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A quantum kicked rotor model is one of the promising systems to realize various Floquet topological phases.
We consider a double-kicked rotor model for a one-dimensional quasi-spin-1/2 Bose-Einstein condensate
with spin-dependent and spin-independent kicks which are implementable for cold atomic experiments. We
theoretically show that the model can realize all the Altland-Zirnbauer classes with nontrivial topology in one
dimension. In the case of class CII, we show that a pair of winding numbers (w0, wπ ) ∈ 2Z × 2Z featuring
the edge states at zero and π quasienergy, respectively, takes various values depending on the strengths of the
kicks. We also find that the winding numbers change to Z when we break the time-reversal and particle-hole
symmetries by changing the phase of a kicking lattice. We numerically confirm that the winding numbers can be
obtained by measuring the mean chiral displacement in the long-time limit in the present case with four internal
degrees of freedom. We further propose two feasible methods to experimentally realize the spin-dependent and
spin-independent kicks required for various topological phases.
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I. INTRODUCTION

Periodic driving to design topological phases has become
one of the fundamental techniques in recent studies of con-
densed matter physics. A time-periodic field, such as laser
fields radiating to electrons in solids and shaking external
potentials for ultracold atoms, introduces periodicity in the
frequency space, enabling us to manipulate the band topol-
ogy [1–6]. It is also possible to construct discrete time
evolution by a series of unitary operators, such as quantum
walks [7–9] and micromotions [10–13], where one can design
the effective Hamiltonian, defined as a logarithm of a single-
period time-evolution operator, to be topologically nontrivial.
Moreover, since the topology of time-periodic systems, so-
called Floquet systems, are distinct from the static ones
[5,14–19], one can access exotic phenomena that are absent
in static systems, e.g., the π modes observed in ultracold
atoms [20,21] and photonic crystals [8,22–25].

A kicked rotor is a typical Floquet system [26–29] and can
host various Floquet topological phases. A quantum version of
the kicked rotor was first considered in the context of quantum
chaos and Anderson localization [26,27], which were ex-
perimentally demonstrated using a Bose-Einstein condensate
(BEC) periodically subjected to optical lattice pulses [30,31].
The periodic time evolution of the cold atoms can be pre-
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cisely controlled by hyperfine-state-dependent optical lattice
pulses [32–35]. A particular interest is in the case when the
period of the kicking pulses is on resonance [27–29], for
which the effective Hamiltonian reduces to a tight-binding
model in the momentum space. Due to this momentum space
lattice structure, topological phases can appear in the kicked
rotor systems, and internal degrees of freedom play essential
roles in emergence of topological phases. For an on-resonance
kicked rotor, spin internal degrees of freedom have been ex-
perimentally introduced by using a spin-dependent optical
lattice, and a discrete-time quantum walk in the momentum
space was demonstrated [33–35]. Furthermore, such a kicked
rotor model is theoretically shown to have the sublattice
degrees of freedom when we apply two kicks in a single
period setting the free evolution time between kicks to meet a
high-order quantum resonance condition [27,36]. With these
methods, exotic Floquet topological phases were theoretically
studied [37–40].

In this paper, we propose a kicked rotor model with both
the spin and sublattice degrees of freedom that can realize all
the Altland-Zirnbauer (AZ) classes with nontrivial topology
in one dimension [15,16,41–43]. The AZ classification char-
acterizes a system according to the time-reversal symmetry,
the particle-hole symmetry, and the chiral symmetry. The
chiral operator Γ̂ is a unitary operator given by Γ̂ = T̂ Ĉ,
which always satisfies Γ̂ 2 = 1. The time-reversal operator
T̂ and the particle-hole operator Ĉ are antiunitary operators
and their squares take +1 or −1. Here, we would like to
emphasize that an antiunitary operator whose square is −1
is achieved only in a system more than two internal degrees
of freedom. Thus, to realize all the symmetry classes in the
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AZ classification, we need four internal degrees of freedom.
Among them, we have a particular interest in class CII, which
has both the time-reversal and particle-hole symmetries with
T̂ 2 = Ĉ2 = −1, and hence four internal degrees of freedom
are required for emergence of class CII. Although the class
CII models have been theoretically proposed [44–48], the
corresponding experiments have never been reported. Besides
class CII, classes AIII, BDI, D, and DIII host nontrivial topo-
logical phases in one dimension. Classes AIII and BDI are
experimentally realized in cold atomic systems [20,49–51]. In
this paper, we show that the single kicked rotor model can
access all the above classes by changing the parameters of the
kicking lattices.

We consider a double-kicked rotor (DKR) model for a one-
dimensional quasi-spin-1/2 BEC. Here, the key ingredient is
to simultaneously apply spin-dependent and spin-independent
kicks. We examine the symmetry of the Floquet operator and
find parameter sets for realizing each AZ class. We further
investigate the phase diagram for the case of class CII in the
parameter space of the kick strengths. We confirm that a pair
of winding numbers (w0,wπ ) ∈ 2Z × 2Z featuring the edge
states at zero and π quasienergy, respectively, take various
values depending on the kick strengths. We also find that
the winding numbers change to Z when we break the time-
reversal and particle-hole symmetries by changing the phase
of a kicking lattice. The winding numbers can be experimen-
tally measured from the mean chiral displacement (MCD) for
chiral symmetric systems [20,50–56]. We numerically con-
firm that in the present case with the four internal degrees
of freedom, the time average of the MCD converges to the
winding number in the long-time limit.

The rest of this paper is organized as follows. In Sec. II,
we introduce the DKR model for a quasi-spin-1/2 BEC and
calculate the time evolution operator over a single period. In
Sec. III, we discuss the symmetry properties of our system and
derive the condition for realizing Floquet topological phases.
In Sec. IV, we study Floquet topological phases especially in
class CII. In Sec. V, we discuss how to experimentally realize
our model. In Sec. VI, we conclude this work.

II. ON-RESONANCE SPIN-1/2 DOUBLE-KICKED
ROTOR MODEL

We consider the DKR model for a one-dimensional quasi-
spin-1/2 BEC, which has two spin degrees of freedom and
two sublattice degrees of freedom. We start with a general
form of the spin-1/2 DKR (SDKR) model that includes the
spin-dependent and spin-independent kicks. The Hamiltonian
is given by

Ĥ (t ) = p̂2

2M
⊗ σ̂0 + Ĥ1

∞∑
m=−∞

δ(t − mT )

+ Ĥ2

∞∑
m=−∞

δ(t − T2 − mT ), (1)

Ĥj = λ0
j cos

(
2π

a
ν0

j x̂ + α0
j

)
⊗ σ̂0

+ λ j cos

(
2π

a
ν j x̂ + α j

)
⊗ n j · σ̂ ( j = 1, 2), (2)

where M is the atomic mass, x̂ and p̂ are the position and
momentum of the atom, and σ̂ = (σ̂x, σ̂y, σ̂z ) and σ̂0 are the
vector of Pauli matrices and the identity matrix, respectively,
in the spin space. Here, we assume that the interatomic in-
teractions are sufficiently weak and thus negligible. The BEC
is simultaneously kicked by the spin-independent and spin-
dependent optical lattices twice in the single period T . The
duration between the first ( j = 1) and second ( j = 2) kicks
is T2. The two optical lattices in each kick ( j = 1, 2) have
the strengths λ0

j , λ j , the wave lengths a/ν0
j , a/ν j (ν0

j , ν j ∈ Z),
and the phases α0

j , α j , respectively. We require that ν0
1,2 and

ν1,2 have no common divisor in order to ensure that the spatial
period of Eq. (1) is a. The unit vector n j specifies the spin
dependence of the optical lattice. We choose n1 ∦ n2 so that
the Hamiltonian Ĥ (t ) is not block-diagonalized. Without loss
of generality, we can choose α0

1 = 0. We will show below that
this model belongs to the classes CII, AIII, BDI, D, or DIII
depending on the choices of the parity of ν0

1,2, ν1,2 and the
other phases α0

2, α1,2.
Because the Hamiltonian (1) is time periodic, we investi-

gate the symmetry property of the system by calculating the
time evolution operator over a single period, i.e., the Floquet
operator, Û (T ) = T exp[−i

∫ T −0
−0 Ĥ (t ) dt/h̄], where T is the

time ordering operator. By integrating Eq. (1) from t = −0 to
t = T − 0, we obtain

Û (T ) = e− i
h̄

p̂2

2M ⊗σ̂0(T −T2 )e− i
h̄ Ĥ2 e− i

h̄
p̂2

2M ⊗σ̂0T2 e− i
h̄ Ĥ1 . (3)

Because the Hamiltonian (1) is also spatially periodic with
the period a, the quasimomentum h̄(2π/a)β (0 � β < 1) be-
comes a good quantum number. In other words, the atoms
with a given β have momentum restricted to

p = h̄
2π

a
(l + β ) (l ∈ Z), (4)

during the time evolution. It follows that when we start from
a BEC with atoms in the β = 0 state, we can rewrite the
momentum operator p̂ as

p̂ = h̄
2π

a
l̂, (5)

where l̂ is the discretized momentum operator whose eigen-
values are all integers. Here, we choose T and T2 as [36,57,58]

T = 4π
M

h̄

( a

2π

)2
= h

4ER
, (6)

T2 = T

4
= π

M

h̄

( a

2π

)2
= h

16ER
, (7)

where ER = h̄2(π/a)2/2M is the recoil energy of the optical
lattice in Eq. (2) with ν = 1. Then, we obtain the Floquet
operator for the on-resonance SDKR (ORSDKR) model:

Û (T ) = e+i π
2 l̂2⊗σ̂0 e− i

h̄ Ĥ2 e−i π
2 l̂2⊗σ̂0 e− i

h̄ Ĥ1 . (8)

The point here is that due to the choice of T2 in Eq. (7), the
first and the third factors in Eq. (3) become the identity (i and
−i, respectively) for even (odd) eigenvalues of l̂ , introducing
sublattice structure in the momentum space.

Due to the appearance of the sublattice structure, we de-
compose the momentum lattice basis {|l〉} into even l sites
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(A sites) and odd l sites (B sites) and rewrite |l = 2n〉 =
|n〉 ⊗ |A〉 and |l = 2n + 1〉 = |n〉 ⊗ |B〉 [36,38]. We further
move to the quasiposition basis {|θ〉} defined by

|θ〉 =
∞∑

n=−∞
|n〉 1√

2π
eiθn (−π < θ � π ). (9)

Here, θ is regarded as the “Bloch wave number” for the
tight-binding model in the momentum space. Indeed, the Flo-
quet operator is block diagonal in terms of θ as Û (T ) =∫ π

−π
dθ |θ〉 〈θ | ⊗ Û (θ ) where

Û (θ ) = e−iĥ2(θ )e−iĥ1(θ ), (10)

ĥ j (θ ) = Λ0
j (θ )ĥτ j

(
θ, ν0

j

) ⊗ σ̂0 + Λ j (θ )ĥτ j (θ, ν j ) ⊗ n j · σ̂,

(11)

ĥτ j (θ, ν) =
{

τ̂0 (even ν)

m j (θ ) · τ̂ (odd ν)
( j = 1, 2). (12)

Here, τ̂ = (τ̂x, τ̂y, τ̂z ) and τ̂0 are the vector of Pauli matrices
and the identity matrix, respectively, acting on the sublattice
space, and we define

Λ0
j (θ ) = λ0

j

h̄
cos

(
ν0

j

2
θ − α0

j

)
, (13)

Λ j (θ ) = λ j

h̄
cos

(ν j

2
θ − α j

)
, (14)

m1 =
(

cos
θ

2
, sin

θ

2
, 0

)
, (15)

m2 =
(

− sin
θ

2
, cos

θ

2
, 0

)
. (16)

The detailed derivation of Eq. (10) is given in Appendix A.

III. SYMMETRY PROPERTIES

We derive the conditions for the system to belong to each
AZ class. For Floquet topological systems, it is convenient to
describe the symmetry property in terms of the Floquet oper-
ator Û (θ ). Since θ corresponds to the “Bloch wave number”,
the time-reversal symmetry, the particle-hole symmetry, and
the chiral symmetry for the Floquet operator are respectively
given by [15,16]

T̂ Û (θ )T̂ −1 = Û −1(−θ ), (17a)

ĈÛ (θ )Ĉ−1 = Û (−θ ), (17b)

Γ̂ Û (θ )Γ̂ −1 = Û −1(θ ), (17c)

where T̂ , Ĉ, and Γ̂ are the time-reversal, particle-hole, and
chiral operators, respectively. The former two are antiunitary
operators, whereas the last one, Γ̂ , is a unitary operator equal
to T̂ Ĉ up to a phase factor. In Table I, we summarize the sym-
metry properties and topological invariants of the AZ classes
that have nontrivial topological phases in one dimension.

Because we are considering the time-dependent Hamilto-
nian, the time-reversal and chiral symmetries exist only under
proper choices of the origin of the time axis. For the case of
Û (θ ) in Eq. (10) composed of two successive unitary opera-
tors, we can define the Floquet operators in the two symmetric

TABLE I. Symmetry properties and topological invariants of the
AZ classes that host nontrivial static and Floquet topological phases
in one dimension [15,16,41–43].

Class T̂ 2 Ĉ2 Γ̂ 2 Static Floquet

AIII 0 0 1 Z Z × Z
BDI +1 +1 1 Z Z × Z
D 0 +1 0 Z2 Z2 × Z2

DIII −1 +1 1 Z2 Z2 × Z2

CII −1 −1 1 2Z 2Z × 2Z

time frames as [59]

Û1(θ ) = e−iĥ1(θ )/2e−iĥ2(θ )e−iĥ1(θ )/2, (18)

Û2(θ ) = e−iĥ2(θ )/2e−iĥ1(θ )e−iĥ2(θ )/2. (19)

It follows that both Û1(θ ) and Û2(θ ) satisfy Eq. (17) when
both e−iĥ1(θ ) and e−iĥ2(θ ) satisfy Eq. (17), which in turn is
rewritten as

T̂ ĥ j (θ )T̂ −1 = ĥ j (−θ ), (20a)

Ĉĥ j (θ )Ĉ−1 = −ĥ j (−θ ), (20b)

Γ̂ ĥ j (θ )Γ̂ −1 = −ĥ j (θ ). (20c)

We first consider the case of class CII. What we have to do
is to find the operators T̂ , Ĉ, and Γ̂ that satisfy Eq. (20) with
ĥ j given in Eq. (11). Here, T̂ and Ĉ should satisfy T̂ 2 = Ĉ2 =
−1. First, for the system to have the chiral symmetry, ĥ j (θ )
should not include the identity matrix, τ̂0 ⊗ σ̂0, which leads to
that both ν0

1 and ν0
2 are odd integers. The chiral operator that

anticommutes with the first term of Eq. (11) is Γ̂ = τ̂z ⊗ σ̂0,
which also anticommutes with the second term of Eq. (11)
only when ν1 and ν2 are also odd integers. For this Γ̂ , a
possible pair of the time-reversal and particle-hole operators
are τ̂0 ⊗ σ̂yK̂ and τ̂z ⊗ σ̂yK̂ , where K̂ is the complex conjugate
operator: the changes in ĥ j (θ ) under the other choices of T̂
and Ĉ are not written in simple sign changes as in Eqs. (20a)
and (20b). Because we have chosen α0

1 = 0 for which Λ0
1(θ )

is an even function of θ , we choose T̂ = τ̂0 ⊗ σ̂yK̂ and Ĉ =
τ̂z ⊗ σ̂yK̂ such that they satisfy Eqs. (17a) and (17b). It follows
that Λ2(θ ) [Λ1(θ ) and Λ0

2(θ )] should be an even function [odd
functions] of θ , resulting in α2 = 0 and α1 = α0

2 = ±π/2.
This is the condition for the system to belong class CII.

We stress here that the existence of the spin-independent
lattice is crucial for the realization of class CII system. Oth-
erwise, ĥ1(θ ) and ĥ2(θ ) commute with the same operator
τ̂z ⊗ n⊥ · σ̂ with n⊥ being a unit vector perpendicular to both
n1 and n2, which means that the system is merely a combina-
tion of the systems written by 2 × 2 matrices.

Similarly to the class CII case, we obtain the conditions for
the ORSDKR to belong to the symmetry classes that possess
nontrivial topological phases in one dimension. The detailed
derivation is given in Appendix B, and we summarize the
result in Table II.
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TABLE II. Optical lattice parameters and the corresponding symmetry operators for realizing symmetry classes in the ORSDKR. We list
parameter sets with which the Floquet operator cannot be block-diagonalized. Without loss of generality, we choose α0

1 = 0. For the parameter
sets with λ0

1 = 0, we choose α1 = 0. We describe α0
1,2, α1,2 ∈ [0, π ) because adding π to them preserves the symmetry of the system. The

symbol “-” in the columns ν0
1,2, ν1,2, α

0
1,2, α1,2 means that the corresponding kick must not be included, i.e., the corresponding λ0

1,2, λ1,2 must
be zero. The symbol “∗” in the columns ν0

1,2, ν1,2, α
0
1,2, α1,2 means no restriction except not belonging to the other classes. n⊥ is an unit vector

perpendicular to both n1 and n2.

Class ν0
1 ν1 ν0

2 ν2 α0
1 α1 α0

2 α2 T̂ Ĉ Γ̂

AIII odd odd odd odd ∗ ∗ ∗ ∗ − − τ̂z ⊗ σ̂0

AIII − odd − even − ∗ − ∗ − − τ̂0 ⊗ n⊥ · σ̂

AIII − even − odd − ∗ − ∗ − − τ̂0 ⊗ n⊥ · σ̂

AIII odd even odd even ∗ ∗ ∗ ∗ − − τ̂z ⊗ n⊥ · σ̂

BDI odd odd odd odd 0 0 π/2 π/2 τ̂0 ⊗ n⊥ · σ̂σ̂yK̂ τ̂z ⊗ n⊥ · σ̂σ̂yK̂ τ̂z ⊗ σ̂0

D odd odd ∗ ∗ 0 0 π/2 π/2 − τ̂z ⊗ n⊥ · σ̂σ̂yK̂ −
D odd even ∗ ∗ 0 π/2 π/2 π/2 − τ̂z ⊗ n⊥ · σ̂σ̂yK̂ −
DIII − odd − even − 0 − π/2 τ̂z ⊗ σ̂yK̂ τ̂z ⊗ n⊥ · σ̂σ̂yK̂ τ̂0 ⊗ n⊥ · σ̂

DIII odd even odd even 0 π/2 π/2 π/2 τ̂0 ⊗ σ̂yK̂ τ̂z ⊗ n⊥ · σ̂σ̂yK̂ τ̂z ⊗ n⊥ · σ̂

CII odd odd odd odd 0 π/2 π/2 0 τ̂0 ⊗ σ̂yK̂ τ̂z ⊗ σ̂yK̂ τ̂z ⊗ σ̂0

IV. TOPOLOGICAL PHASES IN CLASS CII

A. Winding number

Since the ORSDKR has the chiral symmetry, we can
characterize the topological phases with the winding num-
bers calculated as follows. Defining the effective Hamiltonian
Ĥj,eff (θ ) from the relation Ûj (θ ) = e−iĤ j,eff (θ )T/h̄ ( j = 1, 2),
we introduce Q matrix as [59]

Q̂ j (θ ) = sin
Ĥj,eff (θ )T

h̄
= Û †

j (θ ) − Ûj (θ )

2i
. (21)

In our model, the chiral operator Γ̂ = τ̂z ⊗ σ̂0 is diagonal, and
hence Q matrix is block off-diagonal,

Q̂ j (θ ) =
(

0 q̂ j (θ )

q̂†
j (θ ) 0

)
. (22)

By using the off-diagonal element q̂ j (θ ), we can calculate the
winding number as

w j =
∫ π

−π

i

2π
Tr

[
q̂−1

j (θ )
∂

∂θ
q̂ j (θ )

]
dθ. (23)

Here, w1 and w2 are the winding numbers calculated for the
Floquet operators Û1 and Û2, respectively, in the symmetric
time frames. On the other hand, the winding numbers related
to the number of edge states at quasienergies ε = 0 and π h̄/T ,
if the system has edges, are given by [59]

w0 = w1 + w2

2
, wπ = w1 − w2

2
. (24)

B. Phase diagram

To satisfy the class CII symmetries, n1 ∦ n2 is required.
Otherwise, both ĥ1(θ ) and ĥ2(θ ) commute with the same op-
erator τ̂0 ⊗ n1 · σ̂. We remember that all ν0

1,2 and ν1,2 must be
odd numbers. The cases (ν0

1,2, ν1,2) = (1, 1) and (1,3) would
be experimentally implementable (see Sec. V). Here, we show
the results for (ν0

1,2, ν1,2) = (1, 1). We have not seen signifi-
cant difference for other choices of (ν0

1,2, ν1,2).

Figure 1 shows the winding numbers w0 and wπ as func-
tions of the kick strengths λ1 and λ2. Here, we set the
parameters as λ0

1 = 0.3π h̄, λ0
2 = 0.4π h̄, n1 · n2 = 1/

√
2( 
=

±1), ν0
1,2 = 1, ν1,2 = 1, α0

1 = α2 = 0, and α1 = α0
2 = −π/2.

We confirm that both w0 and wπ are even integers, being
consistent with 2Z × 2Z in Table I. Figure 1 shows that we
can access various phases by changing the kick strengths.

It is interesting to see how the phase diagram changes as
the symmetry changes. In the ORSDKR model, it is possible
to change the system from class CII to class AIII by slightly
changing one of the phases α from the fixed values for class
CII. (See the first and last rows in Table II.)

We show the winding numbers w0 and wπ as functions
of the kick strength λ2 in class CII [Fig. 2(a)] and AIII
[Fig. 2(b)]. Here, we fix λ1 = 2.5π h̄ and choose α2 = 0 for
class CII [Fig. 2(a)] and 0.1π for class AIII [Fig. 2(b)]. The
other parameters are the same as those in Fig. 1. At small
λ2, the winding numbers for class CII and AIII have similar
structures. However, there is a significant difference that at the
point where one of the winding numbers in class CII changes
by 2, a new phase with an odd winding number arises in class
AIII (see, e.g., at λ2/π h̄ = 0.3). The deviation of the winding
numbers between the two classes enlarges as λ2 becomes
large. We note that the structures of w0 and wπ in class AIII
approaches the one in class CII as α2 becomes closer to zero.

It is also possible to change the system from class CII to
class BDI using the same lattice potential but with changing
α1 and α2 by π/2. In this case, the winding numbers change
drastically because the symmetry operators undergo discrete
change (see Table II).

C. Bulk-edge correspondence

Here, we comment on the bulk-edge correspondence for
the ORSDKR. We can theoretically consider a finite system
in the momentum space by artificially restricting the possible
momentum value to a finite range [37,38]. By calculating
the eigenenergies ε and eigenstates |ψ〉 of Û (T ) through
Û (T ) |ψ〉 = e−iεT/h̄ |ψ〉, we can obtain the edge states in a
finite system. The spectra of Û (T ) under the open bound-
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FIG. 1. Topological phase diagram of the ORSDKR. (a) Winding
number w0 at quasienergy ε = 0 and (b) winding number wπ at
quasienergy ε = π h̄/T . The parameters are fixed as λ0

1 = 0.3π h̄,
λ0

2 = 0.4π h̄, n1 · n2 = 1/
√

2( 
= ±1), ν0
1,2 = 1, ν1,2 = 1, α0

1 = α2 =
0, and α1 = α0

2 = −π/2. The green dashed lines, the yellow filled
circles, and the purple dotted lines indicate the values of λ1,2 used
for Figs. 2 and 3, Fig. 4, and Fig. 6, respectively.

ary condition are shown in Fig. 3. The parameters are the
same as those in Fig. 2(a) and we set the number of unit
cells in the momentum lattice to 100. The numbers at ε = 0
and π h̄/T in Fig. 3(a) denote the numbers of edge states at
zero quasienergy (n0) and π quasienergy (nπ ), respectively.
Comparing the number of edge states with the winding num-
bers (w0,wπ ) in Fig. 2(a), we see the relation (n0, nπ ) =
(2|w0|, 2|wπ |). We have confirmed that this relation is also
true for other chiral symmetric classes, i.e., classes AIII and
BDI. This relation can be understand by generalizing the
relation of the bulk-edge correspondence proven for a chiral
symmetric time-independent lattice Hamiltonian [60] to Flo-
quet systems. The detailed discussion is given in Appendix C.
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(b) Class AIII
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FIG. 2. Winding numbers w0 (blue solid line) and wπ (orange
dashed line) of the ORSDKR in (a) class CII and (b) class AIII as
functions of the kick strength λ2. (a) The parameters are the same
as those in Fig. 1 and we choose λ1 = 2.5π h̄ (green dashed lines
in Fig. 1). (b) The parameters are the same as those of (a) except
for α2: we choose α2 = 0.1π so that the system does not have the
time-reversal and particle-hole symmetries. At the point where one
of the winding numbers in (a) jumps by 2, a new phase with an odd
winding number appears in (b).

D. Mean chiral displacement

The winding numbers can be experimentally measured
from the MCD for chiral symmetric systems [20,50–56]. The
MCD is the signed momentum distribution of the chiral sym-
metric system and defined as

Cj (t ) = 4Tr[ρ̂0Û†
j (t )(n̂ ⊗ Γ̂ )Û j (t )], (25)

where n̂ is the momentum operator defined by n̂ |n〉 = n |n〉
with |n〉 being the momentum lattice basis defined below
Eq. (8), and Û j (t ) ( j = 1, 2) is the time evolution oper-
ator corresponding to the Floquet operator Ûj (θ ) defined
in the symmetric time frame. For example, when t = mT
(m = 1, 2, . . . ), we have Û j (t ) = [Û j (T )]m with Û j (T ) =∫ π

−π
dθ |θ〉 〈θ | ⊗ Ûj (θ ). The initial density matrix ρ̂0 is here

assumed to be

ρ̂0 = |n = 0〉 〈n = 0| ⊗ τ̂0 ⊗ σ̂0

4
. (26)
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FIG. 3. Spectra of the Floquet operator Û (T ) under the open boundary condition. (a) Spectrum as a function of the kick strength λ2. The
parameters are the same as those in Fig. 2(a) and we set the number of unit cells in the momentum lattice to 100. The numbers at ε = 0 (dark
blue) and π h̄/T (orange) denote the numbers of edge states at zero quasienergy (n0) and π quasienergy (nπ ), respectively. (b)–(d) Spectra
for fixed λ2/π h̄ of 0.5 (b), 1.8 (c), and 2.5 (d). (b) Four eigenstates at zero quasienergy and four eigenstates at π quasienergy exist. (c) Four
eigenstates at π quasienergy exist and (d) eight eigenstates at zero quasienergy exist. Considering a pair of winding numbers (w0, wπ ) shown
in Fig. 2(a), we see the relation (n0, nπ ) = (2|w0|, 2|wπ |).

Equation (25) is experimentally evaluated as follows: Prepare
the initial state in a pure state |ψτσ 〉 = |n = 0〉 ⊗ |τ 〉 ⊗ |σ 〉,
(τ = A, B and σ =↑,↓), and observe the time evolution of
the expectation value of n̂ ⊗ Γ̂ . Repeating this procedure for
the initial states with all the combinations of τ = A, B and
σ =↑,↓, we obtain the expectation value for each initial state
and then take the summation for them, which becomes the
MCD. We note that |ψτσ 〉 is the eigenstate of Γ̂ = τ̂z ⊗ σ̂0 and
expressed as |ψAσ 〉 = |l = 0〉 ⊗ |σ 〉 and |ψBσ 〉 = |l = 1〉 ⊗
|σ 〉, where |l = 0〉 and |l = 1〉 are the eigenstates of p̂ with
eigenvalues 0 and h/a, respectively. Thus, from the measure-
ment of the momentum distribution for each spin state after a
certain period, we can obtain the MCD.

On the other hand, in the quasiposition basis the MCD at
t = mT is written as

Cj (mT ) =
∫ π

−π

dθ

2π
Tr

[
[Û †

j (θ )]mΓ̂ i
∂

∂θ
[Ûj (θ )]m

]
, (27)

which converges to the winding number w j as m → ∞ [53].
Thus, from the MCDs C1(mT ) and C2(mT ) defined with the
Floquet operators in the symmetric time frames Û1(θ ) and
Û2(θ ), we obtain the winding numbers w0 and wπ through

C0(mT ) = C1(mT ) + C2(mT )

2
, (28)

Cπ (mT ) = C1(mT ) − C2(mT )

2
, (29)

at a sufficiently long time. The convergence becomes faster
when we take the time average of the MCDs. Here, we con-
sider the time average of the MCD at t = mT as

C j (t = mT ) = 1

m

m∑
k=1

Cj (kT ), (30)

which converges to w j as m → ∞ [37,38].
Figure 4 shows the time evolution of the MCDs C0 and

Cπ in class CII. The parameters are the same as those in
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t/T
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FIG. 4. MCDs C0 = (C1 + C2)/2 (blue solid curve) and Cπ =
(C1 − C2)/2 (orenge solid curve), and their time averages C0 (green
dashed curve) and Cπ (red dotted curve). The parameters are the same
as those in Fig. 1 and we choose λ1 = 3.0π h̄ and λ2 = 0.7π h̄ (yellow
filled circles in Fig. 1), for which a pair of the winding numbers is
(w0,wπ ) = (4, −2). C0 and Cπ oscillate and converge to w0 and wπ ,
whereas C0 and Cπ converge more rapidly.

Fig. 1 and we choose λ1 = 3.0π h̄ and λ2 = 0.7π h̄. The cor-
responding points are depicted with the yellow filled circles
in Fig. 1, for which a pair of the winding numbers is given by
(w0,wπ ) = (4,−2). The MCDs C0 and Cπ converge to the
winding numbers w0 and wπ , respectively, as time evolves.
One can clearly see that the time-averaged MCDs C0 and Cπ

converge to w0 and wπ faster than C0 and Cπ .

V. PROPOSAL FOR EXPERIMENTAL SETUP

In this section, we discuss how to experimentally imple-
ment the Hamiltonian (1). After explaining the method to
choose the direction of n1,2 in Sec. V A, we propose two
methods to simultaneously create spin-dependent and spin-
independent lattice potentials in Secs. V B and V C. The
experimental setup is summarized in Fig. 5. We discuss the
case when the ideal quantum resonance conditions are un-
satisfied and study the effects of nonzero quasimomentum
component in Sec. V D.

A. Spin dependence of the kick

We first show that the direction specifying spin dependence
of the kick can be arbitrarily chosen if we can implement the
σ̂z-dependent optical lattice

V̂z = V (x̂) ⊗ σ̂z, (31)

and the spin rotation operator proposed in Refs. [33–35]

M̂(α, χ ) = e−i(α/2)(sin χσ̂x−cos χσ̂y ). (32)

Using Eq. (32), we can arbitrarily rotate the spin direction in
Eq. (31) as

M̂(−α, χ )V̂zM̂(α, χ ) = V (x̂) ⊗ n · σ̂, (33)

where n = (sin α cos χ, sin α sin χ, cos α). When the lattice
potential in Eq. (31) is applied during an infinitesimal time
Δt , the whole time evolution operator is given by

M̂(−α, χ )e−iV̂zΔt/h̄M̂(α, χ ) = e−iV (x̂)⊗n·σ̂Δt/h̄. (34)

Thus we can realize the kick potential with arbitrary spin
dependence as given in Eq. (33) by sandwiching the kick V̂z

between M̂(−α, χ ) and M̂(α, χ ).

Spin dependent
offset cancel beam

791.2 nm, opposite circ. pol.

Spin dependent
lattice beam

788.8 nm, circ. pol.

Spin independent
lattice beam

788.8 nm, lin. pol.

U

x magnetic field

(a) (b)

FIG. 5. (a) Optical lattices created by linearly and circularly polarized lasers. A spin-dependent lattice for |↑〉 = |F = 2, mF = 2〉 and
|↓〉 = |F = 1, mF = 1〉 of 87Rb can be created by the standing wave of the circularly polarized 788.8 nm laser [61]. A spin-independent lattice
for both spin states is created by the standing wave of the linearly polarized 788.8 nm laser. To avoid unwanted interference between the
spin-dependent and spin-independent lattices, the laser frequency of the circularly polarized laser and the linearly polarized laser is slightly
(typically a few hundred MHz) deviated from each other. Despite this small frequency difference, the spin-dependent and spin-independent
lattices can be regarded as having the same lattice constant in the region of the atom cloud. The phase of each lattice can be switched by
changing the laser frequency of each lattice beam. The spin-dependent global phase shift can be removed by a spin-dependent offset cancel
beam created by a running 791.2 nm laser beam with opposite circular polarization. This spin-dependent offset cancel beam also cancels
unwanted spin-dependent confinement/deconfinement of radial direction of the spin-dependent lattice beam. (b) Optical lattices created by
linearly polarized lasers with an enclosing angle. The phase difference α j+ − α j− = 2α j+ between two optical lattice potentials for |↑〉 =
|F = 1, mF = 1〉 and |↓〉 = |F = 1, mF = −1〉 can be tuned by changing the linear polarization vectors enclosing an angle Θ which can be
switched by using an electro-optical modulator [62,63].
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B. Optical lattices created by linearly and circularly
polarized lasers

The spin-independent and spin-dependent kicks can be re-
alized by applying lasers with linear and circular polarizations
to a quasi-spin-1/2 BEC. From the discussion in Sec. V A, the
required spin-independent and spin-dependent potentials are
V 0(x̂) ⊗ σ̂0 and V (x̂) ⊗ σ̂z, respectively, where

V 0(x) = λ0 cos

(
2π

a
ν0x + α0

)
, (35)

V (x) = λ cos

(
2π

a
νx + α

)
. (36)

We consider a mixture of 87Rb BECs in the hyperfine levels
|F = 2, mF = 2〉 and |F = 1, mF = 1〉, which we define as
|↑〉 and |↓〉, respectively, in this setup. The spin rotation
between the two hyperfine states is realized by appliying
microwave pulses [33–35,62,63].

These potentials can be realized by two counterpropagat-
ing laser beams with linear parallel polarization (lin ‖ lin)
and circular parallel polarization (circ ‖ circ) [see Fig. 5(a)].
The ac Stark shift of the atom in the hyperfine state |F, mF 〉
interacting with the laser field is given by

ΔE ε‖ε
F,mF

= U ε‖ε
F,mF

(1 + cos 2kx), (37)

where ε = lin (circ) is for linear (circular) polarization and
k is the wavenumber of the laser beam. (The details of the
ac Stark shift is given in Appendix D.) If the wavelength
is sufficiently far from the corresponding optical transi-
tions, the amplitude in the lin ‖ lin configuration satisfies
U lin‖lin

F=2,mF =2 = U lin‖lin
F=1,mF =1 (see Appendix D 1), which corre-

sponds to the spin-independent optical lattice. On the other
hand, at the wavelength of 788.8 nm, the amplitude in the circ
‖ circ configuration satisfies U circ‖circ

F=2,mF =2 = −U circ‖circ
F=1,mF =1 (see

Appendix D 2), which corresponds to the spin-dependent op-
tical lattice. Thus, at this wavelength, both spin-independent
and spin-dependent optical lattice pulses can be realized. Note
that since Eq. (37) has a constant offset term U ε‖ε

F,mF
, the

resulting potentials are not directly equal to V 0(x̂) ⊗ σ̂0 for
ε = lin and V (x̂) ⊗ σ̂z for ε = circ; U lin‖lin

F,mF
induces a global

phase shift, and hence, it is irrelevant; U circ‖circ
F,mF

creates a
spin-dependent phase shift, which should be removed by, e.g.,
applying a running 791.2 nm laser beam with opposite circular
polarization [see Fig. 5(a) and Appendix D 3]. It is worth
noticing that although the wavelength of the spin-dependent
lattice is fixed due to the nature of the spin dependence, we
can change the wavelength of the spin-independent lattice in
a vast range. For example, when we use the linearly polarized
beams with the wavelength of 394.4 or 1578 nm for the spin-
independent lattice, we can realize (ν0

1,2, ν1,2) = (2, 1), (1, 2),
respectively. Also, we can even realize (ν0

1,2, ν1,2) = (1, n)
(n > 2) by introducing an optical lattice generated by the
interference of two laser beams propagating at a relative angle
of θL. For example, by intersecting two λL = 1064 nm laser
beams with relative angle θL = 53.4◦, we can create an op-
tical lattice with a lattice spacing of d = λL/[2 sin(θL/2)] =
1184 nm, which corresponds to the n = 3 case.

C. Optical lattices created by linearly polarized lasers
with an enclosing angle

In this section, we propose a more feasible setup for the
class CII case in Table II than the setup in Sec. V B. More
concretely, Eq. (2) with ν0

j = ν j ( j = 1, 2) can be realized
by using only a pair of linearly polarized counterpropagating
beams with an enclosing angle, whereas the setup in Sec. V B
requires two pairs of counterpropagating beams and an offset
cancel beam. The required kick Hamiltonian is Eq. (2) with
n j = (0, 0, 1), which is written as

Ĥj =
(

Ĥj+ 0
0 Ĥj−

)
, (38)

Ĥj± = λ0
j cos

(
2π

a
ν0

j x̂ + α0
j

)
± λ j cos

(
2π

a
ν j x̂ + α j

)
.

(39)

Assuming ν0
j = ν j , we can rewrite Eq. (39) as

Ĥj± = λ j± cos

(
2π

a
ν j x̂ + α j±

)
, (40)

λ j± =
√(

λ0
j

)2 + (λ j )2 ± 2λ0
jλ j cos

(
α0

j − α j
)
, (41)

tan α j± = λ0
j sin α0

j ± λ j sin α j

λ0
j cos α0

j ± λ j cos α j
. (42)

Here, we especially focus on the class CII case in Table II.
Substituting α0

1 = 0, α1 = −π/2, α0
2 = −π/2, α2 = 0, and

ν0
1,2 = ν1,2 = 1, we obtain

λ1+ = λ1− =
√(

λ0
1

)2 + (λ1)2, (43)

α1+ = −α1− = − tan−1 λ1

λ0
1

, (44)

λ2+ = λ2− =
√(

λ0
2

)2 + (λ2)2, (45)

α2+ = −α2− = − tan−1 λ0
2

λ2
. (46)

Thus the optical potential that we need is the one that acts
on spin-up and down atoms with the same amplitude and the
phase difference α j+ − α j− = 2α j+.

To realize the quasi-spin-1/2 system belonging to class
CII, we consider a mixture of 87Rb BECs in the hyperfine lev-
els |F = 1, mF = 1〉 and |F = 1, mF = −1〉, which we define
as |↑〉 and |↓〉, respectively, in this setup. The spin rotation
between the two hyperfine states can be realized by using
the Raman transition. However, these two hyperfine states
are unstable against the collision toward the |F = 1, mF = 0〉
state, and the experiment using these two hyperfine states is
limited to a short time. Nevertheless, since this setup has a
much simpler laser alignment than the scheme in Sec. V B,
it is worth considering. We consider that the atoms are peri-
odically kicked by two counterpropagating pulse lasers with
linear polarization vectors enclosing an angle Θ [62,63] [see
Fig. 5(b)]. At the wavelength of 787.5 nm, the optical lattice
potentials for the two internal degrees of freedom are given by

VF=1,mF =±1(x) = −V [1 + cos(2kx ± Θ )], (47)

where V is the strength of the optical lattice pulse and k is
the wave number of the laser. (The derivation is shown in
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Appendix D 4.) Therefore we should set V = λ j+ and Θ =
α j+ to realize Eq. (40) with Eqs. (43)–(46). The relations
between experimental parameters Vj,Θ j and the model pa-
rameters λ0

j , λ j are given by

λ0
1 = V1 cos Θ1, (48)

λ1 = −V1 sin Θ1, (49)

λ0
2 = V2 sin Θ2, (50)

λ2 = −V2 cos Θ2, (51)

where the additional subscript j = 1, 2 of Vj and Θ j corre-
sponds to the potentials for Ĥj , and without loss of generality,
we have take a possible sign combinations.

In a similar way, one can consider the other cases of
ν0

j = ν j and α0
j = α j = 0 or ±π/2, e.g., classes BDI and D in

Table II. However, these classes require the lattice potentials
with same phases and different amplitudes for spin-up and
down atoms, and thus another quasi-spin mixture is needed.

D. Effects of nonzero quasimomentum component

One of the major concerns to realize the ORSDKR model
in the cold atomic experiments may be the difficulty of achiev-
ing the ideal quantum resonance. In particular, it is difficult
to prepare an initial state with β = 0 in Eq. (4) due to the
residual atomic thermal cloud and the finite size of the sys-
tem [35,40]. Thus the BEC has a finite width Δβ of the
quasimomentum β, which is typically Δβ ≈ 0.025 [35,64].
In Fig. 6, we show the time-averaged MCDs at t/T = 4
(a) and 10 (b) calculated for Gaussian initial states centered
at p = 0 and p = h/a with a standard deviation Δβ in the
momentum space. The parameters are the same as those in
Fig. 1 and we choose λ1 = 0.7π h̄. We note that the experi-
ments would be restricted to small kick strengths and short
time duration because otherwise the momentum distribution
of the BEC extends too broadly. In the calculation, we restrict
the range of the momentum space to [−50h/a, 50h/a] and
[−120h/a, 120h/a] for the time-averaged MCDs at t/T = 4
and t/T = 10, respectively. We see that even when Δβ is
nonzero, the time-averaged MCDs C0 and Cπ at t/T = 4 take
the values close to the winding numbers w0 and wπ , respec-
tively, at the regions far from the topological phase transition
points. However, the deviation from the winding numbers
is prominent around the topological phase transition points,
and the MCDs for Δβ = 0.025 do not exhibit convergence
behavior as a function of duration. The reason for the former
is that the energy gap is small around the phase transition
points so that it takes a long time for the MCDs to converge.
Indeed, the MCDs for Δβ = 0 at t/T = 10 approach more
to the winding numbers. On the other hand, the reason for
the latter is that the topological protection is violated due to
the nonzero β component: if we start from a BEC with a
nonzero fixed β, the Floquet operator is given by Eq. (8) with
replacing l̂2 with (l̂ + β )2, which no longer belongs to class
CII; In addition, the modified Floquet operator has different
gap-closing points from that for β = 0. As a result, when the
initial state has a finite width Δβ of quasimomentum, the
nonzero β component blurs the integer limit values of the
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FIG. 6. Time-averaged MCDs C0 and Cπ at (a) t/T = 4 and
(b) t/T = 10 with a quasimomentum deviation Δβ and winding
numbers w0 (light blue solid line) and wπ (pink dashed line) of
the ORSDKR in class CII as functions of the kick strength λ2.
The parameters are the same as those in Fig. 1 and we choose
λ1 = 0.7π h̄ (purple dotted lines in Fig. 1). In the calculation, we
restrict the range of the momentum space to (a) [−50h/a, 50h/a]
and (b) [−120h/a, 120h/a].

MCDs in the long-time limit. Because this effect becomes
large as time t/T and the range (h/a)Δl of the momentum
distribution increase even when Δβ is small, the condition
ΔlΔβt/T � 1 should be satisfied so that the additional phase
factor does not become dominant. For example, the range
of the momentum distribution is about [−20h/a, 20h/a] at
t/T = 4 and [−40h/a, 40h/a] at t/T = 10 for λ2 = 0.8π h̄,
while it is [−40h/a, 40h/a] at t/T = 4 and [−80h/a, 80h/a]
at t/T = 10 for λ2 = 2.0π h̄. The above mentioned condition
is not satisfied even at t/T = 4 for λ2 = 2.0π h̄; The conver-
gence of the MCDs at t/T = 10 in Fig. 6(b) is worse for
λ2 = 2.0π h̄ than for λ2 = 0.8π h̄. Thus the winding numbers
can be obtained from the time-averaged MCDs when all of
the width Δβ of the quasimomentum distribution, the kick
strengths, and the time duration t/T are sufficiently small and
when the system is not too close to the topological phase
transition points.
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VI. CONCLUSION

We have studied Floquet topological phases realized in the
ORSDKR model for a one-dimensional quasi-spin-1/2 BEC.
Since class CII requires four internal degrees of freedom,
we have combined spin and sublattice degrees of freedom,
which are achieved by the on-resonance condition. Using both
spin-dependent and spin-independent kicks, we can realize all
the AZ classes with nontrivial topology in one dimension as
well as class CII. We have calculated the winding numbers
characterizing the topological phases in the ORSDKR model,
which take various values depending on the strengths and
phases of the kicking lattices. These values can be experimen-
tally measured via the MCDs, which, in our model, can be
obtained from the momentum distributions of the BEC in the
long-time limit.

The ORSDKR model would be experimentally imple-
mentable using optical lattice pulses. As discussed in Sec. V,
this model can be realized by simultaneously applying two
kinds of optical lattice pulses with linear and circular parallel
polarizations to the quasi-spin-1/2 BEC. With the precise
control of the phase difference and the compensation of the
offset terms in the optical lattices, all the topologically non-
trivial classes in one dimension can be accessed. For the class
CII case, it can also be realized by applying the two coun-
terpropagating linearly polarized lasers with the polarization
vectors inclined at a certain angle. Although the finite momen-
tum width of the BEC badly affects observing the quantized
winding numbers, the effect is minimal if all of the width of
the momentum distribution, the kick strengths, and the time
duration are sufficiently small.

It is important to consider how to observe the edge states
in momentum space and topological phase transitions. Finite-
size momentum lattice systems can be created by two-photon
Bragg diffraction processes [65,66] and topological edge
states have been observed [49,67]. Using this method, edge
states for the ORSDKR model might also be detected. We note
that our model undergoes topological phase transitions by
changing the parameters of the kicking lattices, as investigated
in quenched systems [54,68]. Through the MCDs or edge
states, the dynamics of the topological phase transitions might
be observed.

The ORSDKR model can be extended to study many-
body and non-Hermitian physics in multiple dimensions. One
can introduce interatomic interactions neglected in this paper.
These interactions might induce dynamical instability and
localization [69–72]. It is also possible to investigate the non-
Hermitian regime for the ORSDKR model as Ref. [38]. The
non-Hermitian effects can be experimentally introduced by
considering spontaneous emission [73,74]. Furthermore, the
ORSDKR model in higher dimentions could be achieved by
applying additional lasers from multiple directions.
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APPENDIX A: DERIVATION OF EQ. (10)

We start with a general kicking potential excluding spin
degrees of freedom

V̂ =
∫ a

0
dx V (x) |x〉 〈x| (A1)

with V (x + a) = V (x). By using the Fourier transforms,

〈x|l〉 = 1√
a

ei 2π
a lx, (A2)

|x〉 =
∞∑

l=−∞
|l〉 1√

a
e−i 2π

a lx, (A3)

|l〉 =
∫ a

0
dx |x〉 1√

a
ei 2π

a lx, (A4)

we represent the potential in the momentum lattice basis |l〉,

V̂ =
∞∑

l=−∞

∞∑
k=−∞

Vk |l + k〉 〈l| , (A5)

where Vk is the Fourier coefficient of V (x) given by

Vk = 1

a

∫ a

0
V (x)e−i 2π

a kx dx. (A6)

Due to the translational invariance of Eq. (8), l̂ → l̂ + 2,
the momentum lattice {|l〉} is decomposed into the even and
odd lattice sites corresponding to the sublattices A and B. We
define Pauli matrices on the sublattice as

τ̂0 = |A〉 〈A| + |B〉 〈B| , (A7)

τ̂x = |A〉 〈B| + |B〉 〈A| , (A8)

τ̂y = −i |A〉 〈B| + i |B〉 〈A| , (A9)

τ̂z = |A〉 〈A| − |B〉 〈B| . (A10)

Here, we choose the new unit cell such that new nth unit
cell contains old (2n)th and (2n + 1)th momentum lattice.
By using the relations |l = 2n〉 = |n〉 ⊗ |A〉 , |l = 2n + 1〉 =
|n〉 ⊗ |B〉, we rewrite the potential as

V̂ =
∞∑

n=−∞

∞∑
m=−∞

|n + m〉 〈n|

⊗ (V2mτ̂0 + V2m+1τ̂− + V2m−1τ̂+). (A11)

We further Furier transform the momentum lattice basis
{|n〉} to the quasiposition basis {|θ〉}:

〈n|θ〉 = 1√
2π

eiθn, (A12)

|θ〉 =
∞∑

n=−∞
|n〉 1√

2π
eiθn, (A13)

|n〉 =
∫ π

−π

dθ |θ〉 1√
2π

e−iθn. (A14)

The resulting potential is given by

V̂ =
∫ π

−π

dθ |θ〉 〈θ | ⊗ V̂ (θ ), (A15)
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with

V̂ (θ ) =
∞∑

m=−∞
(V2mτ̂0 + V2m+1τ̂− + V2m−1τ̂+)e−imθ . (A16)

By using V ∗
m = V−m due to the reality of V (x), we can rewrite

V̂ (θ ) as

V̂ (θ ) =
∞∑

m=−∞
(V2me−imθ τ̂0 + V2m+1e−imθ τ̂− + V ∗

2m+1eimθ τ̂+)

=
∞∑

m=−∞
[V2me−imθ τ̂0 + 2Re(V2m+1e−imθ )τ̂x

+ 2Im(V2m+1e−imθ )τ̂y]. (A17)

For the case of ORSDKR model, the x dependence of the
kicking potential is given by Eqs. (35) and (36), whose Fourier
coefficient is given by

Vk = λ

2
(eiαδk,ν + e−iαδk,−ν ). (A18)

It follows that V̂ (θ ) includes only the τ̂0 term (the τ̂x and τ̂y

terms) for even (odd) ν, resulting in

V̂ (θ ) = λ cos

(
ν

2
θ − α

)
ĥτ1(θ, ν), (A19)

where ĥτ1(θ, ν) is defined in Eq. (12). Reintroducing the spin
dependence, we can rewrite the kick terms e− i

h̄ Ĥ1,2 in Eq. (8)
as

e− i
h̄ Ĥ1 =

∫ π

−π

dθ |θ〉 〈θ | ⊗ e−iĥ1(θ ), (A20)

e− i
h̄ Ĥ2 =

∫ π

−π

dθ |θ〉 〈θ | ⊗ e−i ˆ̃h2(θ ), (A21)

where ˆ̃h2(θ ) is defined by

ˆ̃h2(θ ) = Λ0
2(θ )ĥτ1

(
θ, ν0

2

) ⊗ σ̂0 + Λ2(θ )ĥτ1(θ, ν2) ⊗ n2 · σ̂.

(A22)

The remaining operators in Eq. (9), i.e., the free time evolu-
tion operators e±i π

2 l̂2⊗σ̂0 , are also diagonal in the quasiposition
basis and given by

e±i π
2 l̂2⊗σ̂0 = e±i π

4

∑
n

|n〉 〈n| ⊗ e∓i π
4 τ̂z⊗σ̂0

= e±i π
4

∫ π

−π

dθ |θ〉 〈θ | ⊗ e∓i π
4 τ̂z⊗σ̂0 . (A23)

Acting on e−i ˆ̃h2(θ ) from the both sides, they work as a π/2
rotation in the sublattice space:

e−i π
4 τ̂z⊗σ̂0 e−i ˆ̃h2(θ )ei π

4 τ̂z⊗σ̂0 = e−iĥ2(θ ). (A24)

Getting all factors together, we finally obtain Eq. (10).

APPENDIX B: SYMMETRY PROPERTIES
OF EQS. (18) AND (19)

We discuss the symmetry properties of the Floquet opera-
tors Û1,2(θ ) in the symmetric time frames [Eqs. (18) and (19)].
The result is summarized in Table II. We note that Û1,2(θ )

TABLE III. Sign change of the coefficient Λ j (θ ) =
λ j cos(ν jθ/2 − α j )/h̄. Because Λ j (θ ) should be an odd or
even function of θ , α j can take only 0, π or ±π/2.

Operation α j = 0, π α j = ±π/2

θ → −θ + –

satisfy Eq. (17) when both e−iĥ1(θ ) and e−iĥ2(θ ) satisfy Eq. (17),
which is rewritten as Eq. (20). Since each term appearing
in ĥ j (θ ) can be factorized as Λ j (θ )ĥτ j (θ, ν) ⊗ ĥσ j , where
Λ j (θ ) = λ j cos(ν jθ/2 − α j )/h̄, ĥτ j (θ, ν) = τ̂0 or m j (θ ) · τ̂,
and ĥσ j = σ̂0 or n j · σ̂ ( j = 1, 2), these factors should be
invariant up to sign under the unitary or antiunitary opera-
tions corresponding to the required symmetry. We list up the
operations that make Λ j (θ ), ĥτ j (θ, ν), and ĥσ j invariant in
Tables III, IV, and V, respectively. Table VI is the list for the
4 × 4 matrix ĥτ j (θ, ν) ⊗ ĥσ j that is obtained by combining
the operations for the 2 × 2 matrices ĥτ j (θ, ν) (Table IV) and
ĥσ j (Table V).

In the following discussions, we assume n1 ∦ n2 and n1 
⊥
n2. The former is required for the Floquet operator not to
be block-diagonalized. Otherwise, τ̂0 ⊗ n1 · σ̂ commutes with
both ĥ1(θ ) and ĥ2(θ ). On the other hand, the latter is assumed
for simplicity: If n1 ⊥ n2, additional symmetry operations
may exist for each class.

We can find a chiral operator as follows. A possible chi-
ral operator is one of the unitary operators, τ̂z ⊗ σ̂0, τ̂0 ⊗
n⊥ · σ̂, and τ̂z ⊗ n⊥ · σ̂, in Table VI. To satisfy Eq. (20c),
we must choose either of τ̂0 or m j · τ̂ as ĥτ j (θ, ν) so that
ĥτ j (θ, ν) ⊗ ĥσ j acquires a minus sign under that unitary oper-
ation. Namely, only the terms ĥτ j (θ, ν) ⊗ ĥσ j with the entry
“–” in Table VI are allowed. This determines ν0

j , ν j to be odd
or even.

We can also find a time-reversal operator and a particle-
hole operator in the almost same way. The difference is
whether or not to consider the sign change of Λ j (θ ) under
θ → −θ . A possible time-reversal operator or particle-hole
operator is one of the antiunitary operators, τ̂0 ⊗ σ̂yK̂ , τ̂z ⊗
σ̂yK̂ , τ̂0 ⊗ n⊥ · σ̂σ̂yK̂ , and τ̂z ⊗ n⊥ · σ̂σ̂yK̂ , whose squares are
−1, −1, +1, and +1, respectively, in Table VI. For a given
ĥτ j (θ, ν) ⊗ ĥσ j , we choose α0

j , α j so that the whole sign

change of Λ j (θ )ĥτ j (θ, ν) ⊗ ĥσ j is plus or minus under that
time-reversal or particle-hole operation, respectively. Namely,

TABLE IV. Sign change of sublattice factor ĥτ j (θ, ν ) = τ̂0,
m1(θ ) · τ̂, or m2(θ ) · τ̂ under unitary and antiunitary operations.
Here, operator Ŝ acts on ĥτ j (θ, ν ) as Ŝĥτ j (θ, ν )Ŝ−1.

Operation τ̂0 m1(θ ) · τ̂ m2(θ ) · τ̂

Unitary:
τ̂0 + + +
τ̂z + – –
Antiunitary:
K̂, θ → −θ + + –
τ̂zK̂, θ → −θ + – +
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TABLE V. Sign change of spin factor ĥσ j = σ̂0, n j · σ̂ under
unitary and antiunitary operations. Here, operator Ŝ acts on ĥσ j as
Ŝĥσ j Ŝ−1. n j⊥ represents an arbitrary unit vector perpendicular to n j .

Operation σ̂0 n j · σ̂

Unitary:
σ̂0 + +
n j · σ̂ + +
n j⊥ · σ̂ + –
Antiunitary:
σ̂yK̂, θ → −θ + –
n j · σ̂σ̂yK̂, θ → −θ + –
n j⊥ · σ̂σ̂yK̂, θ → −θ + +

if the sign change of ĥτ j (θ, ν) ⊗ ĥσ j is plus (minus) for a
time-reversal operator, we choose α0

j , α j = 0 (±π/2), and for
a particle-hole operator, α0

j , α j = ±π/2 (0) (see Tables III).
For the case of class CII discussed in Sec. III, the time-
reversal and particle-hole operators are uniquely determined
as T̂ = τ̂0 ⊗ σ̂yK̂ and Ĉ = τ̂z ⊗ σ̂yK̂ , respectively, by choos-
ing α0

1 = 0.
Now, we consider the other classes BDI, DIII, D, and AIII

that can be achieved in the ORSDKR. Without loss of gen-
erality, we choose α0

1 = 0. In the case of λ0
1 = 0, we choose

α1 = 0.
Class BDI. A Hamiltonian in class BDI has the symmetries

satisfying T̂ 2 = +1, Ĉ2 = +1, and Γ̂ 2 = 1. The antiunitary
operators that square to +1 in Table VI are τ̂0 ⊗ n⊥ · σ̂σ̂yK̂
and τ̂z ⊗ n⊥ · σ̂σ̂yK̂ . Therefore the chiral operator is Γ̂ =
τ̂z ⊗ σ̂0, which is possible when ν0

j and ν j are all odd from
the first row of Table VI. From the choice of α0

1 = 0, the
time-reversal and particle-hole operators are determined as
T̂ = τ̂0 ⊗ n⊥ · σ̂σ̂yK̂ and Ĉ = τ̂0 ⊗ n⊥ · σ̂σ̂yK̂ , respectively.
Finally, according to the signs in Table VI, the remaining
phases are determined as α1 = 0, α0

2 = α2 = π/2 modulo π .
Class DIII. A Hamiltonian in class DIII has the sym-

metries satisfying T̂ 2 = −1, Ĉ2 = +1, and Γ̂ 2 = 1. In the
case of λ0

1 
= 0, choosing α0
1 = 0 determines ν0

1 to be odd,
T̂ = τ̂0 ⊗ σ̂yK̂ , and Ĉ = τ̂z ⊗ n⊥ · σ̂σ̂yK̂ . It follows that the
chiral operator is given by Γ̂ = τ̂z ⊗ n⊥ · σ̂, with which the
possible terms in ĥ j (θ ) are given by odd ν0

2 and even ν1,2 with
α0

2 = α1,2 = π/2 modulo π . On the other hand, in the case of
λ0

1 = 0, λ1 should be nonzero so that the Floquet operator is
not block-diagonalized. In this case, choosing α1 = 0 deter-
mines ν1 to be odd, T̂ = τ̂z ⊗ σ̂yK̂ , and Ĉ = τ̂z ⊗ n⊥ · σ̂σ̂yK̂ .
The chiral operator Γ̂ = τ̂0 ⊗ n⊥ · σ̂ requires λ0

2 = 0. From
the symmetry properties of T̂ and Ĉ, we obtain α2 = π/2
modulo π , with which ν2 can take both even and odd. We
note, however, that for the case of λ0

1 = λ0
2 = 0, ν1 and ν2

should have different parity so that the Floquet operator is not
block-diagonalized. Thus ν2 is determined to be even.

Class D. A Hamiltonian in class D has the particle-hole
symmetry satisfying Ĉ2 = +1. Choosing α0

1 = 0 determines
ν0

1 to be odd and Ĉ = τ̂z ⊗ n⊥ · σ̂σ̂yK̂ . In this case, we must
choose ν1 to be odd (even) with α1 = 0 (π/2) modulo π . ν0

2
and ν2 can take both even and odd as long as α0

2 = α2 = π/2
modulo π . We should choose ν0

2 and ν2 not to belong to the

other classes. We can also assume λ0
1 = 0, λ1 
= 0 and α1 = 0.

However, this does not change the particle-hole operator, and
the obtained result is included in the case of odd ν1 in the
above argument.

Class AIII. A Hamiltonian in class AIII has the chiral sym-
metry satisfying Γ̂ 2 = 1. We can choose τ̂z ⊗ σ̂0, τ̂0 ⊗ n⊥ · σ̂,
and τ̂z ⊗ n⊥ · σ̂ as chiral operators. For Γ̂ = τ̂z ⊗ σ̂0, we must
choose ν0

1,2, ν1,2 to be odd. For Γ̂ = τ̂0 ⊗ n⊥ · σ̂, we must
choose λ0

1,2 = 0. For Γ̂ = τ̂z ⊗ n⊥ · σ̂, we must choose ν0
1,2

to be odd and ν1,2 to be even. In all cases, we should choose
α0

1,2, α1,2 not to belong to the other classes.

APPENDIX C: BULK-EDGE CORRESPONDENCE
FOR CHIRAL SYMMETRIC FLOQUET SYSTEMS

We show the relation between the number of edge states
and winding numbers in chiral symmetric Floquet systems.
As discussed in Refs. [59,75,76], the index theorem in one-
dimensional chiral symmetric Floquet systems guarantees

nL
ε,+ − nL

ε,− = wε, (C1)

nR
ε,+ − nR

ε,− = −wε, (C2)

where nL/R
ε,± denotes the number of edge states with positive

(+) or negative (–) chirality localized at a left/right edge
with quasienergy ε = 0, π (in units of h̄/T ). Here, we have
assumed that the system size is sufficiently large and adopted
the Floquet operator Û1 in the symmetric time frame. The total
number of edge states with quasienergy ε in a finite system is
nε = nL

ε,+ + nL
ε,− + nR

ε,+ + nR
ε,−. As shown in Ref. [60], in a

chiral symmetric time-independent lattice model with finite
range hopping, the number of edge states localized at one side
with either chirality, nL/R

0,+ or nL/R
0,− , always vanishes. Because

this is also applicable to the corresponding Floquet systems
by considering effective Hamiltonians, we can deduce

nL
ε,+ = nR

ε,− = 0 for wε � 0, (C3)

nL
ε,− = nR

ε,+ = 0 for wε � 0, (C4)

which follow from the fact that nL/R
ε is a non-negative integer.

Combining Eqs. (C1)–(C4), we obtain

nε = 2|wε |. (C5)

This relation is consistent with the numerical results shown in
Fig. 3.

APPENDIX D: SPIN-DEPENDENT AND
SPIN-INDEPENDENT OPTICAL LATTICES

We show how to realize the spin-dependent and spin-
independent optical lattices such as Eqs. (37) and (47) in
Secs. V B and V C. We consider the 87Rb atom under an
oscillating electric field,

E (x, t ) = 1

2
E0εei(k·x−ωt ) + c.c., (D1)

where E0 is a complex amplitude, ε is a polarization vec-
tor, k is a wave vector, ω is a frequency of the electric
field, and c.c. stands for the complex conjugate of the pre-
ceding term. According to the second-order time-dependent
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TABLE VI. Sign change of ĥτ j (θ, ν ) ⊗ ĥσ j under unitary and antiunitary operations. Here, operator Ŝ acts on ĥτ j (θ, ν ) ⊗ ĥσ j as
Ŝĥτ j (θ, ν ) ⊗ ĥσ j Ŝ−1. n⊥ represents an unit vector perpendicular to both n1 and n2. Here, we assume n1 ∦ n2 and, for simplicity, n1 
⊥ n2.

Operation τ̂0 ⊗ σ̂0 m1 · τ̂ ⊗ σ̂0 m2 · τ̂ ⊗ σ̂0 τ̂0 ⊗ n1 · σ̂ m1 · τ̂ ⊗ n1 · σ̂ τ̂0 ⊗ n2 · σ̂ m2 · τ̂ ⊗ n2 · σ̂

Unitary:
τ̂z ⊗ σ̂0 + – – + – + –
τ̂0 ⊗ n⊥ · σ̂ + + + – – – –
τ̂z ⊗ n⊥ · σ̂ + – – – + – +
Antiunitary:
τ̂0 ⊗ σ̂yK̂, θ → −θ + + – – – – +
τ̂z ⊗ σ̂yK̂, θ → −θ + – + – + – –
τ̂0 ⊗ n⊥ · σ̂σ̂yK̂, θ → −θ + + – + + + –
τ̂z ⊗ n⊥ · σ̂σ̂yK̂, θ → −θ + – + + – + +

perturbation theory, the ac Stark shift for the hyperfine states
|F, mF 〉 is decomposed into the irreducible tensor terms
as [77,78]

ΔEF,mF = −|E0|2
4

(
αs + αv(iε × ε∗) · eB

mF

2F

+ αt 3|ε · eB|2 − 1

2

3m2
F − F (F + 1)

F (2F − 1)

)
, (D2)

where αs, αv, and αt are the scalar, vector, and tensor po-
larizabilities, respectively, and eB is a unit vector along the
external magnetic field. Here, λD1 = 2πc/ωD1 = 794.98 nm
and λD2 = 2πc/ωD2 = 780.24 nm are the wavelengths of the
D1 line (the 52S1/2 → 52P1/2 transition) and D2 line (the
52S1/2 → 52P3/2 transition) of the 87Rb atom, respectively.
Within the rotating-wave approximation and the nonrelativis-
tic approximation, the polarizabilities for the ground state
52S1/2 are given by [78]1

αs ≈ − 1

6h̄
| 〈52P1/2‖d̂‖52S1/2〉 |2

(
2

δD2

+ 1

δD1

)
,

αv ≈ 1

3h̄
gF F | 〈52P1/2‖d̂‖52S1/2〉 |2

(
1

δD2

− 1

δD1

)
,

αt ≈ 0, (D3)

where δDi = ω − ωDi (i = 1, 2) is the detuning from the
Di line, d̂ is the dipole operator of the atom, and
〈52P1/2‖d̂‖52S1/2〉 is the reduced matrix element. gF is the
hyperfine g-factor defined by

gF = gJ
F (F + 1) + J (J + 1) − I (I + 1)

2F (F + 1)
, (D4)

gJ = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
, (D5)

where gJ is the Landé g-factor, L is the electron orbital angular
momentum, S is the electron spin angular momentum, J is the

1We note that the sign of the vector polarizability αv is different
from Eq. (2) in Ref. [61] but our choice of the sign is consistent with
the result of the reference. Whereas the expressions of these polariz-
abilities only include the contributions from the D1 and D2 lines, the
calculated tune-out wavelengths of the optical lattices coincide with
the measured values in Ref. [61] up to four significant digits.

total angular momentum of the electrons, and I is the nuclear
spin angular momentum. For the ground state 52S1/2 of the
87Rb atom, we obtain gJ = 2, gF=2 = 1/2, and gF=1 = −1/2.
In the following discussions, we choose the propagation direc-
tion, k, parallel or antiparallel to eB.

1. counterpropagating linearly polarized lasers

We first consider two counterpropagating electric fields
with the same amplitude and linear parallel polarization [see
the configuration for the spin-independent lattice beam in
Fig. 5(a)] [61]. The total electric field is given by

E (x, t ) = 1

2
E0εei(k·x−ωt ) + 1

2
E0εei(−k·x−ωt ) + c.c.

= E0 cos(k · x)εe−iωt + c.c. (D6)

Since the polarization vector ε for the linear polarization can
be chosen to be real, the ac Stark shift is

ΔE lin‖lin
F,mF

= −|E0|2 cos2(k · x)αs. (D7)

Since this energy shift does not depend on F or mF , the
resulting optical lattice potential (37) is spin-independent.

2. counterpropagating circularly polarized lasers

Next, we consider two counterpropagating electric fields
with the same amplitude and circular parallel polarization
[see the configuration for the spin-dependent lattice beam in
Fig. 5(a)] [61]. The total electric field is given by

E (x, t ) = 1

2
E0

√
2εL(R)e

i(k·x−ωt )

+ 1

2
E0

√
2εL(R)e

i(−k·x−ωt ) + c.c.

= E0 cos(k · x)εL(R)e
−iωt + c.c., (D8)

where εL(R) = (e1 ± ie2)/
√

2 is a polarization vector for the
left (right) circular polarization defined for the electric field
propagating along k, i.e., e1 and e2 are two orthonormal vec-
tors in the plane perpendicular to the wave vector k such
that e1 × e2 = ek (≡ k/|k|). Here, we choose ek = eB. The
resulting ac Stark shift is given by

ΔE circ‖circ
F,mF

= −|E0|2 cos2(k · x)
(
αs ± αv mF

2F

)
, (D9)
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where the upper (lower) sign is for the left (right) circular po-
larization. Here, we consider the left circular polarization and
two hyperfine levels |F = 2, mF = 2〉 and |F = 1, mF = 1〉.
Taking into account the F dependence of αv, the amplitudes
of the energy shifts have the same modulus but opposite
sign between the two hyperfine states, i.e., ΔE circ‖circ

F=2,mF =2 =
−ΔE circ‖circ

F=1,mF =1, when the wavelength is

λ = 12λD1λD2

5λD1 + 7λD2

= 788.8 nm. (D10)

At this wavelength, the resulting optical lattice poten-
tial (37) gives opposite sign amplitudes for the two hyperfine
states.

3. One-way propagating circularly polarized laser

We consider a one-way propagating circularly polarized
electric field [see the configuration for the spin-dependent
offset cancel beam in Fig. 5(a)]. The electric field is given
by

E (x, t ) = 1

2
E0

√
2εL(R)e

i(k·x−ωt ) + c.c., (D11)

which induces the uniform ac Stark shift

ΔE circ
F,mF

= −|E0|2
2

(
αs ± αv mF

2F

)
, (D12)

where the upper (lower) sign is for the left (right) circular
polarization. We consider the right circular polarization (op-
posite to the ones considered in Sec. D 2) and two hyperfine
levels |F = 2, mF = 2〉 and |F = 1, mF = 1〉. The amplitudes
of the energy shifts have the same modulus but opposite
sign between the two hyperfine states, i.e., ΔE circ

F=2,mF =2 =
−ΔE circ

F=1,mF =1, when the wavelength is

λ = 4λD1λD2

λD1 + 3λD2

= 791.2 nm. (D13)

Because the resulting potential has the opposite sign against
the one in the circ ‖ circ configuration for each hyperfine state,
it acts the offset cancel beam.

4. counterpropagating linearly polarized lasers
with an enclosing angle

We consider two counterpropagating linearly polarized
electric fields with same amplitude and an enclosing angle Θ

[see the configuration in Fig. 5(b)] [62,63]. The total electric
field is given by

E (x, t ) = 1

2
E0e1ei(k·x−ωt )

+ 1

2
E0(cos Θe1 − sin Θe2)ei(−k·x−ωt ) + c.c.

= 1

2

√
2E0

[
eiΘ/2 cos

(
k · x − Θ

2

)
εL

+e−iΘ/2 cos

(
k · x + Θ

2

)
εR

]
e−iωt + c.c., (D14)

and thus the ac Stark shift reads

ΔEF,mF = −|E0|2
2

(
αs[1 + cos Θ cos(2k · x)]

+ αv sin Θ sin(2k · x)
mF

2F

)
. (D15)

Substituting Eq. (D3) to Eq. (D15), we obtain

ΔEF,mF = |E0|2
2

1

6h̄
| 〈52P1/2‖d̂‖52S1/2〉 |2

×
[

2

δD2

+ 1

δD1

+ A cos(2k · x + α)

]
, (D16)

with

A =
[(

2

δD2

+ 1

δD1

)2

cos2 Θ

+g2
F m2

F

(
1

δD2

− 1

δD1

)2

sin2 Θ

]1/2

, (D17)

tan α = gF mF

(
1

δD2

− 1

δD1

)(
2

δD2

+ 1

δD1

)−1

tan Θ. (D18)

For simplicity, we choose the wavelength such that

gF

(
1

δD2

− 1

δD1

)(
2

δD2

+ 1

δD1

)−1

= −1 (D19)

is satisfied, which yields

λ = 3λD1λD2

(1 − gF )λD1 + (2 + gF )λD2

, (D20)

A =
∣∣∣∣ 2

δD2

+ 1

δD1

∣∣∣∣
√

cos2 Θ + m2
F sin2 Θ, (D21)

tan α = mF tan Θ. (D22)

Considering the two hyperfine levels |F = 1, mF = 1〉 and
|F = 1, mF = −1〉 of the 87Rb atom, the wavelength of
Eq. (D20) is determined to be λ = 787.5 nm, at which the
ac Stark shifts for the two hyperfine states are given by

ΔEF=1,mF =±1 = |E0|2
2

1

6h̄
| 〈52P1/2‖d̂‖52S1/2〉 |2

×
(

2

δD2

+ 1

δD1

)
[1 + cos(2k · x ± Θ )].

(D23)

The resulting optical lattice potential is summarized as
Eq. (47), which has the same amplitude and opposite phase
for the two hyperfine states. [We add the minus sign in the
right-hand side of Eq. (47) because of 2/δD2 + 1/δD1 < 0 for
this wavelength.]
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