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Interorbital Cooper pairing at finite energies in Rashba surface states

Philipp Rüßmann ,1,2,* Masoud Bahari ,1,3,† Stefan Blügel ,2 and Björn Trauzettel 1,3

1Institute for Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
2Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

3Würzburg-Dresden Cluster of Excellence ct.qmat, Germany

(Received 26 July 2023; revised 23 October 2023; accepted 25 October 2023; published 27 November 2023)

Multiband effects in hybrid structures provide a rich playground for unconventional superconductivity. We
combine two complementary approaches based on density-functional theory (DFT) and effective low-energy
model theory in order to investigate the proximity effect in a Rashba surface state in contact with an s-wave
superconductor. We discuss these synergistic approaches and combine the effective model and DFT analysis at
the example of a Au/Al heterostructure. This allows us to predict finite-energy superconducting pairing due to
the interplay of the Rashba surface state of Au, and hybridization with the electronic structure of superconducting
Al. We investigate the nature of the induced superconducting pairing, and we quantify its mixed singlet-triplet
character. Our findings demonstrate general recipes to explore real material systems that exhibit interorbital
pairing away from the Fermi energy.
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I. INTRODUCTION

Materials that exhibit strong spin-orbit coupling (SOC)
build the foundation for a plethora of physical phenomena
[1,2] with various applications in noncollinear topological
magnetic textures (e.g., skyrmions) [3], spinorbitronics [1] or
topological insulators [4], and quantum-information process-
ing [5–8]. Combining different materials in heterostructures
not only gives rise to breaking of symmetries, which is essen-
tial to Rashba SOC [9], but it also allows us to tailor proximity
effects, where the emergent physics of the heterostructure as
a whole is richer than the sum of its constituents. In the past,
this has attracted a lot of interest in the context of increasing
SOC in graphene [10–12]. Combining a strong-SOC material
with a superconductor is, moreover, of particular use to realize
topological superconductivity, which can host Majorana zero
modes (MZMs). In turn, MZMs are building blocks of topo-
logical qubits [13]. For instance, signatures of MZMs have
been recently been observed in V/Au/EuS heterostructures
both in experiment [14] as well as in theory [15].

In this work, we study the interorbital physics inherent
to heterostructures consisting of superconductors and Rashba
materials. We combine theoretical modeling of two comple-
mentary approaches that have their roots in rather disjoint
communities focusing on either microscopic or mesoscopic
physics. We combine the predictive power of material-specific
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DFT simulations with the physical insights of an analyti-
cally solvable low-energy model. The Bogoliubov–de Gennes
(BdG) formalism [16,17] is the basis for both models, in
particular the DFT-based description of the superconducting
state, commonly referred to as the Kohn-Sham Bogoliubov–
de Gennes (KS-BdG) approach [18–22]. While DFT naturally
accounts for multiband effects, the effective low-energy
model with a simpler treatment of only a few bands allows
us to identify the symmetry of the superconducting pairing.
Crystal symmetries have profound effects. For example, they
may or may not cause wave functions to overlap, which is
visible in DFT calculations. A group-theoretic analysis al-
lows us to infer possible (unconventional) pairing channels
from crystal symmetries [23]. However, group theory alone
does not tell us which of the possible pairing channels really
matters in a given material. Hence, only the combination of
both approaches (DFT and group theory) is able to predict
the emergence of experimentally relevant (unconventional)
pairing channels in the laboratory.

Rashba SOC is intimately related to orbital mixing, often
involving p electrons [2]. Evidence for strong Rashba-SOC is
found in a variety of materials such as heavy metal surfaces
(e.g., Au or Ir) and surface alloys (e.g.,

√
3 × √

3 Bi/Ag)
[24–26], semiconductors (e.g., InSb) [27], and topological
insulators (e.g., Bi2Se3) [28]. We investigate the combi-
nation of such metals in hybrid structures with common
superconductors, where multiband effects are essential. In
general, multiband effects have crucial implications. They
are, for instance, relevant for transport across superconductor-
semiconductor interfaces in the presence of Fermi surface
mismatch [29], and they play a major role in the super-
conducting diode effect [30–32]. Recently, the possibility to
observe finite-energy pairing has emerged as an additional
tool to study the nature of unconventional pairing [33–36],
where, furthermore, topological phase transitions have been
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FIG. 1. (a) Localization of the electron density (arb. units)
around the Fermi energy throughout the Al/Au heterostructure. The
background shows a cut through x = 0. (b) Illustration of three kinds
of Cooper pair tunneling and the formation of different singlet/triplet
components due to the Rashba surface state. Cooper pairs formed by
electrons originating from different orbitals are denoted by different
colors.

predicted [37]. This is a direct consequence of the rich physics
of unconventional Cooper pairing that is possible in multiband
superconductors [33–41].

As a prime example experiencing the multiband physics of
a proximitized Rashba state, we identify the interface between
aluminum (Al) and gold (Au). This combination allows us
to study the proximity effect with Rashba surface states. On
the one hand, Al is a well-known and widely used s-wave
superconductor whose valence-band electrons are of s-p or-
bital character. On the other hand, Au is a simple heavy
metal in which the effects of strong SOC are particularly
pronounced. In fact, as a consequence of strong SOC, the
(111) surface of Au hosts a set of two spin-momentum-locked
Rashba surface states [24,42–46]. Both Al and Au grow in the
face-centered-crystal (fcc) structure, and their lattice constants
vary only marginally [47,48]. Hence, epitaxial growth of this
heterostructure is feasible. It is ideally suited to gain insight
into (i) hybridization of the electronic structure of Al- and
Au-derived bands at the interface, (ii) the proximity effect of
the SOC from Au into the superconductor Al, (iii) the inter-
play of the superconducting proximity effect and SOC in this
multiband system, and (iv) the mixed singlet-triplet nature of
induced superconducting pairing. The hybridized electronic
structure in the Al/Au heterostructure and the emerging su-
perconducting pairing channels due to multiband effects are
depicted in Fig. 1.

This article is structured as follows. In Sec. II, the nor-
mal state electronic structure of the Au/Al heterostructure
is discussed with DFT and low-energy model approaches.
In Sec. III, the DFT and model access to superconducting
heterostructures are presented with emphasis on complemen-
tary insights. This modeling allows us to study the proximity

effects of SOC and superconductivity in multiband systems
at the example of Al/Au interfaces. We conclude in Sec. IV,
where we also comment on the feasibility of experimental
detection of our predictions.

II. NORMAL STATE SPECTRUM

The DFT and model-based approaches described in this
article are complementary and uniquely distinct in their
methodologies. The DFT-based numerical calculations pro-
vide an ab initio approach to the description of the electronic
structure of the normal state, and their scope encompasses all
electronic degrees of freedom, resulting in a precise and ex-
tensive representation applicable to a broad range of materials
merely from the knowledge about the crystal structure. Conse-
quently, the intricate band structure generated by this method
can be complex, comprising several bands with diverse orbital
and spin character.

The effective low-energy model aims to simplify the com-
plexity of the electronic structure by describing only a few
bands, particularly those close to the �-point and the Fermi
level. The model-based approach has the distinct advantage of
deriving analytical expressions that can be applied to a wide
range of material classes. Additionally, the model enables the
analysis and inclusion of certain symmetries. For instance,
only odd terms in k might appear in certain parts of the model
Hamiltonian. To create a model that applies to a real material,
however, it is necessary to determine model parameters by
fitting to experimental or DFT data.

A. Density-functional-theory results

Our DFT calculations for heterostructures, consisting of
thin Al and Au films, are summarized in Figs. 1 and 2(a)–2(d).
Both Al and Au have a face-centered-cubic (fcc) crystal struc-
ture with lattice constants of 4.08 Å and 4.05 Å, respectively
[47,48]. We investigate an ideal interface in the close-packed
(111) surface of the fcc lattice. To model the heterostructure,
we use a unit cell that consists of six layers of Al and six
layers of Au with the average experimental lattice constant of
Al and Au, differing only by about 0.4% from their respective
bulk lattice constants. For our DFT calculations, we employ
the full-potential relativistic Korringa-Kohn-Rostoker Green
function method, as implemented in the JuKKR code [49].
This allows us to include the effect of superconductivity on
the footings of the Bogoliubov–de Gennes formalism [50].
Computational details are provided in Appendix A.

The electronic structure of Au below the Fermi level is
dominated by the fully occupied shell of d-electrons around
−2 to −8 eV (see Appendix B for the corresponding DOS).
In thin-film heterostructures (called “slabs”), the electrons are
confined inside the slab, leading to finite-size quantization
and the appearance of two-dimensional quantum-well states
manifested as a series of discrete bands in the region where the
bulk electronic structure is projected into the surface Brillouin
zone. The presence of surfaces and interfaces, and the possible
appearance of broken bonds, often leads to additional surface
states or surface resonances in the electronic structure. For
the Au(111) surface, Rashba surface states appear in surface
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FIG. 2. DFT wave-function localization in the Al/Au hybrid
structure consisting of six layers of each element at the two k-points
(a) kx = 0.1 Å−1 and (b) kx = 0.3 Å−1 for the four states labeled in
panel (d). (c) Corresponding large-scale DFT band structure. The
color bar shows the localization of the states. (d) Enlarged view of the
spectrum close to the Fermi energy denoted by the blue rectangle in
panel (e). The color bar shows the spin polarization 〈sy〉 (arb. units).
(e) [(f)] Excitation spectrum of the normal state obtained by the
low-energy model Hamiltonian, given in Eq. (1), close to the Fermi
energy in the absence (presence) of band hybridization and including
third-order Rashba spin-orbit coupling, i.e., F0 = g = 0 (F0 = 0.2
and g = −8.45). Other model parameters are given in Table I.

projection of the bulk L-gap around the � point of the surface
Brillouin zone. They are of s-pz orbital character [24,43].

The region around �, highlighted by the blue box in
Fig. 2(c), is the focus of our study. It is enlarged in Fig. 2(d).
The in-plane component of the spin-polarization (sy) perpen-
dicular to the direction of the momentum (kx) is shown by the
color coding of the bands. Note that, due to crystal symme-
tries, sx is exactly zero in the plane through ky = 0, and sz

is negligibly small. From the full band-structure information
based on DFT, we select a regime of interest for the ana-
lytical effective low-energy model. We restrict our analysis
to the four states labeled 1–4, which (at small |k| close to

�) are derived from the Rashba surface state of Au (states
1,2) or Al (states 3,4), respectively. The Al states (3,4) have
a quadratic dispersion and show much weaker spin-splitting.
Importantly, our study reveals the existence of only a single
pair of Au Rashba surface states localized at the interface
of Au and vacuum. Notably, no second pair of states arises
from the interface of Al and Au. This can be deduced from
the localization of these states depicted in Figs. 2(a) and 2(b).
The wave-function localization is shown for two values of the
momentum: close to � at kx = 0.1 Å−1 [panel (a)] where the
Al- and Au-derived states are clearly distinct, and at larger
momentum of kx = 0.3 Å−1 [panel (b)] where the four bands
clearly interact. At smaller momentum, the Rashba surface
states (1,2) are exponentially localized at the Au-vacuum in-
terface and have a negligible overlap with the states 3 and 4,
which are delocalized throughout the Al film. In contrast, at
larger momenta the four states hybridize, which can be seen
in the significant weight of all states in both the layers of Al
and Au. This is particularly visible in comparing the panels
(a,b) of Fig. 2 around layer 5 (in Al) and layer 14 (i.e., the Au
surface). The real-space distribution of the charge density at
the Fermi energy is shown in Fig. 1(a). We conclude that the
scattering potential at the interface is weak enough to prevent
the formation of a second state at the Al/Au interface.

Aluminum is a light metal with negligible intrinsic SOC.
The small SOC-induced spin-splitting seen for states 3,4 is
merely a result of a proximity-induced SOC from Au to Al,
hinting at sizable hybridization of the electronic structure of
Al and Au. In Sec. II B, we discuss in detail that, at higher mo-
menta, the parabolas of the Al-derived states and the Rashba
surface states intersect and hybridize, resulting in more de-
localized states throughout the entire Al-Au heterostructure.
This hybridization can be attributed to the compatible orbital
character of the Al and Au bands, which both possess s-pz-like
orbital character. Ultimately, this hybridization leads to the
proximity effect of the spin-orbit coupling (SOC) observed
in the Al quantum-well states.

B. Effective low-energy model

Complementary to our DFT results, we develop an effec-
tive four-band model Hamiltonian to evaluate the spectral
properties of the heterostructure in an analytical manner.
Guided by the insights from our DFT calculation, we con-
struct a model for the proximitized Rashba surface state. We
note a hybridization of spin-split Au surface bands and the
doubly degenerate Al band near the Fermi energy. Thus, we
propose the normal state model Hamiltonian to be

HN =
∑

k

(c†
k,Al, c†

k,Au)

(
ĥAl(k) F0σ̂0

F0σ̂0 ĥAu(k)

)(
ck,Al

ck,Au

)
, (1)

where the electron annihilation operator is denoted as
ck,ν = (ck,ν,s, ck,ν,−s)T labeled by the 2D momentum vector
k = (kx, ky) with orbital (ν ∈ {Al, Au}) and spin (s ∈ {↑,↓})
degrees of freedom. F0 signifies the hybridization strength
between Al and Au bands. Furthermore, ĥAl(Au)(k) denotes
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TABLE I. Values for the parameters of the low-energy model
given in Eq. (4).

αi (eV Å2) μi (eV) F0 (eV) λ (eV Å) g (eV Å3)

Al 5.6 0.17 0.2 1.1 −8.45
Au 10 0.75

the 2 × 2 sector for the Al (Au) segment given by

ĥAl(k) = (αAlk
2 − μAl)σ̂0, (2)

ĥAu(k) = (αAuk2 − μAu)σ̂0 + λ(σ̂xky − kxσ̂y)

+ g
[
σ̂x

(
k3

y + kyk2
x

) − (
k3

x + kxk2
y

)
σ̂y

]
, (3)

where k ≡ |k| =
√

k2
x + k2

y ; αAl(Au) and μAl(Au) characterize
the mass term and chemical potential for Al (Au) bands, re-
spectively. First-order (third-order) spin-orbit coupling in the
Au sector is parametrized by λ (g) leading to broken inversion
symmetry, i.e., ĥAu(−k) 	= ĥAu(k). It is worth noting that even
though the band spin-splitting of the Rashba surface state
is isotropic in Au [24], it is necessary to consider higher-
order polynomials for the Rashba SOC in the heterostructure
to match the dispersion calculated from first-principles. We
attribute this observation to the reduced C3v point group
symmetry of the interface built into the DFT model via the
chosen crystal structure. We obtain the third-order polynomial
presented in the last term of Eq. (3) by taking the direct
product of the irreducible representations of C3v [51]. Hence,
this normal-state model is constructed by intuition employing
the k · p approach. This is evident in our formulation of the
Hamiltonian, where we combine a Rashba model up to third
order describing the Au layer with a quadratic dispersion for
the Al layer and a band hybridization term F0.

For simplicity, we focus on the 1D Brillouin zone, i.e., k =
(kx, 0), since our model is rotationally symmetric. Therefore,
the excitation spectra of the hybrid structure become

Es′
k,s = 1

2

(
EAl + E s

Au + s′
√(

EAl − E s
Au

)2 + 4F 2
0

)
, (4)

where s, s′ ∈ {+,−}. The quadratic band in the Al segment is
denoted as EAl = αAlk2 − μAl, and the spin-split band in the
Au segment is denoted as E±

Au = αAuk2 ± (kλ + gk3) − μAu

[Fig. 2(e)]. Due to hybridization, an effective spin-orbit cou-
pling is induced in the doubly degenerate Al bands, ultimately
leading to the lifting of their degeneracy. After fitting to the
DFT data, the analytical spectra given by Eq. (4) are in excel-
lent agreement with the DFT calculation; compare Figs. 2(d)
and 2(f) where the model fitted model parameters are summa-
rized in Table I.

III. SUPERCONDUCTING EXCITATION SPECTRUM

In general, a microscopic theoretical description of the
superconducting excitations can be achieved on the basis of
the Bogoliubov–de Gennes (BdG) formalism [16,17], a gen-
eralization of the BCS theory of superconductivity [52]. The
BdG formalism is based on the Hamiltonian

ĤBdG =
(

Ĥ0 �̂

[�̂]† −Ĥ∗
0

)
, (5)

FIG. 3. Schematic overview of a KS-BdG simulation that starts
from the crystal structure which (in a standard DFT calculation)
gives the ground-state density ρ0. For the superconducting state, the
KS-BdG equations are then solved self-consistently to obtain charge
and anomalous densities ρ, χ in the superconducting state, which
determines the superconducting band structure.

where Ĥ0 denotes the normal state Hamiltonian and �̂ is the
superconducting pairing between particle and hole blocks.
The BdG method is also key to the extension of DFT for
superconductors [18–22], commonly referred to as the Kohn-
Sham Bogoliubov–de Gennes (KS-BdG) formalism. One
major difference between DFT and model formulations is that
Eq. (5) is formulated in real space (DFT) or momentum space
(model) if translation invariance is given.

A. Kohn-Sham Bogoliubov–de Gennes formalism

The central task in the superconducting DFT approach
(sketched in Fig. 3) is to solve the Kohn-Sham BdG (KS-BdG)
equation [18,20,53]

HKS
BdG(x)
KS

ν (x) = εν

KS
ν (x), (6)

which is a reformulation of the Schrödinger equation (or the
Dirac equation if relativistic effects are taken into account)
in terms of an effective single-particle picture. The effective
single-particle wave functions in Nambu space, 
KS

ν (x) =
(uν (x), vν (x))T , describe, respectively, the particle and hole
components at excitation energy εν (ν is a band index labeling
the electronic degrees of freedom). The KS-BdG Hamiltonian
can be written in matrix form as [20,50]

HKS
BdG(x) =

(
HKS

0 (x) − EF �eff (x)
�∗

eff (x) EF − (
HKS

0 (x)
)∗

,

)
(7)

where EF is the Fermi energy. The normal state Hamiltonian

HKS
0 (x) = −∇2 + Veff (x) (8)

043181-4



INTERORBITAL COOPER PAIRING AT FINITE … PHYSICAL REVIEW RESEARCH 5, 043181 (2023)

and the effective superconducting pairing potential �eff ap-
pear in the Kohn-Sham formulation (Rydberg atomic units
are used where h̄ = 1). For �eff = 0, the KS-BdG equation
reduces to solving the conventional Kohn-Sham equation of
DFT that describes the electronic structure of the normal state.

The effective single-particle potentials in Eq. (7) are func-
tionals of the charge density ρ(x) and the anomalous density
χ (x) (the superconducting order parameter) [18,53],

Veff (x) = Vext (x) + 2
∫

ρ(x′)
|x − x′|dx′ + δExc[ρ, χ ]

δρ(x)
, (9)

�eff (x) = δExc[ρ, χ ]

δχ (x)
, (10)

where functional derivatives of the exchange correlation func-
tional Exc appear requiring a self-consistent solution of the
nonlinear KS-BdG equations. The exchange correlation func-
tional can be expressed as [53]

Exc[ρ, χ ] = E0
xc[ρ] −

∫
χ∗(x) λ χ (x)dx, (11)

where the conventional exchange-correlation functional E0
xc is

the standard DFT term (in the normal state).
It is important to note that the above formulation of the

KS-BdG equations assumes a simplified form of the supercon-
ducting pairing kernel [53] [i.e., the second term in Eq. (11)],
which reduces λ to simple constants within the cells surround-
ing the atoms that are nevertheless allowed to take different
values throughout the computational unit cell. This assumes
that the pairing interaction is local in space. This approxi-
mation was successfully used to study conventional s-wave
superconductors [20,50,54,55], heterostructures of s-wave su-
perconductors and nonsuperconductors [56–58], or impurities
embedded into superconductors [59,60]. Hence, the effective
pairing interaction takes the simple form [53]

�eff (x) = λiχ (x), (12)

where λi is a set of effective coupling constants describing the
intrinsic superconducting coupling that is allowed to depend
on the position i in the unit cell.

Finally, the charge density ρ and the anomalous density χ

are calculated from the particle (uν) and hole components (vν)
of the wave function,

ρ(x) = 2
∑

ν

f (εν )|uν (x)|2+[1 − f (εν )]|vν (x)|2, (13)

χ (x) =
∑

ν

[1 − 2 f (εν )]uν (x)v∗
ν (x), (14)

where f (ε) is the Fermi-Dirac distribution function, and the
summation over ν includes the full spectrum of the KS-BdG
Hamiltonian.

B. DFT results for superconducting Al/Au

For the superconducting state, we assume that only Al has
an intrinsic superconducting coupling, and we set the layer-
dependent coupling constant in the KS-BdG calculation to

λi =
{
λAl if i ∈ Al,
0 otherwise, (15)

FIG. 4. Superconducting band structure of the Al/Au het-
erostructure obtained by (a) DFT and (b) the low-energy model. The
red/green and gray bands indicate the particle and hole character
of the BdG bands, respectively. The red/green color of the particle
bands indicates the localization of the states. Panels (c) and (d) show
an enlarged view of the region marked by the blue box in (a) where
six different superconducting avoided crossings emerge (labeled δ±

Al,
δ±

Au, and δ±
IOP). The absence of avoided crossings marked by black

circles in (c) and (d) is due to pseudo-spin-rotational symmetry. For
illustration purposes, we show results for scaled-up values of the
superconducting pairing. The model parameters for the analytical
model are those given in Table I and � = 0.4F0.

where λAl is a positive real-valued constant and i is an in-
dex counting the atomic layers in the Al/Au heterostructure.
While the value of λAl can be regarded as a fitting parameter in
this approach, we stress that only an integral quantity, leading
to the overall superconducting gap size in thin films of Al,
is fitted. Other spectral properties such as avoided crossings
and proximity effects are in fact predictions of this theory.
The results of our KS-BdG simulations and analytical model
for the Al/Au heterostructure are summarized in Fig. 4. For
better visibility, we show results for scaled-up values of the su-
perconducting pairing (i.e., larger values for λAl). The general
trends we discuss here are, however, transferable from large
to small pairing strengths with only quantitative changes. We
find superconducting gaps and avoided crossings at low and
finite excitation energies, labeled with δ in Fig. 4(c). These
avoided crossings are rooted in the s-wave superconductivity
induced from the Al segment included in the DFT-based simu-
lations by λi (the only adjustable parameter in our description
of the superconducting state). The hybridization between Al
and Au bands enables Cooper pair tunneling from the su-
perconductor into the metal [see Fig. 1(b)]. This results in a
superconducting proximity effect in the Rashba surface state
of Au. The large spin-splitting of the Rashba surface state
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allows for the pairing to have triplet character because the
superconducting hybridization happens between quasiparticle
bands with identical pseudospin degrees of freedom. This
will be further explained in the effective model analysis of
Sec. III C.

The DFT calculations disclose the anisotropy of the pair-
ing gap (see Fig. 4), which is stronger for the Rashba state
at smaller momentum with δ−

Au ≈ 0.51δ±
Al and decreases to

δ+
Au ≈ 0.38δ±

Al for the state at larger momentum. Furthermore,
we also observe that interorbital pairings appear away from
the Fermi energy, as indicated by δ±

IOP, where the states with
dominant Au orbital character and pseudo-spin-up intersects
with the hole states with dominant Al orbital character having
pseudo-spin-down degrees of freedom. This phenomenon has
been referred to as interband pairing [33,34,38–40], mirage
gap [35], and finite-energy Cooper pairing [36,37,41]. How-
ever, conclusive experimental evidence supporting it is still
elusive. The Al/Au hybrid structure presented here provides
a simple system in which such finite-energy pairing can be
observed.

Similar to the two pairing gaps δ±
Au in the Rashba surface

state, the DFT calculation shows that the interorbital pairings
δIOP also decrease at larger momentum, i.e., δ−

IOP/δAl = 0.60
to δ+

IOP2/δAl = 0.44. Based on these observations, we pose
four questions:

(Q.1) Is interorbital pairing exclusively the result of super-
conducting order or other mechanisms?

(Q.2) What determines the magnitude of the finite-energy
pairing?

(Q.3) What is the magnitude of the induced spin-singlet
and triplet components of the effective pairing?

(Q.4) What specific symmetries are responsible for protect-
ing certain electron-hole band crossings that occur away from
the Fermi energy?

These questions will be answered in the following sections.

C. Effective low-energy model for the superconducting
heterostructure

Based on an effective low-energy model, we can achieve
a deeper understanding of the KS-BdG results. The results of
our low-energy model are illustrated in Figs. 4(b) and 4(d).
They are obtained by the model introduced in Sec. II B. To
obtain an analytical characterization of the superconducting
pairing in the heterostructure, it is necessary to construct a
BdG formalism for our minimal model, cf. Eq. (1). Assuming
that the superconducting pairing arises from the Al layer, we
model the single-particle pairing operator as

H� =
∑

k

(c†
k,Al, c†

k,Au)

(
�iσ̂y 0

0 0

)(
c†
−k,Al

c†
−k,Au

)
, (16)

where � denotes the superconducting pairing strength, and
the nonvanishing diagonal entry corresponds to s-wave spin
singlet pairing in the Al layer. Since pure Au does not become
a superconductor at experimentally relevant temperatures, the
pairing strength in the Au layer is set to zero. Note that
the momentum-space formulation in the model approach di-
rectly relates to the real-space formulation used in the DFT
approach. This is evident since in Eq. (16) intrinsic supercon-

ducting pairing is only added within the Al bands, while in
the DFT approach �eff [cf. Eqs. (7) and (10)] is only nonzero
within the Al atoms.

It is illuminating to represent the BdG Hamiltonian in the
eigenbasis of the normal state, given in Eq. (1), as defined by
the 8 × 8 matrix in Nambu space,

ĤBdG =

⎛
⎜⎜⎜⎜⎝

N̂++
k 0 Δ̂++

k Δ̂+−
k

0 N̂−−
k Δ̂−+

k Δ̂−−
k

[Δ̂++
k ]†

[
Δ̂−+

k

]† −N̂++
−k 0

[Δ̂+−
k ]†

[
Δ̂−−

k

]†
0 −N̂−−

−k

⎞
⎟⎟⎟⎟⎠, (17)

where the diagonal entries are the normal state dispersion
relations N̂νν

k = diag(E ν
k,+, E ν

k,−) with ν = ±. Note that E+
k,±

(E−
k,±) refer to the upper (lower) spin-split bands, which

predominantly exhibit Al (Au) orbital character for small mo-
menta, as can be seen in Fig. 2. Furthermore, the off-diagonal
block in ĤBdG is the pairing matrix projected onto the band
basis (cf. Appendix C) as obtained by

V̂†
kdiag(�iσ̂y, 0)V̂†T

−k =
(

Δ̂++
k Δ̂+−

k
Δ̂−+

k Δ̂−−
k

)
, (18)

where V̂k is the matrix of eigenvectors associated with the
eigenvalue Êk of the normal state Hamiltonian. Δ̂++

k (Δ̂−−
k )

correspond to the intraband pairing matrices, specifically pair-
ing between E+

k,+ and E+
k,− (E−

k,+ and E−
k,−) with their hole

counterparts leading to the superconducting gap for Al, i.e.,
δAl, and the proximity-induced pairing gaps labeled by (δ±

Au)
in Fig. 4. Such matrices are explicitly given by the relation

Δ̂νν
k = i�

2

(
0 1 + νG−

k−1 − νG+
k 0

)
, (19)

where ν = + (−) and

G±
k = EAl − E±

Au√
[EAl − E±

Au]2 + 4F 2
0

. (20)

In Eq. (18), Δ̂+−
k (Δ̂−+

k ) indicates the interorbital pairing, i.e.,
pairing between electron bands E+

k,+ and E+
k,− with hole band

bands −E−
−k,+ and −E−

−k,−. This gives rise to the emergence
of finite-energy Cooper pairing resulting in avoided crossings
at finite excitation energy (δ±

IOP) in Figs. 4(c) and 4(d). The
explicit form for the interband pairing matrix is given by

Δ̂+−
k = �F 2

0

(
0 −4i

�−
k,1�

−
k,2

4i
�+

k,1�
+
k,2

0

)
, (21)

with

�±
k,l =

√
(EAl − E±

Au)2(1 + (−1)l/G±
k )2 + 4F 2

0 , (22)

where l = {1, 2}. Importantly, the interplay between band
hybridization and superconductivity, manifested by �F 2

0 in
Eq. (21), intrinsically allows for the emergence of finite-
energy pairing. Therefore, the interorbital pairing is not
induced solely by superconducting order but also by band
hybridization in the normal state. This is the answer to
question (Q.1).
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D. Pairing symmetry analysis

To determine the pairing symmetry in the hybrid structure,
it is essential to establish an effective formalism that con-
centrates on either low or finite excitation energies. In this
respect, it is necessary to derive a 4 × 4 matrix formalism
from the full 8 × 8 BdG Hamiltonian ĤBdG. This can be done
by utilizing the downfolding method specified in Appendix D.
The downfolding method yields the effective model that en-
ables us to investigate the superconducting properties within
a given set of energy bands. As mentioned above, there are
three distinct sets of spin-split bands where pairing occurs.
These bands are characterized by ν = ν ′ = + (−), indicating
that the pairing takes place at the Fermi energy, where the
energy bands possess predominant Al (Au) orbital character.
Another set of bands corresponds to the interorbital bands,
where Al-dominated states intersect with Au-dominated hole
states (and vice versa). Thus, the general form for the 4 × 4
effective superconducting Hamiltonian becomes

Ĥ+ι
k,eff =

(
N̂++

k + ξ̂1 Δ̂+ι
k,eff

[Δ̂+ι
k,eff]

† −N̂ ιι
−k + ξ̂2

)
, (23)

where the diagonal entries ξ̂1(2) are the energy shifts arising
from multiband effects given by

ξ̂1 = Δ̂+ν
k

1

ω + N̂νν
−k

[
Δ̂+ν

k

]†
, (24)

ξ̂2 = [
Δ̂−ι

k

]† 1

ω − N̂−−
k

Δ̂−ι
k , (25)

and ω is a constant. In addition, the effective pairing matrix in
Eq. (23) becomes

Δ̂+ι
k,eff = Δ̂+ι

k + Δ̂+ν
k

1

ω + N̂νν
−k

[
Δ̂−ν

k

]† 1

ω − N̂−−
k

Δ̂−ι
k . (26)

The effective intraorbital (interorbital) superconducting
Hamiltonian, i.e., Ĥ++(+−)

k,eff , can be obtained by setting ι =
+(−) and ν = −(+). Note that Ĥ−−

k,eff can also be derived
by substituting (+) ↔ (−), and setting ι = − and ν = + in
Eqs. (23)–(26). The spectra of the effective superconducting
Hamiltonians Ĥ++

k,eff, Ĥ−−
k,eff, and Ĥ+−

k,eff are obtained numerically
and depicted in Figs. 5(a)–5(c). Additionally, the magnitudes
of the pseudo-spin-singlet and triplet components correspond-
ing to these spectra are illustrated in Figs. 5(d)–5(f) [61].

Importantly, the proximity-induced intra- and interorbital
pairing states are mixtures of singlet and triplet states due
to broken inversion symmetry in the Au layer. Based on
our model, only the z-component of the d vector, i.e.,
Δ̂+ι

k,eff(iσ̂y)−1 = ϕ+ι
k σ̂0 + d+ι

k · σ̂ , either at the Fermi energy or
finite excitation energies, is present. According to Eqs. (19)
and (21), the pairing matrices are off-diagonal. Therefore,
Δ̂+ι

k,eff becomes an off-diagonal matrix reflecting an effective
mixed-pairing state having nonvanishing pseudo-spin-singlet
ϕνν

k and pseudo-spin-triplet dνν
k,z character obtained as

ϕνν
k = i�

4
[2 + ν(G−

k + G+
k )], (27)

dνν
k,z = i�

4
ν[G−

k − G+
k ]. (28)

where ν ∈ {+,−}. Note that we have excluded terms propor-
tional to the third order of � in Eqs. (27) and (28) as they

FIG. 5. Effective superconducting excitation spectra for (a) Ĥ++
k,eff

with � = 0.4F0, (b) Ĥ−−
k,eff with � = 0.8F0 (� is scaled up for the

sake of clarity), and (c) Ĥ+−
k,eff with � = 0.4F0. (d)–(f) Real and

imaginary part of the pseudo-spin-singlet and pseudo-spin-triplet
components of the effective pairing matrix associated with the dis-
persion relation illustrated in the top panels. Black crosses in (d)–(f)
highlight k-points where particle and hole bands cross in the absence
of pairing. The model parameters are the same as those given in
Table I.

are negligibly small in the weak pairing limit. It is worth
mentioning that the property G±

−k = G∓
k leads to even (odd)

parity for the pseudo-spin-singlet (triplet) state, i.e., ϕνν
−k =

ϕνν
k (dνν

−k,z = −dνν
k,z ). The interorbital pairing components take

the form

ϕ+−
k = �F 2

0

(
−2i

�−
k,1�

−
k,2

− 2i

�+
k,1�

+
k,2

)
, (29)

d+−
k,z = �F 2

0

(
−2i

�−
k,1�

−
k,2

+ 2i

�+
k,1�

+
k,2

)
. (30)

Overall, we observe that the pseudo-spin-singlet component
is consistently larger in magnitude than the triplet compo-
nent; see Figs. 5(d)–5(f). Note that the pairing state becomes
purely pseudo-spin-singlet in the absence of either band hy-
bridization or Rashba spin-orbit coupling, i.e., when F0 = 0
or λ = g = 0. Therefore, the pseudo-spin-triplet component
originates from the interplay between Rashba surface states
and band hybridization.

The size of the avoided crossing in the spectrum of the
effective pairing Hamiltonian, as expressed in Eq. (23), is
given by

δνν ′
k,± =

√∣∣ϕνν ′
k

∣∣2 + ∣∣dνν ′
k,z

∣∣2 ± ∣∣(ϕνν ′
k

)∗
dνν ′

k,z + ϕνν ′
k

(
dνν ′

k,z

)∗∣∣,
(31)

where the third term effectively accounts for the anisotropy
observed in the magnitude of the avoided crossing, as initially
demonstrated in the KS-BdG simulation in Figs. 4 and 5. This
point addresses question (Q.2). Note that the Fermi surface of
the hybrid structure consists of four circular rings. The inner
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FIG. 6. (a) Magnitude of the effective superconducting avoided
crossings for different pairing potentials. (b) Strength of pseudo-
spin-triplet dνν′

k,z compared to pseudo-spin-singlet ϕνν′
k,z for the

effective intraorbital pairing potential, namely Δ̂++
k,eff and Δ̂−−

k,eff, as
well as the interorbital pairing potential Δ̂+−

k,eff. The cross marks
indicate the momenta where electron and hole bands are crossed in
the absence of pairing.

rings are primarily composed of spin-split Al states, while
they are surrounded by predominantly spin-split Au states.
The superconducting hybridization happens at four Fermi mo-
menta, i.e.,

|kF | ∈ {
kAl

1 , kAl
2 , kAu

1 , kAu
2

}
(32)

=±{0.124, 0.141, 0.278, 0.308} Å−1. (33)

At the above momenta, we have defined the following quanti-
ties:

δAl ≡δ++
kAl

1 ,+ ≈δ++
kAl

2 ,−, δ−
Au ≡δ−−

kAu
1 ,−, δ+

Au ≡δ−−
kAu

2 ,+. (34)

Therefore, the full pairing gap for the hybrid structure at the
Fermi energy can be determined by δ+

Au = min(δAl, δ
−
Au, δ

+
Au).

The interorbital Cooper pairing away from the Fermi energy
happens at momenta kIOP

1 = 0.221 Å−1 and kIOP
2 = 0.26 Å−1.

Accordingly, the magnitude of finite-energy Cooper pairing is
defined by δ−

IOP ≡ δ+−
kIOP

1 ,− and δ+
IOP ≡ δ+−

kIOP
2 ,+.

The magnitudes of both intra- and interorbital pairings
are plotted in Fig. 6(b). Apparently, the intraorbital bands
labeled by ν = ν ′ = + (−) exhibit the largest (smallest) pair-
ing gap at low momenta, indicating a dominant Al (Au)
orbital character. Interestingly, the interorbital pairing leads to
larger avoided crossings compared to the intraorbital pairing
of predominantly Au electrons. The Fermi momenta for the
intraorbital energy bands are marked in blue and red crosses
at k = 0.124, 0.141, 0.278, and 0.308 Å−1, respectively. At
these momenta, the pairing anisotropy for Al-dominated states
is slightly larger than the energy bands with dominant Au
orbital character. Importantly, we observe that the pairing
anisotropy disappears at critical momenta kc = 0.368 Å−1,
resulting in identical sizes for the pairing potentials. This
occurs because the induced intra- and interorbital pairing
becomes a purely pseudo-spin-singlet state by eliminating
the spin-split nature of the bands, specifically, d++

kc,z
= d−−

kc,z
=

d+−
kc,z

= 0. The critical momenta can be determined by setting
EAl − E±

Au = 0 according to Eqs. (20) and (22). In general, the
proximity-induced pairing exhibits a stronger presence of the
pseudo-spin-singlet component over the triplet component,

FIG. 7. Superconducting band structure of Al/Au obtained by
(a) DFT calculations and (b) analytical model in the presence of
Zeeman magnetic field of size B = 2 mRy. Finite-energy Cooper
pairings, highlighted by blue circles, emerge due to the interplay be-
tween superconductivity and magnetic field. The color bar indicates
particle (red/green) and hole (gray) components of the BdG spectra.
The model parameters for the analytical model are those given in
Table I and � = 0.4F0.

i.e., dνν ′
k,z /ϕ

νν ′
k < 1, as illustrated in Fig. 6(a). This answers

question (Q.3). Notably, among the various pairing potentials,
the Au-dominated states, labeled by ν = ν ′ = −, display the
largest contribution from the triplet component.

E. Finite-energy interorbital avoided crossing
with external magnetic fields

Note that we do not observe the occurrence of an interband
pairing between the two dominant Rashba states displaying
opposite spin-polarization marked by black and red circles
in Figs. 4 and 5, respectively. These crossings are protected
by time-reversal and spin-rotational symmetries. They can,
however, be lifted if an external Zeeman field is applied to
the heterostructure. This point answers question (Q.4).

The effect of an external magnetic field on the electronic
structure is shown in Fig. 7, both from DFT and low-energy
model perspectives. As the Zeeman field strength increases,
the Rashba spin-split bands undergo further splitting. This
shift of the bands leads to a decreasing superconducting
energy gap in predominant Al states because spin-up and
spin-down states are shifted away from each other. For
large external magnetic fields, the gap closes completely
and superconductivity is destroyed at the critical field of
the superconductor. Note that the interband pairing between
particle-hole Rashba states at finite excitation energy is clearly
visible before the superconducting gap for Al states closes.

IV. DISCUSSION AND CONCLUSION

Our results show the existence of finite-energy pairing due
to the complex multiband effects arising in the proximity
effect of heterostructures between s-wave superconductors
and heavy metals hosting Rashba surface states. The main
ingredients are as follows:

(i) s-wave superconductivity.
(ii) Surface states originating from the normal metal.
(iii) Rashba SOC in the normal metal.
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TABLE II. Superconducting energy gap, critical temperature,
and critical magnetic field of Al of different film thicknesses.

δ (µeV) Tc (K) Hc (T) References

208–307 Ref. [64]
1.2–2.8 0.01–5 Ref. [63]

(iv) Significant hybridization between Rashba sur-
face states and the electronic structure of the s-wave
superconductor.

If all these requirements are met, finite-energy pairing
emerges between discrete states of the superconductor and
the Rashba surface states. This unconventional pairing leads
to avoided crossings in the BdG band structures. In our case,
discrete states in the superconductor are pronounced due to
finite-size effects of the thin Al films. Their location relative
to the position of the Au surface states can be fine-tuned
by appropriate doping or film thickness. This allows us to
control at which finite energy the interorbital pairing between
Al and Au Rashba states occurs. It is important to note that
finite-energy pairing only appears in thin Al films since in the
semi-infinite limit no discrete quantum-well states are present
(see Appendix F).

The size of the observable avoided crossings for the Al/Au
heterostructure depends crucially on the superconducting gap
of the superconductor (summarized in Tables II and III). Alu-
minum has a critical temperature of Tc ≈ 1 K and a critical
magnetic field of Hc ≈ 10 mT [62]. In the thin-film limit, both
Tc and Hc increase substantially [63–65], together with an
increased size of the superconducting gap of δAl ≈ 300 µeV
[64]. The proximity-induced pairings at zero (within the Au
Rashba bands) and finite excitation energy (due to Al-Au
interorbital pairing) are of size δ±

IOP ≈ 100−200 µeV. The
Au-Au interorbital avoided crossing that only opens up under
a finite magnetic field is of size δAu

intra ≈ 30−50 µeV for values
of the magnetic field well below the critical field of Al. To
resolve this experimentally, an energy resolution of �E ≈
10−20 µeV should suffice. If we assume a thermal broadening
of 3.5kBT , we can estimate that experiments need to be per-
formed at T = �E/(3.5kB) ≈ 30−60 mK in order to be able
to resolve �E . With state-of-the-art STM and transport ex-
periments in dilution refrigerators, energy resolutions below
10 µeV at operating temperatures of 10 mK are indeed pos-
sible [66]. Thus, we believe that our predicted finite-energy
features in the superconducting electronic structure of Au/Al
are observable.

Suitable materials engineering might further enhance the
chances to detect and eventually exploit finite-energy pairings.
A strong Rashba effect is typically seen in p-electron materi-

TABLE III. Finite-energy avoided crossings (δ in μeV) from
DFT. The numbers are scaled values using a value of the supercon-
ducting gap of Al of δAl = 300 μeV for very thin films [64].

δ−
Au δ+

Au δ−
IOP δ+

IOP δAu
IOP δAu

IOP δAu
IOP

δ 114 153 180 132 0 31 52
H/Hc 0 0 0 0 0 ∼0.3 ∼0.4

als. Superconductors whose electronic structure close to the
Fermi level is dominated by sp-electrons, as is the case for Al,
are therefore well suited to achieve strong hybridization with
Rashba materials. Consequently, other superconductors with
larger superconducting gaps (e.g., Pb with Tc ≈ 7.2 K), that
nevertheless have dominating p-electron character responsible
for superconductivity, are promising to increase the observ-
able size of the finite-energy pairing. Furthermore, replacing
Au by the Bi/Ag(111) surface alloy, which shows a gigan-
tic Rashba effect [26], is another option for optimization.
Apart from Rashba-type SOC, also bulk-inversion asymmetric
crystals (e.g., BiTeI or IrBiSe [67,68]), where additionally
Dresselhaus-type SOC-induced spin-momentum locking can
be present, could be explored in this context. Observing finite-
energy pairing under broken pseudo-spin-rotational symmetry
benefits from a material with larger g-factor to increase the
response to the magnetic field. InSb nanowires could be in-
teresting systems for this purpose [69]. Moreover, van der
Waals heterostructures are rich material combinations where
proximity effects and interorbital pairing can be explored [70].
In these systems, the possibility of engineering the band struc-
tures via moiré superlattices provides additional knobs to tune
their physical properties [71].

Despite the abundance of heterostructures currently under
investigation in the context of the search for MZMs or super-
conducting spintronics, multiband physics in heterostructures
remains largely unexplored. A variety of emergent phenom-
ena can be explored in materials that show strong multiband
effects. For instance, multiband superconductors can lead to
exotic odd-frequency superconductivity [72]. Suitable materi-
als engineering might further promote control over the mixed
singlet-triplet character of the finite-energy pairing, which we
demonstrate for Al/Au. This could be useful to control spin-
triplet superconductivity, which in turn plays a pivotal role
in superconducting spintronics [73,74]. Moreover, spin-3/2
superconductors (e.g., YPtBi) or superconductors that show
local inversion symmetry breaking in their crystal structures
(e.g., CeRh2As2) are other examples where multiband physics
and broken symmetries inherently lead to unconventional
pairing [75,76]. Finally, novel topological superconducting
pairing at finite energies [37] is another exciting direction
for future research in real materials beyond model-based
calculations.

In summary, in our combined DFT and low-energy model
approach, we study the proximity effect in a heterostructure of
Au with strong Rashba SOC and the s-wave superconductor
Al. We show the existence of finite-energy pairing in the su-
perconducting state, and we analyze the mixed singlet-triplet
character of the proximity-induced pairing. Combining the
strengths of predictive DFT simulations with the insights from
model calculations, our results pave the way towards a deeper
understanding and experimental detection of multiband ef-
fects in superconducting heterostructures.
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APPENDIX A: COMPUTATIONAL DETAILS
OF THE DFT SIMULATIONS

Our density-functional-theory calculations rely on
multiple-scattering theory and employ the relativistic
Korringa-Kohn-Rostoker Green function method (KKR)
[77,78] as implemented in the JuKKR code [49]. We use the
local density approximation (LDA) to parametrize the normal
state exchange correlation functional [79] and an �max = 2
cutoff in the angular momentum expansion of the space-filling
Voronoi cells around the atomic centers where we make use
of the exact (i.e., full-potential) description of the atomic
shapes [80,81]. We use a two-dimensional geometry where
periodicity is assumed in the plane, but a finite layer thickness
is used in the direction along the heterostructure.

The series of DFT calculations in this study are orches-
trated with the help of the AiiDA-KKR plugin [82,83] to the
AiiDA infrastructure [84]. This has the advantage that the
data provenance is automatically stored in compliance with
the FAIR principles of open data [85]. The complete data set
that includes the full provenance of the calculations is made
publicly available in the materials cloud repository [86,87].

The source codes of the AiiDA-KKR plugin [82,83] and
the JuKKR code [49] are published as open source software
under the MIT license in Ref. [88].

APPENDIX B: ADDITIONAL DETAILS OF THE NORMAL
STATE ELECTRONIC STRUCTURE FROM DFT

Figure 8 shows the total and layer-resolved density of
states (DOS) of the Al/Au heterostructure as computed from
DFT. The fully occupied d-shell of Au can be seen between
E − EF = −8 eV and E − EF = −2 eV, and we confirm the
well-known fact that the DOS at EF has predominantly s − pz

character. The electrons in aluminum show an almost, i.e.,
except for small van Hove singularities due to lifting of de-
generacies in sp-bands by crystal fields, free-electron nature
that can be recognized in the typical square-root shape of the
DOS.

APPENDIX C: BAND BASIS REPRESENTATION

Using the Gram-Schmidt method, we derive orthonormal
eigenvectors for the normal state Hamiltonian given in Eq. (1)

FIG. 8. Density of states of the Al/Au heterostructure. The faint
orange and green lines indicate the contributions of the individual Al
and Au layers to the total DOS (blue line).

as

V̂ (k)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i
√

2γ

2
√

γ 2+4F 2
0

i
√

2P

2
√

P2+4F 2
0

i
√

2ν

2
√

ν2+4F 2
0

−i
√

2�

2
√

�2+4F 2
0√

γ 2+4F 2
0√

8�−

√
P2+4F 2

0√
8�+

−√
2ν

2
√

ν2+4F 2
0

√
�2+4F 2

0

−√
8�+

−i
√

2F0√
γ 2+4F 2

0

i
√

2F0√
P2+4F 2

0

−i
√

8F0

2
√

ν2+4F 2
0

i
√

2F0√
�2+4F 2

0√
2F0√

γ 2+4F 2
0

√
2F0√

P2+4F 2
0

√
8F0

2
√

ν2+4F 2
0

√
2F0√

�2+4F 2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(C1)

where [V̂ (k)]†V̂ (k) = 1 and we have defined

�+ =
√

(ϒ+)2 + 4F 2
0 , �− =

√
(ϒ−)2 + 4F 2

0 , (C2)

ϒ+ = EAl − E+
Au, ϒ− = EAl − E−

Au, (C3)

γ = �− + ϒ−, P = �+ + ϒ+, (C4)

ν = �− − ϒ−, � = �+ − ϒ+. (C5)

The band basis representation for the BdG Hamiltonian can
be obtained as follows. The superconducting Hamiltonian is
defined by H = ∑

k ψ̂
†
kĤ(k)ψ̂k, where the Nambu basis is

ψ̂k = (ϕ̂†
k, ϕ̂

†T
−k )T , and the BdG Hamiltonian is given by

Ĥ(k) =
(

Ĥ (k) diag(�iσ̂y, 0)
[diag(�iσ̂y, 0)]† −ĤT (−k)

)
, (C6)

where Ĥ (k) is the 4 × 4 matrix form of the normal state
Hamiltonian. The band basis representation of the supercon-
ducting Hamiltonian can be obtained through the similar-
ity transformation ĤBdG(k) = Û †Ĥ(k)Û with Û = V̂ (k) ⊕
[V̂ (−k)]†T .

APPENDIX D: DOWNFOLDING METHOD

In this Appendix, we explain how to employ the down-
folding method to obtain a 4 × 4 effective Hamiltonian to
describe spectral properties of the system for a specified en-
ergy window. Our starting point is a general superconducting
Hamiltonian, represented in the eigenspace of the normal state
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given by the 8 × 8 matrix

Ĥ =

⎛
⎜⎜⎜⎝

N̂1 0 Δ̂1 Δ̂2

0 N̂2 Δ̂3 Δ̂4

Δ̂
†
1 Δ̂

†
3 ĥ1 0

Δ̂
†
2 Δ̂

†
4 0 ĥ2

⎞
⎟⎟⎟⎠, (D1)

where N̂1(2) (ĥ1(2)) is a 2 × 2 diagonal subblock matrix con-
taining a pair of energy bands in the normal state, and Δ̂1(4)

and Δ̂2(3) are the pairing matrices projected onto the intraband
(interband). Note that Δ̂1(4) and Δ̂2(3) induce full and partial
pairing gaps at Fermi energy and finite excitation energies,
respectively. Without loss of generality, we change the basis
of Ĥ with the unitary transformation Û to let the diagonal
subblocks contain the electron-hole components with a pair-
ing potential. This can be done with Ĥ ′ = Û †ĤÛ , where Û is
given by

Û −1 = Û † =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠, (D2)

and Ĥ ′ becomes

Ĥ ′ =

⎛
⎜⎜⎝

N̂1 Δ̂2 0 Δ̂1

Δ̂
†
2 ĥ2 Δ̂

†
4 0

0 Δ̂4 N̂2 Δ̂3

Δ̂
†
1 0 Δ̂

†
3 ĥ1

⎞
⎟⎟⎠ ≡

(
M̂11 M̂12

M̂21 M̂22

)
. (D3)

In multiband systems, the downfolding method paves the
way to obtain the spectral properties of a desired subblock,
e.g., M̂11, taking into account the perturbative effects of other
blocks. To understand the method, we consider the eigenvalue
problem for H ′ given by(

M̂11 M̂12

M̂21 M̂22

)(
ψ̂A

ψ̂B

)
= E

(
ψ̂A

ψ̂B

)
, (D4)

where (ψ̂A, ψ̂B)T is the eigenvector associated with eigenen-
ergy E . Equation (D4) is a coupled equation that can be
written as

M̂11ψ̂A + M̂12ψ̂B = Eψ̂A, (D5)

M̂21ψ̂A + M̂22ψ̂B = Eψ̂B. (D6)

Inserting ψ̂B = (E − M̂22)−1M̂21ψ̂A into Eq. (D5) results in
M̂eff

11 ψ̂A = Eψ̂A with

M̂eff
11 = M̂11 + M̂12�̂

−1M̂21, (D7)

where �̂ = (ωÎ4 − M̂22)−1, Î4 is the 4 × 4 identity matrix, and
ω denotes a constant close to the energy range where the
desired pairing happens. Thus, eigenvalues M̂eff

11 describes the
spectral properties of M̂11 taking into account the effects of
other subblocks. We now aim to find an expression for �̂−1.
To do so, we define �̂ ≡ ε̂ + ˆ̃�, where ε̂ ( ˆ̃�) is the normal
state (pairing) part given by

ε̂ =
(

ωÎ2 − N̂2 0
0 ωÎ2 − ĥ1

)
, (D8)

ˆ̃� =
(

0 −Δ̂3

−Δ̂
†
3 0

)
. (D9)

We can find the inverse of �̂ using the Neumann series expan-
sion up to second order given by

�̂−1 = ε̂−1(Î + ˆ̃�ε̂−1)−1 = ε̂−1
∞∑

n=0

(− ˆ̃�ε̂−1)n (D10)

≈ ε̂−1(Î − ˆ̃�ε̂−1) = ε̂−1 − ε̂−1 ˆ̃�ε̂−1 (D11)

=
(

1
ωσ̂0−N̂2

1
ωσ̂0−N̂2

Δ̂3
1

ωσ̂0−ĥ1
1

ωσ̂0−ĥ1
[Δ̂3]† 1

ωσ̂0−N̂2

1
ωσ̂0−ĥ1

)
. (D12)

Note that Eq. (D10) converges when the norm of ˆ̃�ε̂−1 is
smaller than unity, which can be fulfilled in the weak pairing
limit. After some algebra, we arrive at an explicit relation for
M̂eff

11 that is

M̂eff
11 =

(
N̂1 + ξ̂1 Δ̂eff

2[
Δ̂eff

2

]†
ĥ2 + ξ̂2

)
, (D13)

where the energy shifts arising from the multiband nature as

ξ̂1 = Δ̂1
1

ωσ̂0 − ĥ1
Δ̂

†
1, (D14)

ξ̂2 = Δ̂
†
4

1

ωσ̂0 − N̂2
Δ̂4. (D15)

Additionally, the effective 2 × 2 pairing matrix takes the form

Δ̂eff
2 = Δ̂2 + Δ̂1

1

ωσ̂0 − ĥ1
Δ̂

†
3

1

ωσ̂0 − N̂2
Δ̂4. (D16)

According to Eqs. (16) and (24), the projected pairing ma-
trices Δ̂1,2,3,4 have only nonvanishing off-diagonal elements,
and also N̂1 + ξ̂1 ≡ diag(ζ1, ζ2) and ĥ2 + ξ̂2 ≡ diag(ζ3, ζ4)
are diagonal matrices due to time-reversal symmetry. In this
case, Δ̂eff

2 becomes an off-diagonal matrix explicitly given by

Δ̂eff
2 =

⎛
⎝ 0 (Δ̂2)12 + (Δ̂1 )12[(Δ̂3 )12]∗(Δ̂4 )12

[ω−(ĥ1 )22][ω−(N̂2 )11]

(Δ̂2)21 + (Δ̂1 )21[(Δ̂3 )21]∗(Δ̂4 )21

[ω−(ĥ1 )11][ω−(N̂2 )22]
0

⎞
⎠, (D17)

where ()i j indicates the matrix element of the given matrix.
To find the pairing symmetry for Δ̂eff

2 , we can multiply it with
the inverse of the Cooper pair symmetrization factor, i.e.,
(iσ̂y)−1 leading to the effective pseudo-spin-singlet (ϕ) and

pseudo-spin-triplet (d-vector) components, i.e., Δ̂eff
2 (iσ̂y)−1 =

ϕσ̂0 + d · σ̂ . In our model, Δ̂eff
2 is off-diagonal reflecting an

effective mixed pairing state having nonvanishing pseudo-
spin-singlet and triplet components of the d-vector explicitly
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given by

ϕ = 1

2

(
(Δ̂2)12 − (Δ̂2)21 + (Δ̂1)12[(Δ̂3)12]∗(Δ̂4)12

[ω − (ĥ1)22][ω − (N̂2)11]
− (Δ̂1)21[(Δ̂3)21]∗(Δ̂4)21

[ω − (ĥ1)11][ω − (N̂2)22]

)
, (D18)

dz = 1

2

(
(Δ̂2)12 + (Δ̂2)21 + (Δ̂1)12[(Δ̂3)12]∗(Δ̂4)12

[ω − (ĥ1)22][ω − (N̂2)11]
+ (Δ̂1)21[(Δ̂3)21]∗(Δ̂4)21

[ω − (ĥ1)11][ω − (N̂2)22]

)
. (D19)

Considering Eqs. (D18) and (D19), M̂eff
11 becomes

M̂eff
11 =

⎛
⎜⎜⎝

ζ1 0 0 dz + ϕ

0 ζ2 dz − ϕ 0
0 d∗

z − ϕ∗ ζ3 0
d∗

z + ϕ∗ 0 0 ζ4

⎞
⎟⎟⎠. (D20)

Interestingly, M̂eff
11 can preserve pseudo-spin-rotational sym-

metry. The matrix form for such an operator is defined by

D̂n(θ ) ≡ diag
(
eiθ/2(n·σ̂ ), e−iθ/2(n·σ̂ )∗), (D21)

where θ is the angle of rotation in the pseudospin space. Note
that M̂eff

11 preserves pseudo-spin-π rotational symmetry along
the z-axis, i.e., [M̂eff

11 , D̂nz (π )] = 0, with

D̂nz (π ) =

⎛
⎜⎜⎝

i 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 i

⎞
⎟⎟⎠. (D22)

Representing M̂eff
11 in the eigenspace of D̂nz (π ) denoted by Û ,

we decouple the effective Hamiltonian into two sectors given
by

M̂eff
11 = Û−1M̂eff

11 Û = diag(Ĥ1, Ĥ2), (D23)

where

Ĥ1 =
(

ζ4 d∗
z + ϕ∗

dz + ϕ ζ1

)
, (D24)

Ĥ2 =
(

ζ3 d∗
z − ϕ∗

dz − ϕ ζ4

)
. (D25)

Therefore, the effective superconducting spectra become

E = 1
2 (ζ1 + ζ4 ±

√
(ζ1 − ζ4)2 + 4δ2), (D26)

where the magnitude of the avoided crossing is

δ =
√

|ϕ|2 + |dz|2 ± (ϕ∗dz + ϕd∗
z ). (D27)

APPENDIX E: EFFECTIVE LOW-ENERGY THEORY

In this Appendix, we employ the general formalism of the
downfolding method, described in Appendix D, to obtain an
effective low (finite) -energy intraband (interband) supercon-
ducting Hamiltonian for the Al/Au model. We first derive
the low-energy formalism while the finite-energy pairing is
formulated subsequently.

1. Band basis label with ν = ν′ = +
Consider the BdG Hamiltonian represented in the

eigenspace of the normal state model given by

Ĥk =

⎛
⎜⎜⎜⎝

N̂++
k 0 Δ̂++

k Δ̂+−
k

0 N̂−−
k Δ̂−+

k Δ̂−−
k

[Δ̂++
k ]† [Δ̂−+

k ]† −N̂++
−k 0

[Δ̂+−
k ]† [Δ̂−−

k ]† 0 −N̂−−
−k

⎞
⎟⎟⎟⎠. (E1)

To derive the effective superconducting Hamiltonian at the
Fermi energy, we change the basis to an intraband formalism
through a unitary transformation Ĥ ′

k = Û ′†ĤkÛ ′, where Û ′
is given by

(Û ′)−1 = Û ′† =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠, (E2)

and Ĥ ′
k becomes

Ĥ ′
k =

⎛
⎜⎜⎜⎝

N̂++
k Δ̂++

k 0 Δ̂+−
k

[Δ̂++
k ]† −N̂++

−k [Δ̂−+
k ]† 0

0 Δ̂−+
k N̂−−

k Δ̂−−
k

[Δ̂+−
k ]† 0 [Δ̂−−

k ]† −N̂−−
−k

⎞
⎟⎟⎟⎠. (E3)

The first 4 × 4 block describes the superconducting sector
with predominant aluminum orbital character in the normal
state for small momenta. Comparing Eq. (E3) with Eq. (D3),
we deduce that

N̂1 = N̂++
k , ĥ2 = −N̂++

−k , (E4)

N̂2 = N̂−−
k , ĥ1 = −N̂−−

−k (E5)

Δ̂1 = Δ̂+−
k , Δ̂2 = Δ̂++

k , (E6)

Δ̂3 = Δ̂−−
k , Δ̂4 = Δ̂−+

k . (E7)

Substituting the above results into Eq. (D13) and setting ω =
0, we obtain the effective Hamiltonian describing supercon-
ducting spectral properties of energy bands with predominant
aluminum orbital character in the normal state at the Fermi
energy,

Ĥ++
k,eff =

(
N̂++

k + ξ̂1 Δ̂++
k,eff

[Δ̂++
k,eff]

† −N̂++
−k + ξ̂2

)
, (E8)
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where the energy shifts, arising from the interorbital pairing,
are

ξ̂1 = +Δ̂+−
k

1

N̂−−
−k

[Δ̂+−
k ]†, (E9)

ξ̂2 = −[Δ̂−+
k ]† 1

N̂−−
k

Δ̂−+
k . (E10)

The effective low-energy pairing potential for the predomi-
nant aluminum bands takes the form

Δ̂++
k,eff = Δ̂++

k + Δ̂+−
k

1

N̂−−
−k

[Δ̂−−
k ]† 1

−N̂−−
k

Δ̂−+
k . (E11)

Note that the second term is arising from the interplay be-
tween interorbital pairing with pairing of energy bands with
predominant Au character.

2. Band basis label with ν = ν′ = −
The effective superconducting Hamiltonian for the pre-

dominant Au sector can be derived through a unitary
transformation Ĥ ′′

k = Û ′†ĤkÛ ′ with

Ĥ ′′
k =

⎛
⎜⎜⎜⎜⎝

N̂−−
k Δ̂−−

k 0 Δ̂−+
k

[Δ̂−−
k ]† −N̂−−

−k [Δ̂+−
k ]† 0

0 Δ̂+−
k N̂++

k Δ̂++
k

[Δ̂−+
k ]† 0 [Δ̂++

k ]† −N̂++
−k

⎞
⎟⎟⎟⎟⎠, (E12)

where Û ′ is given by

(Û ′)−1 = (Û ′)† =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠. (E13)

Comparing Eq. (E12) with Eq. (D3), we obtain

N̂1 = N̂−−
k , ĥ2 = −N̂−−

−k , (E14)

N̂2 = N̂++
k , ĥ1 = −N̂++

−k , (E15)

Δ̂1 = Δ̂−+
k , Δ̂2 = Δ̂−−

k , (E16)

Δ̂3 = Δ̂++
k , Δ̂4 = Δ̂+−

k . (E17)

At the Fermi energy ω = 0, inserting the above relations to
Eq. (D13), we explicitly derive the effective superconducting
Hamiltonian for the energy bands with predominant Au or-
bital character in the normal state for small momenta given by

Ĥ−−
k,eff =

(
N̂−−

k + ξ̂1 Δ̂−−
k,eff

[Δ̂−−
k,eff]

† −N̂−−
−k + ξ̂2

)
, (E18)

where the energy shifts induced by multiband effects are

ξ̂1 = +Δ̂−+
k

1

N̂++
−k

[Δ̂−+
k ]†, (E19)

ξ̂2 = −[Δ̂+−
k ]† 1

N̂++
k

Δ̂+−
k . (E20)

Moreover, the effective low-energy pairing potential for the
predominant Au bands in the normal state becomes

Δ̂−−
k,eff = Δ̂−−

k + Δ̂−+
k

1

N̂++
−k

[Δ̂++
k ]† 1

−N̂++
k

Δ̂+−
k . (E21)

3. Interorbital sector

To obtain an effective interorbital superconducting Hamil-
tonian and study the BdG spectra at finite excitation energies,
it is helpful to represent the BdG Hamiltonian in the inter-
band basis. This can be done by the unitary transformation
Ĥ ′′′

k = Û ′′†ĤkÛ ′′ with

Ĥ ′′′
k =

⎛
⎜⎜⎜⎜⎜⎝

N̂++
k Δ̂+−

k 0 Δ̂++
k

[Δ̂+−
k ]† −N̂−−

−k [Δ̂−−
k ]† 0

0 Δ̂−−
k N̂−−

k Δ̂−+
k

[Δ̂++
k ]† 0 [Δ̂−+

k ]† −N̂++
−k

⎞
⎟⎟⎟⎟⎟⎠, (E22)

where the unitary matrix Û ′′ is given by

(Û ′′)−1 = (Û ′′)† =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠. (E23)

In this case, comparing Eq. (E22) with Eq. (D3), we arrive at

N̂1 = N̂++
k , ĥ2 = −N̂−−

−k , (E24)

N̂2 = N̂−−
k , ĥ1 = −N̂++

−k , (E25)

Δ̂1 = Δ̂++
k , Δ̂2 = Δ̂+−

k , (E26)

Δ̂3 = Δ̂−+
k , Δ̂4 = Δ̂−−

k . (E27)

Since the interorbital pairing happens at finite excitation en-
ergy, ω is no longer vanishing and becomes finite. Substituting
the above relations into Eq. (D13), we find an explicit form for
the effective interorbital superconducting Hamiltonian,

Ĥ IO
k,eff =

(
N̂++

k + ξ̂1 Δ̂+−
k,eff

[Δ̂+−
k,eff]

† −N̂−−
−k + ξ̂2

)
, (E28)

where the energy shifts, induced by the intraband effects, are
given by

ξ̂1 = Δ̂++
k

1

ωσ̂0 + N̂++
−k

[Δ̂++
k ]†, (E29)

ξ̂2 = [Δ̂−−
k ]† 1

ωσ̂0 − N̂−−
k

Δ̂−−
k . (E30)

Note that Ĥ IO
k,eff breaks particle-hole symmetry due to the

different diagonal entries arising from two different energy
bands. Finally, the effective 2 × 2 finite-energy pairing matrix
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FIG. 9. Superconducting electronic structure of six layers of Au
on top of semi-infinite Al. The gray background (i.e., with nonzero
spectral density) in most parts of the Brillouin zone reflects the con-
tinuum of states in the semi-infinite Al. The spectrum clearly shows
the superconducting gap of Al (labeled �Al) and the proximity-
induced gap in the Au Rashba surface state (marked by the black
box). In contrast to the thin-film limit, the finite-energy pairing
disappears in the semi-infinite limit as no discrete Al quantum-well
states are present.

becomes

Δ̂IO
k,eff = Δ̂+−

k + Δ̂++
k

1

ωσ̂0 + N̂++
−k

[Δ̂−+
k ]† 1

σ̂0ω − N̂−−
k

Δ̂−−
k .

(E31)
Note that the second term originates from the interplay be-
tween low-energy bands and their corresponding pairings with
finite energy pairing.

APPENDIX F: IMPORTANCE OF THE THIN-FILM LIMIT
FOR FINITE-ENERGY PAIRING

In our work, we consider the thin film limit of Al, (i) due to
the increased superconducting gap in Al thin films compared
to bulk Al, and (ii) because having discrete quantum-well
states enables finite-energy pairing. With varying thickness
of the Al superconductor, the quantum-well states appear in
different locations of the Brillouin zone, which in turn affects
the strength of the hybridization of the Al and Au derived
states. With increasing thickness, more and more quantum-
well states appear and a continuum of states emerges in the
semi-infinite limit. In this limit, there is no discrete location
in the dispersion where a sharp band of Al intersects with
the discrete dispersion of the Rashba surface state of Au.
This suppresses the signatures of finite-energy pairing, and the
avoided crossings at finite energies are washed out. This can
be seen in Fig. 9.
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