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We derive two fundamental laws of chiral band crossings: (i) a local constraint relating the Chern number to
phase jumps of rotation eigenvalues and (ii) a global constraint determining the number of chiral crossings on
rotation axes. Together with the fermion doubling theorem, these laws describe all conditions that a network
of chiral band crossing must satisfy. We apply the fundamental laws to prove the existence of enforced double
Weyl points, nodal planes, and generic Weyl points, among others. In addition, we show that chiral space group
symmetries can not stabilize nodal lines with finite Chern numbers. Combining the local constraint with explicit
low-energy models, we determine the generic topological phase diagrams of all multifold crossings. Remarkably,
we find a fourfold crossing with Chern number 5, which exceeds the previously conceived maximum Chern
number of 4. We identify materials crystallizing in space group 198, such as B20 materials and BaAsPt, as
suitable compounds with this Chern number 5 crossing.

DOI: 10.1103/PhysRevResearch.5.043165

I. INTRODUCTION

Recent theoretical and experimental efforts have uncovered
a huge number of materials with chiral band crossings near
the Fermi level [1–6]. These include Weyl semimetals [7–10],
where two bands cross at isolated points, nodal plane mate-
rials with twofold degeneracies on planes [11–15], as well
as materials with multifold band crossings [16–19], such as
threefold, fourfold, or sixfold Weyl points. These types of
band crossings have been classified by use of symmetry and
topology. For example, Refs. [20–31] classified symmetry-
enforced topological features of periodic band structures,
Refs. [16,19,32–34] studied band topologies of low-energy
models, and Refs. [35–37] investigated the connection be-
tween rotation eigenvalues and Chern numbers.

Common to chiral band crossings is that their little groups
do not contain inversion or mirror symmetries (i.e., are chiral),
such that they act as sources or sinks of Berry flux with
quantized Chern numbers. As a consequence, chiral Weyl ma-
terials exhibit a number of unusual phenomena, e.g., the chiral
anomaly [38–41], large negative magnetoresistance [42], or a
quantized circular photogalvanic effect [43–45], which might
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be utilized for the development of new devices and technolo-
gies [46,47]. In combination with magnetic order, chiral band
crossings are highly tunable via an external magnetic field
[14,48,49], a property that is vital for future applications.

Despite the above mentioned efforts, three fundamental
questions remain largely unanswered, namely: (i) What is the
underlying reason for the existence of chiral band crossings?
(ii) How are different band crossings connected with each
other by symmetry and topology? (iii) What are useful guiding
principles for the search and design of materials whose chiral
band crossings lead to large topological responses? To answer
these questions, we derive in this article two fundamental
laws, a local and a global constraint, that are satisfied by
any set of chiral band crossings connected by symmetry and
topology (Secs. II and III). We show that such sets of band
crossings from an interrelated network of band topologies
[15], whose chiral charges are determined by the fundamental
laws. While the local constraint, Eq. (1), relates the chiral
charge of the crossing to the jump in symmetry eigenvalues,
the global constraint, Eq. (2), restricts the number and types
of crossings on a high-symmetry axis, forming parts of the
topological network. Together with the fermion doubling the-
orem by Nielsen and Ninomiya [50], the two fundamental
laws describe all the conditions that networks of chiral band
topologies must satisfy and therefore provide the fundamental
reason for their existence.

To showcase the power of these fundamental laws, we
apply them to prove, among others, the existence of enforced
double Weyl points (Sec. IV A 1), topological nodal planes
(Sec. IV B 1), and generic Weyl points (Sec. IV B 2). We
show that nodal lines with finite chiral charges can not be
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stabilized by lattice symmetries, but only by internal artificial
symmetries, and present a low-energy model that realizes such
an artificial chiral nodal line (Sec. IV A 3). Furthermore, we
find that, due to the presence of multiple symmetries, the
local constraints at multifold crossings can lead to nonmin-
imal Chern number configurations. We show this by using
generic low-energy models to derive the general topological
phase diagrams of multifold crossings (Sec. V). In this way,
we find that there exist fourfold crossings with Chern num-
ber 5 (Sec. V B 1), which exceeds the previously conceived
maximum Chern number of 4 for multifold crossings [51,52]
and for pointlike crossings in general [35,36]. Combining
all of these results yields useful principles for the search of
materials with chiral (multifold) band crossings. Performing
a database search we identify BaAsPt in SG 198 as a suitable
compound exhibiting a Chern number 5 crossings at the Fermi
level (Sec. VI A) and find that NbO2 and TaO2 in SG 80
realize double Weyl points at TRIMs and away from TRIMs
(Sec. VI B).

II. TWO SYMMETRY CONSTRAINTS
ON CHIRAL CROSSINGS

A chiral band crossing point, commonly referred to as a
Weyl point, acts as a monopole of Berry curvature �(k). Each
Weyl point can be characterized by a topological charge, the
chirality, which is given by the Chern number ν calculated on
a closed manifold of gapped bands surrounding the crossing
point. Previously, it has been found that a crossing at kc is
always topologically charged, if the little group Gkc is chiral,
i.e., if there are neither inversion nor mirror symmetries [11].
Without fine-tuning or additional symmetries the charge of a
Weyl point is ν = ±1.

If one considers one or more rotation symmetries, the
Chern numbers ν of all chiral crossing in the BZ as well as
their multiplicity are subject to local and global constraints,
respectively. In this section we formulate these two constraints
on the existence and the topological charge of chiral crossings,
generalizing previous works [35–37]. The proofs are then
given in Sec. III.

A. The local constraint

We find a simple relation how the charge νb,cb of a crossing
cb between the bands numbered by b and b + 1 is related
to the change of complex phase �ϕb,cb of an n-fold rotation
eigenvalue λb. Here and in what follows, we sort the bands by
their energy, i.e., Eb+1(k) > Eb(k) ∀k. For a given band b the
eigenvalue λb(k) is generally a function of the crystal momen-
tum k, which is restricted to the rotation axis. The eigenvalue
may, but does not need to jump at each crossing on the
axis, yielding �ϕb,cb = arg(λb(kcb + εẑ)/λb(kcb − εẑ)) with
the unit vector along the rotation axis ẑ and ε > 0 is sent to 0,
see Fig. 1(a).

With these definitions we will show that

νb,cb = �ϕb,cb

n

2π
mod n, (1)

where the complex phase is only determined up to the or-
der n of the rotation axis. Equation (1) includes previous
results obtained for low-energy models subject to one rotation
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FIG. 1. (a) Local constraint. Integration area to determine the
Chern number around a point crossing (red sphere). In the presence
of a Cn rotation the full sphere of radius ε (green + red) comprises n
symmetry-related copies of the spherical wedge SW (red). By Stokes
theorem the flux of Berry curvature � through SW is equal to the
line integral of the Berry connection A along its boundary ∂SW

(dashed lines). The value of the Berry phase depends on �ϕb,cb =
ϕ(+εẑ) − ϕ(−εẑ). (b) Global constraint. The phase ϕb of screw
rotation symmetry eigenvalues enforces a band crossing in band b
with chirality νb. The points 	(0, 0, 0) and 	2(0, 0, 2π ) are related
by a reciprocal lattice vector.

symmetry and a time-reversal symmetry [35,36], and agrees
with the expression derived by classifying equivariant line
bundles [37]. If one recalls that at generic low-symmetry posi-
tions the number of singly charged Weyl points is restricted by
rotation symmetry to be an integer multiple of n, one expects
that a larger charge |νb,cb | > n/2 localized to a point is fine-
tuned. Therefore, although the relation is only valid mod n,
it is expected that real systems are restricted to crossings with
|νb,cb | < n/2. Equation (1) is valid even with time-reversal
symmetry or other crystalline symmetries as long as the cross-
ing cb is pointlike, e.g., also if time-reversal enables a gapless
crossings between equal rotation eigenvalues. With this in-
sight a recently discovered type of unusual twofold double
Weyl point, which occurs on a twofold instead of a fourfold
or sixfold rotation axis away from time-reversal invariant mo-
menta (TRIMs), can be understood, see Sec. IV A 1. But a
caveat is in order here: If time-reversal and screw symmetries
appear together not only can equal eigenvalues be paired but in
several cases this enforces nodal planes, in which case Eq. (1)
does not apply.

We will see that Eq. (1) is a central tool to identify the
topology of nodal planes. Since our results can be applied
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to more than one rotation symmetry at a time, it provides a
handle to study higher-fold crossings, where more than two
bands intersect. In such crossings every band b is subject to
Eq. (1) for each rotation symmetry, assuming the bands are
nondegenerate on the rotation axis.1 We will see in Sec. IV A 2
that this not only explains the observed topological charges,
but results in more than one possible configuration of topo-
logical charges.

B. The global constraint

The second implication of rotation (and mirror) symme-
tries that governs the qualitative band topology of topological
(semi)metals, is a global constraint on the number and type
of required crossings cb per band b. Generally, two types
of crystalline symmetries can be distinguished, those with
symmorphic operations, which leave at least one point in
space invariant, and those with nonsymmorphic operations
that leave no point invariant, e.g., screw rotations and glide
mirror operations. Since the BZ is periodic, nonsymmorphic
symmetries lead to an exchange of bands, due to the k depen-
dence of their eigenvalues λb(k), which implies the existence
of at least one band crossing on a nonsymmorphic rotation
axis [53]. Conversely, for bands along a symmorphic rotation
axis, it must be possible to undo all band crossings via pair an-
nihilation, due to the BZ periodicity. These constraints can be
formalized with complex phase differences �ϕb,cb . We con-
sider an n-fold symmetry comprising a translation (a, b, m

n ),
e.g., for a rotation this corresponds to {Cz

n|a, b, m
n } in the Seitz

notation. If a band b is not part of a multifold crossings, one
finds for each of the rotation axes∑

b,cb

�ϕb,cb = −b · 2π
m

n
mod 2π, (2)

which only depends on the band index b, the translation part
m
n , and the phase difference �ϕb,cb for crossings cb between
the bands b and b + 1. If there is a multifold crossing for
band b, a similar relation has to be considered, where cb also
includes crossings to higher and lower bands, see Eq. (49).
Equation (2) constrains the complex phase that must be accu-
mulated as one moves through the BZ, up to multiples of 2π .
If the right side of Eq. (2) is nonzero up to 2π , it is clear that
there must be at least one crossing, which contributes to the
summation on the left side. We note that a glide mirror sym-
metry can be treated analogously, by considering crossings on
any path within the mirror plane that crosses the entire BZ,
such that it is closed due the periodicity in k. The usefulness
of this formalization for rotation symmetric systems becomes
evident in conjunction with our first result, Eq. (1), which
relates each �ϕb,cb �= 0 to a topological charge. Therefore
Eq. (2) states that the total chirality of all crossings on a
rotation axis is given by the band index and the translation part
of the screw, up to multiples of the order of the rotation axis.
This implies that accidental crossings on the rotation axis may
change the total charge only by multiples of the order of the
rotation axis, which is reminiscent of what happens at generic

1In the degenerate case, one must use Eq. (18).

positions, where a symmetry imposes certain multiplicities of
topological crossings.

III. DERIVATION OF THE TWO CONSTRAINTS

In this section, we derive the local and global constraints,
which were discussed in the previous section. For pedagogical
reasons, we first present the proof for nondegenerate bands
in Sec. III A and then generalize it to degenerate bands in
Sec. III B. In Sec. III C, we discuss properties of the sewing
matrix with antiunitary symmetries. The global constraint is
derived in Sec. III D.

A. Abelian Chern numbers and eigenvalue jumps

In the following, we derive the constraint, Eq. (1), on the
Chern number ν of a crossing cb in band b, which is protected
by an n-fold rotation symmetry Cn. A related proof is given in
Ref. [37], where the Picard group of complex line bundles is
computed over a sphere subject to a cyclic group action. To
give self-contained proofs, we calculate the Chern number by
generalizing the formalism used in Refs. [54–58] to spherical
integration surfaces. The Chern number for a nondegenerate
band is defined using the flux of Berry curvature �(k) through
a surface S enclosing the crossing as

ν = 1

2π

∫
S

dn · �(k), (3)

where the surface S is assumed to be a sphere in reciprocal
space, without loss of generality, and n is the vector normal
to the sphere, see Fig. 1(a). For ease of presentation, we
have excluded here the case of bands that are degenerate also
away from the crossing point, for which a non-Abelian Berry
curvature must be considered, see Sec. III B. To calculate the
Chern number, Eq. (3), we split the sphere S into n spherical
wedges SW , which are related by the Cn rotation symmetry.
The Abelian Berry curvature transforms as a vector under
rotations, i.e., D(Cn)�(k) = �(D(Cn)k) [55], where D(Cn) is
the spatial representation of the rotation Cn. Noting that the
scalar product n · �(k) is left invariant under the introduction
of the orthogonal matrix D(Cn), one obtains

ν = n

2π

∫
SW

dn · �(k). (4)

Further, by using that the curvature, �(k) = ∇ × A, is the ro-
tation of the Berry connection (A(k))ab = i〈ua(k)|∇|ub(k)〉,
where |ub(k)〉 is the orbital part of a Bloch eigenfunction of
the considered Hamiltonian, we can write Eq. (4) in terms of
the Berry connection A. For a sufficiently small sphere S, the
only relevant divergence of the Berry curvature �(k) occurs
at the crossing cb, i.e., �(k) has continuous derivatives on S.
We can thus apply Stokes theorem and find

ν = n

2π

∫
∂SW

ds · A(k) mod n. (5)

We note, that the integration in Eq. (5) corresponds to the
Berry phase. Hence, Stokes theorem holds up to multiples of
2π , which, when taking the factor n

2π
into account, amounts

to an equation valid mod n. In other words, the U(1) gauge
freedom of eigenstates implies that the integration of A(k) in
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Eq. (5) can be changed by any integer multiple of 2π , whereas
the Chern number ν is gauge-invariant. When we want to
determine the value of the Chern number, the corresponding
gauge choice is not known, and thus Eq. (5) holds modulo n.

The closed path ∂SW can be split into two open and Cn-
symmetry related paths ∂S1

W and ∂S2
W , i.e., ∂SW = ∂S1

W +
∂S2

W . But since a nonzero Berry flux through the surface SW

implies that no single-valued phase convention can be found
on the full edge ∂SW , we need to account for a mismatch in
the phase convention. For this purpose we consider the sewing
matrix B, which is defined as [55][

BCn (k)
]

ab = 〈ua(D(Cn)k)|U (Cn)|ub(k)〉, (6)

where U (Cn) describes the action of the rotation on the
eigenstates of the Hamiltonian |ub(k)〉. For nondegenerate
bands, the sewing matrix is simply a complex phase fac-
tor [BCn (k)]ab = δabeiφb(k). Specifically, at symmetry invariant
momenta kinv with D(Cn)kinv = kinv the sewing matrix,
Eq. (6), reduces to the symmetry eigenvalue λb = eiϕb(kinv ) of
U (Cn) for band b, i.e., φb(kinv) = ϕb(kinv). More generally,
at kinv the sewing matrix becomes a diagonal matrix for an
appropriate basis within a degenerate subspace. The Berry
connection is then given by [55]

A(D(Cn)k) = D(Cn)
[
BCn (k)A(k)B−1

Cn
(k)

+ iBCn (k)∇B−1
Cn

(k)
]
, (7)

see Appendix A for details. For nondegenerate bands
iBCn (k)∇B−1

Cn
(k) = ∇φb(k) and BCn (k)A(k)B−1

Cn
(k) = A(k).

Using the fact that the path ∂S2
W corresponds to the rotated

path ∂S1
W but traversed in the reversed direction, we perform

an integral substitution with k = D(Cn)k′ in the line integral
over ∂S2

W , which turns the integration path ∂S2
W into −∂S1

W .
The integral substitution has a unity Jacobian determinant,
such that the term with A(k) cancels leaving only the sewing
matrix term. Using Eq. (5), we complete the proof of Eq. (1),

ν = n

2π

(∫
∂S1

W

ds · A(k) +
∫

∂S2
W

ds · A(k)

)
mod n (8)

= − n

2π

∫
∂S1

W

ds · ∇φb(k) mod n (9)

= n

2π

(
ϕ
(
kcb + εẑ

) − ϕ
(
kcb − εẑ

))
mod n (10)

= n

2π
�ϕ mod n, (11)

where kcb + εẑ and kcb − εẑ are the north and south pole of
the original sphere, respectively, see Fig. 1(a). The difference
in complex phases �ϕb,cb of the enclosed crossing is only
meaningful up to multiples of 2π , which is consistent with
the equality up to mod n.

A comment on the used gauge is in order. Here, we have
used the cell-periodic part of the Bloch functions in the cal-
culation of the Chern number and Berry phase [59], the k
dependence of the phases ϕb(k) originates only from the
exchange of symmetry eigenvalues and the wave functions
ubk(r) that correspond to |ub(k)〉 are periodic in r in agree-
ment with the crystal lattice. In the next section, we will
consider Bloch functions ψbk(r) = eik·rubk(r), which capture

the periodicity of the Brillouin zone, i.e., ψbk+K(r) = ψbk(r)
for all reciprocal lattice vectors K. The symmetry action
for the periodic gauge ψbk(r) captures the global symme-
try constraints on the band structure, because the symmetry
eigenvalues of nonsymmorphic symmetries gain a phase fac-
tor that represents the translation part of the screw and glide
symmetry operations. Nevertheless, Eq. (1) holds indepen-
dently of the gauge choice, because all symmetry eigenvalues
on a rotation axis obtain the same additional k dependence in
ϕb(k). In other words, practically we think of �ϕb,cb in the
limit of ε → 0 [see, e.g., Eq. (10)], whereby �ϕb,cb becomes
the same for both conventions.

B. Non-Abelian Chern numbers and eigenvalue jumps

For bands with degeneracies on S, for example pairs of
bands forming a nodal plane, Eq. (1) is not applicable, since
Chern numbers can either become undefined or assume nonin-
teger values. But in these cases, a non-Abelian Chern number
can still be defined [60]

νb1b2 = 1

2π

∫
S

dn · tr �b1b2 (k), (12)

where the trace runs over band indices b with b1 � b � b2 and
the non-Abelian Berry curvature and connection [61] are

�b1b2 = ∇k × A − iA × A, (13)

Anm = i〈n|∇k|m〉, (14)

respectively, with b1 � n, m � b2. The band index range
b1, . . . , b2 must be chosen such that these bands have a
nonzero bandgap to bands b1 − 1 and b2 + 1 on the surface S.

A similar equation as Eq. (1) can be derived for non-
Abelian Chern numbers. Using Eq. (12) and (13), we have

νb1b2 = 1

2π

∫
S

dn · tr(∇k × A − iA × A)

= 1

2π

∫
S

dn · tr(∇k × A)

= n

2π

∫
∂SW

ds · trA(k) mod n, (15)

where we used the fact that tr(A × A) = 0 since tr(AiAj −
AjAi ) = 0. In going from the second to the third line we re-
duced the integration area using symmetry and applied Stokes
theorem just like in the proof for the abelian case. Splitting
∂SW into ∂S1

W and ∂S2
W and mapping the latter to the former

with Eq. (7), we get

νb1b2 =
[

n

2π

∫
∂S1

W

ds · trA(k)

− n

2π

∫
∂S1

W

ds · tr
(
BCn (k)A(k)B−1

Cn
(k)

)

− i
n

2π

∫
∂S1

W

ds · tr
(
BCn (k)∇B−1

Cn
(k)

)]
mod n

= − i
n

2π

∫
∂S1

W

ds · tr
(
BCn (k)∇B−1

Cn
(k)

)
mod n,

(16)
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where we used tr(BCn (k)A(k)B−1
Cn

(k)) = trA(k). Using Ja-
cobi’s formula, we have

d

dλ
log det B−1

Cn
(λ) = 1

det B−1
Cn

(λ)

d det B−1
Cn

(λ)

dλ

= tr

(
BCn (λ)

dB−1
Cn

(λ)

dλ

)
. (17)

Combining this with Eq. (16), we obtain

νb1b2 = −i
n

2π

∫
∂S1

W

ds · ∇k log detB−1
Cn

(k) mod n

= −i
n

2π

[
log detBCn

(
kcb + εẑ

)
− log detBCn

(
kcb − εẑ

)]
mod n. (18)

This is equivalent to

νb1b2 = n

2π

b2∑
b=b1

�ϕb,cb mod n, (19)

when the bands b1, . . . , b2 are nondegenerate, consistent with
the abelian case, although here this is also true if the bands
are degenerate somewhere on the sphere except at the poles.
When they are degenerate at the poles, one must either resort
to using Eq. (18) or choose an eigenbasis in the degenerate
subspace, such that the sewing matrix BCn is diagonal and
use Eq. (19). In cases where degenerate bands on the rotation
axis belong to distinct representations with �ϕb,cb < π , it is
possible to improve upon Eqs. (19) and (18). To do so one may
consider any slightly symmetry-broken phase that reduces
the degeneracy but preserves the considered n-fold rotation
symmetry, where the signs of all ν can be uniquely defined
using the local constraint in Eq. (1). An extension of this is
discussed in the final remarks of Sec. IV B 1.

C. Sewing matrices of antiunitary symmetries

In this section, we derive similar expressions for the antiu-
nitary symmetries as in Sec. III A. Applying these to generic
crossings, we find that single-band Chern numbers of cross-
ings with time-reversal symmetry have even (odd) Chern
numbers without (with) SOC. In the following, W is either
just the time-reversal symmetry W = T , with R = 1 or W
is a combination of time-reversal and a crystalline symme-
try with a real space representation R. In later examples,
we are concerned with the R = D(Cn) case. We start with
the derivation of the sewing matrix α for nondegenerate
bands

W H (k)W −1 = H (−Rk) (20)

⇒ W H (k)|u(k)〉 = H (−Rk)W |u(k)〉 (21)

⇒ E (k)W |u(k)〉 = H (−Rk)W |u(k)〉 (22)

so W |u(k)〉 must be an eigenstate of H (−Rk). Therefore

α(k)|u(−Rk)〉 = W |u(k)〉, (23)

which leads to the sewing matrix for antiunitary symmetries

α(k) = 〈u(−Rk)|W |u(k)〉. (24)

The Berry connection transforms under W like so

A(k) = i〈u(k)|∂k|u(k)〉
= −i〈u(k)|W †∂kW |u(k)〉
= −iα∗(k)〈u(−Rk)|∂kα(k)|u(−Rk)〉
= iR−1〈u(−Rk)|∂−Rk|u(−Rk)〉 − iα∗(k)∂kα(k)

= R−1A(−Rk) − iα∗(k)∂kα(k), (25)

where we used

〈u(k)|W †∂kiW |u(k)〉

= lim
ε→0

〈u(k)|W † 1

ε
(W |u(k + εei)〉 − W |u(k)〉)

= lim
ε→0

1

ε
(〈u(k)|W †W |u(k + εei)〉 − 〈u(k)|W †W |u(k)〉)

= lim
ε→0

1

ε
(〈u(k + εei)|u(k)〉 − 〈u(k)|u(k)〉)

= 〈∂ki u(k)|u(k)〉 = −〈u(k)|∂ki |u(k)〉 (26)

together with the antiunitarity of W

〈�|W †W |�〉 = 〈W �|W �〉 = 〈�|�〉 (27)

and

〈u(k)|u(k)〉 = 1 (28)

⇒ ∂k〈u(k)|u(k)〉 = 0 (29)

⇒ 〈∂ku(k)|u(k)〉 = −〈u(k)|∂ku(k)〉. (30)

1. Chern number constraints from CnT symmetries

Using Eq. (25), we can derive expressions similar to Eq. (1)
for C4T

νcb = 2

π
[φ(S) − φ(N)] mod 4

= − 2

π
�φb,cb mod 4, (31)

and for C6T

νcb = − 3

π
�φb,cb mod 3, (32)

with α(k) = e−iφ(k). The constraint for C6T is only defined
mod 3 instead of mod 6, since C6T relates the Berry curvature
of wedges spanning 1/3 of a sphere to each other, instead
of 1/6 wedges. The main difference of Eqs. (31) and (32) to
Eq. (1) is that �φb,cb is no longer the change of a symmetry
eigenvalue but the phase change of the antiunitary symmetry
sewing matrix (24).

C2T relates the Berry curvature of the upper to the lower
hemisphere, so to derive a local constraint we need to consider
a path ∂Sequator on the equator

νcb = 1

π

∫
∂Sequator

A(k)dk mod 2 (33)
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= 1

π

∫
∂Sequator

D(C2)A(k)dk

− 1

π

∫
∂Sequator

iα∗(k)∂kα(k)dk mod 2 (34)

= − 1

π

∫
∂Sequator

A(k)dk

− 1

π

∫
∂Sequator

iα∗(k)∂kα(k)dk mod 2 (35)

⇒ νcb = − 1

2π

∫
∂Sequator

∂kφ(k)dk mod 2, (36)

where we used Eq. (25), A(−D(C2)k) = A(k) and
(D(C2)v)dk = −vdk with any vector v on the equator.
So νcb is even (odd) when φ(k) winds an even (odd) number
of times around the equator.

A C3T constraint is redundant, since C3T implies T =
(C3T )3 and therefore also C3 to exist separately.

2. Chern number constraint of crossings at TRIMs

Next we would like to evaluate a single band Chern number
of a crossing with time-reversal symmetry, W = T (R = 1)
and T 2 = γ , where γ = 1 for spinless and γ = −1 for spinful
fermions. We split the integration-sphere around the crossing
into two halves,

ν = 1

π

( ∫
∂S1

A(k)dk +
∫

∂S2

A(k)dk
)

mod 2 (37)

= 1

π

( ∫
∂S1

A(k)dk +
∫

∂S2

A(−k)dk

−
∫

∂S2

iα∗(k)∂kα(k)dk
)

mod 2 (38)

= − 1

π

∫
∂S2

iα∗(k)∂kα(k)dk mod 2, (39)

where ∂S1 and ∂S2 are two paths of equal length that form
the boundary between the two halves of the full integration
surface. Using α(k) = e−iφ(k) we have

ν = − 1

π

∫
∂S2

∂kφ(k)dk mod 2 (40)

= 1

π
(φ(S) − φ(N)) mod 2 (41)

with N and S being the north and southpole. To evaluate this
expression, consider Eq. (23). We can reinsert itself with a
replacement k → −k to get

α(k)|u(−k)〉 = T α∗(−k)T |u(−k)〉 (42)

= α(−k)γ |u(−k)〉 (43)

so

γ = α(k)α∗(−k) (44)

= e−i(φ(k)−φ(−k)), (45)

which can be applied to Eq. (41) to arrive at ν = 0 mod 2
for the spinless case (γ = 1) and ν = 1 mod 2 for the spinful
one (γ = −1). So any crossing at TRIMs, which includes also

multifold ones, without further degeneracies away from the
crossing, must have even (odd) Chern numbers without (with)
SOC. We see that this constraint is explicitly fulfilled in all
models found in this paper, for example in Sec. V B and in all
low-energy Weyl point Hamiltonians at TRIMs in Ref. [36].

D. Global constraint on band topology

For chiral band crossings, global constraints on the band
topology arise due to conditions on the sum of the topological
charges of nodal points. One such global constraint is the
fermion doubling theorem by Nielsen and Ninomiya, which
states that for each band the sum of all chiralities has to
vanish [50]. Here, we prove a global constraint on the rotation
eigenvalues, which ultimately follows from the periodicity of
the BZ [62]. To do so, we employ symmetry representations
along the full rotation axis, which can be obtained by taking
powers of the symmetry [63]. For concreteness we consider
a screw rotation symmetry Cn(x, y, m

n ), which describes an
n-fold rotation around the z axis followed by a translation
with the vector (x, y, m

n ). Taking the nth power of the screw
rotation, we obtain[

Cn

(
x, y,

m

n

)]n

= eiπs T (0, 0, m) = eiπs+imkz , (46)

where m, n ∈ Z, |m| < |n|, and s = 0 (s = 1) for spinless
(spinful) systems. In the second step, the translation by
a full lattice vector T (0, 0, m) is replaced by the usual
one-dimensional representation of the translation group.
Notably, the above and all following steps apply analogously
to (glide) mirror operations, which would correspond to an
operation with n = 2 and either m = 0 or m = 1 for mirror
and glide mirror symmetries, respectively. The symmetry
eigenvalues of the Cn screw rotation is found as the complex
root of Eq. (46) yielding

λCn = exp

(
i
2π p + sπ + mkz

n

)
, (47)

where p ∈ {0, 1, . . . , n − 1} distinguishes the n different
complex roots. On the rotation axes invariant under the
rotation Cn(x, y, m

n ), we label the bands using λCn or rather,
equivalently, we consider the complex phase ϕ(kz ) = arg λCn .
To label a specific band b that is identified by sorting the
eigenvalues of the Hamiltonian according to their energy,
we have to consider that Eq. (47) does not yet include band
crossings. The phase ϕb(kz ) for a specific band is given by

ϕb(kz ) = 2π p + sπ + mkz

n
+

∑
kc�kz

�ϕb,c, (48)

which must include all phase jumps �ϕb,c at kc corresponding
to all crossings c up to kz, which may be, for example, with
the bands b − 1 or b + 1. The essential step to identify the
global constraints on ϕb(kz ), �ϕb,c, and in extension also
on all chiral crossings is the periodicity of the Brillouin
zone. Thus we compare the phase ϕb(k0

z ) at some position k0
z

with the phase ϕb(k0
z + 2π ) after traversing the Brillouin and

accumulating phase jumps �ϕb,c at kc as well as a contribution
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from mkz

n ,

ϕb
(
k0

z + 2π
) − ϕb

(
k0

z

) = 0 mod 2π

⇔
∑

cb

�ϕb,c + 2π
m

n
= 0 mod 2π. (49)

The phase jumps �ϕb,c in Eq. (49) are not independent for
different bands b. For every phase jump there is the reverse
exchange of eigenvalues in a higher or lower band. Suppose
we consider a system, where all band crossings are twofold,
then one may iteratively substitute Eq. (49) for band b − 1
into the equation for band b. Then crossings c1 of the first
band with the second band must also appear in Eq. (49) for
b = 2, so

∑
c2

�ϕ2,c2 = ∑
c2,3

�ϕ2,c2,3 + ∑
c1,2

�ϕ2,c1,2 . Here,
ca,b denotes a crossing of band a with band b. So we split
up all crossings belonging to band 2 into ones which cross
with band 1 and band 3. Further we note, as stated before,
�ϕ2,c1,2 = −�ϕ1,c1,2 . The induction process leads to Eq. (2)

b = 1
∑
c1,2

�ϕ1,c1,2 = −2π
m

n
mod 2π

b = 2
∑
c2,3

�ϕ2,c2,3 −
∑
c1,2

�ϕ1,c1,2 = −2π
m

n
mod 2π

⇔
∑
c2,3

�ϕ2,c2,3 = −2 × 2π
m

n
mod 2π

...
...

any b
∑
cb,b+1

�ϕb,cb,b+1 = −b × 2π
m

n
mod 2π.

(50)

This result contains the notion of filling-enforced semimetals,
namely, if bm

n �∈ Z, then there must be at least one
symmetry-enforced band crossing [20]. Once the filling,
i.e., the considered band b, is a multiple of n

m , for this specific
band no crossings to higher bands need to exist.

IV. APPLICATIONS AND EXTENSIONS

To demonstrate the power of the local and global con-
straints, we present a number of applications and discuss some
extensions.

A. Applications and extensions of the local constraint

In the following we use the local constraint, Eq. (1), to
prove the existence of enforced double Weyl points away from
TRIMs (Sec. IV A 1). We generalize the local constraint to
multiple rotation symmetries in Sec. IV A 2, which enables
us to infer conditions for the Chern numbers for all types
of (higher-fold) chiral crossings. Finally, we use the local
constraint to show that nodal lines with nonzero Chern num-
bers can not be stabilized by chiral space group symmetries
(Sec. IV A 3).

1. Chiral crossings between identical symmetry eigenvalues

In this section we use the local constraint, Eq. (1), to
explain the existence of unusual enforced double Weyl points

away from TRIMs [35,36]. First, we clarify why these Weyl
points pose an open question in the understanding of chiral
crossings. According to conventional wisdom, a stable band
degeneracy can only occur if at least one of the three fol-
lowing conditions is fulfilled. (i) The two bands forming the
crossing belong to different symmetry representations, which
prevents the introduction of gap opening terms, (ii) there is
a higher-dimensional representation of the point group, or
(iii) time reversal leads to a Kramers degeneracy at a TRIM.
However, in space groups 80, 98, and 210 there exist band
crossings away from TRIMs between bands with identical
representations of dimension one [27]. So at first glance, all
of the above three conditions for a crossing seem violated.
Yet, the combination of time-reversal and fourfold rotation
symmetry generates, due to Kramers theorem, pointlike de-
generacies at high-symmetry points of certain nonprimitive
Brillouin zones that are not TRIMs [27]. Interestingly, with
SOC these crossings are known to be double Weyl points with
Chern number ±2 [28], but could until now not be understood
in terms of symmetry eigenvalues [35,36].

For concreteness, let us now focus on the body-centered
tetragonal SG 80 (I41), whose P point can host twofold de-
generacies both with and without SOC [e.g., see Figs. 2(a)
and 12]. As we will see, this band crossing can be understood
by noting that the combined symmetry TC4z, comprising
time-reversal T , and fourfold screw rotation C4z, leaves the
P point invariant. Other than that, the only unitary symmetry
that leaves P invariant is the rotation C2z whose symmetry
eigenvalues can be used to label the bands. We now need
to distinguish the case with and without SOC, which differ
slightly for SG 80. Without SOC different eigenvalues are
paired by the antiunitary operation TC4z. In our notation, this
corresponds to �ϕ = ±π for the Weyl point at P, which
implies by Eq. (1) a Chern number of νP,SG80 = 1 mod 2.
With SOC the representation is doubled compared to before
and splits into two one-dimensional and one two-dimensional
representation at P, because the Kramers theorem only applies
to the latter representation, see Ref. [27] for details. Since for
the two-dimensional representation one eigenvalue of C2z is
paired to itself, one finds �ϕ = 0 implying νP,SG80,SOC = 0
mod 2. Taking into account that the crossing at P has been
νP,SG80 = 1 without spin, it follows from the conservation
of topological charge that νP,SG80,SOC = ±2. We have thus
reached an explanation for the double Weyl point at P in terms
of symmetry eigenvalues.

The discussed double Weyl point at P in SG 80 has a differ-
ent origin and symmetry than any other twofold double Weyl
point, which occur either on fourfold or sixfold rotation axes
or at TRIMs in the presence of spinless time-reversal sym-
metry [35,36,64]. Hence, we expect that also the spin texture
[65–72] and Berry curvature are distinct from the conven-
tional double Weyl points. To demonstrate this, we compute
the Berry curvature and spin texture of the double Weyl point
in SG 80. For this purpose, we derive in Appendix B a tight-
binding model including SOC for SG 80. Figure 2(a) shows
the band structure of this model defined by Eq. (B5). As
expected we find a double Weyl point of charge νP = 2 at each
P point, which is compensated by a pair of double Weyl points
on the fourfold rotation axis 	-Z-M with ν	-Z-M = −2. Fig-
ures 2(b) and 2(c) show the Berry curvature and spin texture
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FIG. 2. Band structure, Berry curvature, and spin texture for
SG 80. (a) Tight-binding model with SOC of SG 80 as defined in
Eq. (B5). The body-centered tetragonal Brillouin zone is shown in
the inset of Fig. 11(b). The double Weyl point at P is characterized
by its Berry curvature and spin textures as shown in (b) and (c),
respectively, which are given for the lower band of the crossing on
a sphere enclosing it. For comparison, (d) and (e) show the Berry
curvature and spin textures of a regular double Weyl point. For all
vector plots, the north pole of the sphere is labeled by “N” and red
color denotes a larger magnitude of the vector field than blue.

around the P point, respectively. To contrast this with con-
ventional double Weyl points, we plot in Figs. 2(d) and 2(e)
the Berry curvature and spin texture of a conventional double
Weyl point defined by H (k) = kzσz + (σ+(kx − iky)2 + H.c.),
where σ+ = 1/2(σx + iσy) with the Pauli matrices σ j [66,73].
While the details of these textures are parameter-dependent,
their symmetry properties are generic and dictated by the
local little groups. In general the spin texture at P in SG
80 is anisotropic and symmetric under the antiunitary C4T
symmetry [see regions of similar color shading in Fig. 2(c)].
In contrast, the texture of a conventional double Weyl point
is symmetric under a unitary (e.g., fourfold) rotation sym-
metry, see Figs. 2(d) and 2(e). Another difference is that

the spin texture around the equator of Fig. 2(c) has a unit
winding, whereas the one of Fig. 2(e) has a winding of two.
These differences in spin texture could be measured experi-
mentally, using, e.g., spin- and angle-resolved photoemission
spectroscopy [65,70,72].

Using a database search (see Sec. VI) we have identified
NbO2 and TaO2 as candidate materials in SG 80 realizing the
double Weyl points away from TRIMs. The band structure and
surface states of these compounds are presented in Sec. VI B.
Notably, we find that for surface terminations perpendicular
to any of the crystal axes there appear four Fermi arcs. This is
because for these terminations the P point is projected onto a
symmetry related copy of itself with the same Chern number
±2, such that four Fermi arcs emerge from the projected P
point in the surface BZ.

The above arguments for SG 80 apply in a similar manner
also to SG 98 (I4122) and SG 210 (F4132), for which the
double Weyl points appear at the P and W points, respectively.
In addition, related arguments using the local constraint can be
employed to understand the charge ν = ±2 of the threefold
crossings in SG 199 (I213) and SG 214 (I4132) at the point P,
see the discussion in Sec. V B 2.

2. Chiral crossings with multiple rotation axes

Band crossing points symmetric under little groups that
contain more than one rotation symmetry often exhibit larger
topological charges than in the case of a single rotation
symmetry [16,17,51]. Also in this case the local constraint,
Eq. (1), can be used to understand the observed topological
charges. In the following, we extend the above arguments
to multiple rotation axes and consider, for concreteness, a
twofold quadruple Weyl point at 	 in SG 195, for which
a Chern number of ν = 4 has been reported [73–76]. Other
nontrivial examples of nodal points with multiple rotation
symmetries are discussed in Secs. IV B 2 and V in the context
of multifold band crossings.

For a single rotation axis one usually finds that νcb =
�ϕb,cb

n
2π

holds without the modulus operation, although the
local constraint, Eq. (1), restricts the possible charges only
up to the order of the rotation n. This is because higher
topological charges would require fine tuning. To see this,
consider a crossing point of charge ν = νcb + mn, where m is
some nonzero integer. If this crossing is perturbed by some
symmetry-allowed perturbation, the crossing may split into
one with charge νcb and m sets of each n Weyl points. In
fact, generally exactly this happens, because placing mn Weyl
points on the rotation axis is a fine-tuned situation. In other
words, to achieve higher topological charges ν, more lower
orders in the low-energy expansion need to be set to zero,
which would require fine tuning.

In the presence of multiple rotation symmetries, however,
there are more symmetry constraints that can lead to higher
topological charges, such that the smallest possible value
given by the local constraint (1) is not realized. To demon-
strate this, let us consider SG 195 (P23) with time-reversal
symmetry, where a twofold quadruple Weyl point is enforced
to occur at the TRIM 	 (and also at R), if, for example, the
1E 2E representation is placed on the Wyckoff position 1a
[77]. The corresponding little group at 	 consist of the point
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FIG. 3. Quasisymmetry-enforced Chern number in twofold
quadruple Weyl points. Band structure around a twofold band cross-
ing symmetric under point group 23 and time reversal, as given by
Eq. (C1) with d1 = 0. The splitting of the bands along the threefold
(twofold) rotation axes in red (purple) is cubic (quadratic). A fourfold
quasisymmetry enforces a charge of ν = 4.

group 23 together with time-reversal, which does contain a
twofold and a threefold rotation, but no fourfold rotation, dif-
ferent from the conventional twofold quadruple Weyl points
of Refs. [73–76]. From the representation of this little group,
one finds that there is no exchange of the twofold rotation
eigenvalues, while the threefold rotation eigenvalue switch.
Thus the local constraint (1) on the charge ν	 is

ν	 = 0 mod 2 and ν	 = 1 mod 3. (51)

Thus both ν	 = 4 and ν	 = −2 are in agreement with
Eqs. (51). To resolve this ambiguity we construct a low-
energy model HT(k) around 	, which is symmetric under
the point group 32 and time-reversal, see Appendix C. The
energy bands of this model exhibit quadratic and cubic dis-
persions along different directions away from the crossing
point, see Fig. 3. The topological phase diagram of this
low-energy model contains only one phase with ν	 = 4, in
agreement with Eq. (51). However, the lowest possible topo-
logical charge of ν	 = −2, cf. Eq. (51), is not realized, in
contrast to the conventional twofold quadruple Weyl points
with fourfold rotation symmetry [73–76]. This raises the ques-
tion, why can the charge ν	 = −2 not be realized in our
low-energy model, even though it would be consistent with
the local constraint?

There are two ways to answer this question. First, a closer
look at the low-energy model presented in Appendix C reveals
that there is a fourfold quasisymmetry, i.e., a symmetry of the
low-energy model that is broken by terms of higher order in
k. Namely, the low-energy Hamiltonian HT(k), Eq. (C1), is
left invariant by U (Cz

4 )†HT(k)U (Cz
4 ) = HT(D(Cz

4 )−1k), where
U (Cz

4 ) is the representation of a fourfold rotation symmetry
and D(Cz

4 ) is the corresponding transformation in real space,
see Eq. (C4). U (Cz

4 ) is a quasisymmetry, as it is a symmetry

only of the lowest-order terms, but not of the full Hamiltonian.
Yet, since the Chern number is determined exclusively by the
lowest orders in k, at which the point crossing is well-defined,
this quasisymmetry forces the charge to be ν	 = +4 for the
crossing by adding the local constraint ν	 = 0 mod 4.

Second, the Chern number ν	 = 0 mod 4 can be under-
stood by considering how the symmetries act on the Berry
curvature integration. For this purpose, we need to consider
the role of the time-reversal symmetry together with the
twofold rotation, to be specific the combination C2T . The
Berry curvature flux through the northern SW (N ) and southern
SW (S) half of the spherical wedge SW when considering C2 are
identical due to C2T and thus

ν	 = 2
2

2π

∫
SW (N )

dn · �(k) (52)

= 2

π

∫
∂SNP1 +∂Sequator+∂SP2N

Ads mod 4, (53)

where we split the path SW (N ) into ∂SNP1 + ∂Sequator + ∂SP2N
and P1 and P2 being endpoints of ∂Sequator. The Berry con-
nection integration on paths ∂SNP1 and ∂SP2N are related by
symmetry and can be evaluated in a similar way as in Eq. (8),∫

∂SNP1 +∂SP2N

Ads = φb(P1) − φb(N). (54)

Regarding the ∂Sequator integration, consider Eq. (7) applied on
this path∫

∂Sequator

A(D(C2)k)ds =
∫

∂Sequator

D(C2)(A(k) − ∇φb(k))ds

⇒
∫

∂Sequator

A(−k)ds = −
∫

∂Sequator

A(k) − ∇φb(k)ds

⇒
∫

∂Sequator

A(k)ds = −
∫

∂Sequator

A(k) − ∇φb(k)ds

⇒
∫

∂Sequator

A(k)ds = 1

2

∫
∂Sequator

∇φb(k)ds (55)

= 1

2
(φb(P2) − φb(P1)), (56)

where all equations are valid up to mod 2π and with
A(D(C2)k) = A(−k) and (D(C2)v)ds = −vds with any vec-
tor v on the equator. We also used Eq. (25) relating A(k) and
A(−k) via time-reversal symmetry∫

∂Sequator

A(−k)ds mod 2π

=
∫

∂Sequator

A(k)ds − i
∫

∂Sequator

α∗(k)∂kα(k)ds mod 2π

=
∫

∂Sequator

A(k)ds + φT (P1) − φT (P2) mod 2π

=
∫

∂Sequator

A(k)ds mod 2π, (57)

where the time-reversal symmetry sewing matrix has the
form α(k) = e−iφT (k) and φT (P1) = φT (−P1) = φT (P2) in
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the spinless case [see Eq. (45)]. In total, we get

ν	 = 2

π

(
−φb(N) + 1

2
(φb(P1) + φb(P2))

)
mod 4. (58)

Explicitly calculating φb(P1) + φb(P2) in the irrep 	2	3

by plugging in the Bloch wavefunctions of the low-energy
Hamiltonian into Eq. (6) yields 0. So

ν	 = 2

π
ϕ(N) mod 4. (59)

The irrep 	2	3 in 1E 2E of C2 is σ0, so ϕ(N) = 0, which
means we get

ν	 = 0 mod 4. (60)

A material implementation of this WP with charge 4 was
found in BaIrP, see Ref. [73]. There it is shown that, upon
introducing SOC, this crossing evolves into 12 WPs and
a fourfold crossing at 	 with C = ν1,2 = ±4, which is in
Sec. V B 1 revealed to be the νn = {±3,±1,∓1,∓3} phase
of the model described there.

3. Chiral nodal lines

Nodal lines protected by crystalline symmetries are com-
monly discussed in the context of mirror symmetries, which
leave a plane in the Brillouin zone invariant where they pro-
vide two distinct representations. The presence of two distinct
representations is sufficient to obtain accidental nodal lines.
Furthermore, there can be symmetry-enforced line crossings,
for example, if another symmetry operation anticommutes
with the mirror symmetry, one finds nodal lines pinned to
high-symmetry paths. Alternatively, if the original mirror
symmetry is nonsymmorphic this is already enough to con-
clude in analogy to Eq. (2) that there must be an odd number
of nodal lines crossing every other gap, which are movable in
the sense that their position is parameter-dependent [21,22].
Other cases of nodal lines include higher-fold nodal lines or
almost movable nodal lines, which are only pinned to a finite
number of high-symmetry points [27,29].

For all of these nodal lines, the Chern number vanishes
because of the mirror symmetry, when calculated on a surface
that fully encloses the nodal line [78]. It comes to no surprise
that despite the extensive research on various types of nodal
lines, no example of a stable chiral nodal line, i.e., a nodal line
with Chern number, has been discussed so far. Nevertheless,
there are some reports of such nodal lines without mirror sym-
metry in the literature, which are either of unclear symmetry
protection [79] or as in the case of the nodal lines in hexagonal
AgF3 [80] have found to be actually weakly gapped [37].
Whether a chiral nodal line can exist is not only of interest
due to its unique topology, but also important for the study of
enforced topological nodal planes. To rigorously deduce the
existence of the latter, one needs to assume that a chiral nodal
line does not exist. In this case, a nonzero sum of Weyl point
chiralities within the Brillouin zone, implies a charged nodal
plane, see Sec. IV B 1.

In this section, we aim to answer, whether chiral nodal
lines can be stabilized by crystalline symmetries, and we will
extensively apply the rotation symmetry constraint of Eq. (1).
Doing so we consider points in reciprocal space lying away
from any (glide) mirror planes. To approach the first goal,

let us assume that we have obtained a nodal line at a generic
position in the Brillouin zone with a chirality νline < n, where
n is the order of the highest rotation symmetry. Suppose in this
gedankenexperiment that we introduce all symmetry-allowed
perturbations to the system to gap out the chiral nodal line.
Since the nodal line is assumed to be chiral, its topological
charge has to persist in the form of Weyl points. However,
as long as the original rotation symmetry is preserved, the
condition νline < n implies that a nodal line can not be gapped,
because the number of resulting Weyl points at generic posi-
tions would be equal to νline and thus incompatible with the
required multiplicity n. Unlike nodal lines protected by a Z2

invariant, shrinking the nodal line to a point would not remove
it, but leave a Weyl point with the same topological charge
behind.

Yet, despite this argument to stabilize a chiral nodal line,
we will discuss in the following that the relation between
rotation symmetry eigenvalues and the chirality, see Eq. (1),
strongly limit the possibility to find any nodal band feature
fulfilling νline < n.

First, suppose there is a nodal line encircling an n-fold
rotation axis. Then, we can enclose the whole line by a sphere
analogously to Fig. 1(a), which implies by the arguments
given in Sec. III A that the chirality of all band crossings
enclosed by the sphere is related to the change of rotation
eigenvalues on the north and south pole of the rotation axis
�ϕb. Several cases must be distinguished. If there is no ad-
ditional point crossing on the rotation axes, then �ϕb = 0
leading to νline = 0 mod n, implying that the nodal line is
trivial or at least unstable. If there are indeed additional point
crossings on the rotation axis, then �ϕb �= 0 and one may
choose the sphere to enclose only the point crossings, which
implies that these crossings by themselves are responsible for
the charge of �ϕb

n
2π

mod n, which would be observed on the
original sphere. In both cases, the chiral nodal line is unstable.

To circumvent the objections, one may consider more intri-
cate configurations of nodal lines. If one examines a nodal line
that is sufficiently extended such that it can not be enclosed
by a sphere, it is generally still possible to find a surface to
enclose the line and a section of the rotation axis. The proof of
Eq. (1) can then be repeated for this new surface, after the sub-
division of the integration surface for the Berry curvature, the
edges must be related by symmetry, see also Ref. [55], where
the integration surface intersects more than one rotation axis.
Ultimately, one finds an expression depending on the changes
of eigenvalues of the different rotation axes, but the symmetry
representation only changes when traversing the integration
contour if a crossing on a rotation axes has been enclosed.
Thus either the nodal line itself has crossed a rotation axes
and is responsible for the exchange of symmetry eigenvalues,
such that the nodal line can be gapped out except at a set of
corresponding point crossings on the rotation axes, or there
will be no exchange of symmetry eigenvalues and hence at
most a trivial charge. In Appendix D, we discuss the case of
antiunitary symmetries of higher multiplicity and show that
they do not circumvent the result obtained above from Eq. (1).
In summary, we find that all configurations of chiral nodal
lines discussed here do not fit to the original proposal of a
topological charge νline < n, hence we find that no crystalline
symmetry is able to protect a chiral nodal line. Note, a chiral
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FIG. 4. Chiral nodal line. Band structure for the model chiral
nodal line (red highlighting) described by Eq. (61). The dispersion
of the nodal line is linear (quadratic) in radial (kz) direction.

nodal line may still be found by considering systems with
internal symmetries.

To conclude this section, we propose a low-energy model
of a chiral nodal line to illustrate how our above symmetry
argument can be circumvented. In this construction, we place
two Weyl points, W (k, ε), of different energy at the origin
and couple them by the matrix B(k) in a way that preserves an
internal symmetry Uline. We define

W (k, ε) = k · σ + εσ0, (61)

B(k) = kzσ1, and (62)

H (k) =
(

W (k, ε) B(k)

B(k)† W (k,−ε)

)
, (63)

where we set the energy offset to ε = 1, σ is the vector
of Pauli matrices, and σ0 denotes the two-dimensional unit
matrix. The bands of the Weyl points intersect in a nodal
sphere [81] and are gapped by B(k) except at kz = 0, see
Fig. 4 for the resulting band structure. This model exhibits
a chiral nodal line with a Chern number of νline = 2, which
is inherited from the interplay of two ν = +1 Weyl points. It
has to be noted that the charge of such a nodal line does also
dependent on the hybridization away from kz = 0, e.g., for
B(k) = kzσ3 the nodal line is not charged. While k · σ exhibits
a fourfold rotation symmetry U (C4) = (σ0 + iσ3)/

√
2, this

symmetry extended to H (k) is broken by B(k) for kz �= 0.
Yet, perturbations that preserve the U (C4) at kz = 0 symmetry
gap out the nodal line, because the nodal line is not pinned
to the kz = 0 plane and loses its symmetry protection once
moved away despite νline < n. Nevertheless, there is an orbital
symmetry in our model, namely,

Uline =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠, (64)

which fulfills [H (k),Uline] = 0 at kz = 0 and does not act as a
mirror symmetry for kz �= 0. Two bands with the +1 and −1

eigenvalues of Uline exchange at the chiral nodal line. Thus
any perturbation that respects the symmetry Uline may deform
the nodal line, but can not introduce a gap. Such a chiral nodal
line could be realizable for example in optical metamaterials
or other synthetic systems.

B. Applications and extensions of the global constraint

The global constraint contains the information on the pos-
sible numbers of crossings on rotation axes or mirror planes.
This is for example a guide to the search for semimetals with
few point or line crossings [27]. In this section, we com-
bine both constraints and the Nielsen-Ninomiya theorem [50].
First, we will discuss a paramagnetic space group with an
enforced topological nodal plane duo. Secondly, we illustrate
the constraints with a real band structure including accidental
Weyl points, nodal planes, and multifold crossings.

1. Symmetry-enforced topological nodal planes

In the following section, we apply local and global con-
straints to the theory of symmetry-enforced topological nodal
planes. After a brief summary of the basic arguments that lead
to (topological) nodal planes, we consider the nontrivial case
of SG 94 P42212. Although there are other space groups that
host two nodal planes [28], which can be topological but are
not enforced to Ref. [14], this space group is the only known
case with two symmetry-enforced topological nodal planes in
a paramagnetic space group, i.e., in a grey group including
time reversal as a symmetry element.

We consider nodal planes as twofold degeneracies on the
surface of the Brillouin zone. Such degenerate planes can be
symmetry-enforced by the combined symmetry comprising
time-reversal T and a twofold screw rotation C̃2 [11,12,14,82].
In short, the antiunitary symmetry TC̃2 fulfills Kramers theo-
rem at every point on a plane in the Brillouin zone. Regions
that host nodal planes are described by ki = π in units of
the corresponding inverse lattice constant and have to be at
the surface of the Brillouin zone. This gives rise to a natural
distinction based on the number nodal planes (one, two, or
three) or equivalently distinct symmetries TC̃2 with eligible
planes in the Brillouin zone. We refer two the case of two
(three) nodal planes as nodal plane duo (trio) to highlight that
these nodal planes form a single connected object that can
only be assigned a single Chern number.

The whole gapless structure of nodal planes may exhibit a
nonzero Chern number on a surface that encloses the plane, if
mirror and inversion symmetries are absent. For nodal plane
trios, i.e., nodal planes at ki = π with i ∈ {x, y, z}, a single
Kramers Weyl point at the TRIM 	 can only be compensated
by an opposite charge on the nodal planes, where one needs to
consider the case of spinful time-reversal symmetry [11,12].
For nodal plane duos, a similar argument would result in two
Kramers Weyl points that might cancel, hence it is a priori
unclear, whether nodal plane duos may be nontrivial.

A topological nodal plane duo can, for example, occur due
to the global constraint in a time-reversal broken state. The
simplest case is realized in ferromagnetic MnSi with the mag-
netic space group 19.27 P2′

12′
121. Since the planes kx = π and

ky = π exhibit a nodal plane duo, only the twofold rotation
axis through 	 is not part of a nodal plane. On this axis, the
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global constraint takes the form∑
cb

�ϕb,cb = −b · π mod 2π, (65)

which results in an odd number of crossings for bands with
odd b. Since each crossing exhibits a charge of ν = ±1, cf.
Eq. (1), there is an odd overall charge within the Brillouin
zone that can not be compensated by generic crossings of even
multiplicity. Thus the nodal plane duo is topological with a
charge of νNP = 1 mod 2, see Ref. [14].

Finally, we consider the topological nodal plane duo en-
forced by SG 94 P42212 for a spinful description with
time-reversal symmetry. Again, the global constraint gives a
nonzero sum of phase jumps for odd b along the fourfold
rotation axis Z-	-Z . Here, one needs the local constraint,
because it is insufficient to count the number of Weyl points,
which may occur as single and double Weyl points. One finds

νZ-	-Z ≡
∑

cb

νcb =
∑

cb

n

2π
�ϕb,cb = −2b mod 4, (66)

where the global and local constraints, Eqs. (1) and (2), have
been substituted into the sum of all crossings on the fourfold
rotation axis with m = 2 and n = 4. Thus, for odd b, the Chern
number of the nodal plane duo νNP = −νZ-	-Z �= 0 indepen-
dently of the details of the system.

To illustrate these results we have devised a Hamiltonian
of SG 94, see Appendix E. This model has a minimal set of
four connected bands with symmetry-enforced hourglass band
structures along 	-Z and 	-X, see Fig. 5(a), and two nodal
planes covering the surfaces defined by kx = π or ky = π .
The chiralities of Weyl points on the axis 	-Z-	2 follow our
local constraint Eq. (1), see Fig. 5(b). As predicted the nodal
planes are topologically charged. For example, for the lowest
band, the chiralities ν1,1 = ν1,2 = −1 at 	 and Z, respectively,
add up and are also not compensated by charges at generic
positions, see Fig 5(c). Thus the lower nodal plane duo carries
the opposite Chern number ν1,NP = +2. This concludes our
discussion of the nodal planes in SG 94, which is the only
known space group that enforces a due of topological nodal
planes without magnetism.

As final result regarding the topology of SG 94, it is no
coincidence that the two fourfold double Weyl points at A
and M, see Fig. 5, carry each the same chirality of ν = +2.
To see this, let us assume the screw rotation C̃x

2 of SG 94
is broken such that there is an arbitrarily small finite gap
at the nodal planes. It turns out that now for the twofold
degeneracies at TRIMs M and A the signs of the chiralities are
fixed by the order of rotation eigenvalues. Yet, together with
the global constraints one can reach a broader statement. One
can conclude in this symmetry-reduced case that analogously
to Eq. (66) the total charge on the axis M-A-M is ν ′

M-A-M = 2
mod 4 with b = 1. Since the symmetry TC̃x

2 preserves the
charges while increasing the degeneracy forming the nodal
plane, one finds that the non-Abelian charge νM-A-M = 4
mod 8 on the axis is twice as large as the symmetry-reduced
case studied above. If there are just the crossings at M and A,
as shown in Fig. 5, this implies that they carry the same charge
of ν = +2.

FIG. 5. Tight-binding model of SG 94. (a) Band structure of the
model defined in Eq. (E1). (b) Symmetry eigenvalues of the fourfold
screw rotation C̃4 along the full rotation axis 	-Z-	2. The chiralities ν

noted in red are compensated by an opposite charge contained within
the nodal plane shaded in red in (a) and in the Brillouin zone (c). In
(c), the arrows show the well-localized regions of diverging Berry
curvature associated to the point crossings at 	 and Z.

2. Global constraints for multifold degeneracies

While in the previous example the absence of a multifold
crossing simplified the exposition, we are going to consider
in the following the opposite case, where several multifold
crossings occur and local and global constraints may not
directly substituted into each other. The salient difference is
that at multifold crossings the exchange of bands described
by �ϕ may occur with lower (or higher bands) that are not
necessarily adjacent to the considered band, i.e., not only
bands b − 1 (or b + 1).

To illustrate the constraints with multifold crossings in a
real band structure we discuss the cubic compound BaAsPt
(SG 198 P213) exhibiting an unusual multifold crossing point
including a ν = 5 band. The material will be closer examined
in Sec. VI A.

Here, our goal is to give some intuition on how the global
constraint is fulfilled, while respecting the Nielsen-Ninomyia
theorem. For the latter, one may pick in principle any subset
of bands to determine the relevant chiralities of crossings by
the non-Abelian generalization of the Chern number for this
set of bands. Here, we consider for simplicity only the band b′
that bounds the light red shaded area in Fig. 9 from below.

Since we encounter multi-band crossings, e.g., at 	, M, and
R, we have to use the general form of the global constraint
introduced in Eq. (49). It implies that each twofold rotation
axis should exhibit a total phase

∑
cb′ �ϕb′,cb′ = π mod 2π ,

whereas the symmorphic threefold rotations require a phase
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change of
∑

cb′ �ϕb′,cb′ = 0 mod 2π . Note that in Eq. (49)
the summations include crossings to lower and to higher bands
on the considered rotation axis.

One half of the threefold rotation axis 	-R, cf. points
Fig. 9, exhibits three Weyl points to higher and three to lower
bands together with multifold crossings at 	 and R (one of
the latter is in close proximity to 	). Since between each two
crossing on 	-R there is a crossing in the next lower gap, all
crossings to the higher (lower) band have an identical phase
jump �ϕ and the numerical calculation yields �ϕ = +2π/3
(−2π/3). When taking the position relative to band b′ into
account all five Weyl points thus contribute ν = +1. As a
side remark, the lower crossing of charge ν = −1 in the inset
appears together with three generic Weyl points with ν = +1
in its close proximity. Due to their close proximity, we have
labeled the crossing on the 	-R axis with the total charge of
the four crossings next to the rotation axis, i.e., ν = +2 for
the band that bounds the light red shaded region from be-
low. While these generic crossings are not symmetry-enforced
similar arrangements of crossings around a threefold rotation
axis have been predicted before in an analysis of CoSi, which
has the same SG 198 [15]. For the full threefold axis 	-R,
there are 12 phase jumps adding up to a phase shift of �ϕ =
+24π/3 = 0 mod 2π . The multifold crossings at 	 and R
exhibit �ϕ = ±2π/3 such that in total the phase equals 0
mod 2π on each threefold rotation axis. In total, the band b′
comprises thus 48 Weyl points of charge ν = +1 on generic
points of its threefold rotation axes.

On the twofold rotation axis along 	-X, there is one cross-
ing contributing �ϕ = π . Since 	 and X are time reversal
invariant and the twofold rotation eigenvalues are complex
at 	 and real at X, it is clear prior to any calculation that
the phase changes at 	 but not at X. Thus a full twofold
rotation axis X-	-X exhibits an odd number of phases as
expected. Overall there are six Weyl points of ν = +1 on
the twofold axes through 	. The twofold bands on the nodal
planes along the R-M line exhibit two distinct representations
that are characterized by twofold rotation eigenvalues like on
	-X, thus also here the global constraint applies. On R-M,
there is a crossing to a lower band as well as a pinned crossing
at M, both exhibit an exchange of C2 eigenvalues, whereas
none occurs for the crossing at R. Thus, along the full line
R-M-R, there is an odd number of crossings fulfilling the
global constraint. Although we encounter chiral crossings on
R-M, these do not contribute with a Chern number to the band
b′, because these crossings lie completely below the light red
shaded gap. Note, to determine that the sixfold crossing at R
contributes the charge ν = −4 to the band b′, one needs to
determine a non-Abelian Chern number, see also Ref. [15]
for the details of such a calculation. Finally, to apply the
Nielsen-Ninomiya theorem to band b′, one has to consider the
contribution by the nodal plane of ν = 3.

In summary, the chiral charges on the band b′ that bounds
the light red shaded region from below are 6νb′,	-X = 6,
8νb′,	-R = 48, as well as νb′,	 = −5, νb′,R = −4, and νb′,NP =
+3, which adds up to 48. By using the Nielsen-Ninomiya
theorem for band b′, we can infer that there are at least two
sets of Weyl points at generic positions. Indeed, by a closer
inspection of the band structure we find that there are addi-
tional Weyl points close to the 	-R axes. There are 24 of such

Weyl points with charge ν = −1 in the vicinity R as well as
another set of Weyl points with also ν = −1 close to 	.

While we had to consider the charge of the nodal plane
explicitly, in absence of nodal planes it is possible to infer
the existence of Weyl points at generic positions based on
symmetries alone, e.g., in a spinful representation of SG 19 or
the magnetic SG 19.27 for the movable fourfold double Weyl
points as noticed for a tight-binding model in Refs. [11,14]. It
is thus possible to use the local and global constraints together
with the Nielsen-Ninomiya theorem to deduce the existence of
Weyl points at generic positions within the Brillouin zone.

V. GENERATION AND CLASSIFICATION OF
LOW-ENERGY HAMILTONIANS FOR THE MULTIFOLD

CROSSING CASE

As we have already seen in a previous Sec. IV A 2,
combinations of different symmetries, including time-
reversal, can lead to surprising results. Up until now, we
considered only Weyl points. So the next question is how
the non-Abelian constraints affect multifold crossings in this
regard. Here we do not only want to restrict ourselves on just
the evaluation of constraints, but to explicitly calculate Chern
numbers in all topological phases of all multifold crossings,
as the solution to constraints derived for the non-Abelian case
(see Sec. III B) are not unique and larger Chern numbers than
the minimal ones fulfilling the given constraints can, due to
the higher symmetry, be no longer excluded. We can see these
cases directly when such a topological classification is carried
out explicitly.

This complete topological classification of all multifold
crossings in all space groups follows a three phase approach.
First all irreducible representations (irreps) with dimensions
higher than 2 were found at all high-symmetry points using
the Bilbao Crystallographic Server [83]. Since we included
time-reversal symmetry in all of our analysis, the search can
be restricted to double space groups with broken inversion
symmetry, since only there topological charges are allowed to
be nonzero in presence of time-reversal symmetry. Then, low-
energy Hamiltonians were generated for all irreps found in the
last step, such that these Hamiltonians respect all symmetries
at the given high-symmetry points. Finally, the whole param-
eter space of these Hamiltonian are topologically classified.

We note that there is an alternative approach for gener-
ating low-energy Hamiltonians than the one shown in this
section based on Ref. [32], where all possible Hamiltonian
terms are tabulated. We used the method described here, since
we found it more convenient to lookup a small number of
symmetry generators and their representations instead of all
possible Hamiltonian terms. See also Refs. [84–86] for more
alternative algorithms.

A. Automatic generation of low-energy Hamiltonians
from irreps

A general low-energy Hamiltonian up to second order in
wave vector k has the following form:

Hnm(k)=
∑
hp1

αh,1H1
hp1nmkp1+

∑
hp1 p2

αh,2H2
hp1 p2nmkp1 kp2+O(k3).

(67)
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Here n and m enumerate the degrees of freedom. αh,q are the
free parameters of H at order q. Hq

hp1...pqnm are the linearly
independent terms in H , with h indexing each term. The goal
of the following algorithm is to compute these terms, such that
H is symmetric under some group of symmetries.

The starting point of the automatic generation are sym-
metry generators and the corresponding irrep at a given
high-symmetry point. With these generators we build up the
whole little group G at this high-symmetry point and the
representation D(g) of those symmetries g ∈ G. The only con-
straint of a low-energy Hamiltonian at this point must be that
it is symmetric

∀g ∈ G : H (gk) = D(g)H (k)D(g−1). (68)

We can symmetrize the Hamiltonian in Eq. (67) via

H̃1
hv1i j = 1

|G|
∑
g∈G

g−1
vp1

D(g)inH1
hp1nmD(g−1)m j, (69)

H̃2
hv1v2i j = 1

|G|
∑
g∈G

g−1
v1 p1

g−1
v2 p2

D(g)inH2
hp1 p2nmD(g−1)m j, (70)

. . .

where gab is the real space representation of g and Einstein
notation was used. Then H̃q

hp1...pqnm are the new terms of a
symmetric H . Note that D(g) can be antiunitary, which is the
case when g is, for example, the time-reversal symmetry. In
this case, D(g) = UK with U unitary and K being the com-
plex conjugation operator. The latter one can be eliminated by
commuting it through all term in Eqs. (69) and (70) until we
can use K2 = 1.

The algorithm starts by generating a set of random complex
Hq

hp1...pqnm terms, with h ∈ {1, . . . , N} and N being the total
amount of randomly generated terms. These are then sym-
metrized via Eq. (69) to produce N symmetrized H̃q

hp1...pqnm

terms. Only the linearly independent terms are kept, which is
done using a Gram-Schmidt orthogonalization, during which
the terms indexed by h are treated as vectors by flattening
indices p1 . . . pqnm to a single index I . This also reduces the
number of terms Ñ � N to the maximal set of symmetric and
linearly independent terms. The number of free parameters of
this Hamiltonian at order q is also Ñ .

For better handling of these terms, we would like to nor-
malize the real or imaginary part of as many of their entries
to 1, since they are still filled with random numerical values
of arbitrary magnitude. We can not normalize all entries to 1,
since not all are linearly independent. This normalization is
done by first gathering all nonzero columns in Re(H̃q

hI ) and
Im(H̃q

hI ) in a new matrix Mhr with size (Ñ, P), with P the
number of nonzero columns. Rows that are linearly dependent
on other rows are removed in M, such that M is quadratic and
invertible. The final terms of H are then computed with

H ′q
h′ p1...pqnm =

∑
h

M−1
h′h H̃q

hp1...pqnm. (71)

Due to the inversion of M, the real or imaginary part of all
nonzero entries in H̃ , which are chosen to build up the M ma-
trix, are normalized to 1 in only one of the terms while they are
set to 0 in all other. Entries that are not part of the final M are
either a fraction or a fraction consisting of square roots. The

last step of the algorithm is to convert the numerical values of
H ′ into analytical expressions by comparing the entries to the
values of those analytical expressions and also to project H ′ to
Pauli or Gellmann matrices. To test if this conversion worked,
the symmetry of the resulting Hamiltonian is checked.

B. Classification of all multifold crossings
at high-symmetry points

Using the algorithm described in the previous section, a
Hamiltonian for each irrep with dimension >2 was gener-
ated. Since we only want to study the topological charge
of the crossing at the high-symmetry point in question, it is
sufficient, with only one exception as we will see later, to
generate only the terms up to linear order in k, since higher
orders could only produce additional crossings away from the
high-symmetry point and do not alter the topological charge of
the multifold crossing. Some of the generated Hamiltonian are
equivalent or equivalent up to a transformation, so these cases
can be grouped and classified together. The transformations
either have no effect on or flip the topological charge.

The determination of every band’s topological phase dia-
grams of the Hamiltonians all follow the same idea of first
finding all points in parameter space where the current band
in question of the given Hamiltonian becomes gapless away
from the crossing. These are the only points where topologi-
cal phase transitions can happen, i.e., the topological charge
of the multifold crossing can change. These points make
up subspaces in parameter space, which separate different
topological phases and were found by considering the charac-
teristic polynomial of H and comparing it to a characteristic
polynomial describing a Hamiltonian in a gapless phases.

So after finding these subspaces it is possible to determine
the topological charges of every phase by evaluating it numer-
ically deep in a given phase. This way one can color in the
whole phase by the determined topological charge. Since no
other topological phases are possible, we can enumerate all
possible topological charges for all multifold crossings.

During this topological classification, the Chern number
of single bands is sometimes undefined. This happens due
to band degeneracies, for example nodal planes, which by
symmetry persist to all orders in k. In most of these cases, one
can still define a non-Abelian Chern number, see Eq. (12). In
the case of fourfold crossings on nodal planes, we compute
non-Abelian Chern numbers νb,b+1, where bands b and b + 1
are part of the nodal plane.

1. Fourfold crossings

The main results for all fourfold crossings are summarized
in Tables I and II. The topological charge of the lowest band
ν1 is undefined in most irreps, since there the lowest two
bands can be shown to be always twofold degenerate at some
k points away from 0 at all orders in k due to symmetry
constraints. Where this is not the case, an unusually high
Chern number of ±5 can be observed.

As this result is quite unexpected, we explicitly show the
topological phase diagram and its derivation of one of the two
Hamiltonians, the model for the 	̄6	̄7 irrep, that describe these
cases. This irrep can be found in SG 195-199. The little group
contains Cx,y,z

2 , C(±1,±1,±1)
3 , and time-reversal symmetry. In the
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TABLE I. All possible topological charges of all fourfold crossings in the spinless case (without SOC). Their Hamiltonians are either listed
under the Model column or are obtained after a possible transformation applied on the given Hamiltonian.

SG Irrep ν1 ν2 ν12 Model Transformation

19 R1R1 – – ±2 G 9 –
92 A1A2 – – ±2 G 7 kx → ky, ky → −kx, α2 = 0, α3 = 0
96 A1A2 – – ±2 G 7 ky → −ky, α2 = 0, α3 = 0
198 R1R3/R2R2 – – ±2 G 5 –
212/213 R1R2 – – ±2 G 5 –
212/213 R3 – – ±2 G 6 –

following, all used representations are equivalent to the ones
on the Bilbao Crystallographic Server [83]. The Hamiltonian
generated by the algorithm described in the previous section is

H = α0[2kxσxτz + ky(−
√

3σxτ0 − σyτ0)

+ kz(σxτx +
√

3σyτx )]

+ α1[−2kxσyτz + ky(−σxτ0 +
√

3σyτ0)

+ kz(
√

3σxτx − σyτx )]

+ 2α2[kxσzτx + kyσ0τy + kzσzτz] (72)

with τ and σ being Pauli matrices. It is possible to show
(see Appendix G 1) that the Hamiltonian is only gapless for

α2 = ±
√

α2
0 + α2

1 , α2 = 0 or
√

α2
0 + α2

1 = 0 at points away
from k = (0, 0, 0). We can assign the spaces in between gap-
less planes in parameter space αn with precomputed Chern
numbers to arrive at the topological phase diagram of the
	̄6	̄7 irrep model. See Fig. 6 for the phase diagram for band
2. We find that band 1 has two phases, for α2 < 0 the Chern
number is ν1 = −3, for α2 > 0 it is ν1 = 3. For bands 3 and
4, ν3 = −ν2 and ν4 = −ν1.

In the Appendix of Ref. [73], a symmetry equiva-
lent Hamiltonian to Eq. (72) has been derived, although
there the whole topological phase diagram has not been
mapped out. Previously [17], this fourfold crossing has been
described by a Rarita-Schwinger-Weyl spin-3/2 Hamilto-
nian [87–89] H (k) = αS · k, which only supports the νn =
{±3,±1,∓1,∓3} phase, or a distinction between the 3/2
chiral fermion and the one found here was made [90] but
only the ν2 = ±1 phase was considered. Here we see that
this description is incomplete. To our knowledge, the νn =
{±3,∓5,±5,∓3} topological phase has not been observed
yet.

We find no threefold symmetry eigenvalue phase jumps
for the lowest/highest band. A phase jump of 2π/3 for α2 <

0 and of 4π/3 for α2 > 0 was observed for band 2. For
all bands, a phase jump of π was found for both twofold
symmetries, which constraints all Chern numbers to be odd
νn = 1 mod 2. Further, the threefold symmetry constraints the
Chern number of the lowest and highest bands to ν1/4 =
0 mod 3, which is consistent with ν1/4 = ±3. Then, for α2 <

0, we have the constraint ν2/3 = 1 mod 3 and for α2 > 0, we
have ν2/3 = 2 mod 3, which are fulfilled in all phases in Fig. 6.

TABLE II. All possible topological charges of fourfold crossings in all spinful SGs and their Hamiltonians.

SG Irrep ν1 ν2 ν12 Model Transformation

18 S̄5S̄5/R̄5R̄5 – – ±2 G 3 –
19 S̄5S̄5 – – ±2 G 3 –
19 T̄5T̄5 – – ±2 G 3 kx → ky, ky → kz, kz → kx

19 Ū5Ū5 – – ±2 G 3 ky → kz, kz → ky

90 Ā6Ā7/M̄6M̄7 – – ±2 G 7 –
92/94/96 M̄6M̄7 – – ±2 G 7 –
92/96 R̄5R̄5 – – ±2 G 3 kx → ky, ky → kz, kz → kx

92/96 Ā7Ā7 – – ±4 G 8 –
94 Ā6Ā7 – – ±2 G 7 kx ↔ ky

195/196/197/198/199 	̄6	̄7 ±3 ±1, ∓5 ±4, ±2 V B 1 –
195 R̄6R̄7 ±3 ±1, ∓5 ±4, ±2 V B 1 –
197 H̄6H̄7 ±3 ±1, ∓5 ±4, ±2 V B 1 –
198 M̄5M̄5 – – ±2 G 3 –
199 H̄6H̄7 ±3 ±1, ∓5 ±4, ±2 V B 1 U = σzτx

207/208/209/210 	̄8 ±3 ±1, ∓5 ±4, ±2 G 2 –
/211/212/213/214
207/208 R̄8 ±3 ±1, ∓5 ±4, ±2 G 2 –
211 H̄8 ±3 ±1, ∓5 ±4, ±2 G 2 –
212 M̄6M̄7 – – ±2 G 4 –
213 M̄6M̄7 – – ±2 G 4 ky → −ky

214 H̄8 ±3 ±1, ∓5 ±4, ±2 G 2 U = σ0τx, α1 → −α1
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FIG. 6. Topological phase diagram of the fourfold crossing de-
scribed by Hamiltonian (72) with three parameters α0, α1 and α2.
Depicted is the Chern number ν2 of band 2. An unusually high
absolute Chern number of 5 can be found in regions where α2 >√

α2
0 + α2

1 or α2 < −√
α2

0 + α2
1 .

The transition between ν2 = ±1 and ν2 = ∓5 phases is
facilitated (see Appendix G 1) by a gap closing of the middle
two bands. This suggests, that the mechanism behind this
Chern number switch is an absorption/emission of six Weyl
points on the C2 invariant axes into/out of the multifold cross-
ing. This implies an exchange of C2 symmetry eigenvalues of
bands 2 and 3 between these two phases, which we confirmed
by a direct calculation.

The phase transition νn to −νn at α2 = 0 takes place by
a simultaneous gap closing on C2 invariant lines of the outer
band pairs (1,2) and (3,4) as well as on C3 invariant lines of
band pair (2,3). Since corresponding symmetry eigenvalues
switch on both invariant lines, six WPs on the outer band pairs
and eight WPs on the middle band-pair fuse with or emerge
from the fourfold crossing. The WPs on C2 invariant lines
with total charge ±6 switch the sign of the lowest/highest
Chern number ν1/4 = ∓3 → ±3. For the middle, two bands
a combined total Chern number of ∓6 ± 8 = ±2 switches the
sign of the middle Chern numbers ν2/3 = ∓1 → ±1.

This means, consecutive topological phase transitions over
ν2 = 5 → −1 → 1 produce a total of 26 WPs distributed
across the three band pairs, six in the lower and upper band
pairs respectively and 6 + 8 = 14 in the middle band pair,
provided there are no other crossings at the start in the ν2 = 5
phase, since these could also be merged into the multifold
point to carry out the phase transition. This process is visu-
alized in Fig. 7.

In Fig. 8, the spin texture of this fourfold crossing in the
ν2 = −1 and ν2 = 5 phase are compared for bands 1 and 2.
To extend the discussion of spin textures at multifold crossings
[91] to the novel phase of ν2 = 5, we construct a spin operator
for p-orbitals sitting at the 1a Wyckoff position of SG 195.
In the presence of SOC, the p energy levels split into the
fourfold representation of interest 	̄6	̄7 as well as the 2D
irrep 	̄5. The parameters chosen for the ν2 = −1 phase are
α0 = 0, α1 = 1.6 and α2 = 1, while for the ν2 = 5 phase,
the parameters are α0 = 0, α1 = 1 and α2 = 1.6. The spin
operator was constructed using consecutive diagonalizations
of the p-orbital symmetry representation and 	̄6	̄7 ⊕ 	̄5 (see
Appendix F). We find a significant difference regarding the
spin textures of band 2 between ν2 = −1 and ν2 = 5 phases.
The sx (so 100) component of the spin expectation value flips

FIG. 7. Starting from a single fourfold crossing described by
the 	̄6	̄7 irrep model [see Eq. (72)] in the ν2 = 5 phase, a phase
transition to ν2 = 1 over ν2 = −1 produces a total of 26 WPs across
the three band pairs. WP and multifold point charges are color-coded.

discontinuously when going from the ν2 = −1 to the ν2 = 5
phase, see Fig. 8(b). This qualitative difference in the spin
texture of multifold crossings belonging to distinct phases is
in principle measurable by spin-resolved ARPES experiments
[70,72]. In this way, these two topological phases can be
distinguished.

2. Threefold and sixfold crossings

The Hamiltonians for threefold and sixfold crossings found
by the procedure described above reproduce the ones listed
in Ref. [16]. We also find the Hamiltonians for all threefold
crossings

H =

⎛
⎜⎜⎝

0 kz(α − iβ ) −ky(α + iβ )

0 kx(α − iβ )

. . . 0

⎞
⎟⎟⎠ (73)

to be equivalent up to transformations. Since these transfor-
mations and the explicit dependence of the topological charge
were omitted in Ref. [16], we included them here in Tables III
and IV and in Appendix H.

The sixfold crossing Hamiltonian of SG 198 R̄7R̄7 irrep is
equal to

H = α0[kxσzλ7 − kyσzλ6 + kzσzλ3]

+ α1[kxσ0λ5 + kyσ0λ2 + kzσ0λ1]

+ α2[kxσxλ7 − kyσxλ6 + kzσxλ3]

+ α3[kxσyλ7 − kyσyλ6 + kzσyλ3] (74)

with σn and λn being Pauli and Gellmann matrices (see Ap-
pendix J for a definition). This Hamiltonian is equivalent up
to a unitary transformation to the one found in Ref. [16], with
eiφ = α0 + iα1 and b = α2 + iα3. There it was also shown that
you can arrive at the Hamiltonian for the SG 212 and 213 R̄7R̄8

irrep by setting φ = π
2 . Due to nodal planes crossing these

points, Chern numbers for odd fillings can not be defined. The
non-Abelian Chern number for the middle two bands ν34 = 0
remains trivial, while the Chern number for the remaining
bands are ν12 = −ν56 = ±4. The exact phase diagram and its
derivation can be found in Appendix I.
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FIG. 8. (a) Spin texture for the fourfold crossing described by
Eq. (72) for bands 1 and 2 in the ν2 = −1 and ν2 = 5 phases. The
arrow size and color depend on the magnitude of the spin, red being
maximal. (b) Normal component of the spin expectation value, so
s · n, in 100 (so n = (1, 0, 0)) and 111 direction over the parameter
α1 tuning from the ν2 = 5 to ν2 = −1 phase. We see a spin flip from
an outside to inside facing spin during this phase transition in the 100
direction, while the spin at 111 is staying constant. See Appendix F
for a definition of s.

VI. MATERIALS

Here we discuss two material examples. Details on the
calculations can be found in Appendix L.

A. BaAsPt and related compounds (SG 198)

A material search for a fourfold crossing with a Chern
number of 5 sufficiently close to the Fermi energy was done in
space groups 195–199 and 207–214. First materials from the
materials project [92] are screened for fourfold crossings near
the Fermi energy. The Chern number of this point was directly

TABLE III. All threefold crossings without SOC and corre-
sponding transformations, which generate their Hamiltonian from
Eq. (73).

SG Irrep Transformation

195...199 	4 β → −β, kx → kz, ky → −kx, kz → ky

195 R4 β → −β, kx → kz, ky → −kx, kz → ky

197 H4, P4 β → −β, kx → kz, ky → −kx, kz → ky

199 H4 β → −β, ky → −ky

207...214 	4, 	5 α = 0, β → −β, kx → kz, ky → −kx, kz → ky

207, 208 R4, R5 α = 0, β → −β, kx → kz, ky → −kx, kz → ky

211, 214 H4, H5 α = 0, β → −β, kx → kz, ky → −kx, kz → ky

computed [15] using density-functional theory, in particular
QUANTUM ESPRESSO [93]. This search was stopped at the
first material found, which was BaAsPt in SG 198. There a
fourfold point with ν = ±5 was found at 	 at −100 meV, see
Fig. 9. References [94,95] also mention a fourfold degeneracy
at 	 in BaAsPt and a related compound BaPPt, although
no topological classification has been performed and there-
fore the ν = ±5 phase has not been identified. We note that
BaAsPt belongs to a class of materials in SG 198, referred to
as LaIrSi-type materials [73], consisting of three elements and
with similar bandstructures, as seen on the materials project
[92]. Due to their similar atomic coordination [96] we expect
for this material class the same orbital characteristics as in
BaAsPt, such that ν = ±5 should also occur there, though
likely at varying distances to EF . We note that, this topo-
logical phase can in principle occur in the broad class of
B20 materials, and in fact in any compound crystallizing in
SG 198.

A full topological classification [15] of the 6 bands cross-
ing EF has been carried out. We enumerate these bands from
1 to 6 in descending order in energy. The charge of the
nodal planes, which occur in SG 198 at the BZ boundary,
is shown in Fig. 9 in solid colored lines. The figure also
shows all crossings on high-symmetry lines. WPs at generic
positions have been found for band pair (4,5) (the band pair
with ν = ±5 at 	 and whose bandgap is shaded light red)
at k = 2π (−0.0289,−0.2699,−0.2988)T and all symmetry
related points with ν5 = −1. Another generic WP was found
at k = 2π (0,−0.2085,−0.291)T with ν4 = −1 for band pair
(3,4). The fermion doubling theorem is fulfilled when includ-
ing the topological charges of the WPs, multifold crossings
and NPs found by the full topological classification of the six
bands crossing EF .

Further, a large topological band gap shaded in light red
separating the two bands with ν = ±5 can be seen. A sur-
face DOS calculation at 100 meV shows a large number of
Fermi arcs, see Fig. 10, despite a screening of the topological
charge from the fourfold point, which due to the filling of this

TABLE IV. All spinful threefold crossings. The Hamiltonian is
described in Eq. (73).

SG Irrep Transformation

199,214 P̄7 –
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FIG. 9. Band structure of BaAsPt and all band crossings on
high-symmetry lines. The bandgap between the bands with a Chern
number of ±5 at the fourfold 	 crossings is indicated by the light red
region. This topological bandgap is responsible for the Fermi arcs in
Fig. 10. The blue dashed line is the energy slice taken there. We also
observe NPs with Chern numbers up to 21 at energies below Ef .

topological band gap is −3 + 5 = −2, by charges on 	-X,
which sum up to 2. Four copies of these WPs appear on the
projection 	̄-M̄. Very close to the 	 point on the 	-R line

FIG. 10. Surface density of states (DOS) of BaAsPt at 0.1 eV.
Also shown are the projected topological charges, relevant to a band-
filling in between the bandpair with charge ν = ±5 at 	 from the
bulk. This band gap corresponds to the parts of the surface DOS
without bulk states, where the Fermi arcs reside. With this filling,
the charge of the 	 point is 3 − 5 = −2, which is compensated by
two WPs on the 	-X line. Further, there are 8 WPs on the 	-R line
very close to the 	 point which we included into the total charge of 8
of the projected 	̄ point. The total charge of bulk states around 	̄ is
4, so there are four Fermi arcs connecting these states to the R̄ point
with topological charge ν = −4. Note that the ν = 2 charges near R̄
are slightly away from R̄, so there are 4 copies at every corner. These
charges are connected with 8 Fermi arcs to bulk states with ν = −2
points between 	̄ and R̄.

there are eight WPs, which we included into the charge of 	̄.
The total charge of the bulk bands surrounding 	̄ of four give
rise to four Fermi arcs emerging from the bulk states at 	̄ and
running to the R̄ point with charge −4. The remaining Fermi
arcs are entirely explained by projected topological crossings
of the band pair (4,5), namely, a small pocket between 	̄ and R̄
containing a charge of −2 and connecting via 2 Fermi arcs to
bulk bands with a charge of 2 near R̄. In total, we are counting
12 Fermi arcs.

B. NbO2 and TaO2 (SG 80)

Niobium dioxide was first synthesized in 1941 and was
shown to crystallize in a rutile structure with tetragonal space
group symmetry 136 [97]. Further research revealed the ex-
istence of a distorted lower-symmetry phase β-NbO2 [98].
During the structural transition, pairs of niobium atoms dimer-
ize along the c-axis, and although the nature of the transition
is believed to be of Peierls type, the specifics have been
the subject of an extensive amount of research throughout
the years [99–103]. Slightly sub-stochiometric single crystals
of β-NbO2 can be synthesized in oxygen-deficient environ-
ments, and its crystal structure has space group symmetry
80 [104]. Much later, β-NbO2 was proposed as a potential
realization of a topological chiral crystal with Kramers-Weyl
fermions in its bulk and the corresponding boundary modes
on its surface [11].

Since the topological band gap in β-NbO2 is small and
the crossing of interest is overshadowed by spectral weight
of other bands in its vicinity, we propose two alterations
to the compound to improve its usefulness as a topological
semimetal. First, to increase the effect of spin-orbit coupling,
we consider the hypothetical compound β-TaO2, which is
expected to have the same crystal structure since tantalum and
niobium have very similar ionic radii and electron configu-
rations [105]. Second, we enhance the distortion mode that
connects the rutile and the reported lower-symmetry phase of
NbO2. To do this, we compare the crystal structures of the
parent and the distorted compound, calculate the irreducible
representations of the distortions and identify the linear com-
bination of modes that connects the two configurations using
the ISODISTORT tool [106]. The computed distortion is then
exaggerated by a factor of 1.5, retaining the space group sym-
metry of β-NbO2. Potential routes to synthesize the proposed
crystal include growing it at higher temperatures or in a more
oxygen-deficient environment [104].

The band structure and the surface states of β-TaO2 are
shown in Fig. 11. In the vicinity of the Fermi energy there
are two time-reversal-related double Weyl points protected by
fourfold rotation symmetry, one of which is seen on the line
	-M, as well as two double Weyl points pinned to the points
labeled P. Our calculation shows that Weyl points on 	-M with
charge ν = +2 compensate the ones at P with ν = −2. To our
knowledge, this is the first example, where double Weyl points
are enforced away from a TRIM but pinned to a lower sym-
metry point. These doubly charged degeneracies on a twofold
rotation axis contradict previous suggestions that double Weyl
points require four- or sixfold rotational symmetry [35], and
can only be understood from our argument using the local
constraint, see Sec. IV A 1.

043165-18



FUNDAMENTAL LAWS OF CHIRAL BAND CROSSINGS: … PHYSICAL REVIEW RESEARCH 5, 043165 (2023)

FIG. 11. (a) DFT bulk band structure of the distorted TaO2 com-
pound with the topological band gap colored in red and an arrow
pointing to the Weyl point (WP). The inset is showing a zoom of the
double Weyl point. (b) Surface spectral density at −0.297 eV [blue
dashed line in (a)] with a termination projecting M onto 	 (	̄) and
P onto N (M̄) as shown in the inset. Two Fermi arcs connect the
projection of the Weyl point at P with the bulk bands.

VII. CONCLUSION

In this paper, we have derived two fundamental laws of
chiral band crossings, namely, a local and a global constraint,
that are satisfied by any set of chiral crossings connected by
symmetry and topology. We have shown that such sets of band
crossings form a topological network, whose chiral charges
are determined by the fundamental laws. The local constraint
relates the chiral charge of the crossing to the phase jump
in symmetry eigenvalues (Sec. II A). The global constraint,
on the other hand, restricts the number and types of cross-
ings on high-symmetry axes, thereby providing useful sum
rules (Sec. II B). Together with the famous fermion-doubling
theorem by Nielsen and Ninomiya, these laws describe all
conditions that networks of chiral band crossings must satisfy
and thus give a deeper understanding for their existence.

To demonstrate the usefulness of the fundamental laws, we
have applied them to prove the existence of enforced double
Weyl points, nodal planes, and other band topologies, and
have shown that space group symmetries can not stabilize
nodal lines with finite chiral charges (Sec. IV). Combin-
ing the local constraint with an exhaustive classification of
low-energy models, we have determined the generic topo-
logical phase diagrams of all multifold crossings (Sec. V).
Our analysis reveals that multifold crossings can exhibit more
than one configuration of chiral charges. Moreover, we have
found a novel fourfold crossing point with Chern number 5
(Sec. V B 1).

Our findings have direct implications for material design
and for interpreting the band topology of existing materials.
For example, we have identified the B20 materials class as
having band structures where this Chern number 5 crossing
can occur and have shown that for BaAsPt this exotic band
crossing is at the Fermi level (Sec. VI). In addition, we have

uncovered that NbO2/TaO2 in SG 80 has a band structure with
double Weyl points.

There are several directions for future work. First, the local
and global constraints generalize immediately to one- and
two-dimensional systems and can be applied also to magnetic
space groups. For example, the local constraint can be used to
infer the existence of double Weyl points away from TRIMs
in magnetic space groups, similar to Sec. IV A 1. Second,
our fundamental laws can be employed to study (multifold)
nodal points and nodal planes of bosonic band structures, e.g.,
phonon or magnon bands. Third, our results have implications
for topological response functions that are influenced by the
Berry curvature, e.g., anomalous Hall currents, photogalvanic
effects, and magnetooptic Kerr effects. Working out signa-
tures of the discussed band topologies (e.g., the nodal planes
or the fourfold crossings with ν = 5) in these response func-
tions would be an interesting task for future study.
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APPENDIX A: PROOF OF EQ. (7)

Since we chose a different sign in the definition of the
Berry connection [see Eq. (14)] as compared to [55], we here
present the derivation of Eq. (7) [Eq. (83) in Ref. [55]). The
following equations are valid for any crystalline symmetry
R, while in this paper, we are concerned with the R = D(Cn)
case.

A(R · k) = i〈n(R · k)|R · ∇k|m(R · k)〉
= iR

∑
c,d

BCn (k)nc〈c(k)|R̂−1∇kB∗
Cn

(k)md R̂|d (k)〉

= iR
∑
c,d

BCn (k)nc〈c(k)|∇kB∗
Cn

(k)md |d (k)〉

= R
(
BCn A(k)B−1

Cn
+ iBCn∇kB−1

Cn

)
. (A1)

APPENDIX B: TIGHT-BINDING MODEL FOR SG 80

To illustrate the band topology induced by SG 80, we give a
minimal tight-binding model for the spinless and spinful case,
as discussed in Sec. IV A 1. We consider a generic model for
the 2a Wyckoff position and take all symmetry-allowed terms
up to second nearest neighbors into account. We use the phase
convention of Bloch functions for the tight-binding orbitals
[59] and the primitive vectors as basis for k [107]. Our model
takes the form

(HSG80,↑)11 = 2t ′
1(cos(k1 + k2 + k3) + cos(k3))

+ 2t ′
2(cos(k1) + cos(k2)), (B1)
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(HSG80,↑)22 = 2t ′
1(cos(k1) + cos(k2))

+ 2t ′
2(cos(k1 + k2 + k3) + cos(k3)), (B2)

(HSG80,↑)12 = (H↑)∗21 (B3)

= t1(1 + eik1 + ei(k1+k3 ) + ei(k1+k2+k3 ) )

+ t2(ei(k1+k2 ) + e−ik2 + ei(2k1+k2+k3 ) + eik3 ),

(B4)

where the parameters t1, t2, t ′
1, t ′

2 ∈ R. With spin-orbit cou-
pling the full Hamiltonian becomes

HSG80(k) =
⎛
⎝ HSOC

SG80,↑ HSOC
SG80,↑↓(

HSOC
SG80,↑↓

)†
HSOC

SG80,↓

⎞
⎠, (B5)

where HSOC
SG80,↑ and HSOC

SG80,↓ is obtained by HSG80,↑ by adding
hopping terms that differ for the two spin directions. We
introduce this by

HSOC
SG80,↑ = HSG80,↑ + �HSG80,↑, (B6)

(�HSG80,↑)11 = (t̃ ′
1(ei(−k1−k2−k3 ) + eik3 )

+ t̃ ′
2(e−ik1 + e−ik2 )) + c.c., (B7)

(�HSG80,↑)22 = (t̃ ′
1(e−ik1 + e−ik2 )

+ t̃ ′
2(ei(−k1−k2−k3 ) + eik3 )) + c.c., (B8)

(�HSG80,↑)12 = (�HSG80,↑)∗21

= t̃1(eik1 + ei(k1+k2+k3 ) )

+ t̃2(eik1+ik2 + ei(2k1+k2+k3 ) )

+ t̃∗
1 (1 + ei(k1+k3 ) )

+ t̃∗
2 (e−ik2 + eik3 ), (B9)

where t̃ ′
1, t̃ ′

2 ∈ C. The corresponding matrix elements in
HSOC

SG80,↓ can be obtained from HSOC
SG80,↑ by replacing in the diag-

onal entries k → −k and in the off-diagonal entries t̃1(t̃2) →
t̃∗
1 (t̃∗

2 ) for all occurrences. The coupling between spins takes
the form

(HSG80,↑↓)11 = 2il ′
1(sin(k1 + k2 + k3) + sin(k3))

+ 2il ′
2(sin(k1) − sin(k2)), (B10)

(HSG80,↑↓)22 = 2l ′
1(sin(k1) − sin(k2))

+ 2l ′
2(− sin(k1 + k2 + k3) − sin(k3)),

(B11)

(HSG80,↑↓)12 = l1(1 + ieik1 − ei(k1+k3 ) − iei(k1+k2+k3 ) )

+ l2(−iei(k1+k2 ) + e−ik2 + iei(2k1+k2+k3 ) − eik3 ),

(B12)

(HSG80,↑↓)21 = −(HSG80,↑↓(k → −k))12, (B13)

where the parameters l1, l2, l ′
1, l ′

2 ∈ C.
For the remaining discussion, we use the pa-

rameters defined in units of t1 as t2 = 0.2, t ′
1 =

0.3, t ′
2 = −0.2 and if spin-orbit coupling is in-

cluded we add t̃1 = −0.1 + 0.2i, t̃2 = 0.05 −

FIG. 12. Band structure for the model defined in Eq. (B5) re-
specting SG 80 without SOC. The Brillouin zone is shown in the
in-set of Fig. 11(b).

0.05i, l1 = 0.4i, l2 = 0.05 − 0.15i, t̃ ′
1=0.1, t̃ ′

2=0.05, l ′
1 =

l ′
2 = 0.1i. A possible minimal set of parameters that realizes

the same band topology is given by t̃1 = 0.2 + 0.4i, l1 =
0.8i, t̃ ′

1 = 0.4, where all other parameters (except t1 = 1) are
set to 0.

In the limit of vanishing spin-orbit coupling, our model
exhibits only three Weyl points for each spin sector, one at
each of the two distinct points P with ν = +1 and a double
Weyl point at the TRIM M with ν = −2, see Fig. 12. Without
the spin degeneracy the unity charge at the point P is different
from the possible charges of twofold crossings at TRIMs,
which are always ν = ±2 in spinless systems [36]. The double
Weyl point at M shows on the 	-M path, i.e., the path where
kz = 0, the typical quadratic dispersion expected perpendic-
ular to the rotation axis 	-Z-M [73]. Note, our model for
SG 80 without SOC is a counter example to the commonly
conceived notion that there have to be at least four Weyl points
in the presence of time-reversal symmetry [108,109]. Here,
the number of Weyl points in our model is lower than four
without additional band crossings [27].

Once spin-orbit coupling is taken into account the bands at
P (M) split into a double Weyl point and two nondegenerate
bands (two double Weyl points on the 	-Z-M path), a detailed
description is given in Sec. IV A 1.

For the numerical determination of Chern numbers, we use
the Wilson loop approach on a discretized Brillouin zone as
described in Ref. [110].

APPENDIX C: LOCAL CONSTRAINTS IN THE PRESENCE
OF QUASISYMMETRIES

In the following, we derive a low-energy model for a
twofold crossing that appears among the spinless represen-
tations of the point group T 23, describing the rotation
symmetries of a tetrahedron. The resulting model applies to
SGs 195-199 at the TRIMs 	 and R, L, or H within the
primitive, face-centered, or body-centered cubic unit cells in
the nomenclature of the Bilbao crystallographic server [111].
All possible terms up to third order that are compatible with
the twofold and threefold rotation of the cubic point groups
symmetry are taken into account by the Hamiltonian HT(k)
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with

HT(k) = (
d0 + d1

(
k2

x + k2
y + k2

z

))
σ0

+ a0kxkykzσz

+
(

0 a1
(
k2

x + k2
y e−i2π/3 + k2

z e−i4π/3
)

H.c. 0

)
,

(C1)

where the Pauli matrices σi have been used and d0, d1, a0 ∈
R, a1 ∈ C. The first term only shifts and bends both bands
equally. The chirality ν of the twofold crossing at k =
(0, 0, 0) is ν = 4sgn(a0). In the basis used, the twofold and
threefold rotations and time reversal are represented by

U
(
Cx

2

) = σ0, U
(
C111

3

) =
(

ei2π/3 0

0 e−i2π/3

)
, (C2)

and

T = σ1K, (C3)

respectively.
As discussed in the main text, ν = ±4 is a peculiar value.

For example, for a0 > 0, the local constraints, Eq. (1), de-
rived from the twofold and threefold rotations imply ν = 0
mod 2 = 1 mod 3, which is consistent with ν = 4 but would
imply the simpler possibility of ν = −2. This can not only be
understood by a refined local constraint, Eq. (60), but also by
the emergence of a yet recognized quasisymmetry that mimics
a fourfold rotation. The existence of a fourfold symmetry,
can be motivated pictorially by noticing that the symmetries
Cz

2 and Cz
2T together reduce the integration surface of the

Chern number into a quarter of the full sphere, as discussed
in Sec. IV A 2. To gap out the bands away from k = 0 and
to obtain a well-defined chirality, it is sufficient to take all
the symmetry-allowed terms up to cubic order in ki, as we
did in HT(k). Interestingly, the fourfold rotation symmetry of
the model is only broken at the fourth order in ki, which is
irrelevant for the value of the Chern number.

The model, Eq. (C1), exhibits a parameter-dependent four-
fold rotation symmetry U (Cz

4 ) defined as

U
(
Cz

4

) =
(

0 ei(arg(a1 )+2π/3)

e−i(arg(a1 )+2π/3) 0

)
, (C4)

fulfilling

U
(
Cz

4

)†
HT(kx, ky, kz )U

(
Cz

4

) = HT(ky,−ky, kz ). (C5)

The symmetry eigenvalues of this operation are independent
of a1 and equal to λ(Cz

4 ) ∈ {+1,−1}. We made a choice
of complex phase in Eq. (C4) that also does not affect the
eigenvalues, but has been used to ensure that U (Cz

4 ) commutes
with time-reversal symmetry T . The commuting property
together with the reality of eigenvalues implies that at the
twofold degeneracy the symmetry eigenvalues of U (Cz

4 ) do
not exchange, i.e., the phase jump is �ϕ = 0. And thus we
can apply our local constraint according to Eq. (1) to the
fourfold rotation to obtain ν = 0 mod 4 resulting in ν = +4
for a0 > 0.

Let us compare this result to another low-energy model,
again for a spinless system but now described by the octahe-

dral point group O 432, where the twofold axes of tetrahedral
group T are replaced by fourfold rotations. We can turn HT(k)
into a model of point group O by setting a1 = e−i2π/3 in
Eq. (C1). This choice turns the quasisymmetry U (Cz

4 ) into
a representation [77] of the actual fourfold rotation of the
octahedral point group. Naturally, for this fourfold rotation
U (Cz

4 ) our argument on the local constraint on the chirality
is unchanged and one finds ν = ±4 as well.

In summary, we find that the existence of a fourfold qua-
sisymmetry in the low-energy model explains the charge ν =
±4 of the twofold degeneracies with the tetrahedral point
group T.

APPENDIX D: CHIRAL NODAL LINES
FROM MAGNETIC SYMMETRIES

In Sec. IV A 3, we discussed the possibility of a nodal line
characterized by a nonzero Chern number. In the following
we generalize this discussion to symmetries, which comprise
both time reversal T and an n-fold rotation Cn around the z
direction. The arguments excluding the possibility of chiral
nodal lines for C4T and C6T follow from the constraints in
Eqs. (31) and (32) in the same way as in the main text.

If there is a nonzero sewing matrix phase difference �φcb ,
the relations imply a pointlike band crossing on the axis. Since
this implies that the only possible chiral charges of the line are
equal to the multiplicity of Weyl points, such lines would be
unstable. To see this, consider a case where �φcb is nonzero
and does not change when the size of the sphere surrounding
the CnT invariant point shrinks to zero. �φcb �= 0 implies with
the local constraints νcb �= 0. If νcb is nonzero, only a pointlike
crossing can carry the charge implied by the arbitrary small
integration sphere.

Alternatively, if �φcb changes discontinuously when the
sphere shrinks to zero, the crossings carrying the charge dif-
ference implied by the constraints, Eqs. (31) or (32), must
lie on the rotation axis and can not be attributed to a chiral
nodal line. To see this, one must deform the integration sphere
into an spheroid while keeping the intersection points on the
axis constant, such that �φcb remains unchanged. Thereby,
the equatorial radius of the spheroid can be reduced to zero
to exclude any finite size nodal line from the enclosed region,
such that the topological charges may only lie on the rotation
axis in form of WPs located where �φcb changes.

The case of C2T differs, as the constraint derived from it
does not include a term in the form of �φcb , see Eq. (36).
Instead it involves the winding of φ around the rotation axis
on a C2T invariant path. A nonzero winding, which results in
a νcb = 1 mod 2 constraint, does not imply a charged nodal
line of charge 1, since this nodal line is able to gap out into
just a single WP on the C2T invariant plane.

APPENDIX E: TIGHT-BINDING MODEL FOR SG 94

In the following, we define the model of SG 94 includ-
ing spin and with time-reversal symmetry, which is used to
create Fig. 5. We take the 2a Wyckoff position with the
sites (0, 0, 0), (1/2, 1/2, 1/2) and a spin-1/2 as internal
degree of freedom on each site. To keep the model simple, we
pick three independent terms that are sufficient to avoid any
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accidental band degeneracies from the set of hopping terms
between up to next-nearest neighbors. Our 4 × 4 Hamiltonian
thus takes the form

HSG94,↑ =
(

HSG94,↑ HSG94,SOC

H†
SG94,SOC HSG94,↓

)
, (E1)

where the matrix blocks are

(HSG94,↑)11 = (HSG94,↑)22 = t2e−ikz + t∗
2 eikz , (E2)

(HSG94,↑)12 = (1 + eikx )(1 + eiky )(t1 + t∗
1 eikz ), (E3)

HSG94,↓ = HSG94,↓(t1 ↔ t∗
1 , t2 ↔ t∗

2 ) (E4)

for hopping that preserves spin and

(HSG94,SOC)11 = (HSG94,SOC)22 = 0, (E5)

(HSG94,SOC)12 = t∗
SOC(−ieikx + ieiky − eikz + ei(kx+ky+kz ) )

+ tSOC(i − iei(kx+ky ) − ei(kx+kz ) + ei(ky+kz ) ),

(E6)

(HSG94,SOC)21 = e−i(kx+ky+kz )(t∗
SOC(−1 + ei(kx+ky )

− iei(kx+kz ) + iei(ky+kz ) )

+ tSOC(−eikx + eiky + ieikz − iei(kx+ky+kz ) ))

(E7)

for spin-orbit coupling terms. For Fig. 5, we use the parame-
ters t1 = 1 + i, t2 = 0.5 + 0.8i, tSOC = −0.2 + 0.5i.

APPENDIX F: CONSTRUCTION OF THE SPIN
OPERATOR IN SG 195

We start by building a symmetry representation ρ at 	 by
considering a p-orbital placed on the Wyckoff position 1a in
SG 195

ρ(g) = ρorbital(g) ⊗ ρspin(g), (F1)

where g ∈ G with the little group G at 	 and ρorbital and ρspin

being the action of the symmetry g on the orbital and spin
degrees of freedom. To construct the spin operator, we want
to find a U such that

U †ρ(g)U = (	̄6	̄7 ⊕ 	̄5)(g). (F2)

We arrive at U by consecutive diagonalizations of ρ(g) and
(	̄6	̄7 ⊕ 	̄5)(g) for the generators g of the group. We first start
with C2

U †
ρ,C2

ρ(C2)Uρ,C2 = diag(i, i, i,−i,−i,−i) ∧ (F3)

U †
	,C2

(	̄6	̄7 ⊕ 	̄5)(C2)U	,C2 = diag(i, i, i,−i,−i,−i)

⇒
U †

ρ,blockU
†
ρ,C2

ρ(C2)Uρ,C2Uρ,block = diag(i, i, i,−i,−i,−i)

= U †
	,blockU

†
	,C2

(	̄6	̄7 ⊕ 	̄5)(C2)U	,C2U	,block, (F4)

where diag(. . . ) are diagonal matrices of symmetry eigenval-
ues and the Ux,block have the block-diagonal form

Ux,block =
(

Ux,1,block 0

0 Ux,2,block

)
(F5)

of 3 × 3 blocks, as eigenvectors in Ux,C2 can still be trans-
formed in the ±i symmetry eigenvalue subspace. We can
choose Ux,block by diagonalizing the two diagonal 3 × 3 blocks
of ρ(C3) and (	̄6	̄7 ⊕ 	̄5)(C3)

U †
ρ,blockU

†
ρ,C2

ρ(C3)Uρ,C2Uρ,block

=
⎛
⎝diag

(
e− iπ

4 , e− i11π
12 , e

5iπ
12

)
Yρ

Y †
ρ diag

(
e

iπ
4 , e

i11π
12 , e− 5iπ

12
)
⎞
⎠,

(F6)

U †
	,blockU

†
	,C2

(	̄6	̄7 ⊕ 	̄5)(C3)U	,C2U	,block

=
(

diag
(
e− iπ

4 , e− i11π
12 , e

5iπ
12

)
Y	

Y †
	 diag

(
e

iπ
4 , e

i11π
12 , e− 5iπ

12
)
)

(F7)

with matrices Yx resulting from the application of the two pre-
vious diagonalizations. Equations (F6) and (F7) constrain the
Ux,block up to phases of the resulting eigenvectors of the 3 × 3
diagonal blocks in the transformed C3 representations. These
phases can be found by requiring Yρ = Y	 and considering
time-reversal symmetry T , where phases can be chosen such
that

U †
ρ,blockU

†
ρ,C2

ρ(T )U ∗
ρ,C2

U ∗
ρ,block

= U †
	,blockU

†
	,C2

(	̄6	̄7 ⊕ 	̄5)(T )U ∗
	,C2

U ∗
	,block (F8)

is fulfilled, where we already applied the complex conjugation
operator of T . U in Eq. (F2) is then

U = Uρ,C2Uρ,blockU
†
	,blockU

†
	,C2

(F9)

and the full spin operator is

U †1 ⊗ σaU . (F10)

In this expression, Eq. (F10), only the 4 × 4 subblock belong-
ing to the representation 	̄6	̄7 describes the spin texture of
the multifold crossing, see Fig. 8. Explicitly, the spin operator
in the 	̄6	̄7 irrep basis of the Bilbao crystallographic server
[111] is

sx = 1

3

⎛
⎜⎜⎜⎜⎜⎝

0 −1 1 + i
√

3 0

−1 0 0 −1 − i
√

3

1 + i
√

3 0 0 1

0 −1 + i
√

3 1 0

⎞
⎟⎟⎟⎟⎟⎠,

(F11)

sy = 1

3

⎛
⎜⎜⎜⎜⎜⎝

0 i −i − √
3 0

−i 0 0 −i − √
3

i − √
3 0 0 i

0 i − √
3 −i 0

⎞
⎟⎟⎟⎟⎟⎠,

(F12)
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sz = 1

3

⎛
⎜⎜⎜⎜⎝

−1 0 0 2

0 1 2 0

0 2 1 0

2 0 0 −1

⎞
⎟⎟⎟⎟⎠. (F13)

APPENDIX G: FOURFOLD MODELS

1. SG 198 �̄6�̄7 model with SOC

In the following, we show that the phase transitions of the
low-energy Hamiltonian (72) describing the 	̄6	̄7 irrep are the
ones shown in Fig. 6. We first apply a transformation into a
basis diagonal in the threefold rotation⎛

⎜⎜⎝
q+
q−
qz

⎞
⎟⎟⎠ = 1

2
√

3

⎛
⎜⎜⎝

2 −1 + i
√

3 −1 − i
√

3

2 −1 − i
√

3 −1 + i
√

3

−2 −2 −2

⎞
⎟⎟⎠ · k. (G1)

Due to scale invariance, we can parametrize the following
way:

α0 = cos(G) cos(Z ), (G2)

α1 = cos(G) sin(Z ), (G3)

α2 = sin(G) (G4)

with 0 � Z < 2π and −π
2 � G � π

2 . We find all points in
parameter space αn where the energy levels of H become
degenerate away from k = 0 by considering the characteristic
polynomial of H

χ (E ) = E4 + a(q+, qz )E2 + detH. (G5)

Since there are only even powers of E in χ , the spectrum is
particle-hole symmetric. It is gapless when detH = 0 or a2 −
4detH = 0. We find that χ and detH do not depend on Z , so
the topological phase diagram must be rotationally invariant.
Further we parametrize

q+ = exp(iK ) cos(M ), (G6)

qz = sin(M ) (G7)

with 0 � K < 2π and −π
2 � M � π

2 , due to scale-invariance
without loss of generality.

detH = 0 case. We find

detH = p1(G, M ) cos(K )3 + p2(G, M ) cos(K ) + p3(G, M ).

(G8)

Particle-hole symmetry implies detH � 0, so detH = 0 must
be a minimum. Therefore

d detH

dK
= − sin(K )(3p1 cos(K )2 + p2) = 0 (G9)

⇒ (sin(K ) = 0 ⇒ K ∈ {0, π} (G10)

∨ cos(K ) = ±
√−p2

3p1
= ±1

2
(G11)

⇒ K ∈
{

π

3
,

2π

3
,

4π

3
,

5π

3

})
. (G12)

So {0, π
3 , 2π

3 , π, 4π
3 , 5π

3 } are the only K values where H can
get gapless via detH = 0.

With K = 0, detH has the form

detH = f4(M ) sin(G)4 + f2(M ) sin(G)2 + f0(M ). (G13)

It is zero when

sin(G)2 =
− f2 ±

√
f 2
2 − 4 f4 f0

2 f4
= U±(M ). (G14)

A solution for G is found, when U± is real and 0 � U± � 1.
We find this is the case for M ∈ {−π

2 , arctan( 1
2 ), π

2 }, where
U+ = 0 ⇒ G = 0, and M = −π

4 with U+ = 1
2 ⇒ G = ±π

4 .
U− = sin(G)2 only reproduces the M = −π

4 solution.
The M ∈ {−π

2 , arctan( 1
2 ), π

2 } solutions with K = 0 cor-
respond (under symmetry and scale transformations) to
degeneracies on the k = (t, t, t ) line, while M = −π

4 corre-
sponds to k = (t, 0, 0).

For the case K = π , we find after a transformation with
M → −M and U± → U∓ the same solutions. All other cases
of K can be found by applying the threefold symmetry.
Therefore, with detH = 0, degeneracies only happen on high-
symmetry lines and there are gapless points at G ∈ {0,±π

4 }.
We find for G = 0 a gap closing of the bandpair (2,3) on C3

invariant lines and at G = ±π
4 a gap closing on C2 invariant

lines for the same bandpair.
a2 − 4detH = 0 case. We find due to particle-hole symme-

try a = −E2
1 − E2

2 , with En being the energies of band n, so
a2 − 4detH � 0, since

a2 � 4detH

⇐⇒ (
E2

1 + E2
2

)2 � 4E2
1 E2

2

⇐⇒ (
E2

1 − E2
2

)2 � 0. (G15)

So the point where a2 − 4detH = 0 must be a minimum of
a2 − 4detH . We find the following form of a2 − 4detH

a2 − 4detH = s1(G, M ) cos(K )3

+ s2(G, M ) cos(K ) + s3(G, M ). (G16)

An optimum can be found via

d(a2 − 4detH )

dK
= − sin(K )(3s1 cos(K )2 + s2) = 0

(G17)

⇒ K ∈ {0, π} (G18)

∨ cos(K ) = ±
√−s2

3s1
= ±1

2
(G19)

⇒ K ∈
{

π

3
,

2π

3
,

4π

3
,

5π

3

}
. (G20)

So once again {0, π, π
3 , 2π

3 , 4π
3 , 5π

3 } are the only K values
where H can get gapless, now via a2 − 4detH = 0. With
K = nπ

3 and n ∈ N we find

a2 − 4detH = (r1(n, M ) cos(G)2 + r2(n, M )) cos(G)2

(G21)
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solutions to cos(G)2 = 0 and cos(G)2 = −r2
r1

only exist for
G ∈ {−π

2 , 0, π
2 }. For G = 0 we find a gap closing of the

outer bandpairs at C2 invariant lines. For G = ±π
2 , the gap

closing of the same bandpair occurs for any q, as we find that
a2 − 4detH = 0 for any M, K .

We therefore showed that the Hamiltonian is only gap-
less for G ∈ {−π

2 ,−π
4 , 0, π

4 , π
2 } at points away from k =

(0, 0, 0), which translates to α2 = ±
√

α2
0 + α2

1 , α2 = 0 or√
α2

0 + α2
1 = 0.

2. SG 207 �̄8 model with SOC

The generator of this irrep contains a time-reversal sym-
metry T , three twofold symmetries 2001, 2010, 2110, and a
threefold symmetry 3111. The first-order Hamiltonian gener-
ated from these symmetries is

H = α0

[
kx

2
(
√

3σxτ0 + σxτz + σyτ0 −
√

3σyτz )

+ ky

2
(−

√
3σxτ0 − σxτz + σyτ0 −

√
3σyτz )

+ kz(σxτx − σxτy)

]

+ α1√
2

[kx(σ0τx + σ0τy + σzτx − σzτy)

+ ky(σ0τx + σ0τy − σzτx + σzτy) + 2kzσzτz]. (G22)

The characteristic polynomial of this Hamiltonian is identical
to the one of Eq. (72) from the main text when α1 = 0 and
α2 → α1. Therefore the topological phase separating points
in parameter space of α0 and α1 are reproduced. Computing
the Chern numbers, one finds that topological phase diagram
as a whole stays the same, except now, one axis corresponds

to only α0, instead of
√

α2
0 + α2

1 . The statements about the
symmetry eigenvalue phase jumps also stay the same. We note
that the topological phase diagram of an equivalent Hamilto-
nian in SG 207 has been examined in a similar way in the
supplementary material of Ref. [16] (see Sec. IV), but the
ν2 = 5 phase has not yet been identified.

This model also describes SG 207 R̄8, SG 208 	̄8, R̄8, SG
209 	̄8, SG 210 	̄8, SG 211 	̄8, H̄8, SG 212 	̄8, SG 213 	̄8,
SG 214 	̄8 with SOC.

The SG 214 H̄8 model with SOC can be found by applying
U = σ0τx and α1 → −α1 to the Hamiltonian in Eq. (G22).

3. SG 198 M̄5M̄5 model with SOC

The generator of this irrep contains a time-reversal symme-
try T and two twofold symmetries 2001, 2010. The generated
Hamiltonian is

H = α0kzσ0τy + α1kxσzτz + α2kxσxτz + α3kxσyτz

+ α4kyσzτx + α5kyσxτx + α6kyσyτx. (G23)

Its spectrum is particle-hole symmetric as the characteristic
polynomial is χ (E ) = E4 + aE2 + detH .

We can rewrite H with

α1 = (α1, α2, α3)T , (G24)

α2 = (α4, α5, α6)T , (G25)

such that

H = α0kzτyσ0 + kxτz(α1 · σ ) + kyτx(α2 · σ). (G26)

Due to the two nodal planes on the kx = 0 and ky = 0 planes,
the Chern number of single bands are always undefined. The
Chern number for a filling of 2 can still be computed when
there are no fourfold degeneracies away from k = (0, 0, 0)T .
Therefore we only need to find these fourfold degenerate
points in parameter space, that is when detH = 0.

If α0 = 0, then H is fourfold degenerate on the kz line.
If α0 �= 0, α1 �= 0 and α2 �= 0, we can normalize |α1/2| = 1
by using scale invariance of H . We rotate σ with a unitary
transformation U †σU = Rσ with R being a rotation matrix,
such that

U †(α1 · σ)U = α1 · (Rσ)

= (R−1α1) · σ

= σz, (G27)

where we chose R such that R−1α1 = (1, 0, 0)T . Then

H ′ = U †HU

= α0kzτyσ0 + kxτzσz + kyτx(α̃2 · σ). (G28)

with α̃2 = R−1α2. We parametrize without loss of generality

α̃2 = (cos P cos R, cos P sin R, sin P)T , (G29)

k = (cos G cos Z, cos G sin Z, sin G)T . (G30)

We find

|H ′| = detH = A(P, R, Z ) cos(G)4 + 1 (G31)

and detH � 0. The point detH = 0 must be a minimum of
detH . We find optima at G ∈ {−π

2 , 0, π
2 }. G = ±π

2 can be
excluded, since there detH = 1 �= 0. This leaves G = 0. With
this, we find the constraint for A such that detH = 0,

A(P, R, Z ) = 4(cos4 Z − cos2 Z )(1 − cos2 R cos2 P)

= −1. (G32)

We find optima of detH with ddetH
dZ |G=0 = dA

dZ = 0 at Z = n π
4

with n ∈ Z8. We can exclude Z = π
2 , π , and 3π

2 , since there
A = 0. Inserting the remaining Z values, we get

cos2 R cos2 P = 0. (G33)

Note that

α1 · α2 = (R−1α1) · (R−1α2)

= (1, 0, 0)T · α̃2

= cos P cos R. (G34)

Therefore α1 · α2 = 0 represents a surface in parameter space
separating different topological phases. This is also true when
|α1/2| = 0.

If |α1| = 0, we find the characteristic polynomial of H with
the same parametrization of k as above and |α2| = 1

χ (E ) = (E2 + cos2 G cos2 Z − 1)2. (G35)
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Note that χ (E ) is independent of α2 since it can always be
rotated by a unitary transformation, such that H is rotationally
invariant in α2. We find a fourfold point at E1,2,3,4 = 0. This
is the case, when G = 0 and Z ∈ {0, π}, so H is fourfold
degenerate on the kx line.

If |α2| = 0, we find the characteristic polynomial of H with
|α1| = 1

χ (E ) = (E2 + cos2 G sin2 Z − 1)2. (G36)

We find a fourfold point at G = 0 and Z ∈ {π
2 , 3π

2 }, so H is
fourfold degenerate on the ky line.

In conclusion, we found that the topology of this model
is entirely dependent on the sign of α0 and α1 · α2. We
find the Chern number of the lowest two bands to be ν =
2(−1)θ (α0 )+θ (α1·α2 ), with θ (x) being the Heaviside step func-
tion.

For both twofold symmetries, the constraint of Eq. (18)
amounts to ν12 = 0 mod 2 by direct calculation. This can be
seen directly on the (001) line, where the same symmetry
eigenvalues are paired by 2001. This way, a symmetry eigen-
value jump can be defined for the two degenerate bands and is
equal to π everywhere in the phase diagram. Using Eq. (19)
one arrives once again at ν12 = 2

2π
(π + π ) mod 2 = 0 mod 2.

This Hamiltonian also describes SG 18 S̄5S̄5, R̄5R̄5, SG
19 S̄5S̄5 with SOC. By applying a Chern number preserving
kx → ky, ky → kz, kz → kx rotation, one arrives at the SG 19
T̄5T̄5, SG 92 R̄5R̄5 and SG 96 R̄5R̄5 Hamiltonian. By applying
a ky → kz, kz → ky reflection, during which Chern numbers
are flipped, one arrives at the SG 19 Ū5Ū5 model.

4. SG 212 M̄6M̄7 model with SOC

The little groups generator contains a time-reversal sym-
metry T and three twofold symmetries 2001, 2010, 2110. The
low-energy Hamiltonian generated from these symmetries is

H = α0kzσzτz + α1[kxσ0τy − kyσzτx]

+ α2[kxσxτz − kyσyτ0]

+ α3[kxσyτz + kyσxτ0]. (G37)

The lower and upper two bands of this Hamiltonian always
have doubly degenerate points, such that the Chern number of
the lower and upper band is undefined. This means, we only
have to look at all points in parameter space where detH = 0.
This is the case when |(α1, α2, α3)| = 0. There, H = 0 on the
kz = 0 plane. We also find H = 0 for α0 = 0 on the kz line.
Due to these considerations and scaling properties of H , we
first consider the α0 = 1 case, which corresponds to α0 > 0.

We also set kz = 1, such that all now reachable k points
correspond under rescaling to the upper half of the unit sphere
in k space. We parametrize

α1 = r1 cos P cos R,

α2 = r1 cos P sin R, (G38)

α3 = r1 sin P

with r1 � 0. detH takes on the following form:

detH = r4
1

(
k4

x + k4
y + (16F (R, P) + 2)k2

x k2
y

)
+ 2r2

1

(
k2

x + k2
y

) + 1 (G39)

FIG. 13. Topological phase diagram of the lower two bands
Chern number ν12 of the SG 212 M̄6M̄7 Model with α0 > 0.

where we find − 1
4 � F (R, P) � 0 with F (R, P) =

cos2 P cos2 R(cos2 P cos2 R − 1) = α2
1 (α2

1 − r2
1 )/r4

1 . Inserting
the minimal value of F in detH , we get

detH = r4
1

(
k2

x − k2
y

)2 + 2r2
1

(
k2

x + k2
y

) + 1. (G40)

There detH = 0 has no real solution, as detH > 0. Therefore,
for all F ∈ [− 1

4 , 0], detH > 0. Due to symmetry, this means,
that also on the kz = −1 plane, no degeneracies of the middle
bandpair can occur. The only way left is the kz = 0 with r1 >

0 and |(kx, ky)| �= 0 case. We enforce this, by parametrizing
kx = r2 cos(G), ky = r2 sin(G) with r2 > 0. The determinant
with kz = 0 becomes

detH = r4
1r4

2 (1 − 4(1 − cos(P)2 cos(R)2)

× cos(P)2 cos(R)2 sin(2G)2). (G41)

At detH = 0, this becomes

| sin(2G)| = 1

2
√

1 − (
α1
r1

)2| α1
r1

|
= K (α1/r1). (G42)

The only solutions with 0 � K � 1 and K ∈ R, are α1 = ± r1√
2

with K = 1, such that G ∈ {π
4 , 3π

4 , 5π
4 , 7π

4 }. The topologi-
cal phase diagram is therefore rotationally invariant in the
(α1, α2, α3) parameter space around the α1 axis. The phase

separating lines are α1 = ±
√

α2
2 + α2

3 . The topological phase
diagram can be determined the same way as in the previous
models, see Fig. 13. For α0 < 0, the Chern numbers in Fig. 13
switch signs.

By direct calculation of Eq. (18), we find ν12 = 0 mod 2.
The symmetry eigenvalue phase jump for 2001 is defined, since
on the (001) the same symmetry eigenvalues are paired, and
π for all bands. The symmetry eigenvalue jump of 2110 is also
defined and π . Both lead to the ν12 = 0 mod 2 constraint once
again, see Eq. (19). Symmetry eigenvalue jumps are undefined
for 2010, as there different symmetry eigenvalues are paired.

We get the SG 213 M̄6M̄7 Model with SOC by mapping
ky → −ky. This flips the sign of the Chern numbers in the
topological phase diagram of this model.

5. SG 198 R1R3 model without SOC

This model is symmetric under a time-reversal symme-
try T , two twofold symmetries 2001, 2010, and a threefold
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symmetry 3111.

H = α0[−kxσzτx + kyσ0τy + kzσzτz]. (G43)

Due to the nodal plane, the Chern number of the lower and up-
per bands are undefined. The Chern number with a filling of 2
is ν12 = 2(−1)θ (α0 ). Evaluating Eq. (18) yields the constraints
ν12 = 0 mod 2, ν12 = 1 mod 3 for α0 > 0 and ν12 = 2 mod 3
for α0 < 0, which are all fulfilled in this model. This model
also describes SG 198 R2R2, SG 212 R1R2, SG 213 R1R2

without SOC.

6. SG 212 R3 model without SOC

This model is symmetric under a time-reversal symmetry
T , three twofold symmetries 2001, 2010, 2110, and a threefold
symmetry 3111. The low-energy Hamiltonian is

H = α0[kx(−σ0τx + σ0τy − σzτx − σzτy)

+ ky(−σ0τx + σ0τy + σzτx + σzτy) + 2kzσzτz]. (G44)

Due to the nodal plane, the Chern number of the lower
and upper bands are undefined. The Chern number with a
filling of 2 is ν12 = 2(−1)θ (α0 ). From Eq. (18) we get the
fulfilled constraints ν12 = 0 mod 2, ν12 = 1 mod 3 for α0 > 0
and ν12 = 2 mod 3 for α0 < 0. This model also describes SG
213 R3 without SOC.

7. SG 90 Ā6Ā7 model with SOC

This model is symmetric under a time-reversal symmetry
T , two twofold symmetries 2001, 2010, and a fourfold symme-
try 4001. The Hamiltonian is

H = α0kzσzτz + α1[kx(σ0τy + σzτx ) + ky(σ0τy − σzτx )]

+ α2√
2

[kx(−σxτ0 − σxτz + σyτ0 − σyτz )

+ ky(−σxτ0 + σxτz + σyτ0 + σyτz )]

+ α3√
2

[kx(σxτ0 − σxτz + σyτ0 + σyτz )

+ ky(σxτ0 + σxτz + σyτ0 − σyτz )]. (G45)

We only need to look at the detH = 0 points, due to the
double degeneracy of the first two bands at some k lines.
When α0 = 0, H = 0 on the kz line, so α0 = 0 divides the
topological phase diagram. Therefore we set α0 = 1, which
corresponds to the α0 > 0 region. The Chern numbers we get
will either remain unchanged or flip for α0 < 0. We also first
look at the kz = 1 plane. Then we get

detH = A(kx, ky, r) sin(P)4 + B(kx, ky, r) sin(P)2

+ C(kx, ky, r), (G46)

where we parameterized α1 = r sin(P), α2 = r cos(P)
cos(R), α3 = r cos(P) sin(R), and r > 0. We find that the
determinant fulfills B2 − 4AC � 0. So the only possible real
solutions of detH = 0 are when B2 − 4AC = 0, which is the
case when kx = 0 ∨ ky = 0. At those points, detH = 0 can not
be fulfilled, since A(0, ky, r) = A(kx, 0, r) = B(0, ky, r) =
B(kx, 0, r) = 0 and C(0, ky, r) � 1 and C(kx, 0, r) � 1.
The only place left is the kz = 0 plane. We parametrize

kx = cos(G), ky = sin(G), where we used the scaling
properties of H . We get

detH = r4(−64 sin(G)4 sin(P)4 + 64 sin(G)4 sin(P)2

+ 64 sin(G)2 sin(P)4 − 64 sin(G)2 sin(P)2 + 4).

(G47)

The only real solutions are G ∈ {π
4 , 3π

4 , 5π
4 , 7π

4 } with P =
±π

4 .
The topological phase diagram is identical to the one of

the SG 212 M̄6M̄7 model, see Fig. 13, with α0 > 0. The Chern
numbers flip when α0 < 0.

The symmetry eigenvalue jump of 2001 is always π . The
one of 4001 and 2010 can not be defined, since different eigen-
values are paired. So we need to use Eq. (18) to derive
constraints. We get ν12 = 0 mod 2 and ν12 = 2 mod 4, both
fulfilled in all topological phases of this model.

This model also describes SG 90 M̄6M̄7, SG 92 M̄6M̄7, SG
94 M̄6M̄7, SG 96 M̄6M̄7 with SOC. The reflection kx ↔ ky can
be applied, during which Chern numbers are flipped, to get
the SG 94 Ā6Ā7 model with SOC. Apply the Chern number
preserving rotation kx → ky and ky → −kx and set α2 = 0 and
α3 = 0 to get the SG 92 A1A2 model without SOC, where the
Chern number with a filling of 2 is just ν = −2(−1)θ (α0 ). The
SG 96 A1A2 model is found by applying a ky → −ky reflection
and also by setting α2 = 0 and α3 = 0. This flips the sign of
the Chern number.

8. SG 92 Ā7Ā7 model with SOC

This model is symmetric under a time-reversal symmetry
T , two twofold symmetries 2001, 2010, and a fourfold symme-
try 4001. The generated Hamiltonian is

H = α0kzσzτz + α1kzσxτ0 + α2kzσyτ0. (G48)

No Chern numbers can be defined. This Hamiltonian also
describes SG 96 Ā7Ā7 with SOC. This Hamiltonian must be
expanded to k2 to extract Chern numbers. This was done in
[27,112]. One arrives at ν = ±4 for a filling of 2. Other Chern
numbers can not be defined due to degeneracies. See [112] for
the exact topological phase diagram.

9. SG 19 R1R1 model without SOC

This model is symmetric under a time-reversal symmetry
T and two twofold symmetries 2001, 2010. The Hamiltonian is

H = αkxσzτz + βkyσzτx + γ kzσ0τy. (G49)

H is always doubly degenerate due to the nodal planes. There-
fore we only need to look for detH = 0.

detH = (
k2

x α
2 + k2

y β
2 + k2

z γ
2
)2

. (G50)

This leads to the condition

k2
x α

2 + k2
y β

2 + k2
z γ

2 = 0. (G51)

There exist k points away from k = 0 where this is
the case when α = 0 ∨ β = 0 ∨ γ = 0. We get ν12 =
−2(−1)θ (α)+θ (β )+θ (γ ) for the lower two bands. The symmetry
eigenvalue phase jump is always π for both 2001 and 2010.
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Therefore we get the condition ν12 = 0 mod 2 from Eq. (19),
which is fulfilled.

APPENDIX H: THREEFOLD MODELS

Introduce κ = α + iβ. Normalize it without loss of gener-
ality κ = eiγ . Then

H =

⎛
⎜⎜⎝

0 kze−iγ −kyeiγ

0 kxe−iγ

. . . 0

⎞
⎟⎟⎠. (H1)

The characteristic polynomial is

χ (λ) = −λ3 + λ
(
k2

x + k2
y + k2

z

) − 2kxkykz cos(3γ )

= −λ3 + 3λ − 2kxkykz cos(3γ ), (H2)

where we set normalized k2
x + k2

y + k2
z = 3 using the scale

invariance of H . The characteristic polynomial with two de-
generate energies is

χ (λ) = −(λ − E1)2(λ − E2)

= −λ3 + λ2(E2 + 2E1)

− λ
(
E2

1 + 2E1E2
) + E2

1 E2. (H3)

We see that

E2 = −2E1, (H4)

3 = −E2
1 − 2E1E2 = 3E2

1

⇒ E1 = ±1 ∧ E2 = ∓2. (H5)

Using Eq. (H5) in Eq. (H3) and comparing it to Eq. (H2), we
get

k2
x k2

y k2
z cos(3γ )2 = 1 ∧ k2

x + k2
y + k2

z = 3. (H6)

The only solutions are

kx/y/z = ±1 ∧ γ = πn

3
with n ∈ Z (H7)

so all lines in αβ parameter space going from the origin and
in π

3 angle to each other, starting at the β = 0 line are the only
lines separating different topological phases. We get the phase
diagram for ν1 shown in Fig. 14, and ν2 = −ν1. The ν1 = −2
phases coincide with a symmetry eigenvalue phase jump of
�ϕ1 = 2π/3, �ϕ2 = 0 and �ϕ3 = 4π/3 for the threefold
rotation. The first bands phase jump leads with Eq. (1) to
the constraint ν1 = 1 mod 3, consistent with ν1 = −2. We get
phase jumps of �ϕ1 = 4π/3, �ϕ2 = 0 and �ϕ3 = 2π/3 for
the ν1 = 2 phase, which is consistent with the constraint ν1 =
2 mod3 derived from the �ϕ1.

APPENDIX I: SIXFOLD MODELS

The topological phase diagram for the sixfold model in
Eq. (74) of irrep R̄7R̄7 is invariant under rescaling αn → αn/r
with r > 0. So we can reduce the number of parameters of the
sixfold model to 3 by choosing an r such that (α0 + iα1)/r =
eiφ . We rename α2/3/r as α2/3. The parameters φ and b =
α2 + iα3 correspond to the ones found in Ref. [16].

FIG. 14. Topological phase diagram of band 1 of the SG 199 P̄7

model.

The characteristic polynomial is of the form

χ (E ) = E6 + A1E4 + A2E2 − detH. (I1)

We see that the spectrum must be particle-hole symmetric.
Due to the nodal planes, Chern numbers for odd fillings can
not be defined. One way a topological phase transition can
happen is by a sixfold degeneracy. We first show that the only
places, where this can happen is on the nodal planes. The
determinant of H looks like this

detH = B(αn)k2
x k2

y k2
z . (I2)

detH = 0 is a necessary condition for a sixfold degener-
acy. When B �= 0, this is only the case on the nodal planes.
A sixfold degeneracy and particle-hole symmetry implies
En = 0. Therefore A1 = 0 ∧ A2 = 0 on the nodal plane. We
parametrize kx = cos(P), ky = sin(P), kz = 0. Then

A1 = −2
(
α2

2 + α2
3 + 1

)
, (I3)

A2 = (
α2

2 + α2
3 + 1

)2
. (I4)

A1 = 0 ∧ A2 = 0 is not possible. This is also the case for all
other nodal planes.

Another way a topological phase transition can happen is
by a twofold degeneracy. At the energy of a twofold degener-
acy, χ must have a maximum or minimum with χ = 0. With
k2

x + k2
y + k2

z = 1 we find that Eqs. (I3) and (I4) remain true.
This means, χ has a local maximum at

Emax
± = ±

√
α2

2 + α2
3 + 1

3
(I5)

independent of a0 and k. detH is tuning the value of this max-
imum. Therefore detH can be tuned such that χ (Emax

± ) = 0,
where Emax

± are the energies of the double degeneracies, in
this case of band pairs (2,3) and (4,5). We get the condition

detH = 4
27

(
α2

2 + α2
3 + 1

)3
. (I6)
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FIG. 15. Analytical topological phase diagram for a filling of 2 of
the R̄7R̄7 model. All phases separated by a closing gap are numerated
from 1 to 6.

We find that detH is

detH = k2
x k2

y k2
z

(
2 cos(2φ) − 1 + α2

2 + α2
3

)2

× (
2 cos(2φ) + 2 + 4α2

2 + 4α2
3

)
. (I7)

Equating the last two equations with F = α2
2 + α2

3 + 1 (1 �
F ), S = 2 cos(2φ) − 2 (0 � S � −4), and A−1 = 27k2

x k2
y k2

z
(1 � A), we have

(S + F )2(S + 4F ) = 4AF 3. (I8)

The only solutions with 1 � A are A = 1 ∧ S = −3F or A =
1 ∧ S = 0. A = 1 implies kx = ky = kz = ± 1√

3
again. We get

cos(2φ) = −3α2
2−3α2

3−1
2 and φ ∈ {0, π} as a surface in parame-

ter space separating different topological phases.
Further, χ has minima at Emin = 0 and Emin

± = ±(α2
2 +

α2
3 + 1) with χ (Emin) = −detH . So we once again have

the condition detH = 0. The only unexplored way this
condition can be fulfilled is by B(αn) = 0. This leads to

another phase separating surface with cos(2φ) = −α2
2−α2

3+1
2 ,

which corresponds to degeneracies of band pairs (1,2), (3,4),
and (5,6). Since χ is independent of kn at these parameters,
this degeneracy occurs at all k points. It turns out, that this
gap closing does not lead to a change in Chern number. This
can be seen in Fig. 15, where the topological phase diagram
of this model is show and every phase is numerated from 1
to 6. Additionally, for small off diagonal terms (α2/3 � 1) the
topological phase diagram is equivalent to a double threefold
point, as expected, since at b = 0, H is a direct sum of two
threefold points. At large off diagonal terms, this is no longer
the case. This is the only topological phase diagram out of
all multifold crossings, where the topological phase depends
on the parameters relative magnitude, in this case, the ratio
|α0+iα1|
|α2+iα3| . The Chern number for the two middle bands is always
zero. Following Ref. [16], we can get the SG 212/213 R̄7R̄8

model by setting α0 = π
2 .

The band 1 symmetry eigenvalue jump of the threefold
rotation is 0 in phases 3 and 6, 4π

3 in phases 1 and 2 and 2π
3 in

phases 4 and 5. The band 2 symmetry eigenvalue jump of the
threefold rotation is 0 in phases 2 and 5, 4π

3 in phases 1 and
3 and 2π

3 in phases 4 and 6. For band 3, we get symmetry
eigenvalue jumps of 0 in phases 1 and 4, 4π

3 in phases 2
and 6 and 2π

3 in phases 3 and 5. For the remaining bands,
particle-hole symmetry interchanges 2π

3 ↔ 4π
3 . We see that

we can still distinguish between phases 1 and 2 (4 and 5) by
symmetry eigenvalue jumps.

Bandpairs are degenerate on rotation axis of the twofold
rotation, so Eq. (1) can not be applied here. Considering
Eq. (18), all jumps of log det BC2 are zero for all bandpairs.
This puts constraints ν1,2 = 0 mod 2 and ν3,4 = 0 mod 2 on
the non-Abelian Chern numbers. Further, the threefold rota-
tion symmetry eigenvalue jumps lead with Eq. (19) to the
following constraints ν1,2 = 1 mod 3 in phases 1, 5 and 6
and ν1,2 = 2 mod 3 in phases 2, 3 and 4. These constraints
are consistent with the Chern numbers found in Fig. 15.
For bands 3 and 4, we get ν1,2 = 0 mod 3, which is also
fulfilled.

G M P G
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0.3

0.2

0.1
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er
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 (e
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G M P G G M P G

(b)

(a) (c) (d) (e)

FIG. 16. (a) Crystal structure of the parent compound NbO2 in SG #136 and (b) of TaO2 with increased oxygen-deficiency in SG #80.
[(c) and (d)] DFT band structures for the reported oxygen-deficient NbO2, the same structure with Nb substituted by Ta and the structure with
enhanced oxygen-deficiency modeled by an increased distortion. The topological gaps are colored in red. NbO2 has a small topological gap
that can be slightly enhanced by substitution. Distorting the material (by a factor of 1.5 with respect to the distortion of the parent compound
in SG #136 to the reported oxygen-deficient structure in SG #80) leads to a band inversion and a significant enhancement of the topological
band gap.
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APPENDIX J: GELLMANN MATRICES

We use the following definition of the Gellmann matrices.

λ0 =

⎛
⎜⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎠, (J1)

λ1 =

⎛
⎜⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎟⎠, (J2)

λ2 =

⎛
⎜⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎟⎠, (J3)

λ3 =

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠, (J4)

λ4 =

⎛
⎜⎜⎝

1√
3

0 0

0 1√
3

0

0 0 − 2√
3

⎞
⎟⎟⎠, (J5)

λ5 =

⎛
⎜⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎟⎠, (J6)

λ6 =

⎛
⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠, (J7)

λ7 =

⎛
⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠, (J8)

λ8 = 1. (J9)

APPENDIX K: DETAILS ON THE CALCULATION
FOR TaO2 AND NbO2

To enlarge the topological band gap, we distort the re-
ported oxygen-deficient NbO2 structure further, modeling a
stronger oxygen-deficiency, as well as substituting Nb with
Ta. We assume that the enhanced deficiency leads to a dis-
tortion that is larger in magnitude but preserves the ratio
of the modes it is composed of. In general, this is a com-
plicated linear combination of many distortion modes. First,

TABLE V. Atomic positions of the distorted β-TaO2 com-
pound. The coordinates are given in lattice vectors a1 =
(−4.847, 4.847, 2.967), a2 = (4.847, −4.847, 2.967), and a3 =
(4.847, 4.847, −2.967) in units of angstrom.

Atom x y z

Ta 0.276080 0.033580 0.217160
Ta 0.816420 0.058920 0.782840
Ta 0.308920 0.026080 0.742500
Ta 0.283580 0.566420 0.257500
Ta 0.206250 0.448580 0.727330
Ta 0.721250 0.478920 0.272670
Ta 0.728920 0.956250 0.257670
Ta 0.698580 0.471250 0.742330
O 0.097210 0.840550 0.951600
O 0.888950 0.145610 0.048400
O 0.395610 0.847210 0.756660
O 0.090550 0.638950 0.243340
O 0.618220 0.372050 0.977430
O 0.394620 0.640790 0.022570
O 0.890790 0.368220 0.746170
O 0.622050 0.144620 0.253830
O 0.111550 0.357720 0.449770
O 0.907950 0.661780 0.550230
O 0.911780 0.861550 0.253830
O 0.607720 0.657950 0.746170
O 0.595550 0.852220 0.484930
O 0.367290 0.110620 0.515070
O 0.360620 0.345550 0.243330
O 0.102220 0.117290 0.756670

we identify which linear combination of modes leads to
the above-mentioned structural phase transition by using the
ISODISTORT tool [106]. By comparing the parent and the
reported oxygen-deficient compound, we can identify and
then exaggerate the distortion by a factor of 1.5. The band
structure of that structure has a much larger topological band
gap while preserving the symmetry of the reported oxygen-
deficient crystal, see Fig. 16. The crystallographic axes
of the distorted cell are a1 = (−4.847, 4.847, 2.967), a2 =
(4.847,−4.847, 2.967), and a3 = (4.847, 4.847,−2.967) in
units of angstrom. The positions of the atoms are listed in
Table V.

APPENDIX L: DETAILS ON DFT CALCULATIONS

The DFT calculations have been performed using the
VASP software [113–115] and QUANTUM ESPRESSO [93,116]
with optimized norm-conserving Vanderbilt pseudopotentials
[117] from PSEUDODOJO [118] within the PBE approxi-
mation [119] of the exchange-correlation functional. For
wannierization WANNIER90 [120] has been employment and
the surface simulation was carried out using WANNIERTOOLS

[121].
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