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Near-term quantum simulators are mostly based on qubit-based architectures. However, their imperfect nature
significantly limits their practical application. The situation is even worse for simulating fermionic systems,
which underlie most of material science and chemistry, as one has to adopt fermion-to-qubit encodings which
create significant additional resource overhead and trainability issues. Thanks to recent advances in trapping
and manipulation of neutral atoms in optical tweezers, digital fermionic quantum simulators are becoming
viable. A key question is whether these emerging fermionic simulators can outperform qubit-based simulators for
characterizing strongly correlated electronic systems. Here we perform a comprehensive comparison of resource
efficiency between qubit and fermionic simulators for variational ground-state emulation of fermionic systems in
both condensed matter systems and quantum chemistry problems. We show that the fermionic simulators indeed
outperform their qubit counterparts with respect to resources for quantum evolution (circuit depth) as well as
classical optimization (number of required parameters and iterations). In addition, they show less sensitivity
to the random initialization of the circuit. The relative advantage of fermionic simulators becomes even more
pronounced as interaction becomes stronger, or tunneling is allowed in more than one dimension, as well as for
spinful fermions. Importantly, this improvement is scalable, i.e., the performance gap between fermionic and
qubit simulators only grows for bigger system sizes.
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I. INTRODUCTION

The exponential growth of complexity by increasing the
system size in quantum systems fundamentally limits the
ability of classical computers in simulating quantum systems
[1,2]. This makes quantum simulators indispensable to en-
sure continued technological and commercial development
in material science [3–5], chemistry [6–9], and synthetic
drug discovery [10], among many other fields. In all these
fields, simulating the behavior of electrons, as fundamental
elementary particles following fermionic statistics, and un-
derstanding their role in the formation of complex molecules
are crucial. This makes the simulation of strongly correlated
fermionic systems of utmost importance [11,12]. Quantum
simulators are rapidly emerging in various platforms, includ-
ing cold atoms in optical lattices [13–16], ion traps [17–21],
superconducting devices [22–27], optical systems [28–32],
quantum dot arrays [33–35], and Rydberg atoms [36–48].
Most of these quantum simulators are qubit-based as, in
principle, they can eventually achieve universal quantum com-
putation in a digital manner [2]. However, in the absence
of error correction, noisy intermediate-scale quantum (NISQ)
simulators are far from being perfect, and thus achieving
near-term universal quantum computation is not foreseeable
[49,50]. Quantum supremacy of NISQ simulators over clas-
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sical computers has been demonstrated for specific problems
[23,25,26,32]. However, these problems have no direct prac-
tical applications. Thus, a key open problem is whether NISQ
simulators can achieve a practical quantum advantage over
their classical counterparts [51].

In the NISQ era, hybrid quantum-classical variational
algorithms are seen as the most promising route to demon-
strate supremacy over a fully classical computation paradigm
[52,53]. In these algorithms, the target outcome is written
variationally in terms of a minimum cost function which is
measured as the output of a parameterized quantum circuit.
The measured cost function is fed into a classical optimizer to
be minimized, which updates the parameters of the circuit. By
iterating the algorithm eventually, the cost function reaches its
minimum. Indeed, dividing the complexity between a quan-
tum circuit and a classical optimizer allows a fairly shallow
quantum circuit to potentially achieve a quantum advantage.
Thus, a complete resource analysis of any variational quan-
tum algorithm necessarily involves analysis of both quantum
and classical resources. Quantum resources can be quantified
through circuit depth or equivalently the number of two-qubit
gates. Classical resources, however, quantify the complexity
of the optimization problem through the number of required
iterations as well as the number of optimizable parameters.
Many efforts have been dedicated to enhancing the efficiency
of variational quantum algorithms by saving both quantum
and classical resources through inventing error mitigation
methods [54–58], efficient design of quantum circuits [59,60],
exploiting symmetries [61–64], and accelerating the classical
optimizer [65–68].
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The Variational Quantum Eigensolver (VQE) [52,69–72]
is perhaps the most widely investigated variational quan-
tum algorithm, which has been demonstrated experimentally
for both condensed matter systems [21,73,74] and quantum
chemistry problems [24,75–81]. The goal of the VQE algo-
rithm is to prepare an individual eigenstate, e.g., the ground
state, of a given Hamiltonian. For the most basic version of the
VQE, the average energy is used as the cost function whose
minimization results in the ground energy of the system.
Thus, the output of the optimal circuit represents the ground
state. The conventional qubit-based quantum simulators can-
not directly simulate fermionic systems. Certain mathematical
transformations, such as Jordan-Wigner [82–85] or Bravyi-
Kitaev [86], are needed to map fermionic operators into
Pauli strings [12]. The resulting qubit Hamiltonian might be
highly nonlocal, which makes the VQE algorithm more costly
due to increased required measurement and makes it more
susceptible to barren plateaus [87–92], which significantly
slows the training. Recently, the network of trapped atoms
in optical tweezers has been exploited to realize an analog
Fermi Hubbard quantum simulator [46,93,94]. In a recent
proposal [95], such systems have been proposed for realizing
a fermionic digital quantum simulator in which two-particle
quantum gates can be performed by exciting the atoms to
Rydberg states. This idea can also be utilized for simulat-
ing gauge field theories [96,97]. Indeed, the feasibility of
fermion-based quantum simulators opens enormous possibil-
ities for simulating fermionic systems without the overhead
cost of the transformation from fermionic operators to Pauli
strings. A quantitative analysis is indeed essential to find
whether fermionic simulators can make VQE simulations
more resource-efficient. If so, how this resource efficiency
depends on the geometry of the fermionic system and scales
with the system size is important.

The outline of the paper is as follows. Basics of the VQE
algorithm are introduced in Sec II, followed by their imple-
mentations for qubit- (Sec. II A) and fermion-based (Sec. II B)
simulators. We detail our circuit design and numerical simula-
tion techniques in Sec. III. Section IV contains the results for
variational simulation of the spinless Fermi-Hubbard model
with fermionic simulators in 1D open chain (Sec. IV A), lad-
der (Sec. IV B), and 2D lattice (Sec. IV C) configurations. This
is extended to the spinful Fermi-Hubbard model in Sec. V
with 1D open chain (Sec. V A) and ladder (Sec. V B) con-
figurations. The scalability of classical and quantum resource
requirements for ground-state finding with fermionic and
qubit simulators is analyzed in Sec. VI. Results for fermionic
simulation for the water molecule are presented in Sec. VII,
before we conclude in Sec. VIII.

II. VARIATIONAL QUANTUM EIGENSOLVER
ALGORITHM

In this section we briefly review the Variational Quantum
Eigensolver (VQE), as it is one of the most widely used
near-term algorithms in the field of quantum simulation. VQE
has been developed to determine individual eigenvalues of
a many-body system and prepare their corresponding eigen-
states. The simplest version of the VQE is for simulating the
ground state and is built on the Ritz variational principle,

i.e., if one chooses a trial state |ψ (�θ )〉 = U (�θ )|ψ0〉 in which
U (�θ ) is a unitary operator parametrized by lp real parameters
�θ = {θ1, θ2, . . . , θlp}, then the ground-state energy is bounded
by average energy,

E0 � 〈ψ (�θ )|H |ψ (�θ )〉. (1)

This implies that if |ψ (�θ )〉 is expressible, i.e., includes the
ground state for a certain choice of �θ = �θopt , then by minimiz-
ing the average energy, as the cost function, one can get the
ground-state energy as E0 = 〈ψ (�θopt )|H |ψ (�θopt )〉. In this case,
the output of the simulator corresponds to the ground state,
|E0〉 = |ψ (�θopt )〉. The parameterized quantum state |ψ (�θ )〉
can be obtained through the operation of a parameterized
quantum circuit U (�θ ). Theoretically, a quantum analog of
the universal approximation theorem has been developed,
which indicates that sufficiently deep quantum circuits can
approximate any target function to the desired accuracy [70].
However, the practically relevant problem of designing the
shallowest possible quantum circuit for simulating the ground
state of a Hamiltonian remains an area of intensive research.
This includes incorporating the symmetries of the system into
the design of the circuit [62,63,98] or exploiting evolutionary
[60,99] and machine learning [100–102] algorithms for sim-
plifying the circuit.

As mentioned before, VQE algorithm relies on two dif-
ferent types of resources: (1) quantum resources which can
be quantified through the depth of the quantum circuit or
equivalently the number of two-qubit gates RQ and (2) clas-
sical resources which quantify the complexity of the classical
optimization through

RC = lp × lI, (2)

where lI is the average number of iterations that the opti-
mizer needs to iterate for converging to a given precision. The
resource efficiency, namely, minimizing both RQ and RC, is es-
sential for the scalability of the VQE algorithm and achieving
a quantum advantage in the NISQ era.

A. VQE algorithm for fermionic systems on qubit-based
quantum simulators

In this paper we focus on simulating the ground state
of fermionic many-body systems in both condensed matter
physics and quantum chemistry. However, most of the quan-
tum simulators that are available are qubit-based and do not
satisfy Fermi statistics. This means that to implement VQE
on such systems, one must first map the fermionic Hamilto-
nian into a qubit one. The spinless fermionic annihilation and
creation operators acting on site j, represented by c j and c†

j ,
respectively, follow the Fermi statistics as

{c j, ck} = 0, (3)

{c j, c†
k} = δ jk, (4)

where δ jk is the Kronecker delta function, and {, } is the
anticommutator. There are several methods to map these
fermionic operators into qubit basis. The Jordan-Wigner trans-
formation is most prominent among such maps [103] and
relates fermion operators {c j} to Pauli spin operators via the
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following mapping:

c†
j = (⊗ j−1

k=1σ
z
k

)
σ+

j , (5)

c j = (⊗ j−1
k=1σ

z
k

)
σ−

j , (6)

n j = c†
j c j = I − σ z

j

2
, (7)

where n j is the number operator, σα
j (with α = x, y, z) is the

Pauli operator acting on site j, and σ±
j = (σ x

j ± iσ y
j )/2. Note

that the string operator ⊗ j−1
k=1σ

z
k is highly nonlocal, which

creates multibody interaction in the qubit basis. In particular,
when the fermionic Hamiltonian contains long-range tunnel-
ings or describes high-dimensional lattices, the corresponding
qubit Hamiltonian becomes highly nonlocal. The emergence
of such nonlocal terms puts extra resource overheads on VQE
simulation and creates several drawbacks, including that (1)
the number of measurements for estimating average energy
increases, (2) the optimization becomes more susceptible to
the barren plateau phenomenon due to nonlocal terms in the
cost function which makes the convergence slower [87,90],
and (3) the circuit design becomes challenging and quite
arbitrary. Indeed, if one could bypass the Jordan-Wigner trans-
formation step for mapping fermions to qubits, then the above
inefficiencies would be prevented, resulting in a more efficient
simulation of fermionic quantum systems.

B. VQE simulation on fermion-based quantum simulators

In the qubit quantum computational paradigm, the qubits
are assumed to be distinguishable. On the other hand, ele-
mentary particles or atoms, either bosons or fermions, are
completely indistinguishable. Thus, for fermionic or bosonic
computation models, the natural approach is to consider dis-
tinguishable localized energy modes on a similar footing
as qubits. For bosons, this leads to elementary gate oper-
ations being linear optical unitaries augmented with some
non-Gaussian operation like a photon detector, being univer-
sal [104]. For fermions, the situation is more interesting, as
projective measurement on fermion modes does not achieve
universality when coupled with free-fermionic quadratic uni-
taries [105]. Importantly for our purpose, Bravyi and Kitaev
[86] obtained the following set of fermionic unitaries, which
are universal when restricted to global particle-number-
conserving transformations:

BK = {
e

iπ
4 n j , e

iπ
4 n j n j′ , e

iπ
4 (c†

j c j′+c†
j′ c j )

}
. (8)

Physically, the first unitary acts on a single site and encodes
information about particle numbers for each mode, the sec-
ond unitary signifies interaction between fermions in different
sites, and the last unitary signifies particle hopping between
sites. This is an interesting feature that makes fermions very
distinct from qubits. While in qubit systems one type of two-
qubit operation, e.g., controlled-not, is enough for universal
computation, in fermionic quantum simulators one needs two
different types of two-particle operations.

Recently, a novel approach for developing digital fermionic
quantum simulators in neutral atom arrays with interac-
tions mediated by Rydberg states has been proposed [95].
In fact, the authors argue that the following generalization

of the Bravyi-Kitaev gate set can be precisely realized in
experiments:

G = {
U tun

j j′ (�θ ),U int
j j′ (θ )

}
, (9)

in which

U tun
j j′ (�θ ) = e

−i
[

θ1
2

(
e−iθ2 c j c

†
j′+eiθ2 c j′ c

†
j

)
+ θ3

2 (n j−n′
j )

]
, (10)

U int
j j′ (θ ) = e−iθn j n j′ , (11)

where U tun
j j′ is a tunneling gate allowing fermions to shift at

different sites, and U int
j j′ is an interaction gate which gives

relative phases between different charge configurations. Thus,
the fermion systems can be simulated using these two gates on
fermionic quantum simulators directly, instead of being im-
plemented indirectly on a qubit-based simulator by using the
Jordan-Wigner transformation with the additional overhead of
quantum resources.

The digital fermionic quantum simulator in Ref. [95] ex-
ploits fermionic atoms trapped in optical tweezers. In order to
implement the interaction and tunneling gates U int

j j′ and U tun
j j′

one can excite the atoms into Rydberg states. In particular,
tunneling gates can be realized by different methods, two of
which are critical, the MERGE protocol and the SHUTTLE
protocol. In the MERGE method [45,94,106], two nearby
optical traps are brought so close together that atoms can
tunnel through to each other and then separate these two traps.
In this case, the parameters �θ of U tun

j j′ are determined by the
behavior of tweezers and the custom-designed merging and
splitting protocols. In the other way, the SHUTTLE approach,
two tweezer arrays are employed, each trapping different spin
states of the atom [107]. Then, when these tweezers over-
lap, Rydberg-mediated level transitions in the spin subspace
also lead to coherent delocalization of positional degrees of
freedom. This delocalized position wave function can then
be collapsed in the new site of choice, making it possible to
implement the U tun

j j′ . The interaction gate U int
j j′ can be similarly

implemented by bringing the corresponding optical tweezers
within Rydberg blockade distance and then driving a laser
pulse to create a Rydberg excitation that couples to the internal
angular momentum degrees of freedom. By suitably choosing
the shape of the laser pulse, U int

j j′ [108] can be obtained. For
unrelated site pairs, both U tun

j j′ and U int
j j′ can be parallelized, i.e.,

implemented simultaneously all across the length of an array
of neutral atoms.

III. CIRCUIT DESIGN FOR BOTH QUBIT AND FERMION
QUANTUM SIMULATORS

In this paper we focus on Hamiltonians in which the num-
ber of fermions is conserved. By mapping to a qubit basis, the
resulted Hamiltonian Hq preserves the number of excitation,
[Hq, Sz] = 0, where Sz = 1/2

∑
j σ

z
j . To incorporate this sym-

metry in the circuit design we rely on two-qubit gates Uqubit
j j′

and single-qubit rotations Rz
j (θ ), which take the form

Uqubit
j j′ = e+i[θ‖(Xj Xj′+YjYj′ )+θ⊥Z j Z j′], (12)

Rz
j (θ ) = e−i θ

2 σ z
j . (13)

In Fig. 1(a) we depict the quantum circuit which realizes
the two-qubit operation Uqubit

j j′ . By combining these gates one
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FIG. 1. (a) Decomposition of two-qubit gates Uqubit
j j′ (purple) in

terms of rotations and CNOT gates, (b) Decomposition of one layer
of qubit circuit used in this paper: first Uqubit

j j′ (purple) is applied
on all neighboring sites and then Rz

j (θ ) (red) is applied on all sites,
(c) Decomposition of one layer of the fermionic circuit used in this
paper: first U tun

j j′ (orange) is applied on all neighboring sites, and then
U int

j j′ (green) is applied in the same way.

can construct a quantum circuit that naturally preserves the
number of particles. One layer of such a circuit is shown in
Fig. 1(b). In order to enhance the expressivity, several layers
of the circuit are concatenated to make a deeper circuit.

For designing the circuit in fermionic digital quantum sim-
ulators we can use different arrangements of U tun

j j′ and U int
j j′ . We

have found that a particular arrangement performs better for
the VQE simulation. In this advantageous configuration, in a
given circuit layer, all the tunneling gates U tun

j j′ are grouped
together to act on all the bonds and then followed by similar
arrangements for interaction gates U int

j j′ . In Fig. 1(c) we depict
one layer of a typical circuit for a 1D system.

Note that in the following section, the qubit and fermion
circuits have a little difference as shown in Fig. 1 but keep
the same gate arrangements. Initially, the circuit parameters
of both VQEs are randomly set to near 0 to ensure 〈H〉 of
both VQEs start from similar values.

For the classical optimization part, we use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm [109–112], and
restrict maximum iterations lI to 150 to minimize the average
energy 〈H〉, which is sufficient in most cases. It is worth
mentioning that other classical optimizers also work and do
not qualitatively affect the conclusions. In addition, for each
case, we repeat the procedure 100 times for random initial-
izations, over which the results are averaged to be statistically
meaningful.

It is worth emphasizing that depending on the Hamiltonian
to be simulated, the above qubit circuit design may not be
the most efficient one. For example, unitary coupled cluster
ansatz-based circuits are more favored for molecular simula-
tions. In particular, an adaptive optimization of circuit design
[113] has become very popular in recent years. We stress
that this technique remains equally available for fermionic
simulators too, with the operator pool of Ref. [113] being
the fermionic gates in Eq. (11). However, for the sake of fair
comparison between qubit and fermionic quantum simulators,
we use the same strategy, i.e., adopting symmetry-preserving
circuits and using the same classical optimizer, for both qubits
and fermions. Indeed, one can use more complicated strate-
gies, such as adaptive optimization of the circuit design [113],

in both cases and improve the performance. Here our objective
is to provide a comparison of the performance of the qubit and
the fermionic simulators, and thus these improvements are out
of the scope of the paper and left for future investigations.

IV. VQE SIMULATION OF SPINLESS FERMIONIC
SYSTEMS

Now we start the analysis of fermionic quantum systems.
In this section we neglect the explicit contribution of spin
degrees of freedom and show how VQE simulation of such
systems on a fermionic digital quantum simulator can outper-
form the performance of qubit-based quantum simulators. We
focus on the simplest VQE case, namely, finding the ground
energy of spinless fermionic Hamiltonians. In the absence of
spin degrees of freedom, the Pauli exclusion principle dictates
that there can only be one electron per site. Therefore, a
typical spinless fermion Hamiltonian reads as

H (t,V, μ) = −t
N∑

〈 j j′〉
(c†

j c j′ + H.c.) + V
∑
〈 j j′〉

n jn j′ − μ
∑

j

n j,

(14)

where t represents particle tunneling, V is interaction be-
tween neighboring sites, and μ is the chemical potential. The
summation runs over all nearest-neighbor sites 〈 j j′〉 on a
given geometry of the system. This Hamiltonian conserves
the number of fermions as [H, n] = 0, where n = ∑

j n j . This
implies that all the eigenstates of the Hamiltonian have a fixed
number of fermions. In particular, the number of fermions Nf

in the ground state depends on V , which results in the filling
factor f = Nf /N . As a further simplification, we assume that
the sites are shallow, i.e., μ 	 t , which is ensured by simply
choosing μ = 0 and t = 1. Note that while this parameter
choice is not the most general, our focus here is to present
a proof-of-principle improvement with the fermionic gates.
Besides, for smaller atoms like Li, or relatively weak trapping
laser fields, this assumption can be physically justified. It
is also the regime where the MERGE protocol mentioned
above is most successful. We now denote H (t,V, μ) in the
equation above as simply H (V ).

We simulate N = 12 sites arranged in three specific geo-
metric configurations, a 1 × 12 chain (Fig. 2), a ladder (Fig. 3)
with two rungs, i.e., 2 × 6 system, and a 3 × 4 rectangular
lattice (Fig. 4). Note that by spreading the system in two
dimensions the entanglement in the ground state increases,
which is known as the area law. Therefore, we expect that
the simulation of such systems should be more resource-
demanding than simple 1D chains.

A. Geometry 1: Open chain

First, we consider the open boundary spinless fermion
chain model [Fig. 2(a)]. Physically, when V = 0, the model
reduces to the standard tight-binding model, and the ground
state is at half-filling f = 1/2. As the interaction V increases,
the corresponding energy penalty leads to a reduction of the
fermion numbers Nf in the ground state, one electron at a
time, i.e., in discrete steps to Nf = N

2 − 1, Nf = N
2 −2, and so

on [see Fig. 2(b)]. For simulation, we consider two values of
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FIG. 2. (a) Open chain configuration for N = 12 spinless Fermi-Hubbard model. (b) Dependence of particle number density on the
Coulomb repulsion strength V for the ground state. (c) One layer of the fermionic circuit which is decomposed into four steps (orange
steps denote U tun

j j′ , green steps denote U int
j j′ ). (d) One layer of the qubit circuit which is decomposed into three steps (purple steps denote

Uqubit
j j′ , and red steps denote the phase rotations). (e) Performance of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE

(green) in terms of convergence to ground-state energy for Fermi-Hubbard model interaction strength V = 0. (f) Performance of the fermionic
circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms of fidelity with ground state for Fermi-Hubbard model interaction
strength V = 0. (g) Performance of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms of convergence
to ground-state energy for Fermi-Hubbard model interaction strength V = 2. (h) Performance of the fermionic circuit-based VQE (orange)
vs the qubit circuit-based VQE (green) in terms of fidelity with ground state for Fermi-Hubbard model interaction strength V = 2. Tunneling
strength t = 1 throughout.

V at V = 0 and V = 2, with the corresponding ground-state
fermion numbers being Nf = 6 and Nf = 5, respectively. The
fermion and qubit circuit structure is shown in Figs. 2(c) and
2(d), consisting of U int

j j′ and U tun
j j′ from Eq. (11). In each circuit

layer, the tunneling gates are grouped together, which is then
followed by interaction gates. There are two steps to fulfill
either tunneling or interaction gates for all neighboring sites,
resulting in a total depth of 4 for each layer.

The simulation results, quantified by average energy 〈H〉 =
〈ψ (�θ )|H |ψ (�θ )〉 and fidelity F = |〈ψ (�θ )|E0〉|2, for V = 0 are
depicted in Figs. 2(e) and 2(f). Both fermion and qubit circuits
contain four layers. As the figure shows, the fermion quantum
simulator converges faster and shows smaller error bars. This
means that fermionic simulators are not only faster but also
more robust against random initialization. Note that noninter-
acting 1D fermionic systems can be efficiently solved through
Jordan-Wigner transformation on classical computers. Thus,
aside from benchmarking, it is practically more important to
investigate the nonsolvable interacting fermions. We consider
the interaction strength V/t = 2 for which the filling factor
of the ground state changes to Nf = 5. The resulting average
energy and fidelity are shown in Figs. 2(g) and 2(h), respec-
tively. Differently from the noninteracting case, convergence
is achieved with only L = 4 layers for the fermionic circuit

but requires L = 6 layers for the qubit circuit. To achieve
the threshold fidelity F = 0.95, the fermion VQE needs only
lI = 75 iterations, while the qubit simulator requires lI = 106
iterations.

Remarkably, in the interacting case, the improvement
in convergence speed is even more significant than in the
noninteracting case. The error bars still remain smaller for
fermionic simulators. These results clearly show the su-
periority of fermionic quantum simulators over their qubit
counterparts for simulating the fermionic many-body systems.

B. Geometry 2: Ladder

Now we consider the ladder model with two rungs [see
Fig. 3(a)] as an intermediate between the 1D chain discussed
above and the full 2D model. As before, increasing the re-
pulsive interaction V leads to a decline in the ground-state
fermionic number density, as shown in Fig. 3(b). For design-
ing the quantum circuit, we follow the same logic as 1D
systems. In each circuit layer, we first group the tunneling
gates U tun

j j′ together and then perform the interaction gate U int
j j′

in a similar fashion. Since there are more bonds in the ladder
geometry the full operation of either tunneling or interaction
gates can be fulfilled in three steps as shown in Fig. 3(c),
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FIG. 3. (a) Ladder 6 × 2 configuration for N = 12 spinless Fermi-Hubbard model. (b) Dependence of particle number density on the
Coulomb repulsion strength V for the ground state. (c) One layer of the fermionic circuit which is decomposed into six steps (orange steps
denote U tun

j j′ , green steps denote U int
j j′ ). (d) One layer of the qubit circuit which is decomposed into four steps (purple steps denote Uqubit

j j′ , and red
steps denote the phase rotations). (e) Performance of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms
of convergence to ground-state energy for Fermi-Hubbard model interaction strength V = 2. (f) Performance of the fermionic circuit-based
VQE (orange) vs the qubit circuit-based VQE (green) in terms of fidelity with ground state for Fermi-Hubbard model interaction strength
V = 2. Tunneling strength t = 1 throughout.

resulting in total depth 6 for each layer. The results, depicted
in Figs. 3(e) and 3(f), show that the fermionic circuit con-
verges far faster, requiring only lI = 33 iterations to reach a
target fidelity of F = 0.95, compared to 89 iterations for the
qubit circuit. As the results show, by changing the geome-
try from a 1D chain to a ladder, the improvement achieved
by the fermionic simulator becomes even more pronounced.
This is because the corresponding qubit Hamiltonian in the
case of ladder is significantly more nonlocal, which results in
overhead resources. We note that both the qubit and fermionic
circuits need only L = 3 layers to converge within the allowed
number of iterations, which is less than L = 4 layers required
for the 1D chain previously. However, the circuit depth of each
layer in this case is higher compared to the 1D chain, and
thus more gates are required. Again the error bars in fermionic
simulators are smaller than the qubit simulators showing more
robustness against the random initializations.

C. Geometry 3: Rectangular lattice

As demonstrated above, by extension the geometry in 2D
structures of the fermionic circuit shows a noticeable perfor-
mance advantage over the qubit circuits. We now consider a
more pronounced 2D system, which is a 3 × 4 rectangular
lattice, shown in Fig. 4(a). In general, we expect the 2D
system to be more challenging to simulate than the 1D system
because of stronger entanglement and the presence of more
couplings in the system. As before, the filling factor of the
ground state depends on the repulsive interaction V , as shown

in Fig. 4(d). We again follow the same logic of grouping
the gates in the circuit. For the rectangular lattice, we need
four steps to perform either tunneling gates U tun

j j′ or interaction
gates U tun

j j′ on all neighboring bonds, as shown in Fig. 4(c).
This means that each circuit layer has a depth of 8. For con-
verging to the ground energy, this fermionic circuit needs only
three layers. In Figs. 4(e) and 4(f), the average energies and
the corresponding fidelities obtained by both fermionic and
qubit simulators are shown. In order to converge to fidelity
F = 0.95, one needs L = 3 and L = 6 layers in fermionic
and qubit circuits, respectively. These results show that for
higher dimensions, the gap in performance widens between
fermionic and qubit circuit ansatzes. As the figures show, for
the qubit circuit, even with twice as many layers, it is still
hard for it to converge to the true ground energy. In terms of
fidelity, the qubit circuit needs lI = 135 iterations to achieve
a fidelity of F = 0.95, but a fermionic approach needs only
lI = 39 iterations.

Indeed, the VQE simulation of a spinless fermionic
Hubbard Hamiltonian shows that the fermionic circuit con-
struction is superior to the qubit circuit construction for the
simulation of spinless Hubbard Hamiltonians, with the per-
formance advantage widening as we move towards higher
dimensional systems or, indeed, for the same system with big-
ger interaction strengths. This can be seen more quantitatively
in Table I, where we compare the performance of fermionic
and qubit simulators in terms of both classical and quantum
resources.
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FIG. 4. (a) Rectangular 3 × 4 configuration for N = 12 spinless Fermi-Hubbard model. (b) One layer of the qubit circuit is decomposed
into five steps (purple steps denote Uqubit

j j′ , and red steps denote the phase rotations). (c) One layer of the fermionic circuit which is decomposed
into eight steps (orange steps denote U tun

j j′ , green steps denote U int
j j′ ). (d) Dependence of particle number density on the Coulomb repulsion

strength V for the ground state. (e) Performance of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms
of convergence to ground-state energy for Fermi-Hubbard model interaction strength V = 2. (f) Performance of the fermionic circuit-based
VQE (orange) vs the qubit circuit-based VQE (green) in terms of fidelity with the ground state for Fermi-Hubbard model interaction strength
V = 2. Tunneling strength t = 1 throughout.

V. SIMULATING SPINFUL FERMIONIC MANY-BODY
SYSTEMS

In the previous section we simulated the ground state of
spinless fermionic Hubbard Hamiltonians and established the
advantage gained through the use of fermionic quantum sim-
ulators. We now want to extend these results for the spinful
Hubbard Hamiltonian, described as

H = − t
N∑

〈 j j′〉

∑
σ=↑,↓

(c†
jσ c j′σ + H.c.) − μ

∑
j

n j

+ U
∑

j

n j↑n j↓ + V
∑
〈 j j′〉

n jn j′ . (15)

As before, we again assume t = 1 and μ = 0. Notice that
since there are two spins, the intersite repulsion term U is
nontrivial between oppositely signed spins. We can then de-
note the full Hamiltonian H (t,U,V, μ) in terms of adjustable
variables as H (U,V ).

For the spinless system, each site has only two different
states, nonoccupied or occupied. For N sites, this information
can be encoded in an N-qubit register. For the full description
of spin 1/2 fermions, each site has four possible config-
urations, nonoccupied, occupied with one spin-up electron,
occupied with one spin-down electron, and occupied with two
opposite-spin electrons. For neutral atom arrays, this entails
applying an external magnetic field to induce hyperfine level

splittings. Therefore, for both qubit and fermionic simulators
each site is encoded by two registers, and one represents
spin-up and one spin-down.

Before progressing further, let us describe how our circuit
design is altered for the spinful fermionic case from the spin-
less case discussed in the last section. As mentioned before,
there are two types of spinless gates in G set. For spinful
fermions, the realizable gates depend on the details of trapping
laser beams and pulses that one can apply. If one uses the
same setup as Ref. [95] for realizing spinful fermions, then
the tunneling gate U tun

j j′ is replaced by two unitaries for each
spin as

U tun
j j′,α (�θ ) = e−i[ θ1

2 (e−iθ2 c†
j,αc j′ ,α+eiθ2 c†

j′,αc j,α )+ θ3
2 (n j,α−n j′ ,α )]

, (16)

where α =↑ , ↓ represent the spin of the fermion. The inter-
action gate U int

j j′ , however, is replaced by four different gates,

U int
j j′,αα′ (θ ) = e−iθn j,αn j′ ,α′ , (17)

where α, α′ ∈ {↑,↓} label the four possible interaction gates
based on spin degrees of freedom. Based on the gate im-
plementation of Ref. [95], these gates can only be realized
sequentially. Therefore, in our circuit design for spinful
fermions, we also perform these gates sequentially. Note that
by using alternative trapping methods and exploiting more
Rydberg states one may be able to merge some of these uni-
taries and thus simplify the circuit. Nonetheless, for the sake

043175-7



LI, MUKHOPADHYAY, AND BAYAT PHYSICAL REVIEW RESEARCH 5, 043175 (2023)

FIG. 5. (a) Open chain configuration for the N = 6 spinful Fermi-Hubbard model as simulated by qubit (left) and fermonic (right)
simulators. (b) Dependence of particle number density on the site depth U and Coulomb repulsion strength V for the ground state. (c) One
layer of the fermionic circuit, which is decomposed into six steps (orange steps denote U tun

j j′,αα
, green steps denote U int

j j′,αα′ ). (d) One layer of

the qubit circuit which is decomposed into five steps (purple steps denote Uqubit
j j′ , and red steps denote the phase rotations). (e) Performance

of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms of convergence to ground-state energy for
V = 0.5, U = 2.5. (f) Performance of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms of fidelity
with ground state for V = 0.5, U = 2.5. Tunneling strength t = 1 throughout.

of consistency, we stick to the operators given in Eqs. (16) and
(17).

The benchmarking qubit circuit is built in analogy with the
fermionic circuits by retaining the same connections and with
weights defined by Eq. (13).

A. Geometry 1: Open chain

As mentioned above, in spinful systems with N sites one
has to use 2N registers. Hence, to keep the same simulator
size as the spinless model, we have to cap the system size of
the spin model at N = 6 sites. Notice that when N = 6, the
simplest ladder example with two rungs coincides with the
simplest 2D rectangular lattice of 2 × 3 sites. We follow the
exact same methodology as the spinless case.

First, we consider the fermion spin chain model with size
N = 6 as shown in Fig. 5(a). The corresponding simulator
structure is on the right. As we discussed, the simulator con-
sists of 12 registers, six each for each spin configuration. The
number of fermions Nf in the ground state for varying V and
U is shown in Fig. 5(b). As V or U increases, the number of
fermions declines from six to two, step by step. In general,
the onsite repulsion between two fermions is stronger than
the coulomb repulsion between two neighbor sites, so we set
V = 0.5 and U = 2.5. To simulate this spin model, the circuit
of fermion VQE is designed as shown in Fig. 5(c), where
tunneling gates only act on two neighbor spin-up sites or two
neighbor spin-down sites in accordance with Pauli exclusion
principle, as given by the hopping term of the Hamiltonian
in Eq.(12). In contrast, interaction gates are executed on the

spin subspace at every site. Therefore, in each layer, for
implementing tunneling gates two steps are needed and for
interaction gates three steps. This makes the depth of a single
layer equal to L = 5. The numerical results for average energy
and fidelity are shown in Figs. 5(e) and 5(f). The results are
even more strongly in favor of the fermionic circuit than the
spinless examples before. The qubit-based VQE converges
far more slowly to the actual ground state even with L = 7
layers, taking lI = 325 iterations to reach fidelity F = 0.95,
while the fermionic simulators with L = 5 layers converge
to the ground state with the same fidelity F = 0.95 after
only lI = 73 iterations. The quantum resource requirement,
i.e., two-party elementary gate counts, is also more than
halved by the fermionic circuit (150 vs 420 for the qubit
circuit).

B. Geometry 2: Ladder

For a fermionic Hubbard model with N = 6 sites, the only
2D geometry is a 2 × 3 ladder. The schematic of the system
and its corresponding simulator with 12 registers are shown in
Fig. 6(a). The number of fermions Nf in the ground state of
the system as a function of U and V is depicted in Fig. 6(d).
To simulate this model, the corresponding one-layer quantum
fermionic circuit is displayed in Fig. 6(c). Similarly, the tun-
neling gates act only on sites that represent the same spins,
while interaction gates operate between all neighboring sites.
Therefore, in a single circuit layer, the tunneling gates are
realized through three steps, while interaction gates require
six steps to fulfill. This means that every circuit layer has
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FIG. 6. (a) Ladder 2 × 3 configuration for N = 6 spinful Fermi-Hubbard model as simulated by qubit (top) and fermonic (bottom)
simulators. (b) One layer of the fermionic circuit, which is decomposed into nine steps (orange steps denote U tun

j j′,αα
, green steps denote

U int
j j′,αα′ ). (c) One layer of the qubit circuit is decomposed into seven steps (purple steps denote Uqubit

j j′ , and red steps denote the phase rotations).
(d) Dependence of particle number density on the site depth U and Coulomb repulsion strength V for the ground state. (e) Performance
of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms of convergence to ground-state energy for
V = 0.5, U = 2.5. (f) Performance of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green) in terms of fidelity
with ground state for V = 0.5, U = 2.5. Tunneling strength t = 1 throughout.

a depth of 9. The numerical results for the average energy
and the corresponding fidelities on a qubit circuit with L = 6
layers and fermionic circuits with L = 5 layers are depicted
in Figs. 6(e) and 6(f). Again the results demonstrate that a
fermionic circuit converges to fidelity F = 0.95 after lI = 35
iterations while the qubit circuit requires lI = 74 iterations.
This means that the fermionic simulators are more efficient
with respect to both quantum and classical resources.

In summary, the fermionic circuit is again clearly better in
the spinful case. A complete table for counting classical and
quantum resources for each simulation is provided in Table II,
which quantitatively backs up this assertion.

C. Resource efficiency

Table II details both classical and quantum resources
utilized by qubit and fermionic simulators for various con-
figurations of the spinful Hubbard Hamiltonian. Even more
prominently than the spinless case, the fermionic simulator
consumes significantly less quantum resource RQ and classi-
cal resource RC. As an illustrative example, we could converge
the qubit simulator for the open chain only to 95% fidelity af-
ter 325 iterations; however, the fermionic simulator converges
to this target fidelity nearly five times faster (73 iterations) and

with shallower circuits (only five layers vs seven layers for the
qubit), thus proving its superiority.

VI. RESOURCE EFFICIENCY AND SCALABILITY

Tables I and II detail both classical and quantum resources
utilized by qubit and fermionic simulators for various con-
figurations of the spinless and spinful Hubbard Hamiltonians.
The quantum resource count RQ, i.e., the two-body gate count
for the whole circuit, increases as the systems acquire more
and more width, for both fermionic and qubit architectures.
However, unlike the fermionic case, the qubit circuit requires
much more depth to converge for the 2D lattice. Also, while
the quantum resource required increases for the 2D lattice,
the open chain actually requires the most classical resource
for fermionic simulators, which is in contrast with the qubit
simulator.

As demonstrated above, the fermionic simulator shows
significant advantages over the qubit-based simulator on both
quantum and classical resources. From Table I and Table II
for spinless and spinful cases, respectively, we know these
advantages grow bigger with the spatial dimension of the
system. The important question is, Do these advantages scale
up when the system size N increases ? This is crucial for
a NISQ quantum simulator because of the limited resources
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TABLE I. Resource count of the simulation of various configurations of spinless fermionic Hubbard Hamiltonians with N = 12 sites where
the parameters are chosen to be t = 1 and V = 2.

Spinless model H (t = 1,V = 2)

Chain (1 × 12) Ladder (2 × 6) Rectangle (3 × 4)

Simulator Fermion Qubit Fermion Qubit Fermion Qubit

Simulator size 1 × 12 2 × 6 3 × 4

L 4 6 3 3 3 6

RQ 88 198 96 144 102 306

lp 176 204 192 132 204 276

lI (F = 0.95) 75 106 33 89 39 135

RC 13 200 21 624 6336 11 748 7956 37 260

available. Here we take the counts of RQ and RC to compare
the resource consumption of qubit- and fermionic-based quan-
tum simulators.

We note from our data that the resource requirements
grow polynomially with system size N , i.e., RQ ∼ NβQ and
RC ∼ NβC , with scaling exponents βQ and βC , respectively.
As an illustration, demonstrated in Fig. 7, our data for the
spinless 1D open chain indicate that βQ = 2.19, βC = 3.90 for
the fermionic circuit vs βQ = 2.81, βC = 4.48 for the qubit
circuit. While the exponents quoted above are not conclu-
sive since we had to confine ourselves to short chains, they
nonetheless confirm that vis-à-vis the qubit simulator, the
fermionic simulator shows more resource efficiency for both
quantum and classical parts of the protocol as N increases,
i.e., the relative advantage with respect to the qubit simulator
is scalable. In Table III we list the scaling exponents for
other geometries studied in the paper. Due to computational
limitations, finding meaningful scaling exponents becomes
difficult for thicker ladders with more rungs or especially for
qubit architectures, particularly in all except the simplest 1D
chain for the spinful case, but one can nonetheless draw two
tentative conclusions from Table III. First, for all the config-
urations studied, both classical and quantum resource scaling
significantly favors the fermionic architecture in every case.
Second, the qubit architecture in the spinful case is signifi-
cantly less scalable than the corresponding 1D spinless chain
with the corresponding scaling exponents being larger for

the spinful (βC = 5.86, βQ = 3.24) than the spinless (βC =
4.48, βQ = 2.81). However, for the fermionic architecture, the
simulation of the spinful chain is roughly as scalable as the
spinless in terms of gate counts (βQ = 2.23 for the spinful
chain vs βQ = 2.19 for the spinless chain), and the spinful
chain actually shows better simulation scalability in terms
of classical optimization resource requirements (βC = 3.35
for the spinful chain vs βC = 3.90 for the spinless chain).
Together, they indicate that given the severe constraints of the
NISQ era, fermionic simulators can allow us to tackle sys-
tems, especially spinful systems, far larger than the existing
qubit simulators can.

VII. QUANTUM CHEMISTRY: SIMULATION OF H2O
MOLECULE

In the previous sections, we discussed the use of direct
fermionic circuits to implement the variational algorithm for
obtaining the ground state of spinless or spinful fermionic
many-body models with several different geometric configu-
rations. These results all point towards a significant advantage
being obtainable in terms of both classical and quantum re-
source efficiency than the standard qubit-based VQE schemes.

In this section we consider an example from the do-
main of quantum chemistry to illustrate the advantage of
fermionic simulators. We remember that chemical bonds hap-
pen because interacting electrons, each delocalized between

TABLE II. Resource count of the simulation of various configurations of spinful fermionic Hubbard Hamiltonians with N = 6 sites where
the parameters are chosen to be t = 1, U = 2.5, and V = 0.5.

Spin model H (t = 1,U = 2.5,V = 0.5)

Chain (1 × 6) Ladder/rectangle (2 × 3)

Simulator Fermion Qubit Fermion Qubit

Simulator size 6 × 1 6 × 2 2 × 3 2 × 3 × 2

L 5 7 5 6

RQ 150 420 210 504

lp 250 364 350 408

lI (F = 0.95) 73 325 35 74

RC 18 250 118 300 12 250 30 192
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FIG. 7. (a) Required quantum resource RQ, and (b) the cor-
responding classical resource RC, as system size N increases for
the spinless 1D open chain. Orange lines denote fermionic-based
and green lines denote qubit-based simulator performance. Inset to
panel (a) depicts fitting lines for log RQ vs log N (slopes ≈2.19 for
fermionic vs ≈2.81 for qubit). Inset to panel (b) depicts fitting lines
for log RC vs log N (slopes ≈3.90 for fermionic vs ≈4.48 for qubit).
Interaction strength V = 2 in every case. Tunneling strength t = 1
throughout.

different atomic orbitals, are in a bound state, i.e., have a
negative ground-state energy. This molecular Hamiltonian can
thus be written as a many-electron fermionic Hamiltonian
where in the second-quantized notation, ci(c

†
i ) are lowering

TABLE III. Scaling exponents of N for various configurations of
the Hubbard Hamiltonian for fermionic and qubit simulators

Spinless model

βC βQ

Configurations Fermion Qubit Fermion Qubit

N × 1 3.90 ± 0.11 4.48 ± 0.19 2.19 ± 0.12 2.81 ± 0.28

N × 2 3.36 ± 0.11 4.12 ± 0.10 2.12 ± 0.10 2.23 ± 0.12

N × 3 3.76 ± 0.28 4.88 ± 0.28 2.49 ± 0.09 2.75 ± 0.11

N × 4 3.69 ± 0.17 4.67 ± 1.00 2.06 ± 0.13 2.40 ± 0.06

N × N 3.77 ± 0.14 5.84 2.31 ± 0.28 3.06

Spinful model

N × 1 3.35 ± 0.25 5.86 ± 0.50 2.23 ± 0.22 3.24 ± 0.19

and raising fermionic operators for the ith orbital. The ground-
state energy of the molecular Hamiltonian then gives an idea
of the strength of the bond. Thus, qubit-based quantum simu-
lators again encounter the same problem of fermion-to-qubit
encoding-induced overheads, and we expect the fermionic
simulator to be significantly better. In fact, in Ref. [95] two
four-body generalized gates corresponding to the terms in
the coupled cluster ansatz of approximating the molecular
Hamiltonian [114] were constructed from the repeated ap-
plication of fermionic gates U tun

j j′ and U int
j j′ . With the help of

these gates, Ref. [95] found the ground state of LiH as a
case study. Here we provide an explicit demonstration of the
efficiency of the fermionic simulator by finding the ground
energy of a molecule of water, whose molecular structure is
shown in Fig. 8(a) [115]. For the H2O molecule, we have four
active orbitals and four electrons hopping between them. The
simulator must, therefore, contain eight registers to account
for spin degrees of freedom. Differently from the approach
of [95], we do not explicitly use the four-body fermionic
gates as building blocks of the unitary, instead using two-
body tunneling and interaction gates introduced earlier. One
layer of the fermionic quantum circuit is shown in Fig. 8(c),
which shows that the tunneling gates can be implemented
in two steps while the interaction gates require three steps;
therefore, a single layer of the circuit has the depth of 5. The
results of average energy and fidelity are shown in Figs. 8(d)
and 8(e), respectively. Again, compared with qubit circuits,
fermionic circuits outperform qubit-based circuits in terms of
convergence speed (lI = 8 for fermionic vs 13 for qubit, less
is better), and quantum resources (RQ = 72 for fermionic vs
144 for qubit, less is better). In terms of classical resource
cost, both are roughly similar (RC = 1280 for fermionic vs
1560 for qubit, less is better), and the error bars representing
variability of output on randomized initializations are nar-
rower for the fermionic circuit than the qubit circuit. Thus,
even for the generic fermionic circuit, an advantage over the
qubit paradigm is present. Note that Figs. 8(d) and 8(e) are in
semilog scale, and they also indicate the onset of the barren
plateau problem at larger iterations, albeit beyond our fidelity
accuracy threshold.

Let us also note that we have considered only the total
particle number conservation property in this algorithm. In-
corporating all available symmetries of molecules, such as the
total spin, time-reversal, and point-group and crystallographic
symmetries, into the construction of fermionic quantum sim-
ulators should further reduce the required resource costs and
improve the performance of the fermion simulation algo-
rithms even more.

VIII. CONCLUSION

Efficient simulation of strongly interacting fermionic sys-
tems is crucial in every physical and technological domain.
Shortcomings of classical computation have long been known
for the simulation of quantum systems, which leaves quantum
simulators as the only viable solution. Quantum simulators
are rapidly emerging in various physical platforms, with qubit
architectures becoming the default arrangement. However,
the imperfect nature of NISQ simulators prohibits univer-
sal large-scale quantum computation, which makes resource
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FIG. 8. (a) The molecular geometry of water with four spin orbits, (b) One layer of the qubit circuit decomposed into five steps (purple
steps denote Uqubit

j j′ , red denote phase rotation Rz
j). (c) One layer of the fermionic circuit decomposed into seven steps (orange steps denote

U tun
j j′ , green steps denote U int

j j′ ). (d) Performance of the fermionic circuit based VQE (orange) vs the qubit circuit-based VQE (green), in terms
of convergence to ground-state energy. (e) Performance of the fermionic circuit-based VQE (orange) vs the qubit circuit-based VQE (green),
in terms of fidelity to the actual ground state.

efficiency a critical issue for the foreseeable future. Simula-
tion of fermionic systems on qubit-based quantum simulators
requires fermion-to-qubit mappings which introduce addi-
tional resource overhead, limiting the scalability to larger
systems and introducing new challenges for trainability.
Analog fermionic quantum simulators [46,94] have been ex-
perimentally demonstrated in neutral atom arrays, paving the
way for the realization of programmable fermionic digital
simulators. Moreover, in a recent parallel work [116], the in-
verse problem of setting the optical tweezer trap configuration
for various Hubbard model configurations was also treated.
In this paper we compare the performance of fermionic- and
qubit-based simulators for VQE simulations of the fermionic
many-body ground state in both condensed matter systems
and quantum chemistry problems. Our results show that

fermionic quantum simulators offer a clear, scalable, and
significant advantage in terms of both classical as well as
quantum resources. In addition, fermionic simulators show
less sensitivity to random initializations of circuit parameters.
Thus, our work opens up the possibility of simulating much
bigger fermionic systems in future, which can potentially have
a big impact on material design and quantum chemistry.
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