ξ

c1
k+M

∣∣2
⎞
⎠

+
∑

c1

(1 − δv1v2 )�c1v2
k

∗
�

c1v1
k(

ξ
v1
k − ξ

v2
k

)(
ξ

v1
k − ξ

c1
k+M

) (E1)

and

tv1
c1k = �

c1v1
k

ξ
v1
k − ξ

c1
k+M

, (E2)

where we use the band index for the new state as mentioned
in the main text. Therefore, the absolute square becomes the
following:

∣∣tv1
v2k

∣∣2 = δv1v2

⎛
⎝1 −

∑
c1

∣∣�c1v1
k

∣∣2∣∣ξ v1
k − ξ

c1
k+M

∣∣2
⎞
⎠

∣∣tv1
c1k

∣∣2 =
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which simplifies the Eq. (53) to the second order of �k as
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(E4)

where we keep the �cv
k dependence on the states with momen-

tum (k) and reduce the tv1
v2k+q(t c1

c2k+q) to the Kronecker delta

function. Now we can compute the derivative respective to
|�cv

k |:
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(E5)

To change the variable from �cv to χ cv , we apply the small
�cv expansion to the definition Eq. (34b) such that in the
lowest order they follow the relation:

χ cv
k = �cv∗

k

ξ c
k+M − ξ v

k

( fk+M,c − fk,v ). (E6)

Therefore, we can use the chain rule to derive the derivative
with respect to χ cv and get Eq. (56):
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(E7)

APPENDIX F: NUMERICAL DETAIL

For the DFT and DFPT calculations, we employ a �-
centered 36 × 36 × 1 k grid for BZ sampling and a 85 Ry
kinetic energy cutoff for electron density in the self-consistent
(scf) calculation with spin-orbit coupling (SOC). By keep-
ing the interlayer vacuum c = 12.5 Å to mimic single-layer
system, we obtained a relaxed lattice constant a = 3.545 Å
in agreement with experimental observation aexp. = 3.538 Å
[127]. For the GW correction, based on an alternative scf
calculation, we adopt a 20 × 20 × 1 k grid and 96 real fre-
quency points to sample the dynamical screening. We conduct
the self-consistent GW0 calculation with 200 empty bands
included and reach convergence in four iterations. For the an-
harmonic SCP, we construct a 6 × 6 × 1 supercell to compute
the interatomic force without SOC and use the least absolute
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shrinkage and selection operator method to extract the an-
harmonic ph-ph coupling constant. Last, the gap equation is

computed with six conduction bands and six valance bands
on a 60 × 60 × 1 k grid with SOC.
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