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We theoretically investigate superconductivity under a spin-split band structure owing to a collinear-type
antiferromagnetic order in quasi-two-dimensional organic compounds κ-(BEDT-TTF)2X . We find that the
magnetic order can induce a Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state, where the Cooper pair possesses
a finite center-of-mass momentum. We show this from two types of analyses: (1) an effective model where
simple intraband attractive interactions are assumed and (2) many-body calculations of the repulsive Hubbard
model based on the fluctuation-exchange approximation and the linearized Eliashberg equation. Our results show
the possibility of realizing the FFLO state without applying an external magnetic field.
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I. INTRODUCTION

The relationship between magnetism and superconductiv-
ity has been of major interest in the field of strongly correlated
electron systems. In particular, a coexistent state of the two or-
ders can symptomize unconventional superconductivity since
conventional BCS-type superconductors do not favor mag-
netism, resulting in an exotic state. For example, UGe2 [1],
UCoGe [2], and URhGe [3] are known as representative spin-
triplet superconductors coexisting with a ferromagnetic (FM)
order [4]. Another example is symmetry-protected nodal su-
perconductivity in antiferromagnetic (AFM) systems [5], e.g.,
UPd2Al3 [6] and Sr2IrO4 [7].

Interestingly, theoretical studies showed that Fulde–
Ferrell–Larkin–Ovchinnikov (FFLO) superconductivity [8,9]
with finite center-of-mass (COM) momentum of the Cooper
pairs can be realized under an odd-parity magnetic multipole
order [7,10–12], such as in the AFM state in locally non-
centrosymmetric systems [13,14]. In this case, the odd-parity
magnetic quadrupole order breaks both spatial inversion (I)
and time-reversal (T ) symmetries, but preserves the com-
bination of them. As a result, the energy band structure is
asymmetric for the momentum flip k → −k, while up and
down spins or pseudospins are degenerate at any k point
[Fig. 1(a)]. Note that the symmetry property is different from
that in typical AFM systems, where magnetic translation
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symmetry (the combination of time-reversal and half-
transition) is conserved.

Here we focus on another type of AFM order that breaks
T symmetry, which has been theoretically pointed out in
κ-(ET)2Cu[N(CN)2]Cl (ET is the abbreviation of BEDT-
TTF = bis(ethylenedithio)tetrathia-fulvalene), abbreviated as
κ-Cl in the following [15–17]. κ-Cl is a member of quasi-
two-dimensional organic charge transfer salts κ-(ET)2X (X :
monovalent anions), which is known as a platform of Mott
physics; they typically show a collinear-type AFM insulating
state or superconductivity at the ground state, which depends
on the choice of the anion X , working as chemical pressure,
and the applied physical pressure [18–20]. Because of their
particular molecular arrangement [Fig. 2(a)], the AFM order
breaks T symmetry but preserves I symmetry, which induces
spin splitting in the band structure. The momentum-flip sym-
metry properties in the AFM state are the same as those in a
FM state (or in a Zeeman field), whereas the band structure
has anisotropic spin splitting in contrast to isotropic one in
the FM state [see Figs. 1(b) and 1(c)]. The AFM structure
in κ-(ET)2X is classified into a ferroic (q = 0) order of an
even-parity magnetic octupole [21–24] or a so-called alter-
magnetic order [25,26], which is discussed also in inorganic
compounds, not only in collinear-type AFM materials such as
RuO2 [27,28] and MnTe [29] but also in coplanar magnets
such as Mn3Sn [30]. Here we use the term AFM, instead
of magnetic octupole or altermagnetic, following the con-
vention of the research on κ-(ET)2X . Although the interplay
between superconductivity and magnetism accompanied by
the anisotropic spin splitting has attracted much attention
[31–45], the microscopic understanding for the coexisting
state is lacking.

In this paper, motivated by these backgrounds, we an-
alyze a microscopic model for the κ-type salts under the
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FIG. 1. Symmetry properties and schematic energy band struc-
tures in (a) magnetic quadrupole, (b) FM (or Zeeman field), and
(c) magnetic octupole states. The red and blue dispersions represent
(pseudo)spin up and down bands, respectively. The green dash-dotted
lines are the Fermi surface in the paramagnetic state.

unusual AFM order and seek for possible superconductiv-
ity. We consider two cases based on the tight-binding model
incorporating the AFM order, one introducing attractive in-
teractions by hand and another more realistic model, and
calculate conditions to stabilize superconducting (SC) state
with anisotropic pairing symmetries discussed in the liter-
ature. In both cases, we find that FFLO superconductivity
with finite COM momentum is stabilized by the AFM order
with spin splitting. The FFLO state is originally proposed
to be stabilized by the Zeeman field [Fig. 1(b)], and has
actually been reported in organic compounds such as κ-type
[46–54], λ-type [55–60], β ′′-type [61–66] salts, and also in

Sr2RuO4 [67,68], iron-based superconductors [69–71], and
heavy-fermion systems [72–76]. On the other hand, the AFM-
induced FFLO state is feasible in zero magnetic field and zero
net magnetization.

The paper is organized as follows. In Sec. II, we explain the
two-dimensional (2D) tight-binding Hamiltonian of κ-(ET)2X
with an AFM molecular field and show the symmetry and
band structure of the model. In Sec. III, we analyze an effec-
tive model with intraband attractive interactions as a first step,
which helps us intuitively understand the AFM-induced FFLO
superconductivity. Next, we discuss a more realistic situation,
namely, a repulsive Hubbard model, and analyze it based on a
fluctuation-exchange (FLEX) approximation and Eliashberg
theory (Sec. IV). Finally, a discussion and a summary are
given in Secs. V and VI, respectively.

II. MODEL AND ELECTRONIC BAND STRUCTURE

First, we introduce a 2D tight-binding model under the
AFM ordering of q = 0 [17,77–79]. The conducting layer of
κ-(ET)2X has four independent ET molecules A–D in the
unit cell, where A–B and C–D form dimers with different
orientations [Fig. 2(a)]. By considering the frontier orbitals of
the four molecules, the noninteracting Hamiltonian with the
four sublattices in the unit cell is written as

H0 = 1

N

∑
k

C†
kĤ0(k)Ck, (1)

Ck = [ck,A↑, ck,A↓, ck,B↑, ck,B↓, ck,C↑, ck,C↓, ck,D↑, ck,D↓]T,

(2)

where ck,ls is the annihilation operator of electrons carrying
momentum k and spin s on the sublattice l . The operators
are defined by the Fourier transformation of the real-space
operators: for example, the annihilation operators are given as
ck,ls = ∑

R e−ik·RcR,ls, where R represents the position of the
unit cell. In this convention, internal coordinates of the four
ET molecules are neglected; we will address this point at the
end of this section. The momentum-dependent Hamiltonian
matrix is composed of two terms:

Ĥ0(k) = Ĥkin(k) + ĤAFM. (3)

The first term is the kinetic energy with the intradimer hop-
ping (ta) and interdimer hoppings (tb, tp, tq) [see Fig. 2(a)],

Ĥkin(k) =

⎡
⎢⎢⎣

0 ta + tbe−ikx tp(1 + e−ikx ) tq(1 + e−iky )
ta + tbeikx 0 tq(1 + eiky ) tp(1 + eikx )

tp(1 + eikx ) tq(1 + e−iky ) 0 (taeikx + tb)e−iky

tq(1 + eiky ) tp(1 + e−ikx ) (tae−ikx + tb)eiky 0

⎤
⎥⎥⎦ ⊗ σ̂0, (4)

which is the Kronecker product of the 4 × 4 matrix in the sublattice space and the 2 × 2 identity matrix σ̂0 in the spin space.
The lattice constants are set to unity. The second term in Eq. (3) represents a molecular field of the AFM order that breaks T
symmetry,

ĤAFM = hM̂AF ⊗ σ̂z, (5)

where M̂AF := diag[1, 1,−1,−1] and σ̂i (i = x, y, z) are the
matrix representing the antiferroic order between the A–B
and C–D sublattices and the Pauli matrix in the spin space,

respectively. Throughout this paper, we use the hopping pa-
rameters (ta, tb, tp, tq )= (−0.207,−0.067,−0.102, 0.043) eV
obtained from a first-principles calculation for κ-Cl at 15 K
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FIG. 2. (a) Schematic view of the molecular arrangement in the conducting layer of κ-(ET)2X . The unit cell (green rectangle) contains
four ET molecules labeled by A–D. The bonds with large hoppings are shown: a (orange bold), b (dotted), p (solid), and q (dashed). The red
and blue arrows represent up and down spin moments, respectively, in the AFM phase. The noninteracting band structures for (b) h = 0 and
(c) h = 0.2 eV. Energy bands of up- and down-spin electrons are represented by the red and blue lines, respectively. The green dashed lines
show the Fermi levels for the electron density n = 1.3, 1.5, and 1.7 per ET molecule. The inset in (b) represents the path in the 2D Brillouin
zone. Note that, in the orthorhombic wallpaper group p2gg, kx = ky = π is labeled by S, which corresponds to the M point in previous studies
[15–17,77].

[80], which are adopted in previous theoretical studies
[15,16,81]. However, the AFM-induced FFLO superconduc-
tivity presented in this paper should be feasible regardless of
the details of the parameters.

The model belongs to a wallpaper group p2gg (point group
C2v) [17] that is composed of translations, twofold rotation
C2z, and glide symmetries Gx and Gy with respect to the x and
y axes, respectively [82]:

Û †
C2z

Ĥ0(k)ÛC2z = Ĥ0(−k), (6a)

ÛGx (k)†Ĥ0(k)ÛGx (k) = Ĥ0(−kx, ky), (6b)

ÛGy (k)†Ĥ0(k)ÛGy (k) = Ĥ0(kx,−ky). (6c)

Here the unitary matrices representing the symmetry opera-
tions are defined by

ÛC2z :=

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ⊗ (−iσ̂z ), (7a)

ÛGx (k) :=

⎡
⎢⎢⎣

0 0 0 e−ikx

0 0 eiky 0
0 1 0 0

ei(−kx+ky ) 0 0 0

⎤
⎥⎥⎦ ⊗ (−iσ̂x ), (7b)

ÛGy (k) :=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 ei(kx+ky )

eikx 0 0 0
0 eiky 0 0

⎤
⎥⎥⎦ ⊗ (−iσ̂y). (7c)

Note that all the symmetry properties in Eqs. (6) are conserved
even for a nonzero AFM molecular field h, since the unitary
matrices in Eqs. (7) include the rotation in the spin space. If
we do not consider the spin rotations (i.e., the spin part is equal
to σ̂0), the glide symmetries Gx and Gy are broken in the AFM
state (h �= 0) [15,17]. On the other hand, the time-reversal
symmetry T , which is preserved in the paramagnetic phase

(h = 0), is broken in the AFM phase (h �= 0):

Û †
T Ĥ0(k)∗ÛT = Ĥ0(−k) for h = 0, (8)

ÛT := 1̂4 ⊗ iσ̂y, (9)

where 1̂4 represents the 4 × 4 identity matrix.
The noninteracting Hamiltonian Ĥ0(k) is diagonalized us-

ing a unitary matrix V̂band(k) as

V̂band(k)†Ĥ0(k)V̂band(k)

= diag[ε(k)1↑, ε(k)1↓, . . . , ε(k)4↑, ε(k)4↓], (10)

where ε(k)αs is the αth eigenenergy for spin s [83]. Fig-
ures 2(b) and 2(c) show the energy band dispersions ε(k)αs for
h = 0 and h = 0.2 eV, respectively. When the AFM molecular
field h is finite, the spin splitting appears at general k points,
except along the kx,y axes and the Brillouin zone boundary
[15], as shown in Fig. 2(c). Most of the κ-type salts possess
three electrons per dimer on average, and then the electron
density n = n↑ + n↓ per ET molecule is 1.5. In this case, by
increasing h the system turns at h ≈ 0.14 eV to an insulating
state with finite energy gap [Fig. 2(c)]. In the following discus-
sions, we focus on the metallic region for h � 0.14 eV in the
undoped case. Furthermore, we investigate the effect of carrier
doping by changing the electron density n from a hole-doped
regime (n = 1.3) to an electron-doped regime (n = 1.7) [see
the green dashed lines in Figs. 2(b) and 2(c)]. In the doped
regimes, we consider the wider range h � 0.2 eV of the AFM
molecular field in the metallic regime.

As mentioned above, here we choose the expressions of the
Hamiltonian [Eq. (4)] and the symmetry operations [Eqs. (7)]
without the phase factors concerning internal coordinates
of the molecules, which are irrelevant to the one-particle
properties. In the case of susceptibilities, however, a careful
treatment on the phase factors must be conducted, as we will
discuss later (see Sec. IV A and Appendix A).

In the following, to discuss SC states, we consider inter-
action effects in addition to the noninteracting tight-binding
Hamiltonian introduced above. In Secs. III and IV, an
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TABLE I. Character table for the wallpaper group p2gg (point
group C2v). E represents the identity operation.

Irrep E C2z Gx Gy Basis functions

A1 1 1 1 1 1, k2
x − k2

y

A2 1 1 −1 −1 kxky

B1 1 −1 −1 1 kyẑ
B2 1 −1 1 −1 kxẑ

effective theory with intraband attractive interactions and the
Eliashberg theory with the repulsive Hubbard interactions,
respectively, are discussed.

III. ANALYSIS OF EFFECTIVE MODEL

A. Attractive intraband interactions

In this section, we introduce effective attractive interac-
tions to search for possible AFM-induced FFLO states. As
a preparation, we transform the noninteracting Hamiltonian
Eq. (1) to the band-based representation. By using the unitary
matrix V̂band(k) in Eq. (10), we define the annihilation and
creation operators of electrons on the band α as

dk,αs :=
∑

l

Vband(k)∗ls,αsck,ls, (11a)

d†
k,αs :=

∑
l

c†
k,lsVband(k)ls,αs. (11b)

Then the Hamiltonian is rewritten in the band-based form

H0 = 1

N

∑
k

∑
α,s

ε(k)αsd
†
k,αsdk,αs. (12)

As for the interaction term, we assume the intraband attractive
pairing as an ideal situation, which is given by

H (band)
int = − 1

N

∑
Q

∑
p,α

UpBpα (Q)†Bpα (Q), (13)

where

Bpα (Q)† = 1√
2N

∑
k

∑
s,s′

ψp(k)(iσ̂y)ss′d†
k+Q,αsd

†
−k,αs′ (14)

is the creation operator of spin-singlet Cooper pairs with a
COM momentum Q on the band α, and ψp(k) indicates the
momentum dependence of the order parameter with different
anisotropy in k space indexed by p. Although the pairing sym-
metry in κ-(ET)2X is experimentally not fully determined,
spin-singlet nodal superconductivity is supported by many
measurements [84]. Therefore, we here consider the extended
s + dx2−y2 -wave superconductivity in the A1 irreducible rep-
resentation (irrep) of point group C2v and the dxy-wave one
belonging to the A2 irrep (see Table I) [85]. Following the
previous studies [87–91], the basis function ψp(k) is chosen
as

ψ1(k) = 2 cos kx cos ky, (15a)

ψ2(k) = cos kx, (15b)

ψ3(k) = cos ky, (15c)

for the extended s + dx2−y2 -wave (A1) order, and

ψ4(k) = 2 sin kx sin ky, (15d)

for the dxy-wave (A2) order. In the following calculations, we
assume two kinds of interaction parameters,

(U1,U2,U3,U4) =
{

(0.1, 0.1, 0.1, 0) A1 case
(0, 0, 0, 0.1) A2 case. (16)

Note that the results in Sec. III B are not qualitatively altered
by the choice of the interaction parameters, as long as the tran-
sition temperature Tc is much smaller than the Fermi energy.

B. Linearized gap equation

Considering the Hamiltonian H = H0 + H (band)
int , we now

study whether the FFLO state is realized through the analysis
of a linearized gap equation, and clarify the SC instability just
above Tc. The linearized gap equation is formulated by calcu-
lating the SC susceptibility matrix whose matrix elements are
defined by

χSC(Q, iωn)pα,p′α′

:=
∫ β

0
dτ eiωnτ

〈
Bpα (Q, τ )Bp′α′ (Q, 0)†

〉
, (17)

where ωn = 2nπT is the bosonic Matsubara frequency,
β = 1/T is the inverse temperature, and Bpα (Q, τ ) =
eτH Bpα (Q)e−τH . The SC susceptibility is obtained by using
the T -matrix approximation as

χ̂SC(Q) = [
1̂ − χ̂

(0)
SC (Q)Û (band)

]−1
χ̂

(0)
SC (Q), (18)

U (band)
pα,p′α′ := Upδp,p′δα,α′ , (19)

where Q stands for (Q, iωn), and 1̂ represents the identity
matrix. The irreducible susceptibility is given by

χ
(0)
SC (Q)pα,p′α′ = T δα,α′

2N

∑
k

∑
s

G̃(0)(k + Q)αsG̃
(0)(−k)αs̄

× ψp(k)∗[ψp′ (k) + ψp′ (−k − Q)], (20)

where

G̃(0)(k)αs = G̃(0)(k, iεm)αs = 1

iεm + μ0 − ε(k)αs
(21)

is the noninteracting band-based Green’s function [92] and
εm = (2m + 1)πT is the fermionic Matsubara frequency. μ0

is the chemical potential for the noninteracting Hamiltonian.
Since the SC transition occurs when χ̂SC(Q) diverges, the
criterion of the SC instability is obtained when the largest
eigenvalue of χ̂

(0)
SC (Q)Û (band) becomes unity. We assume that

the bosonic Matsubara frequency ωn is always zero for the cri-
terion. In this case, the irreducible susceptibility is simplified
by performing the summation of the frequency in Eq. (20),

χ
(0)
SC (Q, 0)pα,p′α′

= −δα,α′

2N

∑
k

∑
s

f [ε(k + Q)αs] − f [−ε(−k)αs̄]

ε(k + Q)αs + ε(−k)αs̄

× ψp(k)∗[ψp′ (k) + ψp′ (−k − Q)], (22)
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FIG. 3. Fermi surfaces and X (0)
SC (Q) for (a) (n, h) = (1.7, 0), (b) (n, h) = (1.7, 0.2), (c) (n, h) = (1.3, 0), and (d) (n, h) = (1.3, 0.2). The

temperature T is set to 1 meV. The red solid (blue dashed) lines represent Fermi surfaces of the up-spin (down-spin) electrons, which are
degenerate for h = 0. The A2-type (dxy-wave) interaction parameters are used in the calculations of X (0)

SC (Q) for all cases. In the paramagnetic
phase [(a), (c)], the maximum of X (0)

SC (Q) is located at Q = 0. In the AFM phase [(b), (d)], X (0)
SC (Q) has peaks at finite momenta indicating the

FFLO state.

where f (ε) = (eβ(ε−μ0 ) + 1)−1 is the Fermi-Dirac distribution
function.

Let X (0)
SC (Q) be the largest eigenvalue of χ̂

(0)
SC (Q, 0)Û (band)

for a fixed Q. We then find the optimal COM momentum(s)
Qopt of the Cooper pairs near Tc such that the eigenvalue has a
maximum value as

X (0)
SC (Qopt) = max

Q
X (0)

SC (Q). (23)

For example, we show the structure of X (0)
SC (Q) for the dxy-

wave (A2) order parameter in the electron-doped (n = 1.7)
and hole-doped (n = 1.3) cases in Figs. 3(a)–3(b) and 3(c)–
3(d), respectively [for the undoped (n = 1.5) situation, see
Appendix B]. When h = 0, the whole Fermi surfaces are
spin degenerate and X (0)

SC (Q) reaches a maximum at Q = 0
[Figs. 3(a) and 3(c)]; this indicates the SC state with zero
COM momentum of the Cooper pairs.

In the presence of the AFM field h, on the other hand, the
optimal COM momentum Qopt becomes nonzero because of
the spin splitting [Figs. 3(b) and 3(d)]. This can be understood
as follows: when a spin-up state is located at a general k point
on the Fermi surfaces, there is only a spin-up state at −k
for the T -breaking and C2z-preserving AFM order, whereas
the equal-spin pairing is prohibited in the intraband d-wave
superconductivity. Instead, to stabilize the spin-singlet super-
conductivity, a finite momentum shift Q is necessary for the
pairing between the spin-up k and spin-down −k + Q states
[see Fig. 3(d)]. This mechanism is similar to the FFLO state
under Zeeman field.

One can see in Fig. 3 that the magnitudes of the split-
ting are quite different between the electron- and hole-doped
cases; the Fermi surfaces and their splitting are quasi-one-
dimensional and small (two-dimensional and large) in the

electron-doped (hole-doped) regime. As a result, Qopt in the
hole-doped regime tends to be larger than that in the electron-
doped regime. Also, reflecting the difference in the structures
of the Fermi surfaces, the direction of Qopt is parallel to y
and x axes in the electron- and hole-doped cases, respec-
tively. Furthermore, X (0)

SC (Q) = X (0)
SC (−Q) is always satisfied

because of the presence of the twofold rotation symmetry
(or inversion symmetry), which results in the double-peak
structure at ±Qopt of X (0)

SC (Q). We will revisit this point in
Sec. V.

In this way, we analyze X (0)
SC (Q) by varying the electron

density n and the AFM molecular field h. The results for
the extended s + dx2−y2 -wave (A1) and dxy-wave (A2) super-
conductivity are shown in Figs. 4(a) and 4(b), respectively.
Both phase diagrams contain a parameter region with h > 0,
where X (0)

SC (Q) has peaks at finite momenta ±Qopt (the colored
circles), indicating the appearance of the AFM-induced FFLO
state. The finite COM state is obtained in a broad parameter
region for the A2-type interaction, whereas it is restricted to
a narrower regime in the A1-type case. The reason is intu-
itively understood as follows, considering the gap structure
for the two cases [87]. When the interaction is A2 type, the
dxy-wave SC order parameter is zero on the kx,y axes and
the Brillouin zone boundary, where the spin degeneracy is
protected even in the AFM state [15]. Therefore, the A2 su-
perconductivity is more susceptible to the presence of the spin
splitting; the finite COM momentum is necessary to form the
spin-singlet Cooper pairs on the Fermi surfaces even when
the splitting is small. On the other hand, the A1 case is not
so sensitive to the spin splitting, since zeros of the extended
s + dx2−y2 -wave order parameter are in general k points and
therefore do not necessarily correspond to the spin-degenerate
regions.
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FIG. 4. Phase diagrams obtained from the analysis of the SC
susceptibility for (a) A1 and (b) A2 interaction parameters. The tem-
perature T is set to 1 meV. The closed (open) circles indicate that the
largest eigenvalue of X (0)

SC (Q) is larger (smaller) than unity. The color
of each circle represents the norm of the optimal COM momentum
Qopt = |Qopt|. The direction of Qopt is represented by gray arrows in
the circles.

IV. ELIASHBERG THEORY BASED ON HUBBARD MODEL

In the previous section, we have demonstrated that the
FFLO phase can be stabilized due to the spin splitting in the
AFM state by using the effective model with attractive pair-
ing interactions. In this section, we consider the Eliashberg
theory based on the repulsive Hubbard model [77] as a more
realistic description. The Hubbard Hamiltonian is written as
H = H0 + H (Hub)

int , where the interaction term is given by

H (Hub)
int = U

∑
R

∑
l

nR,l↑nR,l↓, (24)

U being the on-site Coulomb repulsion on the ET molecule.
nR,ls = c†

R,lscR,ls is the electron-number operator; we remind
that R, l , and s represent the unit cell position, the sublattice
index and spin, respectively. Equation (24) is then rewritten as

H (Hub)
int = 1

4

∑
R

∑
ζ1,...,ζ4

U (Hub)
ζ1ζ2,ζ3ζ4

c†
R,ζ1

cR,ζ2 cR,ζ3 c†
R,ζ4

, (25)

where ζi stands for (li, si ), and

U (Hub)
ζ1ζ2,ζ3ζ4

= δl1,l2δl2,l3δl3,l4Us1s2,s3s4 , (26)

Us1s2,s3s4 =

⎧⎪⎨
⎪⎩

U (s1s2, s3s4) = (↑↓,↑↓) or (↓↑,↓↑)

−U (s1s2, s3s4) = (↑↑,↓↓) or (↓↓,↑↑)

0 otherwise.
(27)

For the later formulations, we define a matrix form of the
Hubbard interaction: Û (Hub) := [U (Hub)

ζ1ζ2,ζ3ζ4
]. In the following

Secs. IV A and IV B, a generalized susceptibility based on the
FLEX approximation and a linearized Eliashberg equation are
discussed, respectively. The source code used for the numeri-
cal calculations is available in Ref. [93], some parts of which
are implemented based on the algorithm of the FLEX + IR
package [94].

Before going into detail, we make several comments on the
microscopic analyses in the κ-type salts. First, the correlation
effects included in the FLEX approximation are important for
the emergence of superconductivity. Indeed, our test calcula-
tions within the random phase approximation (RPA) indicate
that the divergence of the magnetic susceptibility occurs far
before the SC transition. Second, we emphasize the dif-
ferences from previous related studies [87,88]. They have
discussed extended s + dx2−y2 -wave (A1) versus dxy-wave (A2)
pairing instability in κ-type superconductors by using the
FLEX approximation and the Eliashberg theory, but consid-
ered only the undoped (n = 1.5), paramagnetic (h = 0), and
zero-COM-momentum (Q = 0) cases. In the present paper,
we consider finite doping n, extend to the presence of AFM
field h, and seek the possibility of a finite COM momentum Q.

A. Generalized susceptibility

Now let us formulate the generalized susceptibility within
the FLEX approximation. The noninteracting Green’s func-
tion for U = 0 is represented by the eight-dimensional (four
sublattices × two directions of spin) matrix:

Ĝ(0)(k, iεm) = [(iεm + μ0)1̂ − Ĥ0(k)]−1. (28)

In the interacting case (U �= 0), the dressed Green’s function
is given by

Ĝ(k, iεm) = [(iεm + μ)1̂ − Ĥ0(k) − �̂(k, iεm)]−1, (29)

where μ and �̂(k, iεm) are the chemical potential self-
consistently determined in the interacting system and the
(normal) self-energy, respectively; the matrix elements of the
self-energy are given by

�(k)ζ ,ζ ′ = T

N

∑
q

∑
ζ1,ζ2

V (n)(q)ζ ζ1,ζ ′ζ2 G(k − q)ζ1,ζ2 , (30)

with k and q representing (k, iεm) and (q, iωn), respectively.
Within the FLEX approximation, the effective interaction ver-
tex for the normal part is calculated as

V̂ (n)(q) = Û (Hub)[χ̂ (q) − 1
2 χ̂ (0)(q)

]
Û (Hub), (31)

where

χ (0)(q)ζ1ζ2,ζ3ζ4 = −T

N

∑
k

G(k + q)ζ1,ζ3 G(k)ζ4,ζ2 , (32)

χ̂ (q) = [1̂ − χ̂ (0)(q)Û (Hub)]−1χ̂ (0)(q) (33)
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TABLE II. Classification of the multipole operator Ô = (M̂sl ⊗
M̂sp )/2

√
2, where the coefficient 1/2

√
2 is introduced to satisfy

the normalization condition tr[Ô†Ô] = 1. σ̂± = (σ̂x ± iσ̂y )/
√

2 are
ladder operators for spin.

�����M̂sp

M̂sl

1̂4 M̂AF

σ̂0 Electric charge Electric quadrupole
σ̂z Longitudinal FM spin Longitudinal AFM spin
σ̂± Transverse FM spin Transverse AFM spin

are the bare and generalized susceptibilities, respectively.
In the numerical study, we take 32 × 32 k-point meshes
and about 80 Matsubara frequencies generated by the
SparseIR.jl package [95,96] based on the intermediate
representation [97] and the sparse sampling [98]. The tem-
perature T and the energy cutoff ωmax are set to 1 meV and
2 eV, respectively.

We show the results for U = 1 eV in the following.
In general, the FLEX approximation is justified within the
intermediate-coupling region in which U is smaller than half
of the bandwidth W , namely, U/W � 0.5. Although our the-
ory adopts the interaction comparable to the bandwidth (U ∼
W ), in the three-quarter-filled dimerized system that we treat,
the effective intradimer Coulomb interaction, which acts on
the two electrons in the antibonding orbital in the dimer, is
estimated as [77,99,100]

Ueff = U

2
+ 2|ta| −

√(
U

2

)2

+ (2ta)2 ≈ 0.265 eV, (34)

which is approximately equal to W/4. Therefore, our choice
of U does not cause a serious problem even in the FLEX
approximation.

Using the generalized susceptibility [Eq. (33)], the dynam-
ical susceptibility for any multipole operator Ô is generally
given by

χ̃Ô(q) =
∑

ζ1,...,ζ4

e−iq·(rl1 −rl3 )Oζ1,ζ2χ (q)ζ1ζ2,ζ3ζ4Oζ3,ζ4 , (35)

where rl is the internal coordinate of the sublattice l , namely,
the relative position from the origin of the unit cell. The phase
factor e−iq·(rl1 −rl3 ) in the summation is necessary to recover the
glide symmetries (Gx and Gy) of the susceptibility (see Ap-
pendix A for details). The multipole Ô can be represented by
the Kronecker product of a 4 × 4 matrix M̂sl in the sublattice
space and a 2 × 2 matrix M̂sp in the spin space. Although the
former sublattice part is classified into 16 types of matrices
using the cluster multipole description [17], we here focus on
two representatives: the ferroic matrix 1̂4 and the antiferroic
one M̂AF. Table II shows the classification of the operator Ô
in the two cases. We calculate Eq. (35) for all operators in
the table and confirm that the susceptibility for the longitudi-
nal AFM (LAFM) or transverse AFM (TAFM) spin operator
has the leading contribution, which are degenerate for h = 0.
Whether the LAFM or TAFM susceptibility is dominant for
h > 0 depends on the parameter choice (see Appendix C for
details).

Here we discuss the relation between the Fermi surfaces
and the AFM spin susceptibility by changing the AFM molec-
ular field h and electron density n, which is directly related
to the SC instability presented in the next subsection. Let us
introduce the Hamiltonian taking the correlation effect into
account,

Ĥ0(k) + �̂R(k, ω = 0) − μ1̂, (36)

where the retarded self-energy in the static limit is evaluated
by an approximation justified at low temperatures as

�̂R(k, ω = 0) � �̂(k, iπT ) + �̂(k,−iπT )

2
. (37)

We calculate the real part of the right eigenvalues of Eq. (36)
that is non-Hermitian in general; the Fermi surfaces renormal-
ized by the correlations are determined by its zeros. Figure 5
displays the modified Fermi surfaces and LAFM or TAFM
spin susceptibility in the static limit,

χLAFM(q) := χ̃M̂AF⊗σ̂z
(q, 0), χTAFM(q) := χ̃M̂AF⊗σ̂± (q, 0),

(38)
where the panels (a), (b) and (c), (d) correspond to the
electron-doped (n = 1.7) and hole-doped (n = 1.3) cases,
respectively [for the undoped (n = 1.5) regime, see Ap-
pendix B]. The AFM susceptibility with the larger maximum
value is shown (see Fig. 9 in Appendix C). In the presence of
the AFM order (h �= 0), as can be seen from the gray arrows
in Figs. 5(b) and 5(d), peaks of the spin susceptibility roughly
correspond to the nesting vector of the modified Fermi sur-
faces. The Fermi surfaces in the hole-doped AFM state
are drastically altered by the correlation effects [Fig. 5(d)],
most likely owing to the larger density of states near a van
Hove singularity, which enhances the nesting with the vector
q ∼ (0, π ).

B. Linearized Eliashberg equation

We then investigate the SC instability within the framework
of Eliashberg theory. Since the possibility of the FFLO state
with the finite COM momentum Q is of major interest in the
present paper, we define the anomalous Green’s function with
finite Q as

FQ(k)ζ ,ζ ′ := −
∫ β

0
dτ eiεmτ 〈Tτ [ck,ζ (τ )c−k+Q,ζ ′]〉, (39)

where ck,ζ (τ ) = eτH ck,ζ e−τH . Note that the function satisfies
the following relation due to the Fermi–Dirac statistics:

FQ(k, iεn)ζ ,ζ ′ = −FQ(−k + Q, iεn)ζ ′,ζ . (40)

Using the normal and anomalous Green’s functions in
Eqs. (29) and (39), we can construct the Dyson–Gor’kov
equation with finite Q. By linearizing the equation with
respect to the anomalous term, the linearized Eliashberg equa-
tion is obtained as

λQ�Q(k)ζ ,ζ ′ = T

N

∑
q

∑
ζ1,ζ2

V (a)(q)ζ ζ1,ζ2ζ ′FQ(k − q)ζ1,ζ2 . (41)
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FIG. 5. The renormalized Fermi surfaces and χLAFM(q) or χTAFM(q) for (a) (n, h) = (1.7, 0), (b) (n, h) = (1.7, 0.2), (c) (n, h) = (1.3, 0),
and (d) (n, h) = (1.3, 0.2). The orange solid (green dashed) lines represent the Fermi surfaces of the up-spin (down-spin) electrons taking
into account the self-energy, while the red solid (blue dashed) lines show the up-spin (down-spin) noninteracting Fermi surfaces. The
gray arrows in (b) and (d) are the q vector where the susceptibility reaches maximum, which corresponds to the nesting of the Fermi
surfaces.

The anomalous Green’s function and the interaction vertex are
calculated as

F̂Q(k) = −Ĝ(k)�̂Q(k)Ĝ(−k + Q)T, (42)

V̂ (a)(q) = − 1
2Û (Hub) − Û (Hub)χ̂ (q)Û (Hub), (43)

where �̂Q(k) is the order parameter matrix and Q := (Q, 0).
We here assume that the interaction vertex V̂ (a) is independent
of the COM momentum Q. A similar formalism for the finite-
Q Eliashberg theory has been discussed in a previous study
[101].

Within the Eliashberg theory, the phase transition into the
SC state with the COM momentum Q takes place when the
eigenvalue λQ in Eq. (41) reaches unity; the Q value whose
transition temperature is highest is realized. Here, for numer-
ical convenience, we evaluate the amplitude of the Eliashberg
eigenvalue at a fixed temperature (T = 1 meV), which is far
below the Neel temperature in κ-Cl, and judge which Q is
favored for each (n, h). By using the power method, we solve
the linearized Eliashberg Eq. (41) and find the eigenvalue
λQ and the corresponding order parameter �̂Q(k). As is the
analysis in Sec. III B, we consider the SC order parameter
belonging to the A1 and A2 irreps of C2v . The initial functional
form is chosen as

�̂
(init)
Q (k) ∼ (cos k̃x − cos k̃y)(1̂4 ⊗ iσ̂y)

+ δ[sin k̃x(diag[1,−1,−1, 1] ⊗ σ̂ziσ̂y)

+ sin k̃y(diag[1,−1, 1,−1] ⊗ σ̂ziσ̂y)], (44)

for the A1 case, and

�̂
(init)
Q (k) ∼ sin k̃x sin k̃y(1̂4 ⊗ iσ̂y)

+ δ[sin k̃x(diag[1,−1, 1,−1] ⊗ σ̂ziσ̂y)

+ sin k̃y(diag[1,−1,−1, 1] ⊗ σ̂ziσ̂y)], (45)

for the A2 case, where the dominant d-wave and subdom-
inant p-wave order parameter with δ = 0.1 are taken into
account. Note that, due to the sublattice degree of freedom,
the subdominant spin-triplet component can be admixed in the
even-parity order parameter; in particular, we confirmed that
the p-wave component has a comparatively large contribution
when the spin splitting is present. We here take k̃ := k − Q/2,
since the order parameter obeys the same relation as Eq. (40)
for the anomalous Green’s function, according to Eq. (42). In
addition, we assume the even-frequency order parameter in all
calculations.

By finding the optimal COM momentum(s) Qopt such that
the Eliashberg eigenvalue λQ reaches a maximum in the mo-
mentum space, we can draw the h–n phase diagram as in
Fig. 6(a). First, the A2 order (circles) is more stable than the
A1 order (squares) in the wide range of parameters. Second,
the eigenvalue takes the peak at finite Qs in the hole-doped
AFM regime, which indicates that the FFLO superconductiv-
ity is stabilized when the spin splitting is large. In Figs. 6(b)
and 6(c), for example, the momentum dependencies of λQ

for (n, h) = (1.3, 0) and (1.3, 0.2) are exhibited, respectively.
The eigenvalue has a single peak at Q = 0 in the paramag-
netic state [Fig. 6(b)], while the maximum is located at finite
Qopt ‖ x̂ in the AFM state [Fig. 6(c)]. We also confirm that
λQ = λ−Q due to the existence of the C2z symmetry.
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FIG. 6. (a) Phase diagram on the (h, n) plane obtained from the analysis of the Hubbard model on the κ-type structure. The temperature T
is set to 1 meV. The squares (circles) indicate that the stable order parameter belongs to the A1 (A2) irrep. The color of each point represents the
norm of the optimal COM momentum Qopt = |Qopt|. (b), (c) The momentum dependence of the eigenvalue λQ of the Eliashberg equation in
the hole-doped regime (n = 1.3) for h = 0 and h = 0.2, respectively. The eigenvalue has peaks at finite COM momenta in (c).

Although the parameter region that we find the FFLO state
is relatively limited compared to the model in Sec. III, we
believe that the results showing its stability using a realistic
model and reliable many-body methodologies is encouraging.
In recent numerical studies, the inclusion of off-site Coulomb
repulsion terms, on top of the Hubbard model we consid-
ered, alters the competition of different symmetries and plays
important roles in the SC instability, near n = 1.5 at h = 0
[90,91]. We expect modifications by the off-site terms for
the finite AFM field h as well, whose investigation is left for
future studies.

V. DISCUSSION

We briefly discuss promising experimental setups to ob-
serve the AFM-induced FFLO superconductivity. First, the
coexistence of the AFM and SC orders was reported in pre-
vious experiments, where the phase separation appears in
bulk κ-(ET)2Cu[N(CN)2]Br [20,102,103]. In particular, the
deuterated sample is located in the vicinity of the Mott transi-
tion and is a candidate system for the realization of the FFLO
state in the anisotropic AFM spin splitting. Another proposal
is making use of recently developed experimental techniques
to control phases by carrier doping and strain on a transistor
device using a thin single crystal of κ-(ET)2X [104,105]. If
the AFM phase and the SC phase appear in adjacent regions of
the sample, the coexistence can be realized via the proximity
effect.

Furthermore, our results show the double-Q structure
because of the twofold rotation (or inversion) symmetry.
Therefore, two possible forms of the order parameter are
considered for the SC state below Tc: the single-Q (FF) state
with �(r) ∼ exp(iQopt · r) and the multi-Q (LO) state with
�(r) ∼ cos(Qopt · r) (r: real-space coordinate). In the case
of the Zeeman-field-induced FFLO state, clean isotropic s-
wave superconductors prefer the multi-Q phase rather than
the single-Q phase [72,106], whereas both FF and LO

states appear in anisotropic superconductors with nonmag-
netic impurities [107]. Since the impurity effect is generally
considered to be small in organic conductors, we speculate
that the multi-Q LO state is more stable in the coexisting state
of the AFM and SC orders. If the LO state is realized, the
modulation of the SC order may be observable by scanning
tunneling spectroscopy. To actually determine which state is
stabilized in the anisotropic splitting, solving the Bogoliubov–
de Gennes equation or constructing the Ginzburg-Landau
theory is needed, which is beyond the scope of the paper.

We here remark on the critical molecular field for the
transition to the FFLO state. In the case of the FFLO su-
perconductivity stabilized by an external magnetic field, the
transition occurs when the Zeeman field becomes comparable
to the magnitude of the SC order parameter at zero temper-
ature �(T = 0), which was shown by a mean-field analysis
[108]. A previous study on a single-band model introducing
the anisotropic spin splitting demonstrated that the transition
from a uniform d-wave SC state to a pair-density-wave (i.e.,
FFLO) state occurs also when the energy scale of the spin
splitting approximately corresponds to �(0) [31]. Therefore,
one may expect that the critical AFM molecular field for the
emergence of the FFLO state is given by |h| ∼ �(0) in our
case as well. However, such a clear criterion is not easily seen
here, because of the following three reasons. First, the magni-
tude of the anisotropic spin splitting is not a simple function
of h since it sensitively depends on the carrier density, the
real-space anisotropy of hopping integrals, and the resulting
shape of Fermi surfaces. Second, interband interactions as
well as intraband ones alter the critical field, as indicated by
the comparison between the effective model (Fig. 4) and the
Hubbard model (Fig. 6). Third, the stability of the FFLO state
is strongly related to the symmetry of the SC order parameter,
as shown by the difference between Figs. 4(a) and 4(b) in the
effective model analysis. These reasons are attributed to the
multiband and anisotropic properties of our model, both of
which are inherent in realistic altermagnetic materials.
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Our theoretical proposal of the AFM-induced FFLO su-
perconductivity is applicable not only to κ-type organic
conductors but also to many other materials hosting the un-
usual q = 0 AFM (or magnetic octupole/altermagnetic) order
with anisotropic spin splitting, which have recently attracted
much interest [21–26]. Indeed, a recent theoretical study [35]
has proposed that Cooper pairs in altermagnets acquire fi-
nite COM momentum through the analysis of a Cooper-pair
propagator [109] in a continuum model. We should note
that, unlike the case of the Zeeman field where highly two-
dimensional compounds are required for the realization of the
FFLO state to avoid orbital breaking, the mechanism here is
free from such an effect; therefore, three-dimensional com-
pounds can also be candidates, expanding the scope of target
materials.

VI. SUMMARY

In this paper, we microscopically investigated the prop-
erty of superconductivity coexisting with the AFM order in
(carrier-doped) κ-(ET)2X . By considering the effective theory
with intraband attractive interactions, we found that FFLO
superconductivity with finite COM momentum can be sta-
bilized by the anisotropic spin splitting in the AFM phase.
Then we considered the on-site repulsive Hubbard model as a
more realistic situation and analyzed the linearized Eliashberg
equation based on the FLEX approximation. As a result, the
FFLO state is realized in the hole-doped AFM state with
comparatively large spin splitting. In the whole calculations,
we adopt the anisotropic order parameter with extended s +
dx2−y2 -wave (A1) or dxy-wave (A2) symmetry, the latter of
which has nodes coinciding with the zeros of spin splitting and
is more likely to induce the FFLO state. This indicates that the
anisotropic superconductivity is important for the appearance
of the finite-momentum state in the anisotropic spin splitting
[31,110].

This finding paves a way to search for the FFLO state
for the following reasons. As we mentioned in Introduction,
the occurrence of the FFLO superconductivity was originally
suggested in high magnetic fields with the strong Zeeman
effect, whereas a concomitant orbital pair breaking effect with
vortex states obstructs the observation of the FFLO state.
On the other hand, the AFM-induced FFLO state is realized
without an external magnetic field, and thus free from vor-
tices. Therefore, the AFM state with spin splitting can be a
good platform to realize the exotic FFLO superconductivity.
Another distinction of the AFM state from the Zeeman field
is that the magnitude of the spin splitting strongly depends on
the carrier density, even when the energy scale of the AFM
molecular is unchanged. Therefore, the spatial modulation of
the FFLO order may be controllable by carrier doping. Finally,
we believe that our theory provides a foundation for further
investigations of exotic superconductivity in the spin-splitting
AFM state.
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APPENDIX A: SYMMETRY OF SUSCEPTIBILITY

We show that the phase factor e−iq·(rl1 −rl3 ) in the multipole
susceptibility [Eq. (35)] is necessary to satisfy the crystal
symmetry of the system. Conversely, the susceptibility breaks
some (nonsymmorphic) symmetries if the phase factor is not
taken into account, which can be understood by consider-
ing two distinct definitions of Fourier transformation. Note
that the discussions in this Appendix have overlaps with
Ref. [111].

1. Preliminary: Fourier transformation

We here introduce two different definitions of the Fourier
transformation between the real and momentum spaces. First,
let H0 be a tight-binding Hamiltonian with spin and sublattice
degrees of freedom [112],

H0 =
∑
R,R′

∑
l,l ′

∑
s,s′

c†
R,lsH0(R − R′)ls,l ′s′cR′,l ′s′ , (A1)

where cR,ls is the annihilation operator of an electron with
spin s at sublattice l in unit cell R. Note that the electron is
localized at the site (molecule) on R + rl in the real space.
Then we consider the Fourier transformation with the internal
coordinate rl (convention 1) defined by

c̃k,ls =
∑

R

e−ik·(R+rl )cR,ls, c̃R,ls = 1

N

∑
k

eik·(R+rl )ck,ls,

(A2)
where the tilde on a character means being associated with
convention 1, which is the case for other operators in the
following. In this convention, the Hamiltonian is given by

H0 = 1

N

∑
k

∑
l,l ′

∑
s,s′

c̃†
k,lsH̃0(k)ls,l ′s′ c̃k,l ′s′ , (A3)

where the momentum-space Hamiltonian

H̃0(k)ls,l ′s′ =
∑

R

e−ik·(R+rl −rl′ )H0(R)ls,l ′s′ (A4)

is not invariant under the transformation k �→ k + G, with G
being a reciprocal lattice vector. In other words, the Hamil-
tonian matrix ˆ̃H0(k), in general, breaks the periodicity of the
Brillouin zone.

Another definition of the Fourier transformation without
the internal coordinate (convention 2) is given by

ck,ls =
∑

R

e−ik·RcR,ls, cR,ls = 1

N

∑
k

eik·Rck,ls, (A5)
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(tilde is not used). The Hamiltonian in convention 2 is

H0 = 1

N

∑
k

∑
l,l ′

∑
s,s′

c†
k,lsH0(k)ls,l ′s′ck,l ′s′ , (A6)

H0(k)ls,l ′s′ =
∑

R

e−ik·RH0(R)ls,l ′s′ . (A7)

Therefore, the Hamiltonian matrix Ĥ0(k) is invariant under
k �→ k + G, and thus satisfies the periodicity of the Brillouin
zone. This property is compatible with the calculation of
a topological invariant and the fast Fourier transformation
(FFT) technique. In this paper, we basically adopt convention
2 for the formulation of the Hamiltonian [Eq. (3)], since we
need to use the FFT in numerical calculations of Green’s
functions in Sec. IV.

Now we consider the transformation property under
symmetry operations. Let g = {pg|ag} ∈ G be a symmetry
operator in space group G of the system, where {pg|ag} is the
Seitz notation with pg and ag being the point group operation
and translation, respectively. The electron annihilation opera-
tor in the real space transforms under g as

gcR,lsg
−1 =

∑
s′

cR′,gl,s′D(spin)(g)s′,s

(R′ := pgR + pgrl + ag − rgl ), (A8)

where D̂(spin)(g) is a unitary representation matrix of g with
respect to the spin degree of freedom. Using the relation, we
can derive the transformation property of the creation operator
in the momentum space:

gc̃k,lsg
−1 = eipgk·ag

∑
s′

c̃pgk,gl,s′D(spin)(g)s′,s (A9)

in convention 1, and

gck,lsg
−1 = eipgk·(ag+pgrl −rgl )

∑
s′

cpgk,gl,s′D(spin)(g)s′,s (A10)

in convention 2. Depending on the conventions, the phase
factors in the transformation are different. Also, the unitary
matrix representing the symmetry operation g is defined by

Ũg(k)ls,l ′s′ := eipgk·agδl,gl ′D
(spin)(g)s,s′ (A11)

in convention 1 and

Ug(k)ls,l ′s′ := eipgk·(ag+pgrl −rgl )δl,gl ′D
(spin)(g)s,s′ (A12)

in convention 2. Equation (A12) corresponds to the unitary
matrices in Eqs. (7) of the main text.

2. Susceptibility

Based on the above preliminaries, we demonstrate that
the dynamical susceptibility breaks some symmetries in con-
vention 2, whereas that in convention 1 preserves all the
symmetries. Here we choose the longitudinal FM (LFM) spin
susceptibility for the model of κ-(ET)2X that we treated in the
main text with G = p2gg as an example; the generalization to
other susceptibilities and/or symmetries straightforward. For
this purpose, the spin operator on the sublattice l in the unit
cell R is defined by

si
l (R) :=

∑
s1,s2

c†
R,ls1

σ i
s1,s2

cR,ls2 (i = x, y, z). (A13)

In the momentum space, the spin operator is transformed as

s̃i
l (q) =

∑
R

e−iq·(R+rl )si
l (R) = 1

N

∑
k

∑
s1,s2

c̃†
k,ls1

σ i
s1,s2

c̃k+q,ls2

(A14)

in convention 1 and

si
l (q) =

∑
R

e−iq·Rsi
l (R) = 1

N

∑
k

∑
s1,s2

c†
k,ls1

σ i
s1,s2

ck+q,ls2

(A15)

in convention 2. Using Eqs. (A9) and (A10), we next derive
the transformation property of the longitudinal (z direction)
spin under g ∈ G. After some algebra, it is given by

gs̃z
l (q)g−1 = eipgq·ag s̃z

gl (pgq)DB2 (pg) (A16)

in convention 1 and

gsz
l (q)g−1 = eipgq·(ag+pgrl −rgl )sz

gl (pgq)DB2 (pg) (A17)

in convention 2, where DB2 (pg) represents the character of the
B2 irrep of the point group C2v (see Table I), since the spin

matrix transforms as σ̂z
E ,C2z�−−→ σ̂z and σ̂z

Gx,Gy�−−−→ −σ̂z.
Using these spin operators, the LFM spin susceptibility is

defined by

χ̃LFM(q, iωn) :=
∑
l,l ′

∫ β

0
dτ eiωnτ

〈
Tτ s̃z

l (q, τ )s̃z
l ′ (−q, 0)

〉
(A18)

in convention 1 and

χLFM(q, iωn) :=
∑
l,l ′

∫ β

0
dτ eiωnτ

〈
Tτ sz

l (q, τ )sz
l ′ (−q, 0)

〉
(A19)

in convention 2. Therefore, we just have to inves-
tigate the transformation property of

∑
l,l ′ s̃z

l (q)s̃z
l ′ (−q)

[
∑

l,l ′ sz
l (q)sz

l ′ (−q)] under g in convention 1 (2), using the
relations Eqs. (A16) and (A17). Then we obtain the following
equation in convention 1:

χ̃LFM(q, iωn) =
∑
l,l ′

∫ β

0
dτ eiωnτ

〈
Tτ s̃z

l (pgq, τ )s̃z
l ′ (−pgq, 0)

〉
= χ̃LFM(pgq, iωn), ∀g ∈ p2gg, (A20)

which indicates that the susceptibility is invariant under any
operation in point group C2v . In convention 2, on the other
hand, the similar calculations result in

χLFM(q, iωn) =
∑
l,l ′

eipgq·(pgrl −rgl −pgrl′+rgl′ )

×
∫ β

0
dτ eiωnτ

〈
Tτ sz

l (pgq, τ )sz
l ′ (−pgq, 0)

〉
,

(A21)

where the phase factor eipgq·(pgrl −rgl −pgrl′ +rgl′ ) has a nontrivial
contribution for the nonsymmorphic symmetries g = Gx and
Gy, while it is identity for g = E and C2v . Therefore, the
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FIG. 7. The LFM spin susceptibility defined for n = 1.5 and
h = 0 in (a) convention 1 [Eq. (A18)] and (b) convention 2
[Eq. (A19)]. In (b), the susceptibility breaks the glide symmetries
Gx and Gy.

susceptibility in convention 2 breaks Gx and Gy. Indeed, we
can see the symmetry properties of the LFM spin susceptibil-
ity displayed in Fig. 7. In convention 1, all the C2v symmetry
is conserved [Fig. 7(a)], whereas the two glide symmetries are
broken in convention 2 [Fig. 7(b)].

Finally, we explain how to recover the broken symmetry
of the susceptibility calculated in convention 2. By using the
relation

s̃i
l (q)s̃ j

l ′ (−q) = e−iq·(rl −rl′ )si
l (q)s j

l ′ (−q), (A22)

the spin susceptibility in convention 1 [Eq. (A18)] is rewritten
as

χ̃LFM(q, iωn) =
∑
l,l ′

e−iq·(rl −rl′ )

×
∫ β

0
dτ eiωnτ

〈
Tτ sz

l (q, τ )sz
l ′ (−q, 0)

〉
. (A23)

Note that the spin operators in the integrand have no tilde
symbol. Therefore, the broken (nonsymmorphic) symmetry
can be recovered by multiplying the phase factor e−iq·(rl −rl′ )

to the integral calculated in convention 2. That is the reason
we include the phase factor in Eq. (35). In all calculations
of the susceptibility except Fig. 7(b), we use the internal
coordinates rA = (0, 0), rB = (1/2, 1/2), rC = (1/2, 0), and
rD = (0, 1/2), where the four sublattices (molecules) are ar-
ranged like the Shastry–Sutherland lattice [113].

APPENDIX B: RESULTS IN UNDOPED REGIME

We here show the analyses in the undoped case (n = 1.5),
while the electron- and hole-doped regimes are discussed
in the main text. Figures 8(a) and 8(b) represent numerical
results in the paramagnetic (h = 0 eV) and AFM metal (h =
0.1 eV) phases, respectively. First, the calculations of X (0)

SC (Q)
within the effective intraband model (Sec. III) are given by
the middle panels, in which the dxy-wave (A2) interaction is
assumed. The SC susceptibility reaches a maximum at Q = 0
in both cases, which indicates the conventional BCS state is
stable even when the AFM order coexists. Second, in the

FIG. 8. Results in the undoped case (n = 1.5) for (a) h = 0 eV and (b) h = 0.1 eV. The temperature T is set to 1 meV. Left panels: The
renormalized Fermi surfaces (orange solid and green dashed lines) and the noninteracting Fermi surfaces (red solid and blue dashed lines).
Middle and right panels: X (0)

SC (Q) and the LAFM spin susceptibility.

043171-12



FULDE-FERRELL-LARKIN-OVCHINNIKOV STATE … PHYSICAL REVIEW RESEARCH 5, 043171 (2023)

0
50

100
150
200
250

LAFM
TAFM

0

20

40

60

80
LAFM
TAFM

0
10
20
30
40
50

LAFM
TAFM

4
6
8

10
12
14
16

LAFM
TAFM

8.2
8.3
8.4
8.5
8.6
8.7

LAFM
TAFM

6

7

8

9

10
LAFM
TAFM

4.5
5

5.5
6

6.5
7

0 0.05 0.1 0.15 0.2

h [eV]

LAFM
TAFM

2

3

4

5

6

0 0.05 0.1 0.15 0.2

h [eV]

LAFM
TAFM

1.6

2

2.4

2.8

3.2

0 0.05 0.1 0.15 0.2

h [eV]

LAFM
TAFM

n = 1.30 n = 1.35 n = 1.40

n = 1.45 n = 1.50 n = 1.55

n = 1.60 n = 1.65 n = 1.70

FIG. 9. The molecular field h dependence of the AFM fluctuations for each filling. The maxima of the LAFM and TAFM spin susceptibil-
ities are shown. Both are degenerate for h = 0 due to the absence of the spin–orbit coupling.

right panels of Fig. 8, the LAFM spin susceptibility in the
Hubbard model (Sec. IV) is plotted. We also confirmed that
the structure of the FM spin susceptibility for h = 0 [Fig. 7(a)]
is consistent with previous theoretical results based on the
RPA [89] and the FLEX approximation [87]. The correlation
effect largely appears for h = 0.1 eV as a renormalization of
the Fermi surfaces, while such an effect is vanishingly small
for h = 0 (see the left panels).

APPENDIX C: LAFM AND TAFM SPIN FLUCTUATIONS

We show the results of the LAFM and TAFM spin sus-
ceptibilities in Fig. 9, in the Hubbard model (Sec. IV) for
several parameter sets. In particular, the TAFM fluctuations
for the large h in the hole-doped regime are strongly en-
hanced, where the momentum dependence is exhibited in
Fig. 5(d).
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Miyagawa, K. Kanoda, and V. F. Mitrović, Evidence of An-
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