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We theoretically study the real-space distribution of the supercurrent that flows under a uniform vector
potential in a two-dimensional quasiperiodic structure. This is done by considering the attractive Hubbard
model on the quasiperiodic Ammann-Beenker structure and studying the superconducting phase within the
Bogoliubov-de Gennes mean-field theory. Decomposing the local supercurrent into the paramagnetic and dia-
magnetic components, we numerically investigate their dependencies on average electron density, temperature,
and the angle of the applied vector potential. We find that the diamagnetic current locally violates the current
conservation law, necessitating compensation from the paramagnetic current, even at zero temperature. The
paramagnetic current shows exotic behaviors in the quasiperiodic structure, such as local currents, which are
oriented transversally or reversely to that of the applied vector potential.
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I. INTRODUCTION

A quasicrystal is a solid that lacks translational symmetry
but exhibits a diffraction pattern with sharp Bragg peaks and
a rotational symmetry forbidden in periodic lattices [1,2]. The
quasicrystalline structure results in exotic electronic states,
such as critical states [3–9], which are distinct from those
of conventional periodic crystals. Recently, an experimental
work discovered bulk superconductivity in a Bergmann-type
Al-Zn-Mg quasicrystalline alloy (Tc ∼ 50 mK) [10]. More
recently, superconductivity has also been reported in a van
der Waals layered quasicrystal Ta-Te (Tc ∼ 1 K) [11]. The
superconductivity in quasicrystals poses new questions since
they do not possess fundamental prerequisites such as the
Fermi surface in the conventional Bardeen-Cooper-Schrieffer
(BCS) theory [12] due to the absence of translational sym-
metry. In previous theoretical works, such superconductivity
has been studied by considering the attractive Hubbard
model on quasiperiodic lattices. These studies showed that
superconducting pairing is inhomogeneous, with real-space
distributions of the site-dependent local electron density and
superconducting order parameter [13–24]. More interestingly,
it has been pointed out by two of the present authors that non-
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BCS-type superconductivity, comprised of Cooper pairs with
finite center-of-mass momentum, exists in the weak-coupling
region [17].

The interplay between the quasiperiodicity and super-
conductivity was studied in earlier works on quasiperiodic
pinning arrays in periodic superconductors [25–29], as well
as quasiperiodic networks of ordinary superconducting wires
[30–35]. These were studies for superconductivity in arti-
ficially fabricated quasiperiodic structures. In contrast, we
investigate the electromagnetic response of superconducting
quasicrystals at the atomic level. In particular, supercurrent
that flows in response to a uniform vector potential such as
the Meissner current is a basic property that has, however,
been scarcely explored. In a periodic system with a simple
unit cell, it is obvious that the local supercurrents are uni-
formly distributed in the lattice, due to the homogeneity of the
superconducting state in this case. In a simple crystal, each
of the paramagnetic and diamagnetic components [36] of the
local supercurrent is also uniform. In contrast, we will show
that in the quasicrystal, where both the local electron density
and superconducting order parameter are spatially varying,
the local supercurrent exhibits a nontrivial spatial dependence
as well.

In this study, we consider a two-dimensional quasiperiodic
structure and the local supercurrent flow induced by an ex-
ternal uniform vector potential. We investigate the attractive
Hubbard model on the Ammann-Beenker structure [37–39] by
means of the Bogoliubov-de Gennes (BdG) mean-field theory.
First, we formulate the expression of the local supercurrent
under the uniform vector potential and discuss its real-space
distribution on the structure. To clarify how the inhomo-
geneity of the superconducting state affects the supercurrent
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FIG. 1. A part of the Ammann-Beenker structure. The structure
has six different vertex patterns, with A through F assigned in de-
scending order of coordination number Zi = 8, 7, . . . , 3 [42,43].

flow, we further decompose it into the paramagnetic and dia-
magnetic components. We then discuss the dependence of
the local supercurrent on (i) average filling, (ii) temperature,
and (iii) angle of the applied vector potential. Interestingly,
we find that the nonuniform diamagnetic current can locally
violate the current conservation law, i.e., have a nonzero di-
vergence. The paramagnetic current flows so as to reestablish
the conservation of the local current. This leads to nonuniform
supercurrent distributions, which are unique to quasiperiodic
systems. We find furthermore that the paramagnetic currents
do not vanish at zero temperature, an anomalous property that
was observed earlier by Liu et al. [23] in the site-averaged
value.

The rest of this paper is organized as follows. In Sec. II, we
introduce the model Hamiltonian and explain our theoretical
approach. We discuss the distribution of the local supercur-
rent and its dependencies on the average filling, temperature,
and the angle of the applied vector potential in Sec. III. A
brief summary is given in Sec. IV. The relation between
formulations in our previous study [40] and the present one
is explained in the Appendix.

II. MODEL AND METHOD

This study is carried out on the Ammann-Beenker structure
(Fig. 1), which is a two-dimensional quasiperiodic tiling with
an eightfold rotational symmetry [37–39]. For our numeri-
cal calculations, we use a square approximant of the perfect
infinite tiling, consisting of N = 1393 sites. This square ap-
proximant of the Ammann-Beenker structure was generated
by the cut-and-project method [41]. Here, we adopt a vertex
model, where an atomic orbital is placed on each vertex of
the Ammann-Beenker tiling. The coordination number Zi at
each site ranges from 3–8 and the vertices can be categorized
into six classes if one does not distinguish two geometries of
Zi = 5 [42,43].

We consider an attractive (U < 0) Hubbard model [44]
to study s-wave superconductivity in this Ammann-Beenker

structure, as was done in previous studies [17,18,21]. To study
the local supercurrent in the presence of a vector potential, we
include A(r) as the Peierls phase in the transfer term of the
model Hamiltonian [45]. Thus, the Hamiltonian is given by

Ĥ = −
∑
〈i, j〉σ

{
t exp

(
−i

∫ ri

r j

A(r) · dr

)
ĉ†

iσ ĉ jσ + H.c.

}

+ U
∑

i

n̂i↑n̂i↓ − μ
∑

iσ

n̂iσ . (1)

Here, ĉ†
iσ (ĉiσ ) creates (annihilates) an electron of spin σ at

site i. We suppose a finite electron-transfer integral t only be-
tween the nearest-neighbor sites (denoted by 〈i, j〉) connected
by an edge of a square or a rhombus and set it as the unit
of energy. In the noninteracting limit, the energy width of the
density of states is about 8.5t [46]. We define a local electron
density ni = ∑

σ 〈n̂iσ 〉 with n̂iσ = ĉ†
iσ ĉiσ . The chemical poten-

tial μ is tuned to fix the average electron density n̄ = ∑
i ni/N

where N is the system size. We fix the attractive interaction
strength to U = −3, and select the averaged electron density
n̄ = 0.3, 0.5, 0.7, and 0.9 to avoid the delta-function singular-
ity in the density of states at the half-filling due to confined
states [47].

In the case of a uniform vector potential A, the Peierls
phase in Eq. (1) can be rewritten as

−i
∫ ri

r j

A(r) · dr = −iA · ri j, (2)

where ri j = ri − r j = aen is the bond vector between sites i
and j. Here a is the bond length and the unit vectors en =
(cos φn, sin φn) with φn = 2nπ/8 (n = 0,±1,±2,±3, 4) cor-
respond to the eight permitted bond orientations on the tiling,
where we take φn = 0 as the x direction.

We henceforth assume that the uniform vector potential
A is applied parallel to the plane of the Ammann-Beenker
structure and evaluate the local supercurrent induced by A on
each bond ri j . We control the direction of the vector potential
A = −|A|(cosθ, sinθ ) by changing the angle parameter θ in
the range 0 � θ < π

4 .
Using the mean-field approximation, Hamiltonian in

Eq. (1) is reduced to

Ĥ =
∑
i, j

(ĉ†
i↑ ĉi↓)Ĥi, j

(
ĉ j↑
ĉ†

j↓

)
(3)

with

Ĥi, j =
(

K↑i, j �iδi, j

�∗
i δi, j −K∗

↓i, j

)
, (4)

where Kσ i, j = −tδ〈i, j〉e−iA·ri j + (Uniσ̄ − μ)δi, j is a kinetic
term with niσ = 〈n̂iσ 〉 and �i = −U 〈ĉi↑ĉi↓〉 is the site-
dependent superconducting order parameter. δ〈i, j〉 is the
Kronecker delta that counts only between the nearest-
neighbor sites [21]. We note that the Hartree term Uniσ̄ needs
to be explicitly incorporated above because it has a site de-
pendence and hence cannot be absorbed into the chemical
potential term [17,18,21,48,49]. The Hamiltonian of 2N × 2N
matrix in Eq. (3) is diagonalized through the Bogoliubov
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transformation(
ĉi↑
ĉ†

i↓

)
=

∑
ε

(
uε (ri ) −v∗

ε (ri )

vε (ri ) u∗
ε (ri )

)(
γ̂ε↑
γ̂

†
ε↓

)

and we obtain the Bogoliubov-de Gennes (BdG) equa-
tion [21,40,50–52]

∑
j

Ĥi, j

(
uε (r j )

vε (r j )

)
= Eε

(
uε (ri )

vε (ri )

)
. (5)

Here, Eε denotes an eigenenergy of the BdG Hamiltonian Ĥi, j

and uε (ri ), vε (ri ) denote wave functions on the site i. The
index ε distinguishes eigenstates of the BdG Hamiltonian,
which runs over 1 to 2N , including eigenstates with both
positive and negative Eε . As the self-consistent condition,
the gap equation and local electron density for each spin are
obtained as [53,54]

�i = −U
∑

ε

uε (ri )v
∗
ε (ri )[1 − f (Eε )], (6)

ni↑ =
∑

ε

|uε (ri )|2 f (Eε ), (7)

ni↓ =
∑

ε

|vε (ri )|2[1 − f (Eε )], (8)

where f (E ) = 1/(eE/T + 1) is the Fermi-Dirac distribution
function at temperature T . Using only positive Eε , we obtain
the conventional formula �i = −U

∑N
ε=1 uε (ri )v∗

ε (ri )[1 −
2 f (Eε )] [50], where we have used the particle-hole symme-
try, [uε (ri ), vε (ri )] → [−v∗

ε (ri ), u∗
ε (ri )] as Eε → −Eε , for a

negative Eε (ε ∈ [N + 1, 2N]) in Eq. (6).
The local supercurrent from a site j to i is given by

J j→i = −∂〈Ĥ(A)〉
∂A

(9)

= 2tIm

{
exp(−iA · ri j )

∑
σ

〈ĉ†
iσ ĉ jσ 〉

}
ri j . (10)

It can be divided into the paramagnetic current

Jpara
j→i = 2t cos(A · ri j )Im

{∑
σ

〈ĉ†
iσ ĉ jσ 〉

}
ri j, (11)

and the diamagnetic current

Jdia
j→i = −2t sin(A · ri j )Re

{∑
σ

〈ĉ†
iσ ĉ jσ 〉

}
ri j (12)

so that J j→i = Jpara
j→i + Jdia

j→i. Here, we have defined the para-
magnetic (diamagnetic) component as an even (odd) function
of A in the expression of the local supercurrent. In the
weak limit of the vector potential, trigonometric functions
in Eqs. (11) and (12) can be reduced to 1 and A · ri j =
|A||ri j | cos α, respectively, reproducing the conventional def-
inition of Jdia

j→i and Jpara
j→i used in previous studies [23]. The

angle parameter φn of ri j specifies the flow direction of the
local current. Here, we define an angle α = θ − φn between
the applied vector potential and the bond vector and call
cos α a bond factor. We note that Re{〈ĉ†

iσ ĉ jσ 〉} = (〈ĉ†
iσ ĉ jσ 〉 +

〈ĉ†
jσ ĉiσ 〉)/2 represents the effective bond strength between the

site i and j ( 
= i), and Im{〈ĉ†
iσ ĉ jσ 〉} = (〈ĉ†

iσ ĉ jσ 〉 − 〈ĉ†
jσ ĉiσ 〉)/2i

gives the net transfer from the site j to i. In Eqs. (10)–(12),
〈ĉ†

iσ ĉ jσ 〉 is obtained from the eigenstate of the BdG equa-
tion (5) as

〈ĉ†
i↑ĉ j↑〉 =

∑
ε

u∗
ε (ri )uε (r j ) f (Eε ), (13)

〈ĉ†
i↓ĉ j↓〉 =

∑
ε

vε (ri )v
∗
ε (r j )[1 − f (Eε )]. (14)

In this study, we have chosen the amplitude of the uniform
vector potential to have the value |A| = 0.005. Since the local
supercurrents are linear as a function of the vector potential in
the weak |A| limit, changing the value of the external vector
potential will not result in qualitative changes in our results.

III. RESULTS

A. Real-space distribution of the local electron density
and the superconducting order parameter

We begin by considering the case when the uniform vector
potential A is parallel to the x axis, i.e., A = (−|A|, 0) by
setting θ = 0. Before discussing the supercurrent distribution,
we study the inhomogeneous distribution of local quantities.
Figure 2 presents real-space distribution of the local electron
density ni and the superconducting order parameter amplitude
|�i| after the self-consistent calculation of Eqs. (5)–(8) at
T = 0.01 for the fillings n̄ = 0.3 and 0.7. The figure zooms
in a small region consisting of about 100 sites, for which
one clearly sees inhomogeneous spatial distributions of ni

and |�i|, which moreover exhibit an approximate eightfold
symmetry as reported in Ref. [18]. Classifying the vertices
by the coordination number Zi, we plot the distributions of
ni and |�i| against Zi in the right panels. We note that the
values of ni and |�i| have variations even among the sites with
the same coordination number since such sites have different
next-nearest-neighbor (or further neighbor) configurations.

For the filling n̄ = 0.3, the right-hand panel of Fig. 2(a)
shows that ni tends to increase with Zi. This behavior can be
deduced from a property of the noninteracting model: when
the Fermi energy lies below the main pseudogap, it is the
sites of large Zi, which are preferentially occupied [55]. This
leads, in the BdG equation in Eq. (7), to the factors |uε (ri )|2
being larger for larger Zi values. In contrast, the local order
parameter amplitude, shown in Fig. 2(b) does not increase
monotonically with Zi but has a maximum at Zi = 5, as can
be seen from the right-hand panel. This maximum in |�i| can
also be simply explained – according to Eq. (6), the order
parameter amplitude is given by the product of |uε (ri )| and
|vε (ri )|, which are increasing and decreasing functions of Zi

respectively. This leads to the maximum at Zi = 5, which is
the value separating low and high coordination sites in this
tiling. As the filling is increased to larger values, for n̄ = 0.7,
the ni increases at all the sites, however, the differential in-
crease is largest at the sites with smaller Zi, as shown in
Fig. 2(c). Overall, the distribution range of ni for different Zi

becomes narrower as filling n̄ is increased, until at half-filling
one reaches the uniform state ni = 1 for all sites. For n̄ = 0.7,
the local superconducting order parameter is enhanced com-
pared to the case of filling n̄ = 0.3. As shown in the right-hand
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FIG. 2. Real-space distribution (left panels) and the coordination number Zi dependence (right panels) of the local electron density ni

[(a) and (c)] and the superconducting order parameter amplitude |�i| [(b) and (d)] on the Ammann-Beenker structure for n̄ = 0.3 [(a) and (b)]
and 0.7 [(c) and (d)] for U = −3, T = 0.01, and θ = 0. For the spatial distribution, we show a part of the system consisting of about 100 sites
for visibility.

panel of Fig. 2(d), the values of �i are in this case largest on
the sites with Zi = 3 and 4. This reflects the fact that, for a
large filling, the noninteracting local density of states at these
sites is significantly larger than that of the sites of large Zi [55],
for reasons discussed in Ref. [56]. These site dependences of
ni and |�i|, which hold even in the absence of the uniform
vector potential A, affect behaviors of local supercurrent flow
as we now discuss below.

B. Real-space distribution of the local supercurrent

Figure 3 shows the spatial distribution of the supercurrent
in the case of θ = 0. Bonds are either parallel to this direction
(φn = 0), perpendicular (φn = π

2 ), or at an angle of π
4 , which

leads to large differences in the bond factor. In uniform sys-
tems such as a square lattice, the differences in Jj→i = |J j→i|
among the bonds are attributed only to the bond factor cos α

for fixed |A|. It is just because J j→i ∼ Jdia
j→i at sufficiently low

temperature. Therefore, the local supercurrent flows on the
bonds where the bond factor cos α is nonzero, i.e., the bonds
with |α| 
= π

2 . Also, the same current flows for the same α

bonds, forming a one-dimensional flow distribution consist-
ing of the respective local currents. These are well-known
responses of uniform superconductors [36].

On the other hand, the local supercurrent J j→i in the in-
homogeneous superconductor flows nonuniformly as shown
in the left panel of Fig. 3(a) for n̄ = 0.3, which is not de-
termined simply by the bond factor. The overall tendency to

flow along one-dimensional channels is similar to that of the
uniform systems. These one-dimensional channels having a
cross-sectional width of a few lattice spacings are stacked
along the y direction. Notably, Jj→i depends on the sites i and
j even if the bonds have the same bond factor. In addition,
there are small supercurrent flows even in the directions of
|φn| = π

2 . These features are characteristic of the quasiperi-
odic superconductor.

To understand the nonuniform distribution, we decompose
J j→i into the diamagnetic current Jdia

j→i and paramagnetic cur-
rent Jpara

j→i as shown in the middle and right panels of Fig. 3(a).

Since Jdia
j→i can be considered as a direct response to the vector

potential A and has the bond factor cos α, Jdia
j→i of φn = 0 is

larger than that of |φn| = π
4 . We note that Jdia

j→i = 0 for |α| =
|φn| = π

2 , which means that for these bonds J j→i = Jpara
j→i.

Such Jpara
j→i flowing on the bonds perpendicular to A is unique

to the nonuniform superconductor, and the presence of Jpara
j→i

prevents the formation of the one-dimensional channels.
As we show in Appendix B, results for the Penrose struc-

ture show that perpendicular currents are likewise present in
that case. Indeed, perpendicular local currents can arise in
quasiperiodic structures as these systems do not have trans-
lation invariance. There are no such currents on the square or
honeycomb lattices (see Appendix B).

Furthermore, we have checked that such currents flow even
when the local order parameter �i and electron density ni in
Eq. (5) are assumed to be uniform on all sites (self-consistency
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FIG. 3. Real-space distribution of the local current J j→i (left), diamagnetic current Jdia
j→i (middle) and paramagnetic current Jpara

j→i (right) on
the Ammann-Beenker structure at U = −3, T = 0.01, and θ = 0. The results were obtained for n̄ = 0.3 (a) and 0.7 (b). Length and orientation
of arrows represent the strength and direction of the supercurrent on each bond. Black dots show position of the vertex. In each panel, we show
a part of the system consisting of about 100 sites for visibility.

is not imposed). This shows that the nonuniformity of �i and
ni are not an essential condition for perpendicular currents to
flow in this case.

Here, the existence of the paramagnetic current in these
directions can be understood in terms of the conservation law
of the local supercurrent, which is defined as that the total
currents coming in and going out of each site should agree.
To see this more clearly, in Fig. 4, we show the divergence
(Jdia

i )out − (Jdia
i )in of Jdia

j→i at each site with classifying the
sites by the coordination number Zi. The diamagnetic cur-
rents entering and leaving a site i are expressed as (Jdia

i )in

and (Jdia
i )out, respectively. We note that the local supercur-

rent J j→i is conserved at any site in both the periodic and
quasiperiodic systems. While the local current must be con-
served, as required by gauge invariance, this constraint does
not apply to the diamagnetic and paramagnetic parts taken
separately. In periodic systems with uniform superconducting
states, one finds nevertheless that the diamagnetic and para-
magnetic currents are separately conserved. That is because
they are proportional to scalar products of A and ri j and the
summation of the most neighbor ri j is zero at all sites i.
In contrast, in the quasiperiodic system, we observe that the
diamagnetic currents are not locally conserved. This can be
seen from the plot in Fig. 4, which shows that the divergence
of the local diamagnetic current is not zero. This leads to the
fact that the paramagnetic current is not locally conserved,

either, in order to satisfy the local current conservation of
J j→i = Jpara

j→i + Jdia
j→i.

In addition to the φn dependence, we see in Fig. 3(a) a trend
that Jdia

j→i becomes larger on bonds connected to the sites with
larger coordination numbers such as Zi = 8, 7, and 6 where

-0.005

-0.0025

0

0.0025

0.005

3 4 5 6 7 8

(J
idi
a )
ou
t-
(J
idi
a )
in

Zi

n=0.3, =0
n=0.3, = /8
n=0.7, =0

n=0.7, = /8

‐

‐
‐

‐

FIG. 4. Divergence (Jdia
i )out − (Jdia

i )in of the diamagnetic current
on the site i at T = 0.01 for (i) n̄ = 0.3, θ = 0, (ii) n̄ = 0.3, θ = π

8 ,
(iii) n̄ = 0.7, θ = 0, and (iv) n̄ = 0.7, θ = π

8 . The distributions are
classified according to the coordination number Zi. The results for
each Zi is plotted with the abscissa value shifted for each condition.
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FIG. 5. Filling dependence of the local current Jj→i (a), diamagnetic current Jdia
j→i (b) and paramagnetic current Jpara

j→i (c) for U = −3,
T = 0.01, and θ = 0. The results in (a) are separated into the diamagnetic and paramagnetic components, respectively, in (b) and (c). We note
that Jpara

j→i flows in the opposite direction of Jdia
j→i. The data points for each |φn| are slightly shifted in the horizontal direction for the sake of

visibility.

the local electron density ni is larger. As expected from the
physical role of Jpara

j→i, it flows in the opposite direction to

that of Jdia
j→i. Therefore, the paramagnetic current also flows

more on the bonds connected to the sites with larger Zi. This
point will be further discussed in Sec. III C. Importantly, this
paramagnetic current remains finite even at zero temperature
as pointed out in Ref. [23] (see Sec. III D), contrary to the
case of the uniform system. Moreover, Jpara

j→i remains finite
regardless of the flow directions.

Summing up, we have described the spatial distribution of
the local supercurrent J j→i on the Ammann-Beenker structure
for θ = 0 (vector potential along the x axis). We find that
Jj→i is inhomogeneous, and takes different values on the
tiling, even among the bonds sharing the same bond factor.
In contrast to the case of periodic systems, Jdia

j→i itself is not
locally conserved on this structure but is compensated by
Jpara

j→i . One of the consequences of this type of compensation
is that Jpara

j→i flows on the transverse bonds of |φn| = π
2 where

no diamagnetic current flows. We stress that this effect is
observable only upon examining current patterns at a given
node, that is at a local scale.

C. Filling n̄ dependence

Since the distribution of ni and �i changes significantly
with the filling as shown in Fig. 2, the supercurrent dis-
tribution is also expected to change accordingly. First, we
compare the spatial structure of the supercurrent for n̄ = 0.7
in Fig. 3(b) and n̄ = 0.3 in Fig. 3(a). In the case of n̄ = 0.7,
the distribution of Jdia

j→i becomes relatively uniform for the
same |φn|, and each Jdia

j→i is larger than that for n̄ = 0.3. At the
same time, Jpara

j→i around the Zi = 8, 7, and 6 sites is strongly
reduced from that for n̄ = 0.3. Moreover, the much larger Jpara

j→i
flows in the direction of |φn| = π

2 . We observed that this trend
is particularly pronounced on bonds connected to the Zi = 4
sites, where ni increases significantly with n̄ in Fig. 2(c).

To see the n̄ dependence more systematically, we plot Jj→i,
Jdia

j→i, and Jpara
j→i against n̄ in Fig. 5. Since φn and −φn are

equivalent for θ = 0, the distributions are grouped by |φn|
in Fig. 5. The flow directions φn of Jpara

j→i is rotated by π

from those of Jdia
j→i in Fig. 5(c) since it flows in the opposite

direction of Jdia
j→i. In Fig. 5(b), we see a trend that Jdia

j→i of
|φn| = 0 and π

4 increases with n̄. Note that Jdia
j→i of |φn| = π

2 is
0 due to the bond factor. In Fig. 5(c), while we do not find
a clear trend in Jpara

j→i of |φn| = 0 and π
4 , we find that Jpara

j→i
of |φn| = π

2 and its distribution range increase monotonically
with n̄. This suggests that the conservation law of the diamag-
netic current is further violated as the filling n̄ increases. As
shown in Fig. 4 for n̄ = 0.7, the deviation from 0 becomes big
compared to the case of n̄ = 0.3. Interestingly, the divergence
at Zi = 4, where ni and |�i| are particularly bigger than those
of n̄ = 0.3 [Figs. 2(c) and 2(d)], ranges much larger than
that for n̄ = 0.3. As the net result, reflecting the increase of
Jdia

j→i, Jj→i of |φn| = 0 and π
4 increase with n̄. However, the

distribution ranges of Jj→i in those directions do not show a
monotonic change with respect to n̄ while it monotonically
increases in the |φn| = π

2 direction. In this way, the current
distribution strongly depends on n̄.

It is interesting at this point to ask what factors determine
the current distribution aside from the trivial bond factors. To
study this question, we investigate the distribution Jdia

j→i after
dividing by the bond factor (for bond angles |φn| = 0 and
π
4 where cos φn 
= 0). The relation Jdia

j→i ∼ Re{∑σ 〈ĉ†
iσ ĉ jσ 〉}

[from Eq. (12)] suggests that there may exist two types of
simplified dependence. The rescaled supercurrent variable is
thus plotted in two different ways in Fig. 6: as a function
of

√
n jni (left-hand column), and as a function of

√|� j�
∗
i |

(right-hand column), for four different values of the fill-
ing. As one can see in the figure, the blue (φn = 0) and
red dots (|φn| = π

4 ) overlap, showing that the new variables
Jdia

j→i/ cos φn are independent of the bond orientation. The
plots show that systematic correlations do exist between the
rescaled local currents and the local charge/order parameter
in some limits. For small filling, n̄ = 0.3 (top row), Jdia

j→i
is positively correlated with

√
n jni, but is uncorrelated with

the local superconducting order parameter amplitudes. For
the large filling n̄ = 0.9 (bottom row), the reverse is true: the
current is correlated with

√|� j�
∗
i |, but is uncorrelated with

the local charges. Based on these numerical observations we
conclude that at low filling the diamagnetic current on a given
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n=0.9

n=0.7

n=0.5

n=0.3

n=0.9

n=0.7

n=0.5

n=0.3

FIG. 6. Values of Jdia
j→i divided by the bond factor cos φn are

plotted versus
√

njni (left column) and
√|� j�

∗
i | (right column) for

four different fillings n̄. Parameters: U = −3, T = 0.01, and θ = 0.

bond is approximately

Jdia
j→i ∝ √

n jni cos φn,

while at higher filling, the diamagnetic current on a bond is
approximately given by

Jdia
j→i ∝ √|� j�

∗
i | cos φn.

Intermediate behaviors can be seen for n̄ = 0.5 and 0.7, show-
ing that both amplitude and phase variations are important in
the generic case. The limiting behaviors for small and large
fillings help to explain our observations: at small filling n̄,
the first relation attributes the large Jdia

j→i around the sites with
Zi = 8 and 7 in Fig. 3(a) to the large ni at such sites [Fig. 2(a)].
In the opposite limit of a high n̄, the second relation accounts
for the observation in Figs. 3(b) and 2(d) that Jdia

j→i flows well

on bonds connected to the sites with Zi = 3 and 4, where |�i|
is large.

D. Temperature T dependence

The superconducting transition temperature Tc for the
Ammann-Beenker structure is found using the condition
|�i(Tc)| = 0 for all the sites. For U = −3 and filling n̄ = 0.5,
the value of Tc = 0.344 for the Ammann-Beenker structure,
which can be compared with a value of 0.333 for the square
lattice on the same interaction strength and filling within our
framework.

Figures 7(a), 7(b), and 7(c) show the temperature de-
pendence of the local current and its diamagnetic and
paramagnetic components, respectively. Black curves show
the results for a square lattice (N = 900) with the same param-
eters. One sees that the local supercurrent in the tiling tends to
zero as T approaches Tc, in accordance with expectation.

Figure 7(b) shows that Jdia
j→i is almost constant as a function

of temperature for all the bond orientations. Note that the
diamagnetic current is identically 0 due to the bond factor for
|φn| = π

2 .
As Jpara

j→i cancels Jdia
j→i above Tc, the supercurrent vanishes

at T � Tc as shown in Fig. 7(c). With lowering temperature
(T < Tc), Jpara

j→i of |φn| = 0 and π
4 decreases. This tendency is

similar to the results on the square lattice. However, while the
paramagnetic contribution vanishes at T → 0 in the square
lattice, it exhibits a nonzero value even at zero temperature
in the quasiperiodic structure, as pointed out in Ref. [23], for
the site-averaged values. Our results reveal that it holds for all
flow directions φn. Remarkably, in the directions of |φn| = π

2 ,
Jpara

j→i increases on lowering T (< Tc).
The existence of Jpara

j→i even at T → 0 can be qualitatively
understood in terms of the finite center-of-mass momentum p
of the Cooper pairs.

m∗〈v〉 = 〈p〉 − e∗〈A〉/c. (15)

Here m∗, v, and e∗, respectively, denote the mass, velocity, and
charge of the Cooper pairs, and c denotes the light velocity.
In the quasiperiodic systems, the Cooper pairs hold finite
canonical momentum, as pointed out in Ref. [17]. Therefore,
the first term in Eq. (15) does not vanish and gives a finite
contribution to Jpara

j→i even at T = 0.

E. Applied angle θ dependence

In this final section, we focus on the spatial distribution
of the local supercurrent when the angle θ of the applied
vector potential A is varied. From the eightfold symmetry
of the system, one expects that when A is applied in the
diagonal direction (θ = π

4 ), the real-space distribution of the
supercurrent should be essentially the same as Fig. 3 after π

4
rotation. (Note that in practice, the perfect eightfold symmetry
is slightly broken in the approximants, with additional sym-
metry breaking due to toroidal boundary conditions along the
x and y directions. These effects depend on the size of the
approximants, and we have checked that they are small for
our system size of N = 1393 sites.) Therefore, we consider
the case of θ = π

8 in the following.
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FIG. 7. Temperature dependence of the local current Jj→i (a), diamagnetic current Jdia
j→i (b) and paramagnetic current Jpara

j→i (c) for U = −3,
n̄ = 0.5, and θ = 0. Results on a square lattice (SL) of 900 sites are shown by black curves. The vertical dotted line represents Tc of the
Ammann-Beenker structure. The results in (a) are separated into the diamagnetic and paramagnetic components, respectively, in (b) and (c).
We note that Jpara

j→i flows in the opposite direction of Jdia
j→i. The data points for each |φn| are slightly shifted in the horizontal direction for the

sake of visibility.

Figures 8(a) and 8(b) show the spatial distributions of local
supercurrent, and its diamagnetic and paramagnetic compo-
nents, for two different fillings. The real-space structure of the
local supercurrent J j→i at θ = π

8 is shown in the left panels
of Figs. 8(a) and 8(b) in two cases of n̄ = 0.3 and 0.7. Since
the bond factor cos α has the same value on bonds of φn = 0

and π
4 for θ = π

8 , spatial structures of J j→i are intermediate
between the flow pattern for θ = 0 (Fig. 3) and its π

4 rotation.
We now examine the diamagnetic currents Jdia

j→i, which
are shown in the middle panels. Note first that in the case
of θ = π

8 , all bond factors are nonzero, resulting in nonzero
Jdia

j→i for all the directions. For n̄ = 0.3, one sees that Jdia
j→i

(a) n=0.3

(b) n=0.7

y

x

y

x

y

x

y

x

y

x

y

x

FIG. 8. The same as Fig. 3, but for θ = π

8 .
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FIG. 9. Distributions of the local current Jj→i (left panels), diamagnetic current Jdia
j→i (middle panels), and paramagnetic current Jpara

j→i (right
panels) for every π

36 [rad] from θ = 0 [rad] to π

8 [rad] at U = −3 and T = 0.01. The distribution of Jj→i at each θ is classified by the flow
directions φn = 0, π

4 , and − π

2 for (a) n̄ = 0.3 and (b) n̄ = 0.7. The results of left pannel in (a) and (b) are separated into the diamagnetic and
paramagnetic components, respectively, in the middle and the right panels. The data points for each φn are slightly shifted in the horizontal
direction for the sake of visibility.

is larger on bonds connected to the sites with a larger Zi.
On the other hand, for n̄ = 0.7, such a tendency is less clear
and Jdia

j→i depends principally on the bond orientation. These
characteristics of Jdia

j→i distribution and its dependence on n̄
resemble those for θ = 0 already described in Secs. III B and
C. This is to be expected, since changing θ results in changing
the phase of the wave functions uε (ri ) and vε (ri ), but not their
absolute values and hence ni and |�i| given by Eqs. (6), (7),
and (8) do not change.

The right panels of Fig. 8 show the spatial distribution
of the paramagnetic current Jpara

j→i. Reflecting the behavior

of Jdia
j→i described above, Jpara

j→i flows to recover the current
conservation of J j→i.

The detailed θ dependence of Jdia
j→i is displayed in the mid-

dle panels of Fig. 9. For φn = 0, Jdia
j→i for both n̄ = 0.3 and 0.7

has relatively large values at θ = 0 and gradually decreases
as θ increases from 0 to π

8 . On the other hand, in the direc-
tion of φn = π

4 , Jdia
j→i increases with increasing θ . Finally, the

distributions of φn = 0 and π
4 components coincide at θ = π

8 .
The changes with θ for φn = 0 and π

4 approximately reflect
the bond factor. The average of Jdia

j→i at φn = π
2 increases as θ

increases. In addition, we confirmed that the conservation law
of Jdia

j→i is violated for θ = π
8 , too, as shown in Fig. 4.

In the right panel of Fig. 9(a) for n̄ = 0.3, we see that Jpara
j→i

of φn = −π (− 3π
4 ) becomes smaller (bigger) as θ increases.

On the other hand, the θ dependence of Jpara
j→i for n̄ = 0.7 is

clearly weaker as shown in the right panel of Fig. 9(b). We
note that Jpara

j→i in the direction of φn = −π
2 , which is related

to a backflow as discussed later, decreases with θ for 0 � θ �
π
18 , while it increases for π

18 < θ � π
8 to cancel the increase of

Jdia
j→i.

The left panels of Fig. 9 show the distributions of the
resulting Jj→i for various angles θ . After changes of Jj→i

distribution with increasing θ , Jj→i for φn = 0 and π
4 reach

the same distribution at θ = π
8 . In the case of n̄ = 0.3, while

the distribution of Jj→i in the direction of φn = 0 has weak
θ dependence, max{Jj→i} decreases with θ in the range 0 �
θ � π

8 . On the other hand, for n̄ = 0.7, the distribution range
of Jj→i for φn = 0 expands as θ increases, with the increase
of max{Jj→i} for 0 � θ � π

8 .
We have already noted that for θ = 0 the current can flow

in the direction transverse to the vector potential. For example,
J j→i for φn = −π

2 is a transverse flow to A, in the results
shown in Fig. 3. When θ 
= 0, a backflow, i.e., the current
satisfying J j→i · A ∝ cos α < 0, occurs. Figure 10 shows an
example of the backflow in the case of n̄ = 0.7 and θ = π

36 . In
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FIG. 10. Real-space distribution of the local supercurrent J j→i

for n̄ = 0.7 and θ = π

36 . The backflows are shown as the red down-
ward arrows. We show a part of the system consisting of about 100
sites for visibility.

the left panels of Figs. 9(a) and 9(b), except for θ = 0, J j→i

for φn = −π
2 is the backflow. We find that this backflow de-

creases with θ up to θ = π
8 . Since Jpara

j→i flowing in the direction
of φn = −π

2 is larger than Jdia
j→i in the opposite direction, the

backflow appears in J j→i.
In this way, the backflow comes from the paramagnetic

component, which flows to satisfy the local current conser-
vation of J j→i, compensating for the broken local current
conservation of Jdia

j→i. Thus, the backflow of J j→i is also one
of the characteristics of the quasiperiodic superconductors.

IV. SUMMARY

We have studied the local supercurrent flow under the
uniform vector potential on the Ammann-Beenker structure.
To address this problem, we introduced the attractive Hubbard
model, where the effect of vector potential is incorporated as
the Peierls phase in the transfer term, and numerically ana-
lyzed it based on the self-consistent BdG mean-field theory.
We decomposed the local supercurrent into the diamagnetic
and paramagnetic current in our formulation in order to better
understand the nonuniform spatial distribution. Our formu-
lation for the local supercurrent is applicable not only to
other quasiperiodic structures but also to general nonuniform
structures with the periodic boundary condition.

We confirmed that the local electron density and supercon-
ducting order parameter are distributed nonuniformly with ap-
proximate eightfold symmetry, as known in Refs. [17,18,21].
The distributions greatly vary depending on the filling n̄.
We clarified a spatial distribution of the supercurrent and its
variation depending on (i) the average electron filling n̄, (ii)
temperature T , and (iii) the angle θ of the applied vector
potential.

First, the diamagnetic current has a temperature de-
pendence similar to that in the uniform systems, but the
paramagnetic current has a finite value even at T → 0 for

all flow directions φn. We believe that such a phenomenon
can be also realized in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) states [57,58]. However, in the quasiperiodic sys-
tems, proper adjustment of the magnetic field is unnecessary,
and it would be easier to confirm this phenomenon through
experiments. Second, as the filling increases, the vertical para-
magnetic current increases, which is accompanied by a change
in the distribution of the local electron density and supercon-
ducting order parameter. Lastly, the local supercurrent flows
even in the direction transverse to the applied vector potential.
Furthermore, as the angle of the vector potential increases,
backflows are observed where the bond factor cos α is nega-
tive. In any case, the paramagnetic current behaves differently
from that in periodic systems. This is because the diamagnetic
current is affected by the distributions of the local electron
density and the superconducting order parameter, and is not
conserved locally. As a result, an excess amount of param-
agnetic current has to be induced even at zero temperature
as a counterpart to recover the local current conservation and
contributes to characteristic local supercurrent behaviors on
the quasiperiodic structure.

In conclusion, we have presented a theoretical investigation
of real-space distributions of the supercurrent in a structure
that does not possess translation invariance but is perfectly
ordered. The spatial distributions of the supercurrent revealed
in this study are the first step in understanding the response
to magnetic fields and the Meissner effect in quasicrystalline
superconductors. More detailed investigations of the distribu-
tion of screening currents under external fields are planned for
future work.
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APPENDIX A: GAUGE TRANSFORMATION OF
HAMILTONIAN

The formulation of the local supercurrent in Sec. II differs
from our previous formulation [40]. Here we will see that
these two formulations are equivalent through gauge transfor-
mations.

In Eq. (1), the following gauge transformation is applied to
the creation and annihilation operators:

ˆ̃ciσ = ĉiσ e−iA·ri , ˆ̃c†
iσ = ĉ†

iσ eiA·ri . (A1)

In this case, the wave functions uε (ri ), vε (ri ) after the gauge
transformation (A1) become

ũε (ri ) = uε (ri )eiA·ri , ṽε (ri ) = vε (ri )e−iA·ri . (A2)

The superconducting order parameter is accordingly

�̃i = �ie
2iA·ri . (A3)

The original wave functions and superconducting order pa-
rameters have a unit cell periodicity. Therefore, the above
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FIG. 11. Real-space distribution of the local supercurrent J j→i on (a) the honeycomb lattice and the Penrose structure (b) and (c) at
U = −3, T = 0.01, n̄ = 0.3. (a) and (b) are for the case of θ = 0 while (c) is in the case of θ = π/10. The red arrows in (c) show the
vertical supercurrents against the applied vector potential. In each panel, we show a part of the system consisting of about 100 sites for
visibility.

transformation adds an extra phase factor to the transformed
wave functions and superconducting order parameters under
the translation operation between unit cells.

In Eq. (3), the BdG Hamiltonian is transformed as

Ĥ =
∑
i, j

( ˆ̃c
†
i↑ ˆ̃ci↓) ˆ̃Hi, j

(
ˆ̃c j↑
ˆ̃c

†
j↓

)
, (A4)

with

ˆ̃Hi, j =
(

K̃↑i, j �̃iδi, j

�̃∗
i δi, j −K̃∗

↓i, j

)
, (A5)

where K̃σ i, j = −tδ〈i, j〉 + (Uniσ̄ − μ)δi, j .
Considering the expressions of the supercurrent, the expec-

tation values of the operators in Eqs. (10)–(12) are given by

〈ĉ†
i↑ĉ j↑〉 = 〈 ˆ̃c

†
i↑ ˆ̃c j↑〉eiA·ri j , (A6)

〈ĉ†
i↓ĉ j↓〉 = 〈 ˆ̃c

†
i↓ ˆ̃c j↓〉eiA·ri j . (A7)

With these transformations, the local supercurrent J j→i be-
comes

J j→i = 2tIm

(∑
σ

〈 ˆ̃c
†
iσ

ˆ̃c jσ 〉
)

ri j . (A8)

By separating the paramagnetic and diamagnetic current from
Eq. (A8), the following expressions are obtained.

Jpara
j→i = 2t cos

(
A · ri j

)
Im

{
eiA·ri j

∑
σ

〈 ˆ̃c†
iσ

ˆ̃c jσ 〉
}

ri j,

(A9)

Jdia
j→i = −2t sin

(
A · ri j

)
Re

{
eiA·ri j

∑
σ

〈 ˆ̃c†
iσ

ˆ̃c jσ 〉
}

ri j .

(A10)

Thus, we see that the present formulation and that of the
previous one coincide through the gauge transformations. Our

intention behind the formulation of this study is to decompose
the supercurrent into paramagnetic and diamagnetic compo-
nents.

APPENDIX B: SUPERCURRENTS ON THE PENROSE
STRUCTURE AND HONEYCOMB LATTICE

In this section, we show results for the Penrose structure,
and for a simple periodic structure—the honeycomb lattice.
These examples help to clarify the reasons for the existence of
nonzero perpendicular local currents, which we have reported
in our paper.

To clarify the role played by structure and the difference in
the supercurrent distribution between periodic and quasiperi-
odic systems, we consider the honeycomb lattice (N = 680)
and the Penrose structure (N = 644) under periodic boundary
conditions. Figure 11 shows the spatial distribution of J j→i

in these structures. Figures 11(a) and 11(b) show the case of
n̄ = 0.3 and θ = 0 on the honeycomb lattice and the Penrose
structure, respectively. In Fig. 11(a), one sees that currents are
uniformly distributed along the zigzag lines running parallel
to the applied potential. One sees that there is no J j→i in the
vertical direction with respect to the applied vector potential.
This is expected, due to the translational and inversion sym-
metries of the honeycomb lattice. As shown in the Fig. 11(b),
currents J j→i flow nonuniformly on the Penrose structure.
Figure 11(c) shows current distribution in the Penrose struc-
ture for the case of n̄ = 0.3 and θ = π/10. Flows that are
perpendicular to the applied vector potential are shown in
red. Such perpendicular currents are thus observed in both the
Ammann-Beenker and Penrose structures. The above results
show that while perpendicular currents are absent in simple
periodic systems such as the square or the honeycomb lattices,
they can exist in quasiperiodic structures. We note, finally, that
for the honeycomb lattice, Jpara

j→i becomes zero at T = 0, as
seen already for the square lattice. As noted in the main text,
the existence of nonzero paramagnetic currents at T = 0 is
another important qualitative difference between periodic and
quasiperiodic systems.
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