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Correlated sampling has wide-ranging applications in Monte Carlo calculations. When branching random
walks are involved, as commonly found in many algorithms in quantum physics and electronic structure,
population control is typically not applied with correlated sampling due to technical difficulties. This hinders
the stability and efficiency of correlated sampling. In this paper, we study schemes for allowing birth/death in
correlated sampling and propose an algorithm for population control. The algorithm can be realized in several
variants depending on the application. One variant is a static method that creates a reference run and allows other
correlated calculations to be added a posteriori. Another optimizes the population control for a set of correlated,
concurrent runs dynamically. These approaches are tested in different applications in quantum systems, including
both the Hubbard model and electronic structure calculations in real materials.
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I. INTRODUCTION

Monte Carlo (MC) methods [1] are widely used in en-
gineering [2], physics [3-7], reliability theory [8], queuing
theory [9], finance [10], etc. In many applications, MC meth-
ods are used to solve the underlying differential or integral
equations of the processes or systems in a stochastic way.
This is often achieved by random walks that are typically con-
structed by Markov chains, where the transition probability is
designed to reflect the characteristic of the system.

In a broad class of algorithms, a random walker gains a
weight that fluctuates as the random walk proceeds, leading to
an exponentially increasing variance [11]. To solve this prob-
lem, the random walk is designed to be carried out by multiple
walkers simultaneously with branching [1,11-13]. Branching
random walks duplicate the walkers with large weights and
eliminate walkers with small weights under certain proba-
bilities. In addition, to avoid the unbounded fluctuation of
the total population, population control is generally applied
[11,13,14]. During the random walk, samples are collected,
and the weighted average of all the samples gives a MC
representation of the target quantity. Branching random walk
algorithms are widely applied in the study of ground-state
[4,15,16] (and even finite-temperature [17]) properties of in-
teracting quantum many-body systems.

In quantum physics or chemistry, the difference between
two closely related systems is often of great interest and
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importance. Examples include binding energies and gaps,
redox potential, and reactions. In addition, other observables,
such as forces in molecules and solids [18,19] and order
parameters in lattice models [20], can be obtained by
computing energy derivatives based on finite difference.
Quantities computed from MC methods naturally contain
statistical errors. When taking their differences, the statistical
errors are propagated into the target quantity. If the differences
are small, the signal-to-noise ratio would be low.

Correlated sampling [1,21] is generally applied in the MC
calculation of the energy differences and gradients to re-
duce the statistical noise. A considerable amount of work
has been done to develop and apply correlated sampling to
various forms of quantum MC methods, including variational
MC (VMC) calculation of potential energy curves [22] and
particle-hole excitations [23]; VMC optimization of trial wave
functions [24,25]; Green’s function MC (GFMC) and diffu-
sion MC (DMC) calculation of potential energy curves and
bond lengths [26], H3 cations [27], the dipole moment of LiH
[28], and forces as well as polarizabilities [29]; and phase-
less auxiliary field quantum MC (Ph-AFQMC) calculation of
bond dissociation energies, ionization potentials, and electron
affinities [30]. Recent advances with automatic differentiation
(AD) offers the promise for computing gradients more accu-
rately and conveniently without correlated sampling (see, e.g.,
Refs. [31,32]). However, there are important situations which
do not lend themselves readily to AD, for example, in the
computation of ionization potentials or gaps or excitations.

Combining branching random walks and correlated sam-
pling is not straightforward. The difficulty originates from
branching decorrelating the random walks in different sys-
tems. Even when the systems are very close, branching can
eventually cause the random walks to deviate and the corre-
lations between them to then quickly deteriorate. To prolong
correlation, typically correlated sampling calculations forgo
branching and population control [30], instead simply keeping
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the weights of walkers. This exacerbates the asymptotic insta-
bility of the calculation. To our knowledge, population control
algorithms have not been discussed in correlated sampling cal-
culations, nor has there been a systematic study of how it can
affect the efficiency, accuracy, and stability of the calculation.

In this paper, we propose an algorithm for branching and
population control in correlated sampling, which ensures sta-
bility and thus prolongs the correlation time. Our correlated
sampling schemes with branching and population control are
then tested in ground-state AFQMC calculations, in both the
Hubbard model and a periodic solid system. The statistical
fluctuation is found to be significantly reduced compared
with that of the runs without correlated sampling, and the
correlations between the runs are sustained for significantly
longer compared with correlated sampling without popula-
tion control. Although our population control algorithms are
implemented and studied within AFQMC, they apply to any
correlated sampling calculations that involve branching ran-
dom walks, as further discussed below.

The rest of the paper is structured as follows. In Sec. II,
we provide a brief overview of correlated sampling as well as
branching and population control. This is followed in Sec. III
by a description of our population control algorithms, together
with discussions on the metrics to quantify the performance
of correlated sampling. The test results in the Hubbard model
and real materials are shown in Sec. IV. Then we conclude in
Sec. V.

II. MOTIVATION

The expectation value of a quantity A(x) measured from a
probability distribution of x is expressed by an integral over
the probability distribution function (PDF) p(x):

[ p(x)A(x)dx
Ay = L I
“ [ plx)dx

where p(x) can be, for example, the partition function Z in
statistical physics or the probability density |¥|? for a quan-
tum state. The variance of A describes the spread of A for
different x values:

ey

_ [ p@IAE) - (A)Pdx
f p(x)dx

If the integral in Eq. (1) is in high-dimensional space, one
typically uses the MC method to evaluate it.

MC samples form a stochastic representation of the PDF
p(x) = >, wi(x — x;). The MC estimation of quantity A is
then given by

ar(A)

@

quv: 1 Wn A(x,)
Zf'vzn Wy
which approaches the expectation value of A as the number of
samples N increases: |[{A) — Amc| 1/JN [3,33] according

to the law of large numbers.
Sometimes we are interested in the difference between two
quantities A and B. When computing the difference A — B via

the MC method, its variance var(A — B) can be expressed as
follows [1,34]:

var(A — B) = var(A) + var(B) — 2Cov(A, B). “4)

, 3
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FIG. 1. Schematic illustration of the effect of correlated sam-
pling in computing the differences. The left panels show uncorrelated
calculations, while the right panels show correlated sampling. Hor-
izontal axes give Monte Carlo time, i.e., index of the branching
random walk steps. The top panels give snapshot measurements in
two separate calculations for A and B, while the bottom panels show
the computed difference.

Here,
Cov(A, B) = (AB) — (A)(B) &)

denotes the covariance of the two quantities. If the two
quantities are independently sampled—in other words, their
covariance is zero—the variance of the difference would be
the sum of the variance of A and B, as illustrated in the left
column of Fig. 1. However, if one can correlate the sampling
of the two quantities, for example, by using the same random
number stream, to maximize the covariance, the statistical
error of their difference will be minimized. The ideal case
occurs when correlation is perfect, 2Cov(A, B) = var(A) +
var(B), and A — B is a constant so that the difference is ob-
tained with no statistical fluctuation, as shown in the right
panel of Fig. 1. This motivates the idea of correlated sampling.

In random walks that involve branching and population
control, for instance, the AFQMC method [16], the imple-
mentation of correlated sampling is not straightforward. This
is due to an inherent conflict between correlated sampling
and branching random walks, as illustrated in Fig. 2. Panel
(b) shows the energy fluctuations for three correlated runs,
without population control. Early on in the calculations (a
small number of random walk steps), the correlation is strong,
and the runs lead to much reduced fluctuations in the esti-
mated differences. This mode has been very useful in quantum
chemistry calculations [30,35]. As time goes on, however, the
weights will fluctuate a lot more in the absence of branch-
ing and population control, causing larger statistical noise in
each measured result from Eq. (3), hence also larger noise in
the differences. Doing individual and separate branching and
population control in each run will break down the correla-
tion rapidly, as shown in panel (c). Since the systems being
correlated are not identical, their random walks branch with
different rates. As soon as population control leads to different
branching decisions (e.g., extra walker or elimination of a
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(a) Uncorr. Samp. + Indep. Pop. Ctrl.
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FIG. 2. Schematic illustration of the conflict between correlated
sampling and branching and population control. (a) Uncorrelated
calculations of three closely related systems incur independent noise
and hence large fluctuations in estimating the differences. (b) In cor-
related sampling without population control, runs remain correlated
as random walk proceeds, but large fluctuations in weights make
the statistical error grow rapidly. (c¢) In correlated sampling with
independent population control, separate branching can cause the
runs to decorrelate quickly. (d) Algorithm for branching and pop-
ulation control in correlated sampling aims to maximize efficiency
and prolong correlation.

walker in one run), a correlation between the different runs
will be lost. The idea of this paper is to incorporate branching
and population control in a correlated manner between the

different runs [panel (d)], which allows the calculations to stay
well correlated for a much longer time.

III. BRANCHING AND POPULATION CONTROL
IN CORRELATED SAMPLING

In this section, we introduce our algorithm for branching
and population control in correlated sampling. The algorithm
is described in a flowchart in Fig. 3. We will assume that M
systems (runs) are correlated, each with a population size N.
The weights of run m are given by {w, ,} with walker index
n=1,...,N. Walkers from different runs with index n are
correlated. As the walkers are propagated and branched, this
set of correlated walkers must follow the same branching path
to delay decorrelation.

To implement this, a reference weight is derived from each
set of correlated walkers through some user-defined function:

ﬁ}n Ef(wn,ls wn,Zv-stn,M)- (6)
A universal choice of f is taken and applied to all n, but as we
further discuss below, the form of the function is flexible. For
instance, f could be the max function to take the maximum
weight in each correlated walker set, or the average function,
or it could take the weight of a specific system (fixed m,
but see below), etc. The reference weights {@,} are then fed
into a normal branching and population control routine, i.e.,
one that is conventionally used in the branching random walk
without correlated sampling. This outputs a set of branching
and population control decisions on the reference weights, in
the form of a new set of weights {@/}. We then update the
actual walker weights in each run by keeping constant the ratio

g Case 1 h
( )
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r
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FIG. 3. Flowchart of the branching and population control algorithm in correlated sampling. Walker weights prior (subsequent) to
population control are denoted by w (). (W), where p(n) is the index of the parent walker of the nth walker from the population control
decision, with M correlated systems/runs and N walkers for each system. The reference weights {i,,} are obtained via f and fed into
population control, which gives output decisions represented by a new set of reference weights {@;,}. The individual weights are then updated

accordingly.
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TABLE 1. Characteristics of the three implementations of the
branching and population control algorithm in correlated sampling.

Add Synchronous No. reference

runs run runs
Dynamic N Y >1
Static Y N 1
Semidynamic Y Y >1
between the new and old weights:

w
w;,m = Wp(n),m ,._n’ (7)
Wp(n)

where p(n) is the index of the parent walker for n from the
population control decision.

Various realizations exist for the branching and population
control algorithm, in part depending on the choice of f, which
can lead to different implementations that emphasize different
aspects of the computation or programming and can have
relative advantages and disadvantages:

(1) Carry out all the correlated runs concurrently, where
the reference walker weights are derived from each correlated
walker set on the fly. In this way, the branching and population
control are optimized dynamically, and we refer to this as the
dynamic realization. All the choices for f mentioned above
are possible within this scheme.

(2) Conduct a single MC run as the reference run and
record the reference weights, which store the branching and
population control decisions made therein. Other correlated
runs (child runs) are then added freely afterward, following
the reference weight and branching decisions in the reference
run. We refer to this as the static realization. In this scheme,
the function f must be based on a single run index m which is
the reference run.

(3) Combining (1) and (2), one can record the branching
and population control decisions from a dynamic run, then add
subsequent runs where the decisions are applied. We refer to
this as a semidynamic realization.

We summarize the characteristics of the three methods in
Table I.

In the static realization in (2), the function f has limited
choices since we only have knowledge of the walker weights
in the reference system. We also need to consider that walkers
with zero (or very small) weights need to be carried through
and not population controlled because other unknown runs
might have nonzero (or much larger) weights. Our choice for
the reference weight for the static realization of population
control is

Wy,1 > Wih
otherwise,

®)

~ wn, 1s

Wn = { Wgafe -
where m = 1 labels the reference run, wy, is a small positive
number, and wg,y 1S a positive number that ensures a walker
with w, ;| = wy, or smaller will yield exactly one copy in the
population control. Alternatively, for general population con-
trol algorithms, one can simply use &, = w, ; and manually
prevent branching in all runs for this walker when w,, | < wy,.

The goal of a correlated branching and population control
algorithm is to prolong the time during which the systems
remain well correlated. Even with branching and population
control, the correlation will degrade eventually for each set
of correlated walkers and for the entire systems. Small dif-
ferences in walker weights in a set of correlated walkers
accumulate over time to become large differences, and the
probability of a rare event (e.g., one walker in a correlated
run is killed while others retain a significant weight) will also
increase.

We monitor the level of correlation with a number of
metrics. For example, we can take the standard deviation
of the walker weight for each correlated walker group and
normalize it with respect to its mean as a measure of the
relative weight fluctuation. The average across the entire
population:

M 2
Mhthe [y o
m Wn,m

then gives a simple global indicator. A Q value larger than
a few, for instance, would indicate a significant dispersion
of the weight among the correlated runs. This way we could
examine the quality of the correlation on the fly (as a function
of random walk steps) and stop the calculation when it reaches
a certain level. The walker weights are the only quantities
needed in this process.

To maximize utilization of the well-correlated period,
we minimize the equilibration time by starting correlated
sampling with an equilibrated walker set from one of the cor-
related systems. This is called the preliminary equilibration
scheme and was proposed by Shee et al. [30] previously. To
improve statistics and reduce error bars, it is typically more
efficient to repeat the entire procedure multiple times with dif-
ferent random seeds. If the correlation between the correlated
runs remains significant (e.g., as indicated by a small Q metric
value) beyond the autocorrelation time of the measurements in
the individual runs, then we can make multiple measurement
blocks to collect more data.

In the dynamic realization, instead of the preliminary equi-
libration scheme, we reset the concurrent runs periodically
to repeat the sampling, achieving an effective restart at ev-
ery reset which accomplishes the same goal. Note that the
sampling needs to be equilibrated again (re-equilibration) af-
ter each reset. Specifically, a reset period is chosen before
the calculation; once the propagation imaginary time reaches
this specified reset period, we reset the run by copying the
walkers of one of the correlated systems (we call it the
reference system, and it can be chosen arbitrarily) to other
systems. In Fig. 4, we show a schematic of the reset method
for dynamic branching and population control in correlated
sampling, using Ph-AFQMC as an example. Note that, in
both schemes, a reweighting is needed, as the underlying
importance functions are typically different between the two
systems. (In Ph-AFQMC, this is reflected by the different trial
wave functions |Wr;) and |Wr;) for Systems 1 and 2, respec-
tively.) When the population of System 2 is replaced by the
surrogate population from System 1, the probability density is
modified, hence the jumps in the computed expectations in the
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System 2

\\L _____________

System 1

T

FIG. 4. Schematic illustration of the reset method used in dy-
namic correlated sampling. The computed energies are shown for
two systems as a function of random walk time steps (projection time
7 in Ph-AFQMC) starting from equilibration. System 1 is chosen
(arbitrarily) as the reference. At reset, the population of System 2 is
replaced by that of System 1, which causes the jumps in the com-
puted expectation value in System 2. The jump magnitude reaches a
constant when both systems have equilibrated. Extra steps are needed
for re-equilibrating System 2 after every reset.

illustration. The dynamic reset method provides a natural way
to continue the correlated sampling runs to improve statistics,
more in the spirit of regular branching random walks.

IV. RESULTS

In this section, we show test results in two very different
classes of problems. We use the AFQMC method [15,16]
applied to the ground state of the Hubbard model and to
solid silicon. They provide a spectrum of tests in real-world
problems which are sufficiently challenging and of strong
current research interest in quantum physics. Both static and
dynamic realizations of the population control algorithm will
be tested. The different types of quantum MC algorithms (a
lattice problem with local interactions in the former and a
continuum problem with long-range interactions in the lat-
ter) allow us to do so under different, general conditions.
Rather than obtaining new physical results, our focus here
is on testing, illustrating, and studying the population control
algorithm and correlated sampling. The physical quantities we
will compute are simple and well understood, so that we can
benchmark the results straightforwardly. To cleanly separate
out the effects of correlated sampling and population control,
we use the same type of trial wave functions throughout the
set of computations

The implementation details are very different for the two
classes of problems we consider here as well as the behav-
iors of the algorithms. We refer readers to the literature for
further discussions. For understanding the tests below, it suf-
fices to recall that the AFQMC method [3,34,36] projects out
the ground state of a Hamiltonian A by applying e ™ 1o
yield

() o Y wP|e)/ (wr|e). (10)

where t denotes projection time and |y (7)) = |Y¥g) the

desired ground state. The projection is realized by a branching
random walk whose time step is represented by t, in which n
is the index of the random walker, and w, is the weight. The
random walker |¢,) lives in a space of Slater determinants
determined by the details of the problem, and (Y¥r|¢,) is an
importance function defined by a known trial wave function
[Yr). The random walkers are propagated in the manifold of
Slater determinants via a set of random auxiliary fields, x:
B(x)|¢p™)) — |¢(”)) (with 7 = t 4+ At being the next step
in the random walk). In this framework, it is convenient and
straightforward to think of correlated sampling as correlating
the multidimensional auxiliary fields x. (See Ref. [15] for a
way to cast DMC [4] in this framework.) We will correlate
multiple runs for different but related Hamiltonians ﬁm, with
different predefined | ¥ ), producing |¥,,(7)). It is important
to note that, in the context of the population control algorithm,
the weights w(') are the only objects we will need to deal
with.

A. Hubbard model

We study the ground state of the Hubbard model on a
square lattice [37], one of the fundamental models in quantum
many-body physics:

H=—t) elejg+U i, (11)
(ij)o i

where ¢ is the hopping parameter, U the on-site interaction,
6; (Cjo ) creates (annihilates) an electron with spin o at site i
(), and (...) refers to the nearest-neighbor hopping. We will
focus on computing the double occupancy

D= (Yl Y unhiy ¥c), (12)

which is directly proportional to the interaction energy and
which provides an important measure to the nature of electron
correlation. (Note that the physical double occupancy on each
lattice site is given by D divided by the number of lattice sites.)
Using the Hellman-Feynman theorem:

D=<1/fcld—H|1ﬁG>=dE, 13)
dUu du
where the derivative on the right-hand side can be evaluated
by finite difference:
dEg| . Eqg(U +48U)—Eg(U —48U)
ao |, ~ 25U '

(14)

Thus, the double occupancy D for H can be computed by the
ground-state energy difference between two Hamiltonians H,
and H,, with U in Eq. (11) replaced by U; = U + 8U and
U, = U — §U, respectively.

We test the dynamic realization for branching and popu-
lation control in correlated sampling to compute the double
occupancy D. We first study a small system of lattice size
4 x 4, U/t = 4.0, at half-filling with periodic boundary con-
ditions along both x and y directions. The trial wave functions
were generated from the generalized Hartree-Fock method
with effective on-site interaction U [38,39]. The benchmark
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FIG. 5. Double occupancy D as a function of projection time
obtained from uncorrelated, correlated sampling with no population
control and correlated sampling with population control calculations.
These error bars are estimated from 40 resets (or 40 repeated runs
for the uncorrelated calculations). In each reset or each run, a (re-
)equilibration time of v = 1.2 is discarded and not shown in the
plot. The random walk step size is T = 0.01. In the upper panel, the
statistical error bar is only shown at ¢ = 1.21 and 7.61 for clarity, but
in the lower panel, it is plotted for each data point. The cumulatively
averaged results are shown in the inset. The horizontal black solid
line in the upper panel is from exact diagonalization. The system
is L, = L, =4, U/t =4, at half-filling with periodic boundary con-
ditions. D is computed using finite difference as in Eq. (14), with
38U = 0.01. Note that the vertical axis of the lower panel is in log
scale.

results are shown in Fig. 5. Here, each random walk step
corresponds to an increment of T of At = 0.01. Results at
the same imaginary time relative to the reset points are aver-
aged to estimate the statistical error. We can see that results
are all consistent with the exact answer. In the uncorrelated
run, the statistical fluctuation is large throughout the imag-
inary time propagation. While correlated sampling without
population control shows a significantly reduced error bar at
small 7, this reduction deteriorates as T increases, as expected.
Population controlled correlated sampling is seen to signifi-
cantly extend the correlation, reducing the statistical error by
more than a factor of 10 throughout the entire convergence
window in T.

—— Exact Result
—&— Correlated Sampling

1.848 x10~4
8_
1.846— =
w
3 .
w
°
1.844

1.842 'l |/ — 1 =
T

T . .
oU

FIG. 6. Accuracy of correlated sampling calculations of the en-

ergy derivative vs finite-difference size. Results are shown for a range

of 8U across many decades, for the same system as in Fig. 5. The

main figure is the computed result, and the inset shows the estimated

error bar. Computational cost is the same for each calculation. Note

the log scale on the x axes. The exact result is obtained from exact
diagonalization.

We next examine the behavior of correlated sampling vs
the proximity of the correlated systems, which is specified by
38U in the present system. In uncorrelated runs, the statistical
error grows in inverse proportion to §U, as given by Eq. (14).
The computed energy derivative dE /dU with correlated sam-
pling is shown in Fig. 6, for a range of U values spanning
many decades. The results are surprisingly robust. Only at
very large U values are systematic biases seen, indicating the
breakdown of the finite difference formula in approximating
the derivative. The statistical error is seen to be essentially
independent of U . This is highly advantageous, as very small
values of U can be used to ensure that the finite difference
yields an accurate estimate of the derivative, without increase
in computational cost.

The algorithm works equally well in larger system sizes,
and major computational efficiency gain is seen in realis-
tic system sizes in state-of-the-art calculations [38,40]. In
Table II, we show a simple comparison of correlated sampling
with population control vs uncorrelated calculations of the
double occupancy. For both types of calculations, §U was
fixed at 0.01. This is a reasonably safe choice to ensure that
the finite difference approximation in Eq. (14) remains re-
liable. The systems have U/t = 8, which are more strongly

TABLE II. Double occupancy computed from calculations us-
ing correlated sampling with population control (Corr. samp.) and
uncorrelated independent runs (Uncorr. samp.). Results are for the
Hubbard model at half-filling with U/t = 8, in periodic supercells
of size 4 x 4, 8 x 8 and 16 x 16. Note that the listed values are D
as defined in Eq. (12), not per site. Statistical errors are in the last
digit(s) as indicated in parentheses.

L Corr. samp. Uncorr. samp. Efficiency gain
4 x4 0.857(2) 0.92(9) 5.5 x 10°
8 x 8 3.472(5) 2.95(32) 1.4 x 10*
16 x 16 13.93(4) 13.0(14) 5.7 x 10°
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1.6

@ 6U=2
1.4{ B oU=1

FIG. 7. Monitoring the level of correlation in correlated sam-
pling. The efficiency gain over uncorrelated calculations, indicated
by the variance ratio ¢ /o, is plotted in the main figure vs the
metric Q of Eq. (9). Two examples with U = 1 and 2 are shown,
for the same system as in Fig. 5. The horizontal dashed line marks
o /owr = 1. The inset plots Q vs projection time t. All the curves
were smoothed by averaging many neighboring points.

correlated than the previous example. In all the runs here, the
error bars are estimated from 40 resets (or 40 repeat runs in
uncorrelated calculations) after equilibration. We quantify the
computational efficiency gain as

. s5)

Ocorrelated Téorrelated

2
(Uunconelated ) Tuncorrelated
where T is the total computational cost of a calculation (cor-
related or uncorrelated), and o is the corresponding statistical
error bar. A smaller choice of §U would make the computa-
tional efficiency gain grow inversely proportional to U?.

In Fig. 7, we illustrate how the index Q defined in Eq. (9)
can help monitor the quality of the correlation. We quantify
the superiority of the correlated sampling calculation over
the uncorrelated calculation through the variance ratio o /o,
where os denotes the variance of the uncorrelated sampling
calculation, which works as a reference. When this ratio ex-
ceeds 1, there is no longer any efficiency gain with correlated
sampling. To see the crossover more clearly, we deliberately
choose unnaturally large §U values. As is shown in the main
figure, o /oys increases with Q. In the inset, we see that Q
increases with projection time, and at the same 7 value, Q is
larger for larger §U. These observations are all as expected
from the nature of correlated sampling. The similar value of
Q where o /oyr crosses 1 in the main figure indicates that Q
gives a reasonably generic metric for measuring the proximity
of the correlated systems.

As a cross-check between the static and dynamic realiza-
tion, we tested the static realization in the system computed
in Fig. 5 with the same number of measurement blocks and
thus the same CPU time. It turns out the dynamic variant

gives slightly smaller statistical error [D = 1.8407(12)] than
the static variant [D = 1.8441(15)].

B. Real materials: Solid Si

Here, we perform a complimentary set of tests in ab
initio calculations of real materials in bulk silicon. Our
computations use plane-wave basis AFQMC [41] with
multiprojector norm-conserving pseudopotentials [42,43]. A
single-determinant trial wave function from density functional
theory is used. We focus on the diamond-structured Si, with
32 atoms in a body-centered cubic (BCC) supercell. [We apply
a twist boundary condition to the supercell using as the k
point the BCC Baldereschi point: (}‘, }U —%) in fractional
coordinates.] As such, the system is an interacting many-
body system with over 100 electrons and in excess of 9000
plane-waves (after the use of pseudopotentials), presenting a
stringent test of any correlated sampling approach. We mea-
sure the energy difference AE between two systems: one at
the minimum-energy or equilibrium geometry and the other
with one of the 32 Si atoms displaced by 0.01 A. The energy

@)

Edisp — Eeq [MRY]

—— No Corr.Samp.
{- Corr.Samp. no Pop.Ctl.
—5— Corr.Samp. + Pop.Ctl.

T 8| 10 T T
0 2 4 6 8 10
Propagation time t [Ry ']

1024 (b)

Statistical error [mRy]

Propagation time T [Ry~!]

FIG. 8. Performance improvement by correlated sampling with
population control in ab initio computations of the real material sili-
con. The difference in ground-state energies between two structures
in bulk Si is computed [E.q at equilibrium (diamond structure), and
Eg4is, with one of the atoms displaced by 0.01 A] by Ph-AFQMC, with
and without correlated sampling or population control. (a) shows this
energy difference, with a zoom-out view in the inset to demonstrate
the scale of the no-correlated-sampling run. (b) shows how the statis-
tical error evolves over t. The system is a 2 x 2 x 2 supercell with
32 Si atoms. The calculation consists of five pairs of runs per method,
each run with a total population of 800 random walkers.
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difference between the two systems can be used to compute
the force exerted on the displaced atom. Moreover, such en-
ergy differences are crucial for structural optimizations or
reaction pathway studies. Here, the static version of correlated
sampling population control is tested.

Figure 8 shows a comparison of the computed energy
difference of the two systems, using Ph-AFQMC without
correlated sampling, with correlated sampling but without
population control, and finally with our full algorithm of cor-
related sampling with population control. The total population
size (reflecting the total computational cost) is the same for
all three. The computed energy difference is around zero
since the structure is at equilibrium and the atomic force on
the displaced atom vanishes. Without correlated sampling,
the calculations show fluctuations which are 1-2 orders of
magnitude larger than with correlated sampling, as seen in
the inset of panel (a) or in panel (b). The main part of panel
(a) omits these results and shows only a magnified view of
the two correlated sampling results. Without population con-
trol, correlated sampling exhibits a clear increase in statistical
fluctuations with projection time. With population control,
the fluctuations are reduced. Furthermore, the growth with
random walk steps is much suppressed; in fact, it is barely
discernible in the range of projection time studied, which is
far greater than the time needed for the targeted difference to
reach convergence.

V. CONCLUSIONS AND OUTLOOK

In this paper, we proposed a branching and population
control algorithm for correlated sampling. The algorithm

is generally applicable to MC calculations that involve
branching random walks. We outlined several variants for
implementing the algorithm, which can be adapted based on
the calculational setup and the behavior of the underlying cor-
related sampling method. We also discussed the quantification
and validation of the effectiveness of correlated sampling. We
illustrated and tested our algorithm in the Hubbard model and
in ab initio solid calculations, using the ground-state AFQMC
method. The population control algorithm was shown to sig-
nificantly increase the efficiency of correlated sampling and
extend the duration of correlation as a function of random
walk time.

We expect that the algorithm will expand the range of
applicability of correlated sampling to larger systems and
more diverse and challenging problems. Many applications in
different areas can be pursued along these lines. In addition,
there is considerable room to improve the algorithm itself.
For example, in defining the function f or in implement-
ing branching/population control after the reference weights
are produced, we have only taken a first step and expect
considerable efficiency gain can be available with further
study.
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