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Crystalline phases and devil’s staircase in qubit spin ice
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Motivated by the recent realization of an artificial quantum spin ice in an array of superconducting qubits
with tunable parameters [King et al., Science 373, 576 (2021)], we scrutinize a quantum six-vertex model on
the square lattice that distinguishes type-I and type-II vertices. We map the zero-temperature phase diagram
using numerical (exact diagonalization) and analytical (perturbation expansion, Gershgorin theorem) methods.
Following a symmetry classification, we identify three crystalline phases alongside a subextensive manifold of
isolated configurations. Monte Carlo simulations at the multicritical Rokhsar-Kivelson point provide evidence
for a quantum phase exhibiting a cascade of transitions with increasing flux. By comparing structure factors, we
find evidence for the emergence of the fully flippable and plaquette phases in the artificial quantum spin ice.
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I. INTRODUCTION

Water ice is a beautiful example of how an everyday ma-
terial can inspire and advance many areas of physics, from
classical-statistical physics to qubit systems. Oxygen ions in
ice form a fourfold coordinated lattice. The protons are lo-
cated on the links connecting the nearest-neighbor oxygen
ions: two protons bond to the oxygen covalently, and two with
hydrogen bonds. It is the ice rule identified by Bernal and
Fowler in 1933 [1]. Because the lengths of the covalent and
hydrogen bonds are different, arrows can be used to show the
position of the protons about the center of the link. It leads to
the “two-in, two-out” formulation of the ice rule, which can
be considered a local divergence-free condition. The ice rule
allows for six different proton configurations around an oxy-
gen ion. Because these six configurations correspond to six
different vertices in the arrow representation [see Fig. 1(a)],
the fundamental model of ice is known as the six-vertex
model (6VM). Remarkably, the number of states satisfying the
ice rule increases exponentially with the size of the system,
forming a manifold. Pauling estimated the degeneracy of the
manifold as Wice = (3/2)N = 1.5N , where N is the number of
oxygen ions, resulting in a finite residual entropy [2]. Lieb
solved the two-dimensional six-vertex model on the square
lattice exactly and got W2D = (4/3)3N/2 ≈ 1.5396N [3], which
is very close to Pauling’s estimate. Furthermore, Baxter noted
that the correlations decay algebraically [4].

The six-vertex model successfully describes physical sys-
tems in which divergence-free conditions arise. For instance,
Anderson proposed that the frustration in magnetite leads to
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charge disproportionation, where configurations following the
ice rule minimize the Coulomb energy [5]. Another example
is the “square ice” substance KH2PO4 (KDP), a quasi-2D
material in which the vertex configurations do not have equal
energies [6,7]. In particular, the discovery of spin ice materials
brought the field to flourish [8]. In spin ice, the Ising-like mag-
netic moments of rare-earth ions form the highly frustrated
pyrochlore lattice of corner-sharing tetrahedra with spins at
the corners. Arrows representing these spins realize the low-
energy two-in, two-out configurations [9]. Since then, spin
ice physics was also accomplished in fabricated arrays of
nanomagnets [10–13].

The six-vertex model is a convenient starting point for
realizing topological defects due to its correlated ground-state
manifold. Flipping an arrow creates a “three-in, one-out”
and a “one-in, three-out” vertex. These vertices are not part
of the six-vertex model; the underlying model (e.g., Ising
model) determines their dynamics. They correspond to frac-
tional charges in the model for magnetite [14] and to the
emergence of magnetic monopoles in the spin ice systems
[15], experimentally confirmed in Ref. [16].

The quantum six-vertex model emerges by allowing tun-
neling between configurations that obey the ice rule by adding
an off-diagonal term to the classical Hamiltonian. This term
reverses arrows arranged tail-to-nose around an elementary
square plaquette, as shown in Fig. 2(a), although longer loops
are also allowed. Chakravarty used such an expression to
describe d-wave superconductors in Ref. [17].

The quantum six-vertex model appears in the perturba-
tive expansion of the S = 1/2 Heisenberg model on lattices
of corner-shared tetrahedra in the limit of large easy-axis
exchange anisotropy. For example, on the two-dimensional
checkerboard lattice, the quantum term gives rise to a gapped
phase, where arrows on alternating square plaquettes resonate
[18,19]. On the three-dimensional pyrochlore lattice, Her-
mele et al. argued that the effective theory is a Maxwellian
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FIG. 1. (a) The two-in, two-out configurations in the six-vertex
model. While all of them are equivalent in three dimensions, they
become distinguishable for the two-dimensional ice and split into
type-I and type-II vertices. (b) In the fully packed loop representa-
tion, the thick bonds are occupied (i.e., part of a loop), whereas the
thin bonds are empty. The figure shows the correspondence between
the arrows and the occupied or vacant bonds for “even” sites, while
the occupancies are reversed for “odd” sites. The “even/odd” refers
to the parity of the sum ix + iy of a site’s coordinates (ix, iy ) in the
lattice. (c) In the alternative Baxter representation, the bonds are
colored blue if the arrows on the bond are reversed compared to the
reference vertex in the first column.

U (1) action with gapless “photon”-like excitations [20], con-
firmed numerically in Refs. [21–23]. This situation may arise
in certain spin-ice materials: Tb2Ti2O7 [24], Pr2Sn2O7 and
Pr2Zr2O7 [25], and Yb2Ti2O7 [26] are all suitable candidates
(see Ref. [27] for a review about the quantum spin ice). The
stability of the U (1) spin liquid against ordered phases in
quantum spin ice was considered in Refs. [28,29], together
with experimental signatures.

Other examples include the isotropic S = 1/2 Heisen-
berg model with four-site ring exchange on checkerboard
and pyrochlore lattices, with the constraint of exactly one
singlet bond on each tetrahedron [30]. By extending the fun-
damental model, Ref. [31] investigated the quantum effects
in the “square ice” KH2PO4. Reference [32] studied finite-
temperature effects in quantum square ice. More recently, the
dynamical properties of the model came under scrutiny: it ex-
hibits dynamical quantum phase transitions [33] and quantum
many-body scars [34].

The connection between gauge theories and the quantum
six-vertex model, initially discussed in Ref. [20], was further
explored in Ref. [35], where the two-dimensional quantum
six-vertex model was found to be a confining lattice gauge
model. The model is also known as the (2 + 1)-dimensional
U (1) quantum link model [36]. References [37,38] considered
the model from a gauge field theory point of view. This rela-
tionship inspired the concept of engineering arrays of Rydberg

FIG. 2. (a) The off-diagonal term |�〉〈�|+|�〉〈�| reverses the
direction of arrows along a directed loop around a square plaquette.
(b) In the fully packed loop representation, the off-diagonal term acts
on configurations where a pair of opposite bonds is empty and the
other is occupied. (c) In the alternative Baxter representation, the four
gray colors become blue and vice versa.

atoms as simulators of U (1) lattice gauge theories in various
geometries [39–41].

The motivation for our research comes from the recent
implementation of the quantum six-vertex model in a quantum
annealing system by King et al. [42]. Their setup consisted
of superconducting flux qubits arranged in an array that
physically realized the transverse-field Ising model on the
checkerboard lattice. Four ferromagnetically coupled qubits
formed a single logical spin, representing an Ising spin. An-
tiferromagnetic two-body couplers between qubits belonging
to adjacent logical spins provided a tunable antiferromagnetic
interaction between the Ising spins. They implemented two
inequivalent couplers that enabled tuning the parameters of
the Ising model into the range described by the six-vertex
model and lifting the degeneracy between type-I and type-II
vertices [see Fig. 1(a)]. Quantum fluctuations induced by the
transverse field led to tunneling between the six-vertex con-
figurations. Thus, the minimal model of their setup involves
the tunneling term

Ht = −t
∑
plaq.

(|�〉〈�|+|�〉〈�|), (1a)

where the sum is over the elementary square plaquettes of
the lattice, and |�〉 and |�〉 denote square plaquettes with the
clockwise and anticlockwise orientation shown in Fig. 2(a),
and a chemical potential

HII = μN̂II (1b)

to distinguish the two types of vertices (the N̂II operator counts
the number of the type-II vertices). It is also convenient to
introduce the term

HV = V
∑
plaq.

(|�〉〈�|+|�〉〈�|) = V N̂V , (1c)

where N̂V counts the number of flippable plaquettes. The full
model we will consider in this paper is then

H = Ht + HV + HII. (2)

Let us briefly review the known limiting cases of the Hamil-
tonian.

HII is the Hamiltonian of the Rys F model [43]. It is
a well-known problem in statistical physics [4] and exactly
solvable by Bethe Ansatz [44,45]. It exhibits two phases
at zero temperature. For μ > 0, the twofold degenerate
ground state consists of alternating type-I vertices—this is
the antiferroelectric phase. If μ < 0, configurations with only
type-II vertices span the disordered phase’s highly degenerate
ground-state manifold.

Following the footsteps of Rokshar and Kivelson [46],
Shannon et al. went beyond the pure quantum six-vertex
model Ht of Chakravarty [17] and introduced the Hamiltonian
[18]

H0 = Ht + HV . (3)

In the fully packed loop representation, the Hamiltonian (3)
has precisely the same form as the quantum-dimer model of
Rokshar and Kivelson, except for the Hilbert space: it acts
on dimers in one case and loops in the other. Just like in the
quantum-dimer model, the exact ground state of the model
is an equal-weight superposition of all connected states when
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FIG. 3. The phase diagram of the quantum six-vertex model, de-
fined by Hamiltonian (3), consists of three phases. For V � −0.37t ,
the twofold degenerate fully flippable phase arises, where the
number of flippable plaquettes is maximal. Every second plaquette
(denoted by magenta circles) resonates when −0.37t � V � t .
The approximate wave function is a direct product
of the |©〉 = 1√

2
(|�〉+ |�〉) on the resonating plaquettes

[|©〉 = 1√
2
( + ) in the loop representation]. The Rokshar-

Kivelson point at V = t is quantum critical, and for 0 � t < V , the
isolated manifold appears with configurations having no flippable
plaquettes (denoted by crosses).

V = t . This is a quantum critical point with algebraically de-
caying correlations. It separates the subextensively degenerate
ground-state manifold of isolated (also called disconnected)
states from the resonating plaquette phase (see Fig. 3 for a
sketch of the phase diagram). Configurations in the isolated
manifold consist of type-II vertices only and have no flip-
pable plaquettes; thus, Ht annihilates them. The resonating
plaquette phase is similar to the one in the quantum dimer
model [47], but every alternating square plaquette resonates,
so it is twofold degenerate only. Exact diagonalization studies
estimated the lower boundary of the plaquette phase as V/t ≈
−0.3727 [18] and V/t = −0.359(5) [37], a gauge-invariant
matrix product states calculation located the transition point
at V/t = −0.37(3) [38], and quantum Monte Carlo at V/t =
−0.35(3) [41]. Below this boundary, flippable plaquettes min-
imize the energy with identical plaquettes. One can think of
this “fully flippable phase” as the antiferroelectric phase of
the Rys F model dressed with quantum fluctuations. This
phase corresponds to the Néel phase in the XXZ model on
the checkerboard lattice [18].

The present study aims to extend the phase diagram intro-
duced above and shown in Fig. 3 by including the term with
the chemical potential for the type-II vertices, Eq. (1b), noting
that for V = 0 and μ > 0, the plaquette phase is known to per-
sist up to μ/t = 0.288 [19]. We will derive the phase diagram
of the quantum spin ice Hamiltonian (2) in the complete V –μ

plane and the structure factor at zero temperature. It will allow
us to get an insight into the results of the qubit-engineered
quantum spin ice of King et al. [42].

The paper is organized as follows. We describe the classical
six-vertex configurations in various representations and the
flux sectors in finite-size clusters with periodic boundary con-
ditions in Sec. II. In Sec. III, we construct the t = 0 classical
phase diagram of the model. In Sec. IV, we systematically
classify the symmetries of the model, construct order pa-
rameters, and write the Landau free energy for phases with
zero-topological flux. Section V discusses the properties of

FIG. 4. (a) The N = 16 square-shaped cluster with 16 sites and
periodic boundary conditions is defined by the lattice vectors g1 =
(4, 0) and g2 = (0, 4). The shown ice-rule obeying configuration,
with 12 type-I and four type-II vertices, is in the (0,0) flux sector. All
the plaquettes are flippable except for the four denoted by crosses.
(b) Reversing the arrows along the magenta loop crossing the bound-
aries, we get a configuration in the m = (2, 0) flux sector. (c) The
N = 32-site cluster defined by g1 = (4, 4) and g2 = (−4, 4) from
the N = 2L2 cluster family. The presented configuration is in the
lowest nonzero m = (2, 2) flux sector. It originates from a periodic
configuration of arrows where all the plaquettes are flippable (we
call it a fully flippable configuration later on) by reversing the arrows
along the magenta path.

isolated states. In Sec. VI, we present numerical results (exact
diagonalization) to reveal the ground-state phase diagram of
the quantum model. As an independent check, in Sec. VII, we
use perturbation theory to calculate corrections to the ground-
state energies of the classical phases and deduce some of the
phase boundaries. In Sec. VIII, we sample the wave function
at the Rokhsar-Kivelson point with a Monte Carlo method and
explore the phases emanating from this quantum critical point.
We also characterize the emergent quantum electrodynamics.
Structure factors in different phases are evaluated in Sec. IX
and compared with the ones observed in qubit quantum spin
ice. We conclude with a summary of results in Sec. X. Finally,
Appendices A–F contain some details of our calculations.

II. THE SIX-VERTEX CONFIGURATIONS

A. Finite clusters

We study the six-vertex model on finite clusters with pe-
riodic boundary conditions on the square lattice. Their size
N and geometrical symmetries characterize these clusters.
We focus on two families having the full D4 point group
symmetry of the lattice. We refer to the ones generated by
the g1 = (L, 0) and g2 = (0, L) lattice vectors as the N = L2

family, see Fig. 4(a). The g1 = (L, L) and g2 = (−L, L) lattice
vectors define the N = 2L2 family, shown in Fig. 4(c). The pe-
riodicity of the ground states, as we will see later on, requires
even values for L. We consider lattice sites translated by an in-
teger multiple of the g1 and g2 identical, r + n1g1 + n2g2

∼= r,
where n1, n2 ∈ Z.

B. Representations of the six-vertex configurations

The classical six-vertex model has a long history and
applies to many systems, each prompting a convenient rep-
resentation. Below we review some of them.

(a) Arrow representation. This is the original representation
of water ice. A configuration is represented as a directed
graph, with arrows showing the direction of the edges (bonds).
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To satisfy the ice rule, every vertex has two inward and
two outward pointing arrows, demonstrated in Fig. 1(a). A
plaquette is flippable if the arrows around the elementary
square point clockwise or counterclockwise. The flip itself
corresponds to changing the directions of the arrows around
a plaquette; see Fig. 2(a). This representation is meaningful
for calculating neutron scattering cross section detailed in
Sec. IX.

(b) Fully packed loop representation. In Ref. [5], An-
derson described magnetite as a charge-frustrated material
using the Ising model. The charge frustrated Fe+2.5 build a
pyrochlore lattice consisting of corner-shared tetrahedra. The
minimal Coulomb energy corresponds to two 2.5 + δq and
two 2.5 − δq charged ions on each tetrahedron. These are
represented as occupied and empty bonds, shown in Fig. 1(b)
for the two-dimensional model on the checkerboard lattice.
Identically charged bonds form closed loops in a finite system.
A plaquette is flippable if, as we go around it, oppositely
charged bonds meet at each vertex; see Fig. 2(b). The bonds
exchange their charges by a plaquette flip, just like in the
quantum dimer model [48] describing short-range resonating
valence bonds.

We measure the occupancy of a bond by nr = ±1, where r
is the coordinate of the center of the bond. Assuming that the
horizontal bonds are along the x and the vertical along the y
direction, the following relations hold between the arrow and
fully packed loop representations:

M(ix+1/2,iy ) = (−1)(ix+iy )n(ix+1/2,iy )

(
1
0

)
, (4a)

M(ix,iy+1/2) = (−1)(ix+iy )n(ix,iy+1/2)

(
0
1

)
. (4b)

The integer-valued (ix, iy) are the coordinates of the vertices,
and the bond lengths are set to 1.

(c) Baxter and alternative-Baxter representation. In his
textbook [4], Baxter chose an isolated configuration formed
by identically oriented horizontal and vertical bonds as a
reference configuration, shown in Fig. 11(a) below. Then
he highlighted all the bonds in a configuration that pointed
in the opposite direction compared to the reference. Here
we use the same principle but choose one of the fully flip-
pable configurations as the reference (therefore, we call it the
alternative-Baxter representation); see Fig. 1(c). For instance,
a vertex is type-II if two highlighted bonds meet there, and
a plaquette is nonflippable if it has both highlighted and
nonhighlighted bonds [Fig. 2(c)]. This representation helps
us to identify the mathematical structure of the configuration
space.

(d) Faraday loop representation. Type-II vertices can be
associated with local dipole moments. Drawing these dipole
moments as arrows, they form closed loops in ice-rule obeying
configurations [49]. They help study the thermodynamic prop-
erties of ice systems and provide a way to approach magnetic
monopoles.

(e) Height representation. The local divergence-free con-
straint at the vertices enables us to transcribe an arrow
configuration to integers on the plaquettes. Since we are not
using it in our paper, we only refer to [50] for details.

All of the representations above constitute a basis where
both the N̂V and N̂II operators are diagonal, and the quantum
flipping term Ht is strictly off-diagonal. We refer the reader
to [51] for a comprehensive account of the various six-vertex
model representations.

C. Flux sectors

In a cluster with periodic boundary conditions, for each
six-vertex configuration, we can count the net flux of arrows
through any given vertical (mx) or horizontal (my) cut. Since
the local flips do not change the net flux, the vector m =
(mx, my) defines a set of winding numbers that the Hamilto-
nian conserves. States having the same index pair (mx, my)
form a flux sector. We can generate configurations in different
flux sectors by flipping arrows on a directed loop crossing the
cluster’s boundaries, as illustrated in Fig. 4(b). In the N = 2L2

clusters, the horizontal and vertical cuts are the diagonals of
the rotated square, and the minimal nonzero-flux sector is the
m = (2, 2) shown in Fig. 4(c). Let us note that the m defining
the flux sectors is proportional to the total magnetization in the
Faraday loop description [49], and the quantum term mixes
all the configurations having the same total magnetization
(except the isolated states described below).

Besides the geometric symmetries described by the point
and translation group of the lattice or cluster, there is an
internal symmetry, the charge conjugation C [37]. It reverses
the occupation of the bonds in the fully packed loop repre-
sentation and commutes with the Hamiltonian, [C,H] = 0. In
the arrow representation, it reverses the direction of all the
arrows. As a consequence, the flux sector of a configuration
changes signs under charge conjugation, Cm = −m. In the
alternative Baxter representation, C changes highlighted edges
into unlighted ones and vice versa.

We mostly use numerical means to calculate the ground-
state properties. To this end, we shall generate all the possible
ice-rule configurations in a given cluster. Based on empirical
findings on small clusters, we assume that the flux sectors
are ergodic if their classical states have at least one flip-
pable plaquette (ergodicity has been proven for the m = (0, 0)
flux sector in Ref. [20]). Therefore, it is enough to find a
configuration from a flux sector, since applying local flips
will generate all the configurations within the sector. In the
case of the N = L2 clusters, one can find a systematic way
to construct initial configurations using only type-II vertices.
In these configurations, the directions of the arrows along a
horizontal or vertical line are all the same (but the directions
may differ from line to line). Turning all the arrows on a line
changes the flux sector by one unit, allowing access to the
desired flux sector.

In Fig. 5, we present the number of configurations in each
flux sector for the N = 16 site cluster. The dimension of
the Hilbert space in the m = (0, 0) flux sector is a modest
990. Data for larger site clusters are presented in Fig. 25 in
Appendix A. We just note that the dimensions of the (0,0)
flux sectors are 962 734 for N = 32 and 5 482 716 for N = 36,
these are easy to diagonalize by the Lánczos method.

Plotting the possible NV and NII values of the configu-
rations, we find these values are not independent. Figure 6
shows a map for the N = 32 and N = 36 site clusters. The
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FIG. 5. The degeneracy of states (below the solid circles) and
maximal value of NV (above) in the different flux sectors (mx, my ) of
the 16-site cluster with periodic boundary conditions.

ice rule and the periodic boundary conditions constrain the
number of allowed type-II vertices and flippable plaquettes to
a triangle in the NII–NV plane. In Appendix B we derive the
inequalities

NII � N, (5a)

2NV + NII � 2N, (5b)

N � NV + NII, (5c)

which determine the triangle boundaries for a cluster with N
vertices (i.e., N sites).

III. CLASSICAL PHASE DIAGRAM

Below we derive the phase diagram in the classical limit
of the Q6VM where t vanishes. The Hamiltonian is diagonal
in the basis of both the six-vertex and fully packed loop
configurations shown in Fig. 1. The energy of a configura-
tion depends only on the number of type-II vertices NII and
flippable plaquettes NV as

Hcl = V N̂V + μN̂II . (6)

Since the energy in Eq. (6) is linear in both NII and NV , three
phases emerge in the minimization procedure corresponding
to the three corners of the triangle. Figure 7 shows the classical
phase diagram.

The first phase consists of isolated configurations hav-
ing no flippable plaquettes and only type-II vertices so that
(NV , NII ) = (0, N ). The energy is then

EIso = μN . (7)

We devote Sec. V to the properties of the isolated manifold.
The second one is the fully flippable phase (FF). It max-

imizes the number of the flippable plaquettes and contains
type-I vertices only (Fig. 8), so that (NV , NII ) = (N, 0) and
the energy is

E cl
FF = V N . (8)

FIG. 6. The map shows the total number of flippable plaquettes
(NV ) as well as the number of type-I and type-II vertices (NI and NII,
where NI + NII = N) in the classical basis of the six-vertex configu-
rations. The convex hull is a triangle, and the two fully flippable (FF)
configurations shown in Fig. 8 below, the four square configurations
of Fig. 9 below, and the isolated manifold, shown Figs. 11(a) and
11(c) below, are located at the corners.

Equating the two energies above, we get the V = μ phase
boundary between the fully flippable phase and the isolated
manifold. It results in an extensively degenerate boundary
carrying configurations from the side of the triangle defined by
NV + NII = N . Its degeneracy may allow the quantum term to
induce further phases. The fully flippable and isolated phases
appeared in the isotropic (i.e., μ = 0) limit of the Q6VM
studied in Ref. [18] as the doubly-degenerate Néel and the
subextensively degenerate quasicollinear phase.

In addition to these known phases, we identified a third
classical phase called the square phase (Fig. 9), where only
half of the plaquettes are flippable, and all the vertices are
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FIG. 7. The classical phase diagram in the parameter space of
the V and μ, the chemical potential of the type-II vertices. The
isolated and square phases consist only of type-II vertices; they
become favorable when μ is negative and V is positive. The fully
flippable phase consists of type-I vertices, and all plaquettes are
flippable, gaining energy when V is negative. There are two fully
flippable states (shown in Fig. 8 below) and four square states (see
Fig. 9 below). The degeneracy of the isolated phase is subextensive
and increases exponentially with the linear size of the cluster. The
boundary between the square phase and isolated manifold (thick red
line) hosts the disordered manifold of the Rys F model.

type-II, (NV , NII ) = (N/2, N ). Its energy is

E cl
Sq =

(
V

2
+ μ

)
N . (9)

This phase is fourfold degenerate and breaks the translational
symmetry. Comparing the E cl

Sq to E cl
FF, we get the V = 2μ

phase boundary between the fully flippable and square phase.

FIG. 8. The two fully flippable configurations in (a) arrow and
(b) fully packed loop representation. The open circles serve as anchor
points.

Similarly, V = 0 is the classical boundary between the iso-
lated and square phases.

The Rys F model corresponds to V = 0. It has two phases,
the “antiferroelectric” for μ > 0 and the “disordered” for
μ < 0 [4,44,45]. The former matches the fully flippable phase
and the latter the phase boundary between the isolated and the
square phases (thick red line in Fig. 7), with a subextensive de-
generacy Wdisordered = 4L in N = L2 clusters. The disordered
manifold consists of all the configurations with only type-II
vertices, including the square and the isolated ones. All arrows
on a horizontal or vertical line point in the same direction
in these configurations, but they are uncorrelated on different
lines.

The classical phases, particularly square one, motivate a
quadripartite division of the lattice. Selecting the position of
the flippable plaquettes with a counterclockwise direction of
arrows, the four square states define the A, B, C, and D kind of
plaquettes, see Fig. 9. This partition of the plaquettes allows
us to write the configurations in the fully flippable and square
phases as

|FF1〉 = |�〉A |�〉D = |�〉B |�〉C, (10a)

|FF2〉 = |�〉B |�〉C = |�〉A |�〉D, (10b)

|SqA〉 = |�〉A |�〉D, (10c)

|SqB〉 = |�〉B |�〉C, (10d)

|SqC〉 = |�〉B |�〉C, (10e)

|SqD〉 = |�〉A |�〉D. (10f)

They may serve as variational wave functions and initial states
for the Lánczos algorithm when we study the system with
exact diagonalization in Sec. VI.

So far, we discussed systems with periodic boundary con-
ditions. Extending the results for open boundary conditions or
infinite systems size requires further discussion. For example,
Ref. [52] considers a system with domain wall boundary con-
ditions that fix a flux sector. Quantum dynamics then splits
the Hilbert space into smaller fragments within the selected
flux sector (Krylov spaces). They give the number of these
and show that an RK-like exact eigenstate exists in each
fragmented space, among others.

IV. SYMMETRY GROUPS AND ORDER PARAMETERS

We now turn to the t 	= 0 case, where the off-diagonal
terms of quantum origin appear in the Hamiltonian. Previous
studies determined the phase diagram as a function of V/t
for μ = 0 [18,37,38,41]. We apply numerical and analytical
approaches to extend the phase diagram with the μ/t axis.
But to identify the different phases in the (0,0) flux sector, we
need to know the symmetries they break and the respective
order parameters. In this section, we systematically construct
the order parameters from symmetry considerations using the
mathematical tools of group theory. We conclude this sec-
tion by formulating the Landau free energy and discussing the
order of phase transitions.

A. Symmetry groups of the different phases

For convenience, we work in the packed loop representa-
tion below. All of the three phases—the fully flippable, the
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FIG. 9. The four square configurations made from type-II vertices in (a) the arrow and (b) the fully packed loop representation. Compared
to the fully flippable configurations in Fig. 8, only half of the plaquettes are flippable (grey crosses denote the nonflippable plaquettes). These
four states break the translational invariance and partition the lattice into four sublattices denoted by letters A to D. We assign the letters A, B,
C, and D to the plaquette in which arrows rotate counterclockwise. The site with the open circle is the same in all clusters and serves as anchor
points.

square, and the plaquette—are invariant to the translations by
the t2x = (0, 2) and t2y = (2, 0) lattice vectors, and the mirror
symmetries σ̃x and σ̃y with vertical and horizontal axes that
split the squares into half, see Fig. 10(a). The order of the
group T2 formed by translations t2x and t2y is N/4 in a cluster
with periodic boundary conditions respecting the division into

FIG. 10. The elements of the symmetry group on the square
lattice. (a) The symmetries that leave all three phases in the (0,0)
flux sector invariant. (b) The elements of the G/G̃ ∼= D4 group, their
action is summarized in Table I. The coordinate of the A plaquette’s
lower left corner (magenta square) is (0,0). (c) The symmetry groups
of the different phases and the subgroup relations.

four sublattices. The two orthogonal reflections σ̃x and σ̃y

generate a point group isomorphic to D2 with four elements.
So the symmetry group G̃ = D2 × T2 that preserves any of
these three phases has |G̃| = N elements in the N = L2 and
N = 2L2 type clusters.

On the other hand, the Hamiltonian commutes with all the
elements of the wallpaper group G of the square lattice, which
is p4m in the IUCr notation. The phases mentioned above
break the symmetries of the quotient group G/G̃ ∼= D4 in one
way or another. Order parameters can capture the symmetry
breaking, which we will construct as irreducible representa-
tions of the D4. Let us mention that the quotient group D4 is
isomorphic to the point group of the lattice, its generators are
the C4 rotation represented by the cyclic permutation (1,2,3,4)
and the reflection (1,3) about the y axis, following the enu-
meration of the edges in Fig. 10(b). Table I lists the actions of
the group elements of D4 on different phases and type-I and
II vertices. Using this, we can identify the symmetry groups
of the phases. The fully flippable states are invariant under the
D2 group generated by the σx and σy reflections, with elements

D2 = {1, σx, σy,C2}. (11)

The σ ′
x+y and σ ′

x−y reflections generate the symmetry group of
the plaquette states,

D′
2 = {1, σ ′

x+y, σ
′
x−y,C2}. (12)

Since there is no subgroup relation between the D2 and
D′

2 symmetry groups, the phase transition between the fully
flippable and the plaquette phase is first order according to
Landau’s criterium. However, the symmetry groups of the
square phases are both subgroups of the D′

2 group of the
plaquette phase [see Fig. 10(c)], so the transition between the
plaquette and the square phases can be continuous.
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TABLE I. The action of the D4 group elements, represented by permutations, on the fully flippable, plaquette, and square states, and the
six possible vertices. The bottom row shows the action of the charge conjugation operator C. The definition of the fully flippable and the square
states in the t → 0 limit is provided by Figs. 8 and 9. In the case of the plaquette phase, AD denotes the quantum state in which the A and
D plaquettes resonate, and BC, where the B and C resonate. The last five columns are the characters of the irreducible representations. We
grouped the rows belonging to the same conjugacy class.

D4 Configurations Vertices Irreducible repr.

g Perm. FF Plaq. Square Type-I Type-II A1 A2 B1 B2 E

1 ( ) 1 AD A B 1 1 1 1 2

σx (1,3) 1 BC B A
1 −1 1 −1 0

σy (2,4) 1 BC C D

C2 (1,3)(2,4) 1 AD D C 1 1 1 1 −2

σ ′
x+y (1,2)(3,4) 2 AD A C

1 −1 −1 1 0
σ ′

x−y (1,4)(2,3) 2 AD D B

C4 (1,2,3,4) 2 BC B D
1 1 −1 −1 0

C3
4 (1,4,3,2) 2 BC C A

C 2 AD D C

B. Order parameters

To characterize the different phases, we construct order
parameters below using the transformation properties of the
vertices and characters, tabulated in Table I. It gives the
transformation properties of the various ordered phases, from
which we can calculate the characters and their irreducible
representations. The fully flippable phase belongs to A1 ⊕ B1

representation, the square phase to A1 ⊕ B2 ⊕ E , and the pla-
quette to A1 ⊕ B2. To distinguish them, we need to construct
order parameters that transform according to the B1, B2, and
E irreducible representations. Using the vertex operators, we
find the following irreducible representations at a site i,

ôFF
i = ni( ) − ni( ), (13a)

ôPl
i = ni( ) − ni( ) + ni( ) − ni( ), (13b)

ôSq
i = 1√

2

(
ni( ) + ni( ) − ni( ) − ni( )

ni( ) − ni( ) − ni( ) + ni( )

)
. (13c)

The ôFF
i transforms as the B1, the ôPl

i as the B2, and ôSq
i as

the two-dimensional E irreducible representation of the D4.
Here, the ni( ) = | 〉〈 | is 1 if the site i contains vertex
and zero otherwise, and similarly for other vertices.

Since the phases are invariant under G̃, the order param-
eters Ô transform as the trivial irreducible representation of
G̃ and are given as the sum over the elements of G̃ acting on
the local ôi operators, Ô = ∑

g∈G̃ gôi. Performing the sum, we
construct the order parameters of the various phases as

ÔFF = 1

N

∑
i

ôFF
i . (14a)

ÔPl = 1

N

∑
i

(−1)ix+iy ôPl
i , (14b)

ÔSq = 1

N

∑
i

(
(−1)iy 0

0 (−1)ix

)
· ôSq

i . (14c)

The values the order parameters take in different phases are
summarized in Table II.

Let us mention that

ôPl
i = 2ôSq

i,1ôSq
i,2. (15)

Furthermore, the number operators are

nI
i = (

ôFF
i

)2
, (16a)

nII
i = (

ôPl
i

)2 = (
ôSq

i

)2
, (16b)

are invariant under D4 (they transform as the A1 irreducible
representations).

Equations (13) and (14) define the order parameters using
vertices, unlike the quantum dimer model, where the order
parameters depend on the occupation on bonds [53]. We may
ask ourselves why cannot we follow the same construction.
To this end, let us denote by nl the occupation of the bonds
indexed by l in Fig. 10(b); it is one if occupied by a loop
segment and −1 if not. The operators n1( ), n2( ), n3( ),
and n4( ) belong to the A1 ⊕ B1 ⊕ E representation. We may
write the local order parameters for the fully flippable and

TABLE II. The value of the order parameters in different phases.
Note that the OPl is finite in both the plaquette and the square phase.

FF Plaq. Square

O FF1 FF2 AD BC SqA SqB SqC SqD

OFF −1 1 0 0 0 0 0 0
OPl 0 0 1/2 −1/2 1 −1 −1 1
OSq,1 0 0 0 0 1/

√
2 1/

√
2 −1/

√
2 −1/

√
2

OSq,2 0 0 0 0 1/
√

2 −1/
√

2 1/
√

2 −1/
√

2
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square phases as
ôFF

dimer ∝ n1( ) − n2( ) + n3( ) − n4( ), (17a)

ôSq
dimer ∝

(
n2( ) − n4( )

n1( ) − n3( )

)
. (17b)

However, the plaquette order parameter cannot be expressed
as a linear operator in bond densities since we cannot combine
nl s to transform according to the B2 irreducible representation.
To accommodate the B2, we need the vertex operators bilinear
in bond occupation and defined in Eq. (13); they span a larger
operator space, the ni( ) and ni( ) transforms as A1 ⊕ B1

and the ni( ), ni( ), ni( ), and ni( ) as A1 ⊕ B2 ⊕ E . Let
us mention that the staggered flippability, which is bilinear in
bond occupations, is also an obvious choice for a plaquette
order parameter [19,38]. Height representation is yet another
tool to construct order parameters [37,41].

To complete the analysis, the charge conjugation acts on
the order parameters as

CÔFF = −ÔFF, (18a)

CÔPl = ÔPl, (18b)

CÔSq = −ÔSq. (18c)

Only the plaquette states are invariant to charge conjugation,
with a symmetry group enlarged to

{1, C} × D2 = {1, σ ′
x+y, σ

′
x−y,C2, C, Cσ ′

x+y, Cσ ′
x−y, CC2},

(19)
having eight elements.

The fully flippable phase breaks C but is invariant under the
fourfold rotation combined with the charge conjugation, CC4.
The symmetry group of this phase is then

{1, CC4} × D2 = {
1, σx, σy,C2, CC4, Cσ ′

x+y, Cσ ′
x−y, CC3

4

}
.

(20)
The square phase also breaks charge conjugation, but they are
invariant to the combination of the C and a reflection. For
example, the symmetry group Cs of the SqA and SqD states
[see Fig. 10(c)] is extended to

{1, Cσ ′
x−y} × Cs = {1, σ ′

x+y, Cσ ′
x−y, CC2}. (21)

The quotient of the groups defined in Eqs. (19) and (21)
is isomorphic to D′

2/Cs
∼= C2. Even though we added the

charge conjugation, a single generator remains broken at the
phase transition from the plaquette phase to the square phase,
preserving the possibility of a continuous transition. We will
construct and analyze the Landau free energy in the next
subsection to see how this happens.

C. Landau free energy

Once we identified the order parameters and their trans-
formation properties, we can write down the free-energy
invariant under the D4 quotient group. Including up to quartic
terms, its form is

F = c2,0,0O2
FF + c0,2,0O2

Pl + c0,0,2|OSq|2

+ c1,0,2OFF
(
O2

Sq,2 − O2
Sq,1

) + c0,1,2OPlOSq,1OSq,2

+ c4,0,0O4
FF + c0,0,4|OSq|4 + c0,4,0O4

Pl

+ c2,2,0O2
FFO2

Pl + c2,0,2O2
FF|OSq|2 + c′

0,0,4O2
Sq,1O2

Sq,2

+ c0,2,2O2
Pl|OSq|2 . (22)

The coefficients c are some functions of the couplings. The
nongeometric charge conjugation symmetry C further restricts
the allowed terms. For instance, since the OFF is odd un-
der C [see Eq. (18a)], the inclusion of the C removes the
OFF(O2

Sq,2 − O2
Sq,1) term from the Landau free energy F . We

are then left with

F = c2,0,0O2
FF + c0,2,0O2

Pl + c0,0,2O2
Sq

+ c0,1,2OPlO
2
Sq sin 2φ + quartic terms , (23)

where we introduced the parametrization of the square order
parameter

OSq =
(

OSq,1

OSq,2

)
= OSq

(
cos φ

sin φ

)
. (24)

The appearance of the angle φ in the cubic term, together
with the plaquette order parameter, is the consequence of the
hierarchy of symmetry breaking presented in Fig. 10. For
example, we can develop the SqA and SqD configurations
from the plaquette phase resonating on the AD sublattice
by breaking one of the reflections. In the Landau functional
language, sin 2φ will be fixed to 1 throughout the phase
transition between the AD plaquette and the SqA and SqD
phases when the square order parameter becomes nonzero.
Similarly, breaking the BC plaquette phase into SqB and SqC
sets sin 2φ = −1. This agrees with φ = π/4 + nπ/2 (n ∈ Z)
corresponding to the four classical square states. Moreover, it
implies that c0,1,2 < 0.

Because of the many undefined coefficients, it is not easy
to describe the phase diagram and the order of the phase tran-
sitions. We only mention that the Landau free energy allows
both first- and second-order transition for the phase boundary
between the square and the plaquette phase, depending on the
sign of the quartic term. In Appendix C, we present a sim-
ple variational wave function to describe the plaquette-square
transition. It displays both a first and a continuous boundary
separated by a tricritical point.

Let us note that the charge conjugation symmetry is partic-
ular for the six-vertex model, as half of the bonds are occupied
in the fully packed loop representation. Hence, the charge
conjugation symmetry is absent in the quantum dimer model.

V. THE MANIFOLD OF THE ISOLATED STATES

Configurations without flippable plaquettes form the
isolated manifold. They are disconnected from other
configurations by local flips and consist only of type-II
vertices if periodic boundary conditions are imposed. The
quantum term Ht [Eq. (1a)] annihilates any of them, so their
energy remains the classical one, EIso = μN .

Reference [18] provides a recipe to construct all the con-
figurations in the isolated manifold. If all the arrows along
the horizontal or vertical lines in a configuration point in the
same direction, with the proviso that either the horizontal or
the vertical lines must be oriented alike, none of the plaquettes
is flippable. See Figs. 11(a) and 11(c) for examples. It implies
that at least one of the flux indices of these isolated configura-
tions has to be extremal.

This recipe helps to determine the degeneracy of this man-
ifold. Let us consider the N = L2 cluster as an example. We
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FIG. 11. The isolated configuration in the m = (L, L) flux sector
in (a) the arrow and (b) the fully packed loop representation. (c) An
isolated configuration from the m = (0, L) flux sector. Flippable
plaquettes are absent, and all the vertices are type-II (NV = 0 and
NII = N). The order of the left- and right-pointing horizontal lines is
arbitrary, so the number of states in this flux sector is

(4
2

) = 6. (d) A
mobile leapfrog excitation (“frogton”) with two flippable plaquettes
(NV = 2, NI = 2) in a cluster with suitable cluster geometry. (e) A
configuration in the m = (L − 2, L − 2) flux sectors. It results from
reversing the arrows in the isolated state shown in (a) along the closed
magenta loop crossing the boundary. (f) The minimal extent of the
isolated manifold. The μ = V − t boundary (solid line) denotes the
instability line against frogtons. The isolated states, however, can
extend beyond the dashed boundary at V = t .

then have two choices of fixed orientation, both in the case
of horizontal and vertical lines, resulting in a factor of four
[Fig. 11(a) illustrates one of these four states]. In the nonfixed
direction, each of the L lines can point in two directions,
giving 2L possibilities altogether. Supposing that l lines point
in one and L − l in the other direction defines configurations
in the (±L, L − 2l ) or (L − 2l,±L) flux sectors, each with
degeneracy (L

l ). Considering the double counting of (±L,±L)

flux sectors, we end up with 4 × 2L − 4 isolated states in the
manifold. The degeneracy exponentially grows with the linear
size of the system, so it is subextensive. We can apply similar
considerations to clusters with other geometries.

Knowing their energies allows us to determine an exact
region in the phase diagram where they are the ground states.
For this purpose, we will use Gershgorin theorem, which
claims that |Hii − εi| �

∑
j 	=i |Hi j | for a finite-cluster Hamil-

tonian H with eigenvalues {εi}. We use a basis where both N̂V

and N̂II operators are diagonal, and the quantum term Ht is
strictly off-diagonal. Then for the ith configuration having NV

flippable plaquettes and NII type-II vertices the diagonal term
is Hii = V NV + μNII. The sum over the off-diagonal terms∑

j 	=i |Hi j | = NV t , as the configuration connects to exactly NV

other ones, each with −t amplitude (note that we chose t > 0).
So we can write

|V NV + μNII − εi| � NV t . (25)

Resolving the absolute value, the εis become bounded as

(V − t )NV + μNII � εi � (V + t )NV + μNII . (26)

Let us denote by �i = εi − μN the energy gap between the
eigenvalue εi and the energy of the isolated manifold. Then

(V − t )NV + μ(NII − N ) � �i . (27)

Isolated states are ground states while the gap �i � 0, which
is satisfied when (V − t )NV − μ(N − NII ) � 0. We need to
find the region in the parameter space of V , μ, and t , where
this inequality holds, provided that Eqs. (5) constrain the
possible NV and NII values into the triangle shown in Fig. 6. It
is a simple linear optimization problem analogous to finding
the classical phase diagram with V replaced by V − t . The
extrema occur at the corners of the triangle, where (NV , NII ) =
(0, N ) (isolated phase), (N/2, N ) (square phase), or (N, 0)
(fully flippable phase). Eventually, we conclude that the iso-
lated configurations form the ground-state manifold when

0 � μ � V − t or μ � 0 � V − t . (28)

Figure 11(f) shows this region. The approach above does not
tell us whether the isolated states remain the ground states
outside this region. Below we will consider excitations that
become soft at the positive μ = V − t boundary of the region
above, promoting it to a phase boundary.

Following Ref. [18], we can calculate the energy of
a leapfrog excitation (we call it “frogton”), depicted in
Fig. 11(d). It exists in a cluster of a suitable skew shape,
defined by the g1 = (L, 2) and g2 = (0, L) lattice vectors,
for example. The boundary condition introduces a correlated
kink-antikink pair on the line along which the arrows are
reversed [the magenta line in Fig. 11(d)]. A frogton comprises
two flippable plaquettes and two type-I vertices in the isolated
manifold, so the diagonal energy is 2(V − μ). Flipping one
of the two plaquettes, the excitation hops with an amplitude
−t and acquires a bandwidth of 4t centered at the diagonal
energy. The minimal energy of this variational state gives an
upper bound for the gap, � = 2(V − μ − t ). Combined with
Eq. (28), the gap closing along the line

V = μ + t (29)

for μ � 0 in the phase diagram gives the exact boundary of
the isolated phase.

In a square-shaped cluster with N = L2 geometry, the flux
sector that closes the gap originates from the “staircase-like”
excitation shown in Fig. 11(e) in the m = (L − 2, L − 2) flux
sector. Unlike frogtons, where the kink-antikink pair is con-
fined within a lattice spacing, in this cluster, the number of the
kinks and antikinks is not conserved, making the calculations
more complicated. Exact diagonalizations up to L = 10 in
N = L2 clusters reveal that the finite-size gap between the
ground-state energy in the (L − 2, L − 2) flux sector and the
energy of the isolated manifold exponentially decreases with
the system size along the V = t + μ line, as demonstrated in
Fig. 12. Therefore, we may conclude that the gap closes along
the whole V = t + μ line in the thermodynamic limit. We will
further scrutinize this question in Sec. VIII D.

VI. PHASE DIAGRAM FROM EXACT DIAGONALIZATION

The number of the ice-rule configurations grows exponen-
tially with the system size N , restricting the size of the clusters
that can be studied numerically. Using the conservation of the
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FIG. 12. The finite-size scaling of the gap � = E (L−2,L−2)
GS − EIso

between the ground-state energy in the m = (L − 2, L − 2) flux sec-
tor and the EIso = Nμ of the isolated state on the V = μ + t line in
the phase diagram. We show three selected cases (μ/t = 1, 2, and 4)
in N = L2 class of clusters, calculated by the Lánczos method. The
size of the Hilbert space is 90 for L = 4 (see Fig. 5), 2 772 for L = 6
[see Fig. 25(b) below], 51 480 for L = 8, and 923 780 for L = 10 in
the (L − 2, L − 2) flux sectors. The gap exponentially vanishes with
the linear size of the cluster L (note the logarithmic vertical axis),
and the solid lines show the fits to the ae−bL function. The b values
depend weakly on the value of μ.

fluxes (mx, my), we diagonalized 16, 32, and 36-site clusters
having the full D4 point group symmetry of the square lat-
tice. We used the standard Lánczos algorithm to calculate the
energy of the ground state and low-lying excitations.

To begin, we scanned the V/t and μ/t parameter space to
reveal which flux sectors give the ground state in the N = 16
and 32-site clusters. Figure 13 illustrates our findings. For
large values of |V/t | and |μ/t |, we recovered the (0,0) flux

FIG. 13. The ground-state flux sectors in the 32-site cluster. Be-
sides the m = (0, 0) (magenta) and isolated sectors (light gray area),
other sectors emerge in a tiny region fanning out from the RK point
(the gray area). We will discuss them in Sec. VIII.

sector and the isolated manifold, as anticipated based on the
classical phase diagram. The lowest energies become equal
in all the flux sectors at the V = t Rokhsar-Kivelson (RK)
point. Figure 13 also reveals that the RK point is multicritical,
i.e., several phases merge at the RK point. In addition to the
predicted flux sectors, a narrow sliver (gray region in Fig. 13)
emanates from the RK point with monotonically varying flux
sectors from the m = (0, 0) and the isolated manifold for
positive μ values. Computations on 36-site clusters also con-
firmed the existence of this phase. In this section, we discuss
the phases in the (0,0) and isolated sectors, and we will present
results about the grey region in Sec. VIII.

Identification of the isolated phase is numerically straight-
forward. Since we know the exact energy of the isolated states,
EIso = μN , it is enough to calculate the lowest energy levels
of the nonisolated flux sectors with ED and compare them to
EIso. Distinguishing the different phases in the (0,0) flux sector
is more challenging. We applied two methods, (i) one based
on the order parameters and (ii) one based on energy level
spectroscopy [18,37].

Regarding (i), we computed the expectation values of
the squares of the order parameters given in Eqs. (14),
〈GS|Ô2

FF|GS〉, 〈GS|Ô2
Plaq|GS〉, and 〈GS|ÔSq · ÔSq|GS〉, by

calculating the ground-state wave function |GS〉 numerically.
We show the result along the V = 0 line in Figs. 14(b) and
15(b) for the 32- and 36-site clusters. Since the squares of the
order parameters transform as the A1 irreducible representa-
tion in Table I and contribute to the energy [c.f. the Landau
functional in Eq. (23)], we estimate the phase boundaries by
inflection points of their expectation values. For this purpose,
we calculate the extrema of the ∂〈Ô2〉/∂ (μ/t ) in Figs. 14(c)
and 15(c). According to this criterium, the square phase
is realized for μ/t � −0.78, the plaquette phase between
−0.78 � μ/t � 0.3 − 0.4, and the fully flippable phase for
0.3 − 0.4 � μ/t (the reason behind the uncertainty for the up-
per boundary is that the inflection points of the 〈GS|Ô2

FF|GS〉
and 〈GS|Ô2

Plaq|GS〉 are not at the same μ/t values). We note
that the plaquette order parameter is also finite in the square
phase, as expected from the discussion of the hierarchy of the
symmetry breaking in Sec. IV B.

Regarding (ii), energy level spectroscopy provides a less
direct but more powerful tool to estimate the phase boundaries
in a finite-size cluster [54]. Since the Hamiltonian preserves
all the symmetries of the model, its wave functions transform
as the irreducible representations of the underlying group.
We can identify a set of low-lying states in the spectra,
belonging to specific irreducible representations of the D4
quotient group. They collapse into a degenerate ground-state
manifold in the thermodynamic limit. The symmetry-breaking
states are linear combinations of the wave functions in this
manifold. Characterization of these low-lying states gives the
basis for level spectroscopy, a tool for detecting the various
phases.

As an example, let us consider the fully flippable phase.
The classical |FF1〉 and |FF2〉 configurations manifestly break
the σ ′

x+y reflection symmetry, but we may linearly combine
them into

|FF(0, 0)e〉 = |FF1〉 + |FF2〉, (30a)

|FF(π, π )o〉 = |FF1〉 − |FF2〉. (30b)
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FIG. 14. Exact diagonalization results for the 32-site cluster at
V = 0 as a function of μ/t . (a) The density of the type-I (nI = NI/N)
and II (nII = NII/N) vertices in the ground state. (b) The expecta-
tion values of the squared order parameters and (c) their numerical
derivatives with respect to μ/t . We identify inflection points of the
〈Õ2〉 (i.e., the extrema of the 〈Õ2〉′) with phase boundaries. (d) The
low-energy excitations are defined by their momenta and conjugation
parities. The size of the symbols indicates the overlap between the
initial states given by Eqs. (30) and (31) and the energy eigenstates.
The ground state is fully symmetric. The level crossing of the lowest-
lying (π, π )e and (π, π )o symmetry levels at μ/t ≈ 0.29 serves as
an alternative indicator of the phase boundary between the plaquette
(−0.78 � μ/t � 0.29) and the fully flippable phases (μ/t � 0.29).
Avoided level crossings around μ/t ≈ −0.78 in the first excitations
of the (0, 0)e and (π, π )e symmetry sectors indicate the boundary
between the square (μ/t � −0.78) and the plaquette phase.

For a finite cluster, the energy of the (0, 0)e level is different
from the (π, π )o level, but we expect the gap between them
to vanish in the thermodynamic limit when the fully flippable
phase is realized.

We can associate the linear combinations above with the ir-
reducible representations listed in Table I. More generally, the
(0, 0)e belongs to the trivial A1,e irreducible representation,

FIG. 15. The same as Fig. 14 for N = 36. The positions of the
phase transitions are unchanged compared to the 32-site cluster. We
also show all the states in the selected energy window, indicating
their C parity.

the (π, π )e transforms as B2,e, the (π, π )o transforms as the
B1,o, and the (π, 0)o and (0, π )o span the two-dimensional Eo.
Since the charge conjugation C commutes with all the point
group elements in D4, the irreducible representation of the
{1, C} × D4 group are simply the irreducible representation
of the D4 appended with the even (e) or odd (o) parity with
respect to C. We note that one shall be careful with the inter-
pretation of the momentum labels, as they can be different for
the arrow and fully packed loop representation (for example,
the fully flippable state is translationally invariant in the fully
packed loop representation but not in the arrow representa-
tion). Above, we used the arrow representation.

We prepare states with appropriate momentum and parity
and use them as input to the Lánczos code since the itera-
tions in the method preserve their symmetry. Figures 14(d)
and 15(d) show the momentum and parity resolved spectra
for the most important (0, 0)e, (π, π )e, (π, π )o, and (π, 0)o

symmetry sectors [(π, 0)o and (0, π )o are degenerate]. The
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ground state is always in the (0, 0)e sector. For μ/t � 0.29,
the first excited state is in the (π, π )o sector, just like in the de-
composition (30b), and it becomes degenerate with the ground
state as μ/t increases and approaches the classical limit. For
μ/t � 0.29, the first exited state is in the (π, π )e sector, and a
level crossing occurs at μ/t ≈ 0.29. The low-lying excitations
belonging to different irreducible representations on the two
sides of the level crossing lead to different symmetry breaking
and, thus, phases in the thermodynamic limit. We identify the
phase for μ/t � 0.29 as fully flippable. Ideally, a finite-size
scaling should be performed to accurately determine the phase
boundary, as in Ref. [18] for the case μ = 0. However, the
positions of the level crossings in 1/N are not monotonic
for general values of the parameters. Nevertheless, our value
agrees well with the result of quantum Monte Carlo simulation
[19], t/μ ≈ 3.47 (i.e., μ/t ≈ 0.288).

Next, consider the limit for negative μ, where the square
phase appears. The combinations of the four classical square
configurations give the following momentum and parity
eigenstates:

|Sq(0, 0)e〉 = |SqA〉 + |SqB〉 + |SqC〉 + |SqD〉, (31a)

|Sq(π, π )e〉 = |SqA〉 − |SqB〉 − |SqC〉 + |SqD〉, (31b)

|Sq(π, 0)o〉 = |SqA〉 − |SqB〉 + |SqC〉 − |SqD〉, (31c)

|Sq(0, π )o〉 = |SqA〉 + |SqB〉 − |SqC〉 − |SqD〉. (31d)

In Figs. 14(d) and 15(d), four states with precisely these
momenta and parities are quasidegenerate for μ/t � −0.78,
supporting the realization of the square phase in this region.
As μ increases from μ/t � −0.78, the energy levels of the
(0, π )o and (π, 0)o split off, and only the (π, π )e remains
quasidegenerate with the ground state. They constitute the two
plaquette states, with resonant A and D or B and C plaquettes,
represented with the approximate wave functions

|PlAD〉 =
∏

A,D plaquettes

|�〉 + |�〉√
2

, (32a)

|PlBC〉 =
∏

B,C plaquettes

|�〉 + |�〉√
2

. (32b)

The |PlAD〉 − |PlBC〉 is in the (π, π )e symmetry sector.
Instead of a level crossing, an avoided level crossing charac-
terizes the square-plaquette phase transition.

To further elucidate the nature of the excitation spectrum,
we calculated the dynamical correlation functions of the order
parameters,

Sα (ω) =
∑

X

∣∣〈X |Ôα|GS〉∣∣2
δ(ω − EX + EGS), (33)

using the Lánczos method, where X runs over the excited
states and α = FF, Sq, Pl denotes the order parameter. We
first calculated the ground state |GS〉 for a given value of
parameters μ and V , applied the operator Ôα to the |GS〉,
and then used Ôα|GS〉 as the initial state for the second run
of the Lánczos procedure. The algorithm then computes the
matrix elements in the definition of Sα (ω). Not surprisingly,
the largest matrix elements are for the lowest-lying excitations
of the momenta and parities corresponding to the symmetry

FIG. 16. The ground-state phase diagram based on ED for the
32-site cluster. The phase boundaries agree with the N = 36 result
up to two decimal places. We present the diagram for the smaller sys-
tems because of the better resolution. The points denote the positions
of the (avoided) level crossings and inflection points of the squared
order parameters. The boundary between the phase with finite-flux
sectors and the isolated states (solid line) is the exact one of Eq. (29).
The red point denotes the Rokshar-Kivelson (RK) point.

of the phase. In Figs. 14(d) and 15(d), the size of the open
symbols is proportional to the values of the matrix elements.

Using the above criteria, we established the phase diagram
in the parameter space of V/t and μ/t , Fig. 16. We determined
the first-order boundaries between the fully flippable and
the plaquette and between the fully flippable and the square
phases by following the positions of level crossings and the
boundary between the square and the plaquette phase follow-
ing the positions of the inflection points. We also checked that
the parameter values of the avoided level crossings coincide
with those of the inflection points. We obtained the boundary
to the isolated state manifold by comparing their energy to the
ground-state energies in the (0,0) flux sectors.

The main consequence of the quantum fluctuations is the
appearance of the plaquette phase with resonating alternat-
ing plaquettes that fills up the central region of the phase
diagram. The plaquette phase extends along the V ≈ μ line
to larger positive values of V , following the unknown phase
with finite-flux sector ground states that separate it from the
isolated states. Otherwise, for large |V | and |μ| values, the
phase diagram is consistent with the classical one, shown in
Fig. 7. In the next section, we will confirm the validity of some
of these phase boundaries using perturbation theory.

VII. PHASE BOUNDARIES FROM THE
PERTURBATION THEORY

We use the size-consistent Rayleigh-Schrödinger perturba-
tion theory below to estimate the ground-state energies in the
fully flippable and square phases. We calculate the second-
and fourth-order corrections in Ht to the ground-state energy
of the configurations drawn in Figs. 8 and 9 in the t → 0
limit. We get an estimate for the first-order phase boundary
between these phases by comparing their energies. Further-
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more, comparing the energy of the square phase to EIso = μN
will provide the corresponding phase boundary.

The perturbation series calculation is straightforward for
the square and fully flippable phases in any representation in
which the Hcl is diagonal. We give details in Appendix D.
The ground-state energies up to the fourth order in the flipping
amplitude t are

EFF

N
= V + t2

4(V − μ)

+ t4

16(V − μ)2

[
8

7V − 8μ
− 23

12(V − μ)

]
+ · · · ,

(34a)

ESq

N
= V

2
+ μ + t2

8μ
+ t4

16μ2

[
4

8μ − V
− 11

24μ

]
+ · · · .

(34b)

Solving the EFF = ESq, we get the following Padé approxi-
mants for the phase boundary between the fully flippable and
the square phases,

V = 2μ ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − t2

8μ2 − 5t4

384μ4 Padé[4/0],(
1 − 11t2

48μ2

)(
1 − 5t2

48μ2

)−1
Padé[2/2],(

1 + t2

8μ2 + 11t4

384μ4

)−1
Padé[0/4].

(35)

All three Padé approximants equally satisfy the energy equa-
tion up to the fourth order. The orders [m/n] of the Padé
approximants above denote the power of t in the numerator
(m) and the denominator (n).

Similarly, the ESq = EIso equation provides the phase
boundary between the square and the isolated phases. The
Padé approximants are

V = − t2

4μ
×

⎧⎨
⎩

(
1 − t2

48μ2

)
Padé[4/0],(

1 + t2

48μ2

)−1
Padé[2/2].

(36)

Figure 17 shows these approximants together with the numer-
ical results of the ED calculation for both phase boundaries.
The comparison of different orders of Padé approximants al-
lows us to estimate the convergence of the perturbation series:
The different lines are essentially superimposed on each other
in the relevant domains, indicating a rapid convergence of the
series. The perturbation expansion also agrees well—typically
within two decimal places—with the phase bounds extracted
from ED calculations on finite clusters.

VIII. THE ROKHSAR-KIVELSON POINT
AND THE LIQUID PHASE

The exact diagonalization of the 32-site cluster shows that
the flux sector of the ground state gradually increases from
the m = (0, 0) in the plaquette phase as we approach the
manifold of isolated states (the dark grey area in Fig. 13). To
gain a deeper insight into the properties of this phase, wedged
between the plaquette phase and the isolated states and em-
anating from the quantum critical RK point, we perform a
Monte Carlo evaluation of the RK wave function [20,55]. This

FIG. 17. Comparison of the phase boundaries calculated by ED
for a 32-site cluster and by the fourth-order perturbation expansion
in t . We show the Padé approximants of the perturbation series to
estimate its convergence. (a) ED data and Padé approximants of the
boundary between the square and the isolated phases near the triple
point. The coordinates for the triple point are cluster dependent,
for N = 32 V/t = 0.32 and μ/t = −0.83, while for N = 36 are
V/t = 0.29 and μ/t = −0.87. (b) The perturbational curve gives
the boundary between the fully flippable and the square phases. It
meets the lines (FF-Pl and Sq-Pl) from the ED at the triple point
V/t ≈ −1.75 and μ/t ≈ −1.01. The different Padé approximants do
not deviate significantly in the relevant V/t � −1.75 range. The grey
dashed line shows the V = 2μ classical phase boundary.

enables the extension of cluster sizes to up to 576 sites close
to the RK point.

A. First-order perturbation around the Rokshar-Kivelson point

The RK point is a particular point in the phase diagram
since the exact ground-state wave function |RK(m)〉 is known:
it is the equal amplitude superposition of the configurations
in an NV diagonal basis within the flux sector m [46]. The
ground-state energy is the same in all the flux sectors. But
the expectation values of the flippable plaquettes N̂V and N̂II

operators depend on m. We use the Hellman-Feynman the-
orem at the RK point to estimate the splitting of the ground
states. In the first order, we approximate the lowest energy of
the perturbed RK Hamiltonian in a given flux sector with the
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formula

Em = (V − t )〈NV 〉m + μ〈NII〉m . (37)

The expectation values

〈NV 〉m = 〈RK(m)|N̂V |RK(m)〉 , (38a)

〈NII〉m = 〈RK(m)|N̂II|RK(m)〉 (38b)

denote the number of flippable plaquettes and type-II vertices.
Comparing these energies, we can figure out the flux sector of
the ground state. A similar argument appeared in Ref. [56]
for the quantum dimer model on the triangular lattice and
in Ref. [57] for a quantum dimer model on the honeycomb
lattice.

B. The Monte Carlo method

The Monte Carlo method uses the RK wave function to
evaluate the expectation values by random sampling [20]. We
started the simulation from a configuration formed by arrows
directed along horizontal and vertical lines since this allowed
the selection of the flux sector and generated new configura-
tions by randomly flipping plaquettes. We discarded the first
5 million configurations to reach thermalization. Following
thermalization, we measured NII and NV after every N step and
updated their averages, where N is the system size. The num-
ber of elementary steps in a Monte Carlo run was typically
between 5 × 107 and 109 flips, depending on the system size
and the statistical error. After we exported the averages and
continued measuring another four times. Repeating the proce-
dure above five times, we collected NMC = 25 average value
pairs for each flux sector. Denoting by mi (i = 1, . . . , NMC)
the averages (means) from the Monte Carlo runs, we estimate
the statistical error by the standard error of the mean, given by
the formula

σ =
√∑NMC

i=1 (mi − m)2

NMC(NMC − 1)
. (39)

Here

m = 1

NMC

NMC∑
i=1

mi (40)

is the mean value of the mi averages.

C. Dependence of expectation values on flux sectors

For Monte Carlo calculations, we used clusters with N =
L2 geometry up to N = 576 sites and N = 2L2 geometry up to
N = 512. The finite-size dependence of the nV = 〈NV 〉/N and
nII = 〈NII〉/N densities is shown in Fig. 18, together with ED
data for the N = 32 and N = 36 sites to check the consistency
of the data. The densities of the type-II vertices and flippable
plaquettes for the N = L2 class of clusters (red curves in
Fig. 18) are

〈nII〉(0,0) = (0.61994 ± 0.00005) − (0.56 ± 0.02)N−1

+(2.3 ± 0.7)N−2 , (41a)

〈nV 〉(0,0) = (0.41579 ± 0.00006) + (0.72 ± 0.01)N−1

+(0.03 ± 0.8)N−2 , (41b)

FIG. 18. Finite-size scaling of the densities of (a) type-II vertices
nII and (b) flippable plaquettes nV in the RK wave function for (0,0)
flux sector. We present ED data for smaller size clusters (N = 36 and
32) and Monte Carlo data for larger (up to N = 576 and 512). The
solid lines show the fit to the finite-size corrections, Eq. (41).

and for the clusters with the N = 2L2 geometry (green curves
in Fig. 18) are

〈nII〉(0,0) = (0.61991 ± 0.00007) − (0.55 ± 0.02)N−1

− (2.3 ± 1.2)N−2 , (41c)

〈nV 〉(0,0) = (0.41582 ± 0.00008) + (0.71 ± 0.02)N−1

+ (1.8 ± 1.4)N−2 . (41d)

The expectation values for both cluster geometries extrapolate
to the same values in the thermodynamic limit well within the
error bars.

It is instructive to evaluate the ratio 〈nII〉/〈nI〉 in the RK
wave function for different flux sectors. The density of the
type-I vertices is 〈nI〉 = 1 − 〈nII〉, so for m = (0, 0) we get

〈nII〉(0,0)

〈nI〉(0,0)
= 0.6199 ± 0.0001

0.3801 ± 0.0001
= 1.6308 ± 0.0006 . (42)

Were the vertices uncorrelated, we would expect 〈nII〉/〈nI〉 =
2 instead of 1.63. This ratio improves as the flux increases,
the limiting case being the isolated states with type-II vertices
only.

Inspired by the flux dependence of the energy in the U (1)
liquid in 3D [22,23], we plotted how the expectation values
depend on the flux sectors for different cluster sizes in Fig. 19.
The plot reveals the linear dependence of 〈nII〉m on m2/N for
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FIG. 19. The expectation value of the densities of (a) type-II
vertices nII and (b) flippable plaquettes nV in the RK-wave function
grows (decreases) linearly with the square of the total flux, m2 =
|m|2 = m2

x + m2
y . The evaluation is exact numerically for N = 32 and

36, and we sampled the RK wave function by Monte Carlo for larger
system sizes of up to 576 sites. For consistency, we divide m2

x + m2
y

by N for the N = L2 clusters (N = 36, 64, 256, 576, denoted by
red colors in the plots) and by 2N for the N = 2L2 size clusters
(N = 32, 128, 512, green in the plots). The black straight lines show
the extrapolation to the thermodynamic limit.

not too large values of the flux m and the slope appears to be
independent of the size of the cluster. An additional factor of
2 compensates for the geometry of the clusters.

To further elucidate the linear dependence on m2, we plot-
ted the finite-size dependence of the gaps

�II(m) = 〈NII〉m − 〈NII〉(0,0) , (43a)

�V (m) = 〈NV 〉m − 〈NV 〉(0,0), (43b)

divided by m2/m2
0 in Fig. 20, where m2

0 is the square of the
smallest nonzero flux (i.e., unit of flux). It is m0 = (0, 2) with
m2

0 = 4 in N = L2 cluster with even L. In the N = 2L2 cluster
m0 = (2, 2) and we divide m2 by 8. The gaps in both cluster
geometries are the same when threaded by the unit flux m0,
independently of the system size. We collected the finite-size
scaled values of the �(m)m2

0/m2 in Table III. The numbers

FIG. 20. The finite-size dependence of the gaps �V (m) =
〈NV 〉m − 〈NV 〉(0,0) and �II(m) = 〈NII〉m − 〈NII〉(0,0) in a few selected
flux sectors close to m = (0, 0). The gaps collapse to a common
value in the thermodynamic limit when divided by m2/m2

0. m2
0 is the

square of the unit flux, for the L2 cluster m2
0 = 4 and for the 2L2

cluster m2
0 = 8.

extracted from the lowest flux sectors are identical within the
error bars, and we may conclude that

m2
0

m2
�II(m) = 1.154 ± 0.004 , (44a)

m2
0

m2
�V (m) = −1.500 ± 0.004 . (44b)

TABLE III. The gaps �II(m) and �V (m) divided by m2/m2
0 for

small values of m and clusters with two different geometries, N = L2

(m2
0 = 4) and N = 2L2 (m2

0 = 8), in the thermodynamic limit. The
finite-size behavior is shown in Fig. 20.

Geometry m �II(m) × ( m0
m )2 �V (m) × ( m0

m )2

L2 (2,0) 1.151 ± 0.003 −1.496 ± 0.003
L2 (2,2) 1.150 ± 0.002 −1.495 ± 0.002
L2 (4,0) 1.154 ± 0.001 −1.499 ± 0.001
2L2 (4,0) 1.160 ± 0.002 −1.506 ± 0.002
2L2 (4,4) 1.156 ± 0.001 −1.501 ± 0.001
2L2 (8,0) 1.156 ± 0.001 −1.501 ± 0.001
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Putting together with the m = (0, 0) values in Eqs. (41), we
get the behavior of the expectation values in the thermody-
namic limit

〈nII〉m = (0.6199 ± 0.0001) + (1.154 ± 0.004)
m2

m2
0

1

N
,

(45a)

〈nV 〉m = (0.4158 ± 0.0001) − (1.500 ± 0.004)
m2

m2
0

1

N
.

(45b)

These are the solid black lines in Fig. 19.

D. The quantum electrodynamics of the RK wave function

How do we understand the scaling of the expectation val-
ues at the RK point? The local two-in/two-out constraint at
the vertices represents a divergence-free field. Associating the
arrows with an electric field, one can build a kind of emergent
quantum electrodynamics (QED) in the spin ice systems via
the Gauss law, leading to a gapless U (1) spin liquid phase.
It has been widely studied in 3D models within the context
of quantum spin ice [20–23], and found that the U (1) liquid
extends beyond the RK point. In 2D, the gapless liquid phase
is usually at the RK point only. All flux sectors have the same
energy, and as we leave the RK point, a gap opens in the
ground-state flux sector, with possible exceptions [57–60], as
we will see later. The expectation values of the nV and nII do
not follow the behavior of the energy. While the energy values
are degenerate, the 〈nV 〉 and 〈nII〉 values vary with the flux.

In an effective theory, the energy of the electric field is
proportional to

EQED =
∫

A

1

2
ε|E|2dA (46)

where the integral is over area A. We neglect the “magnetic”
part of the emergent QED. The average electric field on the
lattice E is proportional to the m. To see how the electric field
emerges, let us reverse a single arrow and create two vertices
that are neither type-I nor type-II a vertex with three-in/one-
out (charge) and a vertex with one-in/three-out (anticharge)
arrows. These vertices can be considered as fractional charges,
spinons, or monopoles, according to the actual physical prob-
lem we apply the Q6VM model. Moving one of these defects
(charges) across the periodic boundary by reversing other
arrows and eventually annihilating them makes a loop we
considered, e.g., in Fig. 4. It changes the flux sector and
introduces a finite electric field E when the arrows are coarse
grained. The strength of the average field is proportional to
the density of the flux lines, E = qm/L for the N = L2 shape
cluster and E = qm/2L for the N = 2L2 shape cluster, where
q is the charge of the monopole. Taking the area A = N ,
squaring the E and replacing it into Eq. (46), we get for the
energy

EQED = 2εq2 m2

m2
0

. (47)

At the RK point, the degeneracy implies ε = 0.
The expectation values of the 〈nII〉m and 〈nV 〉m in Eq. (45)

are also quadratic function of the electric field. To further cor-

FIG. 21. The dependence of the gap of flippable plaquettes and
type-II vertices between the smallest nonzero- and the zero-flux sec-
tor, 〈�NV 〉 = 〈�NV 〉(0,2) − 〈�NV 〉(0,0) and 〈�NII〉 = 〈�NII〉(0,2) −
〈�NII〉(0,0) on the aspect ratio of the cluster. We calculated the
gap for N = 256 site rectangular clusters of different shapes: Lx ×
Ly = 4 × 64, 8 × 32, 16 × 16, 32 × 8, and 64 × 4. We run 25 Monte
Carlo simulations for each cluster with 5 × 108 steps each. We show
−〈�NV 〉 for visual convenience. The large variation of the gap on the
shape of the clusters is almost perfectly accounted for by the aspect
ratio Ly/Lx while keeping LxLy constant: 〈�NV 〉 ≈ −1.52Ly/Lx and
〈�NII〉 ≈ 1.16Ly/Lx .

roborate this statement, in Fig. 21, we show the dependence of
the expectation values of NII and NV for a fixed number of sites
but changing the aspect ratio of the rectangular cluster. The
gap varies quadratically with the flux density once we take the
aspect ratio into account, according to our expectations.

Since the energy follows Eq. (37) in the vicinity of the RK
point, comparing the flux-dependent part with Eq. (47), we get

2εq2 m2

m2
0

= (V − t )〈NV 〉m + μ〈NII〉m

≈ [−1.500(V − t ) + 1.154μ]
m2

m2
0

, (48)

that is

ε ≈ 1

2q2
[−1.500(V − t ) + 1.154μ]. (49)

For energies above the small gap in the m = (0, 0) sector, we
expect the system to follow the energy of the emergent QED
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with a tunable ε permittivity. This is in the spirit of Ref. [23],
which considers the emergent QED in the 3D quantum spin-
ice model.

E. The phase boundaries emanating from the RK point

To describe the small perturbations around the RK point,
we parametrize the V − t and μ with the angle θ ,

V − t = δ cos θ , (50a)

μ = δ sin θ , (50b)

where δ is some small energy scale. Next, for a value of θ and
system size, we calculate the energy in Eq. (37),

Em

N
= δ(cos θ〈nV 〉m + sin θ〈nII〉m) (51)

for each flux sector m, and find for which it is minimal. The
result of this energy minimization is presented in Fig. 22(a)
for the full circle around the RK point. We recovered the
phase boundaries anticipated from the ED calculations: the
first-order phase transition between the isolated states and the
plaquette phase for negative values of μ and the liquid phase
for μ > 0.

To determine the boundary between the isolated states
and the plaquette phase more precisely, we compare the en-
ergy density μ of the isolated states with the energy of the
m = (0, 0) sector using Eq. (37), that leads to the following
equation:

μ = (V − t )〈nV 〉(0,0) + μ〈nII〉(0,0) . (52)

For the angle θ1st we then get

tan θ1st = 〈nV 〉(0,0)

1 − 〈nII〉(0,0)
= 0.4158 ± 0.0001

0.3801 ± 0.0001

= 1.0939 ± 0.0004 (53)

in the thermodynamic limit, using the extrapolations given
in Eqs. (41), so θ1st = (1.26427 ± 0.00006)π , taking into ac-
count that both V − t and μ are negative at this boundary. Let
us note that in the denominator the 1 − 〈nII〉(0,0) = 〈nI〉(0,0),
the density of the type-I vertices appears.

In Fig. 22(b), we zoom in on the tiny region where the
liquid phase appears. The isolated manifold is the ground state
up the θ = π/4, in full agreement with Eq. (28) in Sec. V.
The flux sector first appears next to isolated manifold is the
m = (L − 2, L − 2) in the clusters having N = L2 sites.

To get the boundary between the plaquette and the liquid
phases, we compare the energies of the m = (0, 0) and small
m flux sectors. This involve the gaps �V (m) and �II(m) and
provide the condition

0 = (V − t )�V (m) + μ�II(m) , (54)

so that

tan θ2nd = −�V (m)

�II(m)
= 1.5 ± 0.004

1.154 ± 0.004
= 1.300 ± 0.006 ,

(55)

in the thermodynamic limit for values of m tabulated in
Table III. This translates to θ2nd = (0.2912 ± 0.0007)π , in-
dicated by the small arrow in Fig. 22(b). The window for the

FIG. 22. (a) The phase diagram around the V = t and μ = 0 RK
point. The parameter θ is defined by Eq. (50). A first-order phase
transition occurs between the isolated states and the plaquette phase
at θ = 1.264π . For π/4 < θ < 0.291π , when μ is positive, the two
phases are separated by a region in which the flux sectors interpolate
from the isolated manifold with maximal flux to the m = (0, 0). The
boundary θ = π/4 (line V = μ + t for μ > 0) of the isolated states
is exact and also holds away from the RK point. The m = (0, 0)
flux sector is the ground state for 0.291π < θ < 1.264π . (b) We
plot m2 = m2

x + m2
y of the flux sectors with minimal energy as a

function of the parameter θ in the vicinity of the RK point [δ → 0
in Eq. (50)] for π/4 < θ < 0.291π , where we expect the devil’s
staircase. The flux monotonically decreases with increasing ϑ . The
plot suggests a finite-width plateau at m2/2N = 1/4, corresponding
to the flux sector m = (L/2, L/2). Calculations were done for up to
576 sites in the N = L2 type clusters. (c) The finite-size scaling of
the width of the m = (L/2, L/2) plateau indicates a tiny but finite
width �θ1/2 = 0.002π in the thermodynamic limit.

liquid state is thus tiny, about θ2nd − π/4 ≈ 0.041π . We note
that the value of θ2nd is where the permittivity ε in Eq. (49)
changes sign.

It is difficult to resolve the precise character of the liquid
phase. It is unclear whether the topological sectors increase
continuously or whether we are faced with an infinite se-
quence of incommensurate states, exemplifying a “devil’s
staircase” (also called “Cantor deconfinement”) [57–60]. Pos-
sible evidence for the latter scenario is the plateau at half
maximum flux, m = (L/2, L/2). Analysis of finite-size scal-
ing suggests a finite width of the plateau, which is about 5%
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of the size of the liquid phase, see Fig. 22(c). It is adjacent
to the m = (L/2 − 2, L/2 + 2) and m = (L/2, L/2 − 2) flux
sectors; however, this does not follow assuming a perfect m2

dependence of the expectation values on the flux.

IX. STRUCTURE FACTORS

In this section, we determine the zero-temperature cor-
relation functions and the structure factors using exact
diagonalization. We will first discuss the structure factor in
the fully packed loop representation and then the magnetic
structure factor in the arrow representation. The latter will
allow us to compare our results to the ones observed in the
artificial spin ice with superconducting flux qubits by King
et al. in Ref. [42].

A. Correlations in fully packed loop representation

We define the correlation function with respect to a hori-
zontal bond as

Ch(x, y) = 〈GS|n(x+ 1
2 ,y)n( 1

2 ,0)|GS〉, (56)

where |GS〉 is the translationally invariant ground state. nr
measures whether the bond centered at r is occupied (nr = 1)
or not (nr = −1). Since the |GS〉 transforms according to the
trivial irreducible representation, 〈GS|nr|GS〉 = 0 and we can
use the above definition of Ch(x, y). The x and y values are
either both integers or half-odd integers. We calculate the
ground-state wave function |GS〉 using the Lánczos algorithm
in N = 16, 32, and 36-site clusters with periodic boundary
conditions for a few selected parameters, representing the
different phases. The exact diagonalization provides a fully
symmetric |GS〉 in a finite cluster with periodic boundary
conditions (the |GS〉 is in the (0, 0)e symmetry sector, see
Figs. 14 and 15). For practical purposes, we introduce

Chh(ix, iy) = 〈GS|n(ix+ 1
2 ,iy )n( 1

2 ,0)|GS〉, (57a)

Cvh(ix, iy) = 〈GS|n(ix,iy+ 1
2 )n( 1

2 ,0)|GS〉, (57b)

Chv (ix, iy) = 〈GS|n(ix− 1
2 ,iy )n(0,− 1

2 )|GS〉, (57c)

Cvv (ix, iy) = 〈GS|n(ix,iy− 1
2 )n(0,− 1

2 )|GS〉, (57d)

where the coordinates (ix, iy) are integers. The Chh(ix, iy) is
a correlation function between horizontal bonds, Cvv (ix, iy)
between vertical bonds, and Cvh(ix, iy) and Chv (ix, iy) between
orthogonal bonds. They provide sufficient information to ob-
tain both the density and the magnetic correlation function in
real and reciprocal space. How they behave under the action
of the point group symmetries is described in Appendix E.

Figure 23(a) displays the bond-bond correlation function
in the ordered square, plaquette, and fully flippable phase,
as well as for the quantum-disordered RK point from ED
calculations on the 36-site cluster, and for the disordered
phase boundary in the classical phase diagram. While the
bond-bond correlations decay rapidly in the plaquette phase
and at the RK point, the long-range pattern of the ordered
loops manifests itself in the classical square and fully flippable
phase. In the square phase, when the central horizontal bond
at (ix, iy) = (0, 0) in Fig. 23(a) is occupied (blue disk), all the
horizontal bonds in the same columns are also occupied and

the next column of horizontal bonds is empty (red disks), in
full accordance with Fig. 9(b). For the fully flippable phase,
the occupied central horizontal bond implies the occupation
of the remaining horizontal bonds (all the horizontal bonds
are blue, and all the vertical bonds are red), c.f. Fig. 8(b).
In the disordered manifold of the classical Rys-F model (the
boundary between the isolated and square phase in Fig. 7), the
bond-bond correlations are finite only along a line (otherwise,
the average over the disorder nulls the correlations).

The Fourier transform of the real-space correlation func-
tion is the structure factor

S(q) = 1

2N

∑
r,r′

eiq·(r−r′ )〈GS|nrnr′ |GS〉, (58)

where both r and r′ in the sum run over the N horizontal and
N vertical bonds. Separating the vertical and horizontal bonds,
we arrive at the expression

S(q) = 1

2

∑
ix,iy

ei(ix,iy )·q[Chh(ix, iy) + Cvv (ix, iy)

+ Cvh(ix, iy)ei(− 1
2 , 1

2 )·q + Chv (ix, iy)ei(− 1
2 , 1

2 )·q]. (59)

Using the symmetry properties described by Eqs. (E1)–(E4),
one can show that the S(q) is real and satisfies the full D4

point group symmetry in the q space.
Since the centers of the horizontal and vertical bonds form

a square lattice rotated by 45◦ and lattice constant 1/
√

2, the
S(q) is periodic in the reciprocal space for momenta shifts
by (2π, 2π ) and (2π,−2π ): S(q) = S(q + (2π, 2π )) and
S(q) = S(q + (2π,−2π )). Therefore, the first and second
Brillouin zones together contain all the relevant information,
and we will call their union the extended Brillouin zone
(EBZ). The structure factor satisfies the sum rule∑

q∈EBZ

S(q) = 2N, (60)

where the sum is over the 2N q-points in the extended Bril-
louin zone. Figure 23(b) displays the structure factor for
−2π � qx � 2π and −2π � qy � 2π . To demonstrate finite-
size effects, we plot S(q) for three system sizes, N = 16, 32,
and 36 in Fig. 23(c) along a path in the reciprocal space drawn
in the leftmost panel of Fig. 23(b).

Before discussing the structure factors in detail, let us note
a general feature present in all the plots: the weight disappears
along the q = (q, q) and (q,−q) lines in the reciprocal space.
The vanishing weight is the consequence of the ice rule, which
imposes the local divergence-free constraint for the allowed
configurations [61]. In the fully packed loop representation,
the ice rule manifests itself as

n(ix+ 1
2 ,iy ) + n(ix,iy+ 1

2 ) + n(ix− 1
2 ,iy ) + n(ix,iy− 1

2 ) = 0, (61)

i.e., the sum of occupations of bonds sharing the same vertex
shall vanish. This implies that for an arbitrary configura-
tion, the sum of the bond occupations along a diagonal,∑

i(−1) jn( j+i/2,1/2±i/2) is a constant, where the ± determines
the orientation of the diagonal. Therefore, the Fourier trans-
form along the q = (q,±q) vanishes except at q = (π,±π ).
The weight at (π,±π ) is related to the flux sector, and one
finds that S(π,±π ) = (mx ± my)2/2.
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FIG. 23. (a) The bond correlation function Ch(x, y) [Eq. (56)] in real space for the 36-site cluster (the horizontal bond at the center is at
(1/2,0) in lattice coordinates). It is equal to Chh(x, y) on the horizontal bonds, defined by Eq. (57a), and to Cvh(x + 1

2 , y − 1
2 ) on the vertical

bonds [see Eq. (57b)]. From left to right, we present correlations in the square, plaquette, fully flippable phases, at the RK point, and in the
classical disordered manifold. The area of the disks is proportional to the value of S(x, y); blue indicates positive and red negative values.
(b) The density plot of the structure factor S(q). The green dashed square encloses the Brillouin zone of the 36-site square cluster, while the
green dotted line is the boundary of the extended Brillouin zone containing 2N = 72 q points. (c) The S(q) along the path q = (π, π ) →
(0, 0) → (2π, 0) → (π, π ) → (π, 0) drawn in white in the leftmost panel in (b). The structure factor diverges with system size at Q = (π, 0)
in the square phase (first column) and at Q = (2π, 0) in the fully flippable phase (third column). The structure factor is diffuse in the plaquette
phase, with a peak centered at Q = (2π, 0). At the RK point (fourth column), the value of the structure factor strongly depends on the direction
we approach the (π, π ), S(π + δ, π + δ) : S(π, π + δ) : S(π + δ, π − δ) = 0 : 1 : 2 as δ → 0, demonstrating the nonanalytic behavior of the
pinch point. In the disordered manifold (fifth column), we see subdivergent lines along Q = (±2π, q) and Q = (q,±2π ).

Let us consider the ordered states. For the fully flippable
phase, diverging Bragg peaks appear at the ordering wave
vectors are Q = (0, 2π ) and Q = (2π, 0). These points are
the  points in the second Brillouin zone and reflect the
fact that the fully flippable state does not break translational
symmetry. The positions and amplitudes of the peaks agree
with Eq. (F4) we got from an analytical calculation presented
in Appendix F 1.

The square phase shows a Bragg-peak at the ordering
vectors Q = (0,±π ) and at Q = (±π, 0), in full consistency
with the analytical calculation presented in Appendix F 2
and summarized by Eq. (F 2). The structure factor at these
ordering wave vectors diverges with the system size, as
demonstrated in Fig. 23(c), where the S(Q) doubles between
the 16- and 32-site results.

Although ordered, the plaquette phase has no Bragg peaks.
The structure factor peaks at Q = (0, 2π ) and (2π, 0). The
peaks do not diverge but only depend weakly on the system
size, with a diffuse scattering visible around them. We deter-
mined the shape of the diffuse scattering using the variational
wave function in Appendix F 3, and compared it to the numer-
ical calculation in Fig. 29 below.

The diffuse scattering changes shape at the RK point,
where pinch-point singularities appear at q = (π,±π ). At
those points, the value of the structure factor is not an analytic
function of the momenta and is of the form

S(π + kx, π + ky) ∝ 1 − 2kxky

k2
x + k2

y

(62)
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FIG. 24. The magnetic structure factor S̃(q) in the arrow representation, given by Eq. (63) and calculated by exact diagonalization on
the 36-site cluster for (a)–(d) and analytically for (e). The ordered phases are (a) the square phase for μ/t = −1, (b) the plaquette phase for
μ = 0, and (c) the fully flippable for μ/t = 0.5, keeping V = 0 in all three cases. We find divergent Bragg peaks in the square and the fully
flippable phases, while S̃(q) remains diffuse in the plaquette phase. (d) S̃(q) at the RK point (V = t and μ = 0) displays the pinch points
at Q = (2πzx, 2πzy ), where zx, zy ∈ Z. (e) The magnetic structure factor of the V = t = 0 classical disordered manifold. The amplitudes of
the subdivergent horizontal and vertical lines are given out in Appendix F 4. The green dotted square denotes the boundary of the extended
Brillouin zone, the same as in Fig. 23(b).

in the vicinity of the q = (π, π ), where the kx and ky are small
[61].

The structure factor disordered manifold for the V = t =
0, μ < 0 shows subdivergent lines in the Brillouin zone, the
lines are at q = (2πz + π, q′) and (q′, 2πz + π ), where z ∈ Z
is an integer and the coordinate q′ runs over all possible values
for the corresponding momentum (see Appendix F 4 for the
exact analytical treatment).

B. Magnetic structure factor

The magnetic structure factor in spin systems is measured
by neutron scattering. The neutron cross section is propor-
tional to

S̃(q) =
∑
α,β

(
δα,β − qαqβ

q2

)

× 1

2N

∑
r,r′

〈GS|Mα
r Mβ

r′ |GS〉ei(r−r′ )·q, (63)

where Mα
r is the α component of the spin operator at site r. It

is customary to calculate the structure factor above for the six-
vertex models as well. In the two-dimensional case, we choose
arrows instead of spins so that Mx = ±1 and My = 0 for a
horizontal arrow on a horizontal bond and Mx = 0 and My =
±1 for a vertical arrow on a vertical bond, following Eq. (4).
Furthermore, Eq. (4) allows us to express the S̃(q) using the
correlation function we defined in Eqs. (57). Eventually, we
arrive at

S̃(q) =1

2

∑
ix,iy

ei(ix,iy )·[q−(π,π )]

×
{

q2
y

q2
Chh(ix, iy) + q2

x

q2
Cvv (ix, iy)

−qxqy

q2
[Cvh(ix, iy) + Chv (ix, iy)]ei(− 1

2 , 1
2 )·q

}
. (64)

Figure 24 displays the spin-structure factor S̃(q) for the typical
examples shown in Fig. 23(b). As for S(q), Bragg peaks
dominate the spin-structure factor in the square and the fully
flippable phase, and diffuse scattering is seen for the plaquette
phase and the RK point. In the case of the RK point, the
pinch points move to Q values that are now multiples of
2π . The subdivergent lines of the disordered manifold get
a momentum-dependent intensity from the dipolar factor in
Eq. (63), in addition to the momentum shift.

C. Comparison with the structure factors in the artificial
quantum six-vertex model

We can now compare our zero-temperature results for the
structure factors with those observed in the artificial quan-
tum spin-ice experiment. Our magnetic structure factor S̃(q)
should correspond to that in the “strong coupling” regime in
Fig. 2 in Ref. [42] (J = JMAX in their notation), where the
frequencies (densities) of type-III and IV vertices are negli-
gible. We shall bear in mind that the experiment dealt with a
system with open boundary conditions at finite temperature
while we work with periodic boundary conditions at zero
temperature.

Let us start with the topmost row in Fig. 2 in Ref. [42], the
“degenerate ice” with J⊥/J‖ = 1. At this point, the observed
NI : NII = 1 : 2 ratio between the number of type-I and II
vertices corresponds to their statistical weights, as the local
Hilbert space on a site consists of two type-I and four type-II
vertices, so neither of the vertices is favored in this case. The
same ratio also occurs at the RK point, where the ground-state
wave function is an equal-amplitude superposition of the al-
lowed vertex configurations. We find excellent agreement with
our Fig. 24(d) regarding the overall distribution of the weight.
However, there is one notable difference: the pinch points
at the Q = (2nxπ, 2nyπ ) show no weights in our Fig. 24(d),
while in Ref. [42] they are finite. A possible resolution of this
discrepancy is that the weight at the center of the pinch point
comes from finite-flux sectors. The 〈nII〉(0,0)/〈nI〉(0,0) ≈ 1.631
in Eq. (42) also supports this idea, to recover the measured
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〈nII〉/〈nI〉 ≈ 2 we shall take into account other flux sectors as
well. However, it is also possible that the temperature was
so high that it concealed the quantum fluctuations and the
complete disorder is a consequence of the almost identical
Boltzmann weights of ice-rule configurations. Reference [62]
studied this case with classical Monte Carlo and noted the
same structure factor.

Let us proceed to the second row in Fig. 2 in Ref. [42],
denoted by “Type-I bias”. The choice of parameters resulted
in slightly more type-I vertices than type-II vertices, with
a ratio NI : NII ≈ 0.54 : 0.46. According to our ED calcu-
lations shown in Figs. 14(a) and 15(a), the experimental
NI : NII ratio corresponds to the μ/t ≈ 0.12 in the plaquette
phase when V = 0, close to the fully flippable boundary at
μ/t ≈ 0.29 (we find 〈NI〉 : 〈NII〉 = 0.6 : 0.4 in our calcula-
tions at the phase boundary). In the experimental structure
factor, we can identify both the Bragg peaks of the fully flip-
pable phase with a diffuse scattering around, just like in our
Fig. 24(c), and the finite rhombi-like structures at (qx, qy) =
(0,±3π ) and (±3π, 0) typical for the plaquette phase shown
in Fig. 24(b). Therefore, it is hard to identify the ground state
unambiguously. While the fully flippable phase is classical,
the emergence of the diffusive structures compatible with the
plaquette phase may indicate quantum effects at play.

Lastly, we turn to the third row in Fig. 2 in Ref. [42],
which shows the case where NI : NII ≈ 0.19 : 0.81 in the
strong-coupling limit (”Type-II bias” with J⊥/J‖ = 0.98).
We can reproduce the reported ratio of occupancies setting
μ/t ≈ −0.9 in our V = 0 exact diagonalization calculation,
which is in the square phase but close to the plaquette phase.
The magnetic structure factors are quite different: Our cal-
culation reveals apparent Bragg peaks with some diffuse
scattering, while the experimental plot shows strong inten-
sities along straight lines. But such structures appear in the
finite-temperature plots in Fig. 3(b) in Ref. [62] and in our
calculation of the magnetic structure factor in the V = t = 0
disordered manifold, Fig. 24(e). It implies that the thermal
fluctuations destroy the quantum-mechanical order, and the
observed state is a mixture of different flux sectors. The fact
that quantum features are revealed in some cases and not in
others may be related to the excitation energies in different
phases, and how they compare to the temperature. However,
this is only a hypothesis at this stage and would require further
study.

Above, we compared the magnetic structure factors S̃(q).
The equivalent of the S(q), defined by Eq. (58), is shown
in Fig. S4 in the Appendix of Ref. [42]. [We note that the
coordinate axes in Fig. S4 are rotated by 45◦ in contrast to
the magnetic structure factors S̃(q) and the indicated Brillouin
zone corresponds to our extended Brillouin zone.]

X. SUMMARY

We studied the ground-state properties of a quantum six-
vertex model on the square lattice that distinguishes the type-I
and type-II vertices. We established the zero-temperature
phase diagram and the static correlation functions in real and
momentum space using analytical and numerical methods.

Regarding the classical (t = 0) model, we found three ex-
tended phases in the μ–V parameter space. As discussed in

Secs. II and III, the twofold degenerate fully flippable phase
contains only type-I vertices. The fourfold degenerate square
phase and the subextensive manifold of isolated configura-
tions consist of only type-II vertices. Figure 7 summarizes the
classical phase diagram. The fully flippable phase is the ana-
log of the “antiferroelectric” phase in the Rys F model [43],
while the subextensive boundary between the square phase
and the isolated manifold is equivalent to the “disordered”
phase identified in Refs. [44,45].

Classification of the configurations by the number of flip-
pable plaquettes and type-II vertices revealed that the two
numbers are correlated and form a triangle presented in Fig. 6.
Configurations at the corners of the triangle define the three
classical phases mentioned above. In Sec. IV, we identified
the symmetries broken in the ordered phases, constructed
diagonal order parameters as irreducible representations of the
D4 point group using vertices, and wrote down the Landau
free energy for the model taking into account the conjugation
symmetry.

To derive the phase diagram for the quantum model, we
applied the Lánczos method to diagonalize the model on
finite-size clusters (N � 36) with periodic boundary con-
ditions. We calculated the expectation values of the order
parameters and followed the level crossings in the low-energy
spectra in a wide range of parameters (see Figs. 14 and 15
for V = 0 case). Figure 16 summarizes our phase diagram.
Interestingly, the boundary of the plaquette phase does not
confine to small V/t and μ/t but extends along the line
V = μ + t for large values, together with a gapless liquid
phase emanating from the quantum critical Rokhsar-Kivelson
point. The extension of the quantum behavior results from
the highly degenerate V = μ classical boundary so that t
competes with V − μ. A rapidly converging perturbation ex-
pansion in t up to the fourth order confirmed the accuracy
of the phase boundaries. Beyond the numerical methods, we
applied Gerschgorin’s theorem to obtain the exact boundary
between the isolated and the liquid phases in Sec. V. A simple
variational treatment indicated the existence of a tricritical
point between the square and plaquette phases, allowed by the
Landau free-energy expansion.

We applied the Hellman-Feynman theorem to reveal the
nature of the liquid phase and the splitting of the ground-
state degeneracy of the multicritical Rokhsar-Kivelson point
in Sec. VIII. Using Monte Carlo simulations for clusters up
to 576 sites, we calculated the expectation values of the den-
sities of flippable plaquettes and the type-II vertices scanning
through the flux sectors. We obtained the phase boundaries
emanating from the quantum critical point. The liquid phase
unveils itself as a possible manifestation of the “devil’s stair-
case” [58,59], with evidence for a finite-width plateau at half
the maximum flux sector. The results also allowed us to study
emergent quantum electrodynamics and to determine the elec-
trical permittivity near the RK point.

Finally, in Sec. IX, we presented the zero-temperature
structure factors for the various ordered phases and the RK
point. We compared our results with the experiment on the
artificial spin-ice system formed by superconducting qubits
of Ref. [42]. While many features of our calculation and the
measurement agreed, there were also some that we could not
interpret using our zero-temperature calculation.
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FIG. 25. The flux sectors, their degeneracy (below the circles),
and max value of NV (above the circles) for the (a) 32-site and
(b) N = 36-site clusters with periodic boundary conditions. For vi-
sualization purposes, only one irreducible octant is shown. The full
diagram follows from symmetry.

ACKNOWLEDGMENTS

The authors acknowledge discussions with Nic Shannon,
Hosho Katsura, and R. Ganesh. We acknowledge the financial
support by the Hungarian NKFIH Grants No. K124176 and
No. K142652. We wrote our code in Julia, an open-source
programming language [63].

APPENDIX A: FLUX SECTORS

Figure 25 shows the flux sectors in the 32- and 36-site
cluster, together with the degeneracy and the maximal number
of flippable plaquettes. The binomial coefficients give the
number of isolated configurations in different flux sectors, as
described in Sec. V. We compare the number of configura-
tions in the (0,0) flux sector with the extensive degeneracy
W ∝ (4/3)3N/2 in Table IV.

TABLE IV. The degeneracy (Deg.) of the (0,0) flux sector for
different system sizes N . The third column is the calculation based on
Lieb’s formula, and the fourth is the ratio with the actual degeneracy.
The fifth and sixth columns are the estimate from Pauling’s formula
and the ratio. While the ratio is stable for Lieb’s estimate, the Pauling
formula underestimates the number of configurations.

Lieb Pauling

N Deg. (4/3)3N/2 Ratio (3/2)N Ratio

16 990 996.6 1.0067 656.8 0.663
32 962 734 993 251.8 1.0317 431 439.9 0.445
36 5 482 716 5 580 739.8 1.0179 2 184 164.4 0.398

APPENDIX B: INEQUALITIES FOR THE 6VM ON THE
SQUARE LATTICE

To determine the classical phase diagram, it is essential
to know what values of the flippable plaquettes (NV ) and the
type-II vertices (NII) characterize the six-vertex configurations
on the square lattice. Below, we consider finite systems with
periodic boundary conditions containing N vertices (N pla-
quettes) and derive the inequalities (5).

NII � N : There cannot be more type-II vertices than there
are vertices. Isolated and square configurations realize the
case of equality, so the estimate is sharp.

2NV + NII � 2N : Out of four plaquettes around a type-II
vertex, at least two are nonflippable. Let us fix NII and find
a configuration where the number of nonflippable plaquettes
N − NV is minimal. The best strategy is to densely pack
type-II vertices so that four type-II vertices block the same
plaquette, just like in the square configurations. Detaching a
type-II vertex would generate two new flippable plaquettes.
Consequently, we get a lower bound for the number of non-
flippable plaquettes: 2NII/4 � N − NV. From this, Eq. (5b)
follows.

N � NV + NII: Any nonflippable plaquette has at least two
type-II vertices; in a specific case, it has four [solid circles in
Figs. 26(b)–26(d)]. The vertex type of the open circles is not
determined; they can be type-I or II. We can construct loops
of nonflippable plaquettes by connecting them via the type-II
vertices denoted by the solid circles in the case of (b) and (c),
or the loops intersect (d). These loops must close in a finite
system and contain the same number of type-II vertices and
nonflippable plaquettes. So if there are nonintersecting loops
only, N − NV � NII because there might be unaccounted type-
II vertices on empty circles. It is equivalent to Eq. (5c). The
intersection of the loops does not violate the inequality.

FIG. 26. The four symmetrically inequivalent vertex configura-
tions at the corners of a plaquette. (a) If the plaquette is flippable,
the vertices are undetermined (open circles). [(b),(c)] A nonflippable
plaquette has at least two or (d) four type-II vertices (closed circles).
The remaining vertices are undetermined (open circles). The red lines
are the Faraday loops passing through the nonflippable vertices.
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We recall that boundary conditions fundamentally in-
fluence the above inequalities. If we have open boundary
conditions or infinite system size, it may not be true that the
number of the nonflippable plaquettes is N − NV , even the
number of the plaquettes and the vertices might be different.

APPENDIX C: A SIMPLE VARIATIONAL WAVE
FUNCTION

To describe the symmetry breaking of the plaquette state
down to the square phase, we devise a simple variational
wave function that interpolates between one of the plaquette
[Eq. (32a)] states and two square states as

|�(p)〉 = 1

2 + 2p2
[(1 + p) |�〉A + (1 − p) |�〉A]

⊗ [(1 − p) |�〉D + (1 + p) |�〉D]. (C1)

For p = 0, it gives back the |�(0)〉 = |PlAD〉, and for p =
±1, it results in the classical square states |�(1)〉 = |SqA〉 and
|�(−1)〉 = |SqD〉. The parameter p is directly linked to the
order parameter of the square phase,

〈�(p)|OSq|�(p)〉 =
√

2p

1 + p2

(
1

−1

)
, (C2)

while the plaquette order parameter is an even function of p
and is nonzero all the time,

〈�(p)|OPlaq|�(p)〉 = 1 + 6p2 + p4

2(1 + p2)2 ≈ 1

2
(1 + 4p2 + · · · ).

(C3)
We may compare these values to Table II. The energy density
E (p)/N = 〈�(p)|H|�(p)〉/N reads

E (p)

N
= V

2

(
1 + 2(1 + p)4(1 − p)4

(2 + 2p2)4

)

+ μ

(
(1 + p)4

(2 + 2p2)2
+ (1 − p)4

(2 + 2p2)2

)

+ t

2

2(1 + p)(1 − p)

2 + 2p2
. (C4)

Expanding in p, we get

E (p)

N
= e0 + e2 p2 + e4 p4 + e6 p6 + · · · , (C5)

with

e0 = μ

2
− t

2
+ 9V

16
, e2 = 2μ + t − V

2
,

e4 = −4μ − t + 2V, e6 = 6μ + t − 11V

2
. (C6)

The condition for a second-order phase transition is e2 = 0
and e4 > 0. This happens along the line

V

2
= 2μ + t (C7)

until the e4 changes sign and becomes negative at μ = −3t/4
and V = −t (we note that e6 is positive for V < −t/2). It
signifies a tricritical point where the phase transition changes
from a continuous (for −t < V ) to a first-order one (for V <

−t). Unfortunately, our ED calculation is unsuitable for con-
firming the tricritical point’s existence beyond the variational
approach.

APPENDIX D: DETAILS OF PERTURBATION OF THE
CLASSICAL PHASES

Perturbation theory is a convenient tool to determine
energy corrections in the quasiclassical regime caused by
quantum fluctuations. The ground-state energy is expanded in
powers of t as

E = ε(0) + ε(2) + ε(4) + · · · , (D1)

where ε(0) is the classical energy and the second- and fourth-
order corrections, following, e.g., Ref. [64], read

ε(2) = −
∑

X

|〈0|Ht |X 〉|2
EX − E0

, (D2)

ε(4) = −
∑

X,Y,X ′

〈0|Ht |X 〉〈X |Ht |Y 〉〈Y |Ht |X ′〉〈X ′|Ht |0〉
(EX − E0)2(EY − E0)

+
(∑

X

|〈0|Ht |X 〉|2
(EX − E0)2

)(∑
X

|〈0|Ht |X 〉|2
EX − E0

)
. (D3)

In the above, we get |X 〉 by flipping a single plaquette in
the classical ground-state configuration |0〉. The |Y 〉 	= |0〉 are
states constructed by flipping additional plaquettes in |X 〉.
Since the energy is an even function of t [65], the correction
terms proportional to an odd power in t must vanish.

Let us start with fully the flippable states and choose |0〉 =
|FF1〉 in Eq. (10). Figure 27 shows the possible |X 〉 and |Y 〉
states. The energies of these intermediate states are

EX − E0 = 4μ − 4V, (D4a)

EY1 − E0 = 8μ − 8V, (D4b)

EY2 − E0 = 8μ − 7V, (D4c)

EY3 − E0 = 6μ − 6V. (D4d)

Using Eqs. (D2), the second-order correction to the energy is

ε
(2)
FF = − Nt2

4(μ − V )
, (D5)

and the fourth order is

ε
(4)
FF = − Nt2

16(μ − V )2

[
4 × 2

6(μ − V )
t2 + 4 × 2

8μ − 7V
t2

+ (N − 13) × 2

8(μ − V )
t2

]
+ Nt2

16(μ − V )2
× Nt2

4(μ − V )

= − Nt4

16(μ − V )2

[
8

8μ − 7V
− 23

12(μ − V )

]
. (D6)

Let us turn to the square states. Choosing |0〉 = |SqA〉 in
Eq. (10) and repeating the same steps for the square phase, we
obtain the |X 〉 and |Y 〉 intermediate states shown in Fig. 28,
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FIG. 27. The excited states |X 〉 and |Y 〉 appearing in the fourth-
order perturbation expansion Eq. (D3) of the ground-state energy in
the fully flippable phase. Flipped plaquettes are in magenta and gray
crosses indicate nonflippable plaquettes. The numbers on the long
arrows show the number of transitions, where N is the system size.

with energies

EX − E0 = −4μ, (D7a)

EY1 − E0 = −8μ, (D7b)

EY2 − E0 = −8μ + V, (D7c)

EY3 − E0 = −6μ. (D7d)

Since the square states are stable for negative μ values, all
the intermediate energies above are positive. The second- and
fourth-order corrections are then

ε
(2)
Sq = Nt2

8μ
, (D8a)

ε
(4)
Sq = Nt4

16μ2

[
4

8μ − V
− 11

24μ

]
. (D8b)

FIG. 28. Same as Fig. 27, but for the square phase.

APPENDIX E: SYMMETRY PROPERTIES OF THE C(ix, iy)
CORRELATION FUNCTIONS

The symmetry group G̃ imposes the following properties
to Chh defined in Eq. (57a):

Chh(ix, iy) = Chh(−ix, iy) = Chh(ix,−iy)

= Chh(−ix,−iy), (E1)

which also holds for Cvv . Furthermore, the fourfold rotation
symmetry connects the correlations between the vertical and
the horizontal bonds

Cvv (ix, iy) = Chh(iy, ix ). (E2)

For the correlations between orthogonal bonds,

Cvh(ix, iy) = Cvh(1 − ix, iy) = Cvh(iy + 1, ix − 1) (E3)

holds, that generate eight positions with equal correlations,
including the Cvh(1 − ix,−1 − iy). Replacing the latter into
the definition Eq. (57b), we find that it is the same as Eq. (57c)
after shifting the coordinates, i.e.,

Cvh(ix, iy) = Chv (ix, iy). (E4)

APPENDIX F: ANALYTIC EXPRESSIONS FOR THE
STRUCTURE FACTORS

In Sec. IX, we calculated the structure factors assum-
ing that the ground state shows all the symmetries of the
model and can be written as a linear superposition of the
symmetry-broken states with equal weights. Here, we com-
pute the structure factor for the symmetry-broken classical
configurations and the plaquette states.

Translation invariance plays a crucial role when we cal-
culate structure factors analytically. Therefore, we study the
different ground states in translationally invariant unit cells
containing gGS bonds representing the spins. For example, for
the fully flippable configuration and the classical disordered
phase boundary gFF = 2, since they do not break the transla-
tional symmetry, two bonds are associated with each vertex.
The square phase breaks translational invariance, and there are
four sites and eight bonds in the unit cell, so gSq = 8. In the
case of the plaquette phase, gPl = 4. Rewriting the definition
of the structure factor in Eq. (58) to take the translationally
invariant unit cell into account explicitly, we can derive that

S(q) = 1

gGS

∑
g

∑
R

eiq·R〈ng+Rng〉GS

+ 1

gGS

∑
g

∑
R

eiq·[R+( 1
2 , 1

2 )]
〈
ng+R+( 1

2 , 1
2 )ng

〉
GS, (F1)

in the fully packed loop representation, where
∑

g denotes
summation over the positions of spins within the invariant
cell and

∑
R summation over the N lattice vectors. In the

expression above, the first term comes from the correlation be-
tween parallel bonds, and the second term from perpendicular
bonds. Furthermore, we introduced the 〈GS|Ô|GS〉 = 〈Ô〉GS

short-hand notation, where GS stands for one of the symmetry
breaking ground-state configurations.
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The case of magnetic structure factor S̃(q) is slightly more
complicated. First, let us write Eq. (4) as

Mr=R+h = ei(π,π )·R
[(

1
0

)
δh,( 1

2 ,0) +
(

0
1

)
δh,(0, 1

2 )

]
nr, (F2)

where h ∈ {( 1
2 , 0), (0, 1

2 )}. For S̃(q), we obtain

S̃(q) = 1

gGS

∑
g

∑
R

∑
α

(
1 − q2

α

q2

)
eiq·R〈

Mα
g+RMα

g

〉
GS

− 1

gGS

∑
g

∑
R

∑
α,β

qαqβ

q2
eiq·[R+( 1

2 , 1
2 )]

× 〈
Mα

g+R+( 1
2 , 1

2 )
Mβ

g

〉
GS. (F3)

Here again, the first term comes from the correlations between
arrows on the parallel bonds (α = β), and the second term
from perpendicular bonds with orthogonal arrows (α 	= β).
Let us now evaluate the expressions above for the ordered
phases.

1. Fully flippable phase

We start with the simplest case, the translationally in-
variant fully flippable state with two bonds in the unit cell,
g ∈ {( 1

2 , 0), (0, 1
2 )}. For either of the classical states given

by Eqs. (10a) and (10b), the correlation is 1 between two
horizontal or two vertical edges and −1 between a horizontal
and a vertical edge. Since the structure factors of the two
classical configurations are equal, it is enough to study only
one.

In the fully packed loop representation, we get

SFF(q) = 2N
(

1 − cos
qx

2
cos

qy

2

)
δqx,2πnx δqy,2πny

= 2N (1 − (−1)(nx+ny ) )δqx,2πnx δqy,2πny , (F4)

where (nx, ny) ∈ Z2. Only contributions from odd nx + ny

survive. All the weight concentrates in a single peak (the other
 point) located at the corners of the extended Brillouin zone;
see the third column in Fig. 23(b). For the S̃FF(q), we obtain

S̃FF(q) =
(

1

2
+ qxqy

q2
sin

qx

2
sin

qy

2

)
N

× δqx,2πnx+πδqy,2πny+π . (F5)

The fourfold symmetry is explicit in both SFF(q) and S̃FF(q).
This might seem surprising, as the |FF1〉 and |FF2〉 themselves
break the fourfold symmetry. But in the correlation function
an even product of the |FF1〉 and |FF2〉 appears, restoring the
C4 symmetry. Since 〈FF1|FF2〉 = 0, the structure factor for
the linear superposition of the two configurations is the same.

2. Square phase

In the case of the square phase, Eqs. (10c)–(10f), the
four orthogonal classical configurations are invariant
under the translation by the (2,0) and (0,2) lattice
vectors. The unit cell has eight sites (gSq = 8), with g ∈
{( 1

2 , 0), (0, 1
2 ), ( 1

2 , 1), (1, 1
2 ), ( 3

2 , 0), (0, 3
2 ), ( 3

2 , 1), (1, 3
2 )}.

We find

SSq(q) = N

2

(
δqx,2πnx δqy,2πny+π + δqx,2πnx+πδqy,2πny

)
(F6)

FIG. 29. Comparison of the structure factor S(q) in the plaquette
phase calculated by ED (open circles for N=16, 32, and 36 sites) with
the S(q) of the factorized plaquette wave function, Eq. (F8) (solid
line). We present two cases, (a) one close to the square phase with
μ/t = −0.5, and (b) one close to the flippable phase, where μ/t = 0
(V = 0 for both).

and

S̃Sq(q) = N

2

q2
x

q2
δqx,2πnx+πδqy,2πny

+ N

2

q2
y

q2
δqx,2πnx δqy,2πny+π , (F7)

for any of the four. The fourfold rotation symmetry manifests
here again. The weight distributes equally in four peaks in the
extended Brillouin zone, at Q = (±π, 0) and (0,±π ), as seen
in the leftmost column of Fig. 23(b).

3. Plaquette phase

Next, let us consider the plaquette phase. The ground state
is invariant under the translations (1,1) and (1,−1), with two
sites and four bonds in the unit cell. Thus, gPl = 4, and {g} =
{( 1

2 , 0), (0, 1
2 ), (− 1

2 , 0), (0,− 1
2 )}. We use the variational wave

functions |PlAD〉 and |PlBC〉, defined in Eqs. (32a) and (32b).
Here one should be careful when taking their linear combina-
tion, as they have a finite overlap 〈PlAD|PlBC〉 = 4/N2. The
structure factors for the pure |PlAD〉 are

SPlAD(q) = 4 sin2 qx + qy

4
sin2 qx − qy

4
, (F8)

S̃PlAD(q) =
(

qx

q
sin

qx

2
+ qy

q
sin

qy

2

)2

, (F9)

and SPlAD(q) = SPlBC(q), S̃PlAD(q) = S̃PlBC(q). For a general
plaquette state, we can expand them as a superposition of
|PlAD〉 and |PlBC〉. Since the terms coming from the overlap
of the two wave functions are proportional to 1/N2 and vanish
in the thermodynamic limit, S∞

Pl (q) = SPlAD(q) and S̃∞
Pl (q) =

S̃PlAD(q). We compare in Fig. 29 the S∞
Pl (q) with the result

from exact diagonalization. Equation (F8) nicely captures the
main features of the diffuse scattering in the structure factor.

4. Disordered manifold at t = V = 0

Finally, let us determine the structure factor of disordered
type-II vertices at the V = 0 boundary between the isolated
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and square phases in the classical phase diagram. Two bonds
are correlated only if they belong to the same horizontal or
vertical line,

SDis(q) = 1

2

(
Lxδqx,2πzx+π + Lyδqy,2πzyπ+π

)
, (F10)

S̃Dis(q) = 1

2

[
q2

y

q2
× Lxδqx,2πzx + q2

x

q2
× Lyδqy,2πzy

]
, (F11)

where Lx and Ly are the horizontal and vertical lengths of
the periodic cluster, and zx, zy ∈ Z (we set gDis = 2 since the
disordered manifold is translational invariant as a set of ice
configurations).

All the structure factors we computed above reflect all
the symmetries of D4 point group, just like for the S(q) and
S̃(q) calculated from the fully symmetric ground state of
a finite cluster with periodic boundary conditions. Further-
more, all of the S(q) above satisfy the sum rule given by
Eq. (60).
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