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We investigate the electron transport through a serially coupled quantum-dot molecule in which each dot
is side-coupled to one Majorana zero mode (MZM) at an end of the topological-superconducting nanowire.
Calculation results show that with the increase of dot number, the zero-bias conductance does not display the
conventional odd-even effect but always keeps equal to e2

h . On the other hand, if different superconducting phases
are added to the dot-MZM couplings with the left-right asymmetry mode, the zero-bias conductances display
apparent odd-even effect. Namely, in the odd-dot cases, the zero-bias conductances are less determined by the
superconducting phase, whereas they are more dependent on the superconducting phase in the cases of even
dots. Regarding the shot-noise Fano factors, they also exhibit clear odd-even effects, mainly manifested as the
dependence of the relation between zero-bias Fano factors and superconducting phase difference on the parity of
dot number. We believe that these results are helpful to construct mesoscopic cells based on quantum dots and
MZMs.
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I. INTRODUCTION

In the field of condensed-matter physics, due to its ability
to achieve fault-tolerant topological quantum computation in
nanoscale devices, the study of Majorana topological quasi-
particles has attracted wide-ranging attention [1–5]. Initially,
Kitaev proposed a model in theory for this novel quasiparticle,
that is, a one-dimensional (1D) p-wave superconductor [6,7].
Since a p-wave superconductor is very rare in nature [8,9], this
type of quasiparticle can be induced by other methods, e.g.,
the semiconducting nanowire with strong Rashba spin-orbit
coupling [10–15]. By applying the external magnetic field
to break the time-reversal symmetry, spinless electrons with
p-wave superconducting pairing can be effectively generated,
availably realizing the 1D topological-superconducting (TS)
nanowire [16]. Such a nanowire can thus be equivalent to the
Kitaev model. In the past few years, following the continuous
improvement of sample growth and characterization tech-
nology, more consistent experimental evidence for Majorana
bound states in semiconducting wires has emerged [17–20].
Therefore, Majorana-related issues is an exciting development
for researchers.

The “Majorana signatures” in these studies are character-
ized by the zero-bias peak in the conductance of the device,
which is due to the robust zero-energy mode at the edges
of the wire. In such a case, this unique signature is the so-
called Majorana zero mode (MZM). However, besides MZMs,
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other physical mechanisms can also form the zero-bias con-
ductance peaks, such as the Kondo effect [21,22] and the
formation of zero-energy Andreev bound states [23–28]. As
a result, how to distinguish MZMs from other phenomena
is very important. So far, large quantities of ideas have been
put forward [20,29–32], for instance, observing the degree of
Majorana nonlocality [20,30] and measuring the signature of
non-Abelian statistics [4]. Although such features are crucial
to the realization of fault-tolerant quantum computation, their
measurements are always difficult.

According to current research progress, a universal way
for detecting MZMs is to attach quantum dots (QDs) to the
end of a topological-superconducting nanowire. The signature
of MZM can be determined by measuring the conductance
through QDs [33–35]. It can be observed that the MZM at
the end of the nanowire “leaks” into the attached QD. For
the single-QD case, the zero-bias conductance is found to
be halved to e2

2h [33]. Such a result has also been observed
in the T-shaped multiple-QD structure [36]. Alternatively, in
the double-QD structure, the leakage effect enables to re-
sult in a half-suppression of the second stage of the Kondo
effect, which is revealed through fractional values of the
charge conductances [37]. Compared with other methods, it
has an obvious advantage in that there is no direct charge
transfer between MZM and QD, thus preventing quasiparticle
“poisoning” [38]. In recent years, QD-assisted topological
structures have been realized in some experiments [19,20],
which provides strong evidence for the detection of MZM
using QDs.

In addition to the detection of MZMs, one can find further
characteristics of MZMs by changing the relevant parameters
of QDs. In this paper we consider a QD molecule in which
the serially coupled QDs are side-coupled to MZMs at the
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FIG. 1. (a) Schematic of the QD molecule with side-coupled
MZMs. MZMs are generated at the two ends of TS nanowires,
and each MZM is coupled to one QD in the serially coupled QD
molecule, respectively. (b) Schematics of our considered structure in
the Nambu representation.

ends of TS nanowires [see Fig. 1(a)]. Our purpose is to clarify
the conductance properties in this geometry. After calcula-
tion, we observe that in this structure with N > 1 (N is the
QD number), the zero-bias conductance does not display the
odd-even effect of the MZM-absent case, whereas it is always
equal to e2

h . Such a result is completely different from the case
without MZMs. Instead, when superconducting phase differ-
ences are taken into account, the zero-bias conductances will
display alternative interesting phenomena which are also re-
lated to the parity of the QD number. All these results suggest
the various interplay manners between the electron tunnel-
ing (ET) and local Andreev reflection (LAR). These results
are helpful to integrate the mesoscopic cells based on QDs
and MZMs.

The paper is structured as follows. In Sec. II we introduce
the model of the multiple QD-MZM structure. Then we de-
duce current formulas to investigate the transport behaviors
using the scattering-matrix method, which is combined with
the nonequilibrium Green’s function technique. In Sec. III
we present the numerical results of conductances and Fano
factors, accompanied by a detailed explanation about them.
Then we summarize the leading results of this work in Sec. IV.
Finally, we give some detailed calculations in Appendixes A,
B, and C.

II. THE THEORETICAL MODEL

Our considered QD molecule is illustrated in Fig. 1(a).
As shown in this figure, such a molecule is formed by the
serially coupling of the QDs. Each QD in the main channel is
coupled to one MZM in the corresponding TS nanowire. The
Hamiltonian for our considered system is written as

H = HC + HMD + HV . (1)

In Eq. (1) the first term is the Hamiltonian for the two normal
metallic leads. It takes the form as

HC =
∑
αk

εαkc†
αkcαk, (2)

where c†
αk (cαk ) is an operator to create (annihilate) an electron

of the continuous state |k〉 in lead α (α ∈ L, R), and εαk is
the corresponding energy of state |k〉. The second term is the
Hamiltonian of the QDs and their coupling to MZMs, which
is written as HMD = ∑N

j=1 Hmd + Ht , with

Hmd = ε jd
†
j d j + iζ jη j1η j2 + (λ∗

j d
†
j − λ jd j )η j1

and

Ht =
N−1∑

j

t jd
†
j+1d j + H.c., (3)

where d†
j (d j) is the creation (annihilation) operator in QD- j,

and ε j is the corresponding level. Here the Coulomb interac-
tion in the QD is ignored, since we are mainly interested in
the interplay between the electronic bound state and MZMs.
The second term in Eq. (3) describes the low-energy effective
Hamiltonian for the MZMs in the jth TS nanowire, where
η jn (n = 1, 2) is the self-Hermitian operator for the nth MZM
with η jn = η

†
jn. ζ j denotes the inter-MZM coupling in the jth

TS nanowire. In this work we would like to take ζ j = 0, since
we are interested in the case of MZM. λ j is the coupling
coefficient between the jth MZM and the corresponding QD
[32]. In addition, t j denotes the interdot coupling coefficient
in the main channel. Next, the last term in Eq. (1) represents
the QD-lead coupling. Its explicit form can be expressed as

HV =
∑
αk

VLc†
Lkd1 +

∑
αk

VRc†
RkdN + H.c., (4)

where Vα describes the QD-lead coupling coefficient.
To evaluate the electron transport properties through our

considered system, i.e., the current, we would like to use the
scattering-matrix approach, which also allows for AR pro-
cesses [39,40]. This yields the current

Iα = e

h

∫
dε

∑
x

sgn(x)
∑
β;y

A(αx)
β,β;y,ynβ,x, (5)

where Greek indices denote electron (e) and hole (h) channels
with sgn(e) = +1 and sgn(h) = −1, and

A(αx)
β,γ ;y,z = δαβδαγ δxyδxz − sxy∗

α,βsxz
α,γ . (6)

The reservoir distribution functions nk,γ are Fermi functions
with different chemical potentials for the electron and hole
bands n−1

β,x = 1 + exp{[ε − sgn(x)μβ]/(kBT )} (where kB is
the Boltzmann constant and T denotes temperature). The co-
efficients sxy

α,β are the elements of the S matrix,

S(ω) = 1 − 2π iW†GrW, (7)

where W describes the coupling between the states of the
system without leads and the scattering states in the leads,
and Gr = [ε(ID + 1

2 IM ) − HMD + iπWW†]−1 is the retarded
Green function for the system with self-energy iπWW†. The
coupling matrix W in the lead basis {ψ†

L , ψ
†
R, ψL, ψR} is given
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by [W] jl = sgn(α)
√

�α/2δ jl , where �α = 2π |Vα|2ρα denotes
the coupling strength between QD-1(N ) and lead L(R). Here,
ID (IM ) represent the identity matrix in the QD (Majorana)
space. Meanwhile, the matrix form of the Green function can
be written out, i.e.,

[Gr]−1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g−1
1 −Ht1 0 · · · 0

−H†
t1 g−1

2 −Ht2 0
...

0 · · · . . . · · · 0

... · · · −H†
t,N−2 g−1

N−1 −Ht,N−1

0 · · · 0 −H†
t,N−1 g−1

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8)

with

[g j]
−1 =

⎡
⎢⎢⎣

g−1
je −λ∗

j 0

−λ j z λ∗
j

0 λ j g−1
jh

⎤
⎥⎥⎦ (9)

and

Ht j =

⎡
⎢⎢⎣

t∗
j 0 0

0 0 0

0 0 −t j

⎤
⎥⎥⎦. (10)

In the above equations, z = ε + i0+ and g je(h)(z) = [z ∓ ε j +
i�(δ j1 + δ jN )]−1 is the zero-order Green function of the QDs
unperturbed by MZMs, in which � = 1

2 (�L + �R).
From Eq. (5), respective components of IL can be well

defined (by using the relationship that
∑

y,β |sxy
α,β (ω)|2 = 1):

IL = IET
L + ILAR

L + ICAR
L , where

IET
L = e

h

∫
dεT ee

L,R(ε)[nL,e(ε) − nR,e(ε)], (11)

ILAR
L = e

h

∫
dεT eh

L,L(ε)[nL,e(ε) − nL,h(ε)], (12)

ICAR
L = e

h

∫
dεT eh

L,R(ε)[nL,e(ε) − nR,h(ε)], (13)

with T xy
α,β (ε) = |sxy

α,β (ε)|2. To be concrete,

T ee
L,R(ε) = ∣∣see

L,R(ε)
∣∣2 = �L�R

∣∣Gr
1e,Ne(ε)

∣∣2
,

T eh
L,L(ε) = ∣∣seh

L,L(ε)
∣∣2 = �L�L

∣∣Gr
1e,1h(ε)

∣∣2
,

T eh
L,R(ε) = ∣∣seh

L,R(ε)
∣∣2 = �L�R

∣∣Gr
1e,Nh(ε)

∣∣2
. (14)

They describe the currents of ET, LAR, and crossed Andreev
reflection, respectively. In this work we would like to take
μL = eVb

2 and μR = − eVb
2 (where μα is the chemical poten-

tial of lead α), and then the difference between μL and μR

will drive the ET and LAR processes. In lead L, the current
formula can be written as [36]

IL = e

h

∫
dε

[
T ee

L,R(ε)(nL,e − nR,e) + T eh
L,L(ε)(nL,e − nL,h)

]
.

(15)

Since we are only interested in the zero-temperature case, our
structure obeys the relationship that nL,e(ε) = 1 − nR,e(−ε).

Therefore there exists nR,e = nL,h in our system, and then the
above current formula can be simplified as

I = e

h

∫
dεT (ε)(nL,e − nR,e), (16)

with T (ε) = T ee
L,R(ε) + T eh

L,L(ε).
In comparison with the current properties, the conduc-

tance is more effective to describe the transport properties
because it is related to transmission ability directly. At the
zero-temperature limit, the differential conductance is given
as

G = e2

2h

[
T

(
ε = eVb

2

)
+ T

(
ε = −eVb

2

)]
. (17)

As a typical case of zero-bias voltage, the conductance can be
simplified as G = e2

h T (Vb = 0) [41,42], with its LAR and ET

components defined as GLAR
Vb=0 = e2

h T eh
L,L(ε = 0) and GET

Vb=0 =
e2

h T ee
L,R(ε = 0), respectively. Therefore the transport properties

in this system can be clarified by studying the LAR and ET
characteristics.

III. NUMERICAL RESULTS AND DISCUSSION

Following the formulations developed in the above section,
we continue to perform numerical calculations to investigate
the electron transport through our considered QD-molecule
structure. In the context, the system temperature is taken to be
zero. The interdot couplings are supposed to be uniform with
t j = t = 0.5, and the lead-QD coupling is considered to be
�α = � = 0.5. The unit of these parameters can be supposed
as 10−1 meV according to the relevant experiments [43]. In
addition, we would like to take λ1 to be real with λ1 = |λ1|
for calculation.

It is known that for the conventional serially coupled QDs
with ε j = 0, the zero-bias conductance displays apparent odd-
even effect with the enlargement of the QD molecule. Namely,
for the case of odd-number QDs, the zero-bias conductance
shows up as a resonant peak, whereas it only exhibits a con-
ductance dip for the case of even-number QDs [44,45]. The
detailed conductance expressions are given as

GVb=0 = e2

h

−8�L|t1|2 Im Gr
2N(

�L − 2|t1|2 Im Gr
2N

)2 , (18)

where

Im Gr
2N = −�R

2

∣∣∣∣ t3t5 · · · tN−2

t2t4 · · · tN−1

∣∣∣∣
2

, N ∈ odd ;

Im Gr
2N = − 2

�R

∣∣∣∣ t3t5 · · · tN−1

t2t4 · · · tN−2

∣∣∣∣
2

, N ∈ even.

Accordingly, in the case of t j = t and �α = �, GVb=0 =
e2

h (N ∈ odd) and GVb=0 = e2

h
16�2t2

(�2+4t2 )2 (N ∈ even).
Meanwhile, we would like to review the simplest case of

our structure with N = 1, though it has been discussed in
Refs. [33,36]. In such a case, the Green functions for the LAR
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FIG. 2. Spectra of differential conductance in the configurations of N = 2 and N = 3, with the increase of the inter-MZM phase difference.
The QD-MZM couplings are assumed to be identical with |λ j | = λ0 = 0.4. (a)–(c) The conductance of N = 2, in the case of ε = 0 and ±0.5,
respectively. (d)–(f) Corresponding results of N = 3.

and ET processes are given as

Gr
1e,1h = −|λ1|2

ε(ε − ε1 + i�)(ε + ε1 + i�) − 2|λ1|2(ε + i�)
,

Gr
1e,1e = ε(ε + ε1 + i�) − |λ1|2

ε(ε − ε1 + i�)(ε + ε1 + i�) − 2|λ1|2(ε + i�)
.

(19)

Thus at the limit of ε → 0, Gr
1e,1h|ε→0 = Gr

1e,1e|ε→0 = 1
2i� .

With the help of Eq. (14), we are allowed to present
the zero-bias conductance, i.e., GVb=0(N = 1) = 2GLAR(ET)

Vb=0

(N = 1) = e2

2h . Such a result exactly describes the leakage
effect.

Following the single-QD result, we would like to enlarge
the size of the QD molecule to investigate the variation prop-
erties of the differential conductance. Our purpose is to clarify
the change of the odd-even effect of the zero-bias conduc-
tance due to the side coupling of the MZMs, as well as
the characteristics of the leakage effect. To begin with, we
consider the cases of N = 2 and N = 3, respectively. Note
that in these cases, the QD-MZM couplings are allowed to
different superconducting phases caused by the respective TS
nanowires. We thus perform calculation about the case of N =
2 by considering λ1 = λ0eiθ/2 and λ2 = λ0e−iθ/2, with θ being
the superconducting phase difference. For the case of N =
3, we take the left-right asymmetric superconducting phase
(ASP) mode where λ1 = λ0eiθ/2, λ2 = λ0, and λ3 = λ0e−iθ/2.
Regarding the QD levels, we take ε j = ε. The differential
conductance spectra are shown in Fig. 2. Figures 2(a)–2(c)
display the results of N = 2, with ε = 0 and ±0.5, respec-
tively. In Fig. 2(a) where ε = 0, it can be found that at
θ = 0, three resonant peaks appear in the differential con-
ductance spectrum. The underlying reason lies in the twofold
degeneracy of the eigenstates, because in such a case E1(2) =
−

√
2λ2

0 + t2
1 = −E5(6) and E3(4) = 0. With the increase of θ ,

the conductance peaks decrease and splits. When θ = π
2 , one

conductance plateau is formed at the low-bias region with its
magnitude about being 0.2e2

h . However, the further increase of
θ will enhance the conductance magnitude. To be concrete,

when θ = π , the conductance profile is consistent with the
result of θ = 0. This means that with the change of super-
conducting phase difference, the conductance varies in period
π . Next, as the QD levels depart from zero, e.g., ε = ±0.5,
only the resonant peak at the zero-bias limit survives in the
conductance spectrum, in comparison with the result of ε = 0.
Although the conductance spectra of ε = ±0.5 exhibit a little
difference, they show the similar change manner with the
increase of θ . Also, in the case of θ = π , the conductances
become consistent with those of θ = 0. These results indicate
that for the double-QD molecule, the side-coupling of MZMs
can enhance the zero-bias conductance. Also, the conductance
spectra can be modified in a substantial way following the
change of superconducting phase difference.

The conductance results of N = 3 are shown in Figs. 2(d)–
2(f). One can find that the variation manners of the con-
ductance spectra are basically similar to the case of N = 2,
following the shift of QD levels. Namely, at ε = 0, three res-
onant peaks arise in the conductance spectra with their values
close to e2

h , despite the appearance of subpeaks. Following
their departure from the energy zero point, the nonzero-bias
peaks are suppressed. Besides, with the change of θ , the
conductance peaks are suppressed gradually in this progress,
accompanied by the further oscillation of the conductance
curves. On the other hand, in this case, at the zero-bias limit,
the conductance variation is different from the case of N = 2.
One can find that at the case of θ = 0, the conductance reaches
its maximum with G(eVb = 0) = e2

h . Once the superconduct-
ing phase difference is introduced, the conductance magnitude
is halved. The further increase of θ cannot change this con-
ductance value, including θ = π . Therefore the leakage effect
of the MZMs, characterized by the zero-bias conductance,
displays the two-stage results with the change of the super-
conducting phase difference, which is also different from the
case of N = 2.

In order to explain the conductance results, we would
like to present the analytical expression of the zero-bias
conductance with the help of the Green functions in Ap-
pendixes A and B. At the limit of ε → 0, we can obtain the
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results that under the condition of complex λ j , if N = odd
(N > 1),

Gr
1e,1h|ε→0 = 1

�N
λ2

1|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 · · ·

× |tN−1|2(λ∗
N−1λN − λN−1λ

∗
N )2, (20)

with �N = i�L|λ1t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 · · · |tN−1|2(λ∗

N−1λN −
λN−1λ

∗
N )2 + i�R|t1|2(λ∗

1λ2 − λ1λ
∗
2 )2 · · · |tN−2|2(λ∗

N−2λN−1 −
λN−2λ

∗
N−1)2|λN |2. If N = even,

Gr
1e,1h|ε→0 = i�R

�N
λ2

1|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 · · ·

× (λ∗
N−1λN − λN−1λ

∗
N )2|λN |2, (21)

with �N =−�L�R|λ1t2|2(λ∗
2λ3−λ2λ

∗
3 )2 · · · |tN−2|2(λ∗

N−1λN −
λN−1λ

∗
N )2|λN |2 + |t1|2(λ∗

1λ2 − λ1λ
∗
2 )2 · · · |tN−1|2(λ∗

N−1λN −
λN−1λ

∗
N )2. Meanwhile,

Gr
1e,Ne|ε→0 = λ1λ

∗
Nt∗

1 · · · t∗
N−1

�N
(λ∗

1λ2 − λ1λ
∗
2 )(λ∗

2λ3 − λ2λ
∗
3 ) · · ·

× (λ∗
N−1λN − λN−1λ

∗
N ). (22)

Based on these results, we know that in such a multiple
QD-MZM system, the zero-energy Green functions are deter-
mined by the leakage effect of the MZMs. Moreover, we can
write out the expressions of the zero-bias conductance. For the
case of N = 2, the zero-bias conductance can be expressed
explicitly, i.e., GVb=0(N = 2) = GLAR

Vb=0(N = 2) + GET
Vb=0

(N = 2), with

GLAR
Vb=0 = e2

h

�2
L�2

R|λ1λ2|4
|�L�R|λ1λ2|2 − |t1|2(λ∗

1λ2 − λ1λ
∗
2 )2|2 ,

GET
Vb=0 = e2

h

�L�R|t∗
1 λ1λ

∗
2(λ∗

1λ2 − λ1λ
∗
2 )|2

|�L�R|λ1λ2|2 − |t1|2(λ∗
1λ2 − λ1λ

∗
2 )2|2 .

[N = 2] (23)

As a typical case where λ1 = λ0eiθ/2, λ2 = λ0e−iθ/2, and
�α = �, the conductance expressions can be further simpli-
fied, i.e.,

GLAR
Vb=0 = e2

h

�4

(�2 + 4|t1|2 sin2 θ )2
,

GET
Vb=0 = e2

h

4�2|t1|2 sin2 θ

(�2 + 4|t1|2 sin2 θ )2
.

[N = 2] (24)

It is not difficult to find that at the case of θ = nπ , there
will be GLAR

Vb=0 = e2

h and GET
Vb=0 = 0. This exactly means that

in this case, the ET process is forbidden, whereas only the AR
survives. Interpretively, destructive interference occurs in the
ET process due to the side coupling of MZMs, accompanied
by the constructive interference in the LAR process.

Next, in the structure of N = 3, we have the following
zero-bias conductance results:

GLAR
Vb=0 = e2

h

�2
L|λ1t2|4|λ∗

2λ3 − λ2λ
∗
3|4

|�L|λ1t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 + �R|λ3t1|2(λ∗

1λ2 − λ1λ
∗
2 )2|2 ,

GET
Vb=0 = e2

h

�L�R|λ1λ3t1t2|2|(λ∗
1λ2 − λ1λ

∗
2 )(λ∗

2λ3 − λ2λ
∗
3 )|2

|�L|λ1t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 + �R|λ3t1|2(λ∗

1λ2 − λ1λ
∗
2 )2|2 .

[N = 3] (25)

If λ∗
2λ3 − λ2λ

∗
3 = ±(λ∗

1λ2 − λ1λ
∗
2 ) �= 0, there will be

GLAR
Vb=0 = e2

h

�2
L|λ1t2|4

|�L|λ1t2|2 + �R|λ3t1|2|2 ,

GET
Vb=0 = e2

h

�L�R|λ1λ3t1t2|2
|�L|λ1t2|2 + �R|λ3t1|2|2 .

[N = 3] (26)

In Figs. 2(d)–2(f), the coupling coefficients between the
MZMs and the corresponding QDs are taken to be the
left-right ASP mode with λ1 = λ0eiθ/2, λ2 = λ0, and λ3 =
λ0e−iθ/2, and then in the case of t j = t , the zero-bias conduc-
tance expressions can be further simplified, i.e.,

GLAR
Vb=0 = e2

h

�2
L

(�L + �R)2
,

GET
Vb=0 = e2

h

�L�R

(�L + �R)2
. (27)

Under the condition of �α = �, we can find that
GLAR

Vb=0 = GET
Vb=0 = e2

4h , leading to the result of GVb=0 = e2

2h .

Alternatively, if λ1λ
∗
2 is real, we will obtain the other result,

i.e., GLAR
Vb=0 = e2

h and GET
Vb=0 = 0, since only the LAR process

is allowed, as shown in Eq. (A13). All these analytical results
suggest the abundant conductance properties induced by the
respective QD-MZM couplings.

We anticipate that in this multiple QD-MZM structure
without superconducting phase difference, the zero-bias con-
ductances do not display any odd-even effect but always keep
equal to e2

h . On the other hand, in the presence of a finite
superconducting phase difference among MZMs, the zero-
bias conductance is allowed to the odd-even effect, manifested
as the halved conductance peak in the structures with odd
QDs. Following this understanding, in Fig. 3 we would like
to present the differential conductance spectra in the structure
of N = 4 by increasing the superconducting phase difference.
Due to the complication of this structure, we would like to
pay attention to two typical cases with left-right ASP mode,
i.e., λ1(2) = λ∗

3(4) = λ0eiθ/2 and λ1 = λ∗
4 = λ0eiθ/2, with λ2 =

λ∗
3 = λ0eiθ/6. Note that such an assumption also guarantees

the identical phase difference between λ1 and λN . For the
former case, in Figs. 3(a)–3(c) we see that at ε = 0, the
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FIG. 3. Spectra of differential conductance in the configurations of N = 4 with the increase of the inter-MBS phase difference. The QD-
MBS couplings are assumed to be identical with |λ j | = λ0 = 0.4. (a)–(c) The conductance of λ1(2) = λ0eiθ/2 = λ∗

3(4), in the cases of ε = 0 and
±0.5, respectively. (d)–(f) Corresponding results of λ1 = λ4 = λ0eiθ/2 and λ2 = λ∗

3 = λ0eiθ/6.

conductance spectrum displays the profile with five resonant
peaks in the absence of superconducting phase difference.
When the superconducting phase difference is introduced, the
nonzero-bias peaks decrease and split, leading to the further
oscillation of the conductance curve. Meanwhile, new sub-
peaks appear around the zero-bias peaks. Next for ε = ±0.5,
the conductance spectra show the same profiles. In the ab-
sence of a superconducting phase difference, three resonant
peaks survive in the conductance spectra, with the suppression
of the two peaks at high- and low-bias limits. Regarding
the effect of θ , it is to induce the decrease of nonzero-
bias conductance peaks. We then consider that in this case,
the switch effect of the superconducting phase difference is
relatively weak. On the other hand, for the latter case, in
Figs. 3(d)–3(f) one can find the distinct results. In the case

of ε = 0, increasing the superconducting phase difference
modifies the oscillation of the conductance curve seriously,
accompanied by the peak-to-valley transition of the zero-bias
conductance. Next, in the case of ε = ±0.5, the leading con-
ductance changes are similar to those in Figs. 3(b) and 3(c),
but the zero-bias conductance is consistent with the result
in Fig. 3(d). According to these results, we know that in
the structure of N = 4, the zero-bias conductance displays
different variation manners when the superconducting phase
difference is applied partly or fully to the QD-MZM coupling
coefficients.

Similar to the cases of N = 2 and N = 3, we would like
to present the derivation results in the structure of N = 4 to
clarify the influence of structural parameters. Accordingly, the
zero-bias conductance can be given as

GLAR
Vb=0 = e2

h

�2
L�2

R|λ1λ4t2|4|λ∗
2λ3 − λ2λ

∗
3|4

|�L�R|λ1λ4t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 − |t1t3|2(λ∗

1λ2 − λ1λ
∗
2 )2(λ∗

3λ4 − λ3λ
∗
4 )2|2 ,

GET
Vb=0 = e2

h

�L�R|λ1λ4t1t2t3|2|(λ∗
1λ2 − λ1λ

∗
2 )(λ∗

2λ3 − λ2λ
∗
3 )(λ∗

3λ4 − λ3λ
∗
4 )|2

|�L�R|λ1λ4t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 − |t1t3|2(λ∗

1λ2 − λ1λ
∗
2 )2(λ∗

3λ4 − λ3λ
∗
4 )2|2 .

[N = 4] (28)

As a matter of fact, these formulas show that when the su-
perconducting phase difference is partly applied, e.g., λ1(2) =
λ∗

3(4) = λ0eiθ/2, there will be GLAR
Vb=0 = e2

h and GET
Vb=0 = 0. Such

a result is identical with that of the zero superconducting
phase difference [see Eq. (A13)]. For the other type of su-
perconducting phase difference, i.e., λ1 = λ∗

4 = λ0eiθ/2 with
λ2 = λ∗

3 = λ0eiθ/6, there will be

GLAR
Vb=0 = e2

h

�4

(
�2 + 4t2 sin2 θ

3

)2 ,

GET
Vb=0 = e2

h

4�2t2 sin2 θ
3(

�2 + 4t2 sin2 θ
3

)2 ,

[N = 4] (29)

under the condition of �α = � and t j = t . Such a result is
formally the same as the double-QD case. As a matter of fact,
one can find that when superconducting phase difference is
partly applied in other manners, e.g., λ1 = λ∗

2(3,4) = λ0eiθ/2,
or λ1 = λ∗

3(4) = λ0eiθ with λ2 = λ0, the result of λ2 j−1λ
∗
2 j will

stay real, and then GLAR
Vb=0 = e2

h and GET
Vb=0 = 0 can still be

observed. So far, from the results of N = 1 to N = 4, we have
gotten the further understanding that when the QD-MZM cou-
plings carry different superconducting phases, our QD-MZM
structure can also display its odd-even effect. Namely, for N ∈
odd, the zero-bias conductance values are less determined by
the superconducting phases (although θ is meaningless for
N = 1), whereas for N ∈ even, the zero-bias conductances are
more dependent on the superconducting phases.
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Although we have presented the zero-bias conductance
properties in an analytical way, the underlying physics re-
sponsible for the modification of leakage effect should be
uncovered as well. According to the conclusion in Ap-
pendix B, for the case of real λ2 j−1λ

∗
2 j and t j , Gr

1e,1h|ε→0 =
1

i�L
, and as a result, the conductance value is always mani-

fested as GLAR
eVb=0 = e2

h . In view of this fact, one can consider
that in such a case the effective coupling between QD-2 and
QD-1 is eliminated equivalently, leading to the disappearance
of ET but the occurrence of resonant LAR. We would like to
explain the resonant LAR as follows. In the case of N > 1,
the multiple couplings between the MZM and the electronic
and hole states provide the in-phase resonant LAR processes
at the zero-energy limit. The co-occurrence of such in-phase
processes in respective paths is certain to induce the construc-
tive interference, so the LAR is enhanced to its maximum.
It is not difficult to understand that once the LAR reaches its
maximum, the other tunneling process, i.e., the ET, will be for-
bidden completely. Therefore the resonant LAR and forbidden
ET should be attributed to the constructive interference among
the paths contributed by the couplings between MZMs and the
corresponding electronic and hole states. On the other hand,
when superconducting phase differences are applied to the
MZM-QD couplings, the above interference will be modified
accordingly. Take the case of even N as an example. One can
see that the finite superconducting phase difference is certain
to take effect on the LAR and ET processes independently,
so the resonant LAR will be destroyed. Otherwise, when N
is odd, especially in the case of left-right ASP mode, λ N+1

2

is real but the other MZM-QD couplings are complex; thus
the tunneling path contributed by λ N+1

2
interferes little with

the other paths. As a consequence, the zero-bias conductance
becomes the same as the single-QD case. A further description
about this point can be found in Appendix D [46].

To better describe the zero-bias conductance results, we
take the simple approach to perform the discussion by rewrit-
ing the Hamiltonian in Eq. (1) in the Majorana representation.
Following the case of N = 1 shown in Ref. [33], we trans-
form two metallic leads into two semi-infinite tight-binding
fermionic chains, i.e.,

∑
k εLkc†

LkcLk = ∑−1
j=−∞ μ(c†

j c j−1 +
H.c.) and

∑
k εRkc†

RkcRk = ∑∞
j=N+1 μ(c†

j c j+1 + H.c.) (εαk and
μ are confined by the relation of εαk = 2μ cos k). Also, sup-
pose that d j = c j−1, and the two leads with their connected
QDs becomes a 1D chain. Next, by defining η j1 = (c†

j +
c j )/

√
2 and η j2 = i(c†

j − c j )/
√

2, the one-dimensional chain
is simplified into two Majorana chains. In the case of ε j = 0,
the two Majorana chains will be decoupled from each other, as
shown in Fig. 4. Figure 4(a) shows that the upper chain is con-
ducting, whereas the tunneling in the down chain is forbidden.
This leads to the result of G(eVb = 0) = e2

2h . According to this
method, we can also obtain the structure schematics of N = 2
and 3 by considering λ j to be real. The results are shown in
Figs. 4(b) and 4(c). It is shown that MZMs are allowed to be
coupled to the two chains, respectively. This certainly forbids
the tunneling between the two terminals of each chain. As a
result, only the local AR survives in the resonant way, and
the zero-bias conductance is equal to e2

h . Detailed descriptions
can be referred in Appendix C. However, it can be anticipated

FIG. 4. Schematics of our considered structure in the Majorana
representations with N = 1, 2, 3, in the case of real λ j .

that in the presence of a superconducting phase difference,
the above description will be modified and each MZM will be
coupled to chains simultaneously, which inevitably leads to
the complicated conductance results. Next in Fig. 5 we focus
on the zero-bias conductance spectra of this QD-molecule
structure by adjusting the superconducting phase difference in
a continuous way. The structural parameters are the same as
those in Figs. 2 and 3. In Fig. 5(a) where N = 2, we see that
with the change of θ , the conductance magnitude changes in
period π . When θ = nπ , the conductance magnitude reaches
its maximum, whereas in the case of θ = (n + 1

2 )π , the con-
ductance meets its minimum. What is notable is that the
conductance curve is independent of the shift of QD lev-
els. With the help of Eq. (24), we can readily understand
the oscillation of the conductance curve. In Fig. 5(b) where
N = 3, it is shown that the conductance magnitude tends
to be independent of the change of superconducting phase
difference, except the case of θ = 2nπ where the resonant
conductance peak comes into being. On the other hand, the
results in Figs. 5(c) and 5(d) also verify our discussion about
Eqs. (28) and (29). Namely, when the superconducting phase

FIG. 5. Zero-bias conductance spectra of the QD-molecule struc-
tures with the change of superconducting phase difference. (a)
N = 2 with λ1 = λ∗

2 = λ0eiθ/2. (b) N = 3 with λ1 = λ∗
3 = λ0eiθ/2.

(c) N = 4 with λ1(2) = λ∗
3(4) = λ0eiθ/2. (d) N = 4 in which λ1 =

λ∗
4 = λ0eiθ/2 with λ2 = λ∗

3 = λ0eiθ/6.
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FIG. 6. Fano factors with the increase of bias voltage for the case of N = 2. The QD levels are taken to be ε = 0 and ±0.5, respectively.

difference is partly applied with λ1(2) = λ∗
3(4) = λ0eiθ/2, the

conductance magnitude will be equal to e2

h , since GLAR
Vb=0 = e2

h
and GET

Vb=0 = 0. As the superconducting phase difference is
applied fully, the maximum value of the zero-bias conduc-
tance is e2

h and the minimum value is 0.2e2

h , which is the same
as the result of N = 2. However, the zero-bias conductance
displays the period 3π in Fig. 5(d).

In order to further understand the conductance proper-
ties, the Fano factors are worth exploring in detail which
describe the tunneling characteristics of quasiparticles. There-
fore we focus on the change of Fano factors following the
increase of QD number or superconducting phase difference.
For the structure of N = 2, the results of FLL are shown in
Figs. 6(a)–6(c), and those of FLR are shown in Figs. 6(d)–6(f),
respectively. In Fig. 6(a) we see that when QD levels are fixed
at zero, the value of FLL increases obviously from zero with
θ = 0 and θ = π , whereas the value of FLL(Vb = 0) increases
with the presence of the superconducting phase difference.
Thereafter, it oscillates following the increase of the bias
voltage. At the large-bias limit, FLL almost keeps close to 0.5,
except for the case of θ = π

2 . Next, in Figs. 6(b) and 6(c),
it shows that when QD levels deviate from zero, the Fano
factor at the zero-bias limit does not change, identical with
the result of ε = 0. In the finite-bias region, the magnitude
of FLL begins to depend on the sign of ε, but the variation
manners in these two cases are basically similar to each other.
In Figs. 6(d)–6(f) we present the spectra of FLR, the param-
eters of which are the same as Figs. 6(a)–6(c), respectively.
Figure 6(d) shows that at ε = 0, FLR is always at 0, and there
is no fluctuation with θ = 0 and θ = π . Then its value at
zero-bias limit with π

8 is equal to the value at θ = π
4 . It can

also observed that regardless of the superconducting phase
difference, the value of FLR is near 0 at the large-bias limit.
In Figs. 6(e) and 6(f) it can be found that in the cases of
ε = ±0.5, the values of FLR are equal at zero-bias limit when
the superconducting phase difference is taken to be 0 and π

(π
8 and π

4 ), respectively. After that, their variation tendencies
become dependent on the superconducting phase difference.
We therefore understand that in the case of N = 2 with the
finite superconducting phase difference, the zero-bias Fano
factors seem to be irrelevant to the conductance, and also,

FLL and FLR are not related to each other at the zero-bias
limit.

The results of Fano factors with N = 3 are shown in Fig. 7.
For FLL, when θ = 0, its value is improved from zero with the
increase of bias voltage. In the presence of a superconducting
phase difference, the value of FLL starts to vary from 0.5.
We thus ascertain that at the zero-bias limit, FLL(Vb = 0) =
1 − T |ε=Vb=0. It is shown in Fig. 7(a) at θ = π

4 that after a
series of oscillations it will return to about 0.5 when eVb =
2.0, which is equal to eVb = 0. When eVb > 1.0, the change
trend of θ = 0 and θ = π

8 is consistent. In addition, it is not
difficult to observe that the maximum value of FLL exceeds
1.25 at eVb = 1.0 when the superconducting phase difference
is zero. Meanwhile, the value of FLL decreases in the range of
1.0 < eVb < 2.0. In Fig. 7(c) the change of FLL at ε = −0.5
is not much different from that at ε = 0.5. Next we present
the corresponding FLR in Figs. 7(d)–7(f). It can be found that
when θ = 0, no matter what value of the QD level takes, FLR

has little change and is always close to 0. This shows that the
QD level has no effect on FLR. In the following when θ = π

8 ,
the value of FLR(Vb = 0) can almost reach about 0.5, but the
further increase of θ tends to suppress this value. Therefore
in the case of N = 3, one can only find the clear relationship
between the conductance and FLL at the zero-bias limit.

To see the change of Fano factors at the zero-bias limit
more intuitively, we present the variation of the Fano factors
regarding the superconducting phase difference, as shown
in Fig. 8. In the case of N = 2 it can be observed that
FLL changes in period π with the increase of superconduct-
ing phase difference. Thus the relationship of FLL satisfies
FLL(θ )=FLL(π − θ ). When θ = nπ , FLL becomes equal to
zero. The notable phenomenon is that the change of FLL is
opposite to the conductance in Fig. 4(a). However, the rela-
tionship of FLL(Vb = 0) = 1 − T |ε=Vb=0 only appears at the
case of θ = nπ . For FLR in Fig. 8(b), its spectrum oscillates
seriously with the increase of superconducting phase differ-
ence, though it satisfies FLR(θ )=FLR(π − θ ). This also shows
that in the case of θ �= nπ , the relationship between FLL and
FLR cannot be described quantitatively. The reason should be
attributed to the varied contributions of the ET and local AR
for respective θ . On the other hand, for N = 3 in Fig. 8(c)
we see that except for θ = 0 and θ = 2π , FLL is fixed at 0.5.
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FIG. 7. Fano factors with the increase of bias voltage for the case of N = 3. The QD levels are taken to be ε = 0 and ±0.5, respectively.

After comparing with the conductance result, one can get the
relation of FLL(Vb = 0) = 1 − T |ε=Vb=0. This result seems to
describe a single-particle tunneling result. As a matter of fact,
this originates from the equal contribution of the ET and local
AR, accordant with the result of single QD. Next, in Fig. 8(d)
it shows that the curve of FLR displays weak oscillation fol-
lowing the increase of the superconducting phase difference
in its period 2π . This exhibits an alternative relationship be-
tween FLL and FLR. Up to now we know that the zero-bias
Fano factors also display their odd-even effects, namely, the
oscillation manners of FLα (Vb = 0) depend on the parity of
the QD number. Meanwhile, the odd-N cases possess the
well-defined relationship between the zero-bias conductance
and FLL.

IV. SUMMARY

To summarize, we have performed the investigation about
the electron transport through a QD molecule in which the

FIG. 8. Zero-bias Fano factors with the change of superconduct-
ing phase difference. (a), (b) Results of FLL and FLR for N = 2. (c),
(d) Results of N = 3.

serially coupled QDs are side-coupled to MZMs at the ends
of TS nanowires. After calculation we found that in this
structure with N > 1, following the increase of QD number,
the zero-bias conductance does not display the conventional
odd-even effect but always keeps equal to e2

h . On the other
hand, when finite superconducting phase differences among
MZMs are taken into account, the zero-bias conductance
can be modulated in an efficient way which is also deter-
mined by the parity of the QD number and the appearance
manner of superconducting phases. Specifically, if different
superconducting phases are added to the QD-MZM couplings
according to the left-right ASP mode, the zero-bias conduc-
tances will display apparent odd-even effect. Namely, in the
odd-QD cases, the zero-bias conductances are less determined
by the superconducting phase, whereas they are more de-
pendent on the superconducting phase in the cases of even
QDs. In addition to the conductances, the shot-noise Fano
factors also display odd-even effects, since their dependences
on the superconducting phase difference are determined by
the parity of QD number. To be specific, the QD-number
parity is able to affect the interplay between the ET and local
AR processes in a substantial way. We anticipate that these
results are helpful to construct mesoscopic cells based on QDs
and MZMs.
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APPENDIX A: GREEN FUNCTIONS FOR LAR

As shown in Fig. 1(b), our considered structure can be
transformed into a four-terminal serially coupled configura-
tion in each cell of which three “atoms” are coupled serially.
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Then we are allowed to deduce the analytical expression of
the Green functions related to the LAR. To begin with, the
Hamiltonian of the jth cell is written as

h j =

⎡
⎢⎣

ε j λ∗
j 0

λ j 0 −λ∗
j

0 −λ j −ε j

⎤
⎥⎦. (A1)

According to the Dyson equation, the Green function in the
jth cell can be directly expressed, i.e.,

Gr
j = [ε + i0+ − h j − � j]

−1, (A2)

where � j = H∗
t jG

r
j+1Ht j for j < N . � j is so-called self-

energy term, and Ht j is the matrix of the coupling Hamilto-
nian between two neighboring cells. According to Fig. 1(b)
and Eq. (10), we know that

Ht j =

⎡
⎢⎣

t j 0 0

0 0 0

0 0 −t∗
j

⎤
⎥⎦. (A3)

Thus the expression form of self-energy is

� j =

⎡
⎢⎣

� j,11 0 � j,13

0 0 0

� j,31 0 � j,33

⎤
⎥⎦, (A4)

in which

� j,11 = |t j |2
D j+1

[ε(ε + ε j+1 − � j+1,33) − |λ j+1|2],

� j,13 = (t∗
j )2

D j+1
[(λ∗

j+1)2 − ε� j+1,13],

� j,31 = (t j )2

D j+1
[(λ j+1)2 − ε� j+1,31],

� j,33 = t2
j

D j+1
[ε(ε − ε j+1 − � j+1,11) − |λ j+1|2], (A5)

with D j = det |[Gr
j]

−1|. Note, also, that the N th cell is cou-
pled to lead R, and the nonzero elements of �N are given as
�N,11 = �N,33 = − i

2�R. Following the above deduction, the
Green function matrix of the first cell can be expressed as

[
Gr

1

]−1

=

⎡
⎢⎢⎣
ε − ε1 + i

2�L−�1,11 −λ∗
1 �1,13

−λ1 ε λ∗
1

�1,31 λ1 ε + ε1 + i
2�L−�1,33

⎤
⎥⎥⎦.

(A6)

As a typical case, in the limit of ε → 0 we have

Gr
1e,1h|ε→0 = −(λ∗

1 )2

−i�L|λ1|2 + [
(λ∗

1 )2�1,31 + λ2
1�1,13 + |λ1|2(�1,11 + �1,33)

] . (A7)

Take the case of N = 2 as an example, where the Green
function contributing to the LAR process is given as

Gr
1e,1h|ε→0 = i�Rλ2

1|λ2|2
−�L�R|λ1|2|λ2|2 + |t1|2(λ∗

1λ2 − λ1λ
∗
2 )2

.

(A8)

When N = 3, the Green functions contributing to the LAR
process can be expressed as

Gr
1e,1h|ε→0 = λ2

1|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2

�3
, (A9)

with �3 = det |[Gr |ε=0]−1| = i�L|λ1|2|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 +

i�R|t1|2(λ∗
1λ2 − λ1λ

∗
2 )2|λ3|2. Next, in the case of N = 4, the

corresponding Green function at the limit of ε → 0 can be
written as

Gr
1e,1h|ε→0 = i�Rλ2

1|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2|λ4|2

�4
, (A10)

with �4 = −�L�R|λ1|2|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2|λ4|2 + |t1|2(λ∗

1λ2

− λ1λ
∗
2 )2|t3|2(λ∗

3λ4 − λ3λ
∗
4 )2. When trying to summarize the

general forms of Gr
1e,1h|ε→0, we find that if N = odd (N > 1),

Gr
1e,1h|ε→0 = 1

�N
λ2

1|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 · · ·

× |tN−1|2(λ∗
N−1λN − λN−1λ

∗
N )2, (A11)

with �N = i�L|λ1t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 · · · |tN−1|2(λ∗

N−1λN −
λN−1λ

∗
N )2 + i�R|t1|2(λ∗

1λ2 − λ1λ
∗
2 )2 · · · |tN−2|2(λ∗

N−2λN−1 −
λN−2λ

∗
N−1)2|λN |2. If N = even,

Gr
1e,1h|ε→0 = i�R

�N
λ2

1|t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 · · ·

×(λ∗
N−1λN − λN−1λ

∗
N )2|λN |2, (A12)

with �N = −�L�R|λ1t2|2(λ∗
2λ3 − λ2λ

∗
3 )2 · · · |tN−2|2(λ∗

N−2

λN−1 − λN−2λ
∗
N−1)2|λN |2 + |t1|2(λ∗

1λ2 − λ1λ
∗
2 )2 · · · |tN−1|2

(λ∗
N−1λN − λN−1λ

∗
N )2.

On the other hand, for the case of real λ2 j−1λ
∗
2 j and t j , the

Green function matrix in Eq. (A7) can be further simplified,
i.e.,

Gr
1e,1h|ε→0 = 1

i�L − [�1,31 + �1,13 + �1,11 + �1,33]

= 1

i�L
, (A13)

because of �1,mm′ = −�1,mm. This exactly leads to the result
of GAR

Vb=0 = e2

h .

APPENDIX B: GREEN FUNCTIONS OF ET

For describing the ET between the two metallic leads,
we would like to divide the structure in Fig. 1(b) into three
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parts, i.e., the electron, MZM, and hole parts. Accordingly,
the system Hamiltonian should be written as

H =

⎡
⎢⎢⎣

He HeM 0

H†
eM HM HMh

0 H†
Mh Hh

⎤
⎥⎥⎦. (B1)

He, HM , and Hh correspond to the Hamiltonians of these three
parts, respectively. They are

He =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1 t1 0 · · · 0

t∗
1 ε2 t2 0

...

0 · · · . . . · · · 0
... · · · t∗

N−2 εN−1 tN−1

0 · · · 0 t∗
N−1 εN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B2)

and

Hh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ε1 −t∗
1 0 · · · 0

t1 −ε2 t2 0
...

0 · · · . . . · · · 0
... · · · −tN−2 −εN−1 −t∗

N−1

0 · · · 0 −tN−1 −εN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B3)

with HM, jl = 0. Meanwhile, HeM and HMh denote the coupling
matrices between the two neighboring parts, which are given
as

HeM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ∗
1 0 0 · · · 0

0 λ∗
2 0 0

...

0 · · · . . . · · · 0
... · · · 0 λ∗

N−1 0

0 · · · 0 0 λ∗
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B4)

and

HMh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ∗
1 0 0 · · · 0

0 −λ∗
2 0 0

...

0 · · · . . . · · · 0
... · · · 0 −λ∗

N−1 0

0 · · · 0 0 −λ∗
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B5)

With the help of the above matrix results, the Green function
of the electron part can be defined as

Gr
e = [

ε + i0+ − He − H†
eMGr

MHeM − �e
]−1

, (B6)

in which

Gr
M = [

ε + i0+ − HM − HMhGr
hH†

Mh

]−1
,

Gr
h = [ε + i0+ − Hh − �h]−1. (B7)

In our system it can be considered that �e, jl = �h, jl =
i
2�Lδ j1δl1 + i

2�Rδ jNδlN , since the metallic leads are sup-
posed to be fabricated by the two-dimensional electron
gas.

Following the above theory, the Green functions related to
the ET between the two leads can be solved analytically. First,
in the case of N = 2 one can readily obtain the result that

Gr
1e,2e|ε→0 = t∗

1 λ1λ
∗
2(λ∗

1λ2 − λ1λ
∗
2 )

−�L�R|λ1|2|λ2|2 + |t1|2(λ∗
1λ2 − λ1λ

∗
2 )2

.

(B8)

Regarding the case of N = 3, the Green functions contributing
to the ET process can be expressed as

Gr
1e,3e|ε→0 = λ1λ

∗
3t∗

1 t∗
2 (λ∗

1λ2 − λ1λ
∗
2 )(λ∗

2λ3 − λ2λ
∗
3 )

�3
. (B9)

Next, when this system is increased to N = 4, the Green
function at the limit of ε → 0 can be written as

Gr
1e,4e|ε→0 = λ1λ

∗
4t∗

1 t∗
2 t∗

3

�4
(λ∗

1λ2 − λ1λ
∗
2 )

× (λ∗
2λ3 − λ2λ

∗
3 )(λ∗

3λ4 − λ3λ
∗
4 ). (B10)

In view of the results in Eqs. (B8)–(B10), we can summarize
the generalized expressions of Gr

1e,Ne|ε→0, i.e.,

Gr
1e,Ne|ε→0 = λ1λ

∗
Nt∗

1 · · · t∗
N−1

�N
(λ∗

1λ2 − λ1λ
∗
2 )

×(λ∗
2λ3 − λ2λ

∗
3 ) · · · (λ∗

N−1λN − λN−1λ
∗
N ).

(B11)

Note that the forms of �N are accordant with those in
Eqs. (A11) and (A12), respectively, determined by the parity
of N . It shows that at the limit of ε → 0, the above re-
tarded Green functions become irrelevant to the QD levels but
are determined by the inter-QD and QD-MZM couplings. It
should be noted that in the case of real λ2 j−1λ

∗
2 j , there will

be Gr
1e,Ne|ε→0 = 0. And then, at the zero-bias limit, the ET

conductance will be manifested as GET
Vb=0 = 0.

APPENDIX C: RELATIONSHIPS OF GREEN FUNCTIONS
IN NAMBU AND MAJORANA REPRESENTATIONS

For our structure, when we define d j = c j−1 with η j1 =
(c†

j + c j )/
√

2 and η j2 = i(c†
j − c j )/

√
2, it can be transformed

into Majorana chains shown in Fig. 4. And then the re-
lationships of Green functions in Nambu and Majorana
representations can be presented for further understanding the
conductance results. For instance, in the case of N = 1, we
can find that

Gr
1e,1e = 〈〈d1|d†

1 〉〉

= 1

2
〈〈η01|η01〉〉 − i

2
〈〈η01|η02〉〉

+ i

2
〈〈η02|η01〉〉 + 1

2
〈〈η02|η02〉〉, (C1)

Gr
1e,1h = 〈〈d1|d1〉〉

= 1

2
〈〈η01|η01〉〉 + i

2
〈〈η01|η02〉〉

+ i

2
〈〈η02|η01〉〉 − 1

2
〈〈η02|η02〉〉. (C2)
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As a typical case where ε = 0, the two Majorana chains are
decoupled from each other at the zero-energy limit, thus

〈〈d1|d†
1 〉〉 = 1

2 〈〈η01|η01〉〉 + 1
2 〈〈η02|η02〉〉,

〈〈d†
1 |d†

1 〉〉 = 1
2 〈〈η01|η01〉〉 − 1

2 〈〈η02|η02〉〉. (C3)

Due to the presence of one side-coupled Majorana site in the
down branch [see Fig. 4(a) in the manuscript], 〈〈η02|η02〉〉|ε=0

will be equal to zero. As a result,

〈〈d1|d†
1 〉〉|ε=0 = 〈〈d1|d1〉〉|ε=0

= 1
2 〈〈η01|η01〉〉|ε=0. (C4)

Following this analysis, one can find that the ET and LAR cor-
respond to the particle tunneling in the upper branch. From the
above equations we can understand the halved conductance
value at the zero-bias limit.

Based on the above idea, we can analyze the case of N = 2.
To be specific, the Green functions involved can be expressed
as

Gr
1e,2e = 〈〈d1|d†

2 〉〉

= 1

2
〈〈η01|η11〉〉 − i

2
〈〈η01|η12〉〉

+ i

2
〈〈η02|η11〉〉 + 1

2
〈〈η02|η12〉〉, (C5)

Gr
1e,1h = 〈〈d1|d1〉〉

= 1

2
〈〈η01|η01〉〉 + i

2
〈〈η01|η02〉〉

+ i

2
〈〈η02|η01〉〉 − 1

2
〈〈η02|η02〉〉. (C6)

At the case of ε = 0,

〈〈d1|d†
2 〉〉 = 1

2 〈〈η01|η11〉〉 + 1
2 〈〈η02|η12〉〉,

〈〈d†
1 |d†

1 〉〉 = 1
2 〈〈η01|η01〉〉 − 1

2 〈〈η02|η02〉〉. (C7)

With the geometry of the Majorana chains in Fig. 4(b) of the
manuscript, we know

〈〈d1|d†
2 〉〉|ε=0 = 0,

〈〈d1|d1〉〉|ε=0 = 1
2 〈〈η01|η01〉〉|ε=0. (C8)

Note that due to 〈〈η01|η11〉〉|ε=0 = 0, 〈〈η01|η01〉〉|ε=0 is actu-
ally the surface Green function of the semi-infinite Majorana
chain at the zero-energy limit, and it can describe the resonant
AR. Therefore, in the case of N = 2, only the LAR survives
in the resonant way, and the zero-bias conductance is equal
to e2/h. These analysis can be helpful in understanding the
complicate structures with larger N .

APPENDIX D: DESCRIPTION ABOUT CONDUCTANCES
MODULATED BY THE PHASES OF MZM-QD COUPLINGS

Regarding the phases of the coupling coefficients between
the QDs and the corresponding MZMs, we consider that
the MZMs can be generated at the ends of a multiterminal
nanowire. When they are coupled to the QDs, one multiring
structure is constructed, and then the phases of the QD-MZM
couplings can be realized by introducing finite local magnetic
fluxes through this structure.

For the triple-QD structure, when local magnetic fluxes �1

and �2 thread through its two subrings, the QD-MZM cou-
plings will get their phase factors as λ1 = |λ1|ei(φ1+φ2 ), λ2 =
|λ2|ei(−φ1+φ2 ), and λ3 = |λ3|e−i(φ1+φ2 ), where φ j = 2π� j/φ0,
with φ0 = h/e being the magnetic flux quantum. Therefore,
under such an assumption, the expressions for the conduc-
tance components at the zero-bias limit are

GLAR
eVb=0 = e2

h

�2
L|t2|4 sin4 2φ1

|�L|t2|2 sin2 2φ1 + �R|t1|2 sin2 2φ2|2
,

GET
eVb=0 = e2

h

�L�R sin2 2φ1 sin2 2φ2

|�L|t2|2 sin2 2φ1 + �R|t1|2 sin2 2φ2|2
,

[N = 3]. (D1)

From the above equation one sees that the two conductances
are dependent on the phase factors. As a typical case where
t1 = t2 and �L = �R, they read

GLAR
eVb=0 = e2

h

sin4 2φ1

(sin2 2φ1 + sin2 2φ2)2
,

GET
eVb=0 = e2

h

sin2 2φ1 sin2 2φ2

(sin2 2φ1 + sin2 2φ2)2
, [N = 3]. (D2)

On the other hand, in the case of φ1 = φ2, the zero-bias
conductances of Eq. (D1) can be expressed as

GLAR
eVb=0 = e2

h

�2
L|λ1t2|4

|�L|λ1t2|2 + �R|λ3t1|2|2 ,

GET
eVb=0 = e2

h

�L�R|λ1λ3t1t2|2
|�L|λ1t2|2 + �R|λ3t1|2|2 , [N = 3]. (D3)

Under the condition of t1 = t2, |λ1| = |λ3|, and �L = �R,
there will be GLAR

eVb=0 = e2

4h and GET
eVb=0 = e2

4h .
For the four-QD structure, we are allowed to take

local magnetic fluxes �1, �2, and �3 and thread
through its three subrings. Therefore, the QD-MZM cou-
plings are λ1 = |λ1|ei(φ1+φ2+φ3 ), λ2 = |λ2|ei(−φ1+φ2+φ3 ), λ3 =
|λ2|ei(−φ1−φ2+φ3 ), and λ4 = |λ4|e−i(φ1+φ2+φ3 ). Under this con-
dition, the zero-bias conductance expressions can be
written as

GET
eVb=0 = e2

h

4�L�R|t1t2t3|2 sin2 2φ1 sin2 2φ2 sin2 2φ3

�1
,

GLAR
eVb=0 = e2

h

�2
L�2

R|t2|4 sin4 2φ2

�1
, [N = 4]. (D4)

In the above equations, �1 = |�L�R|t2|2 sin2 2φ2 +
4|t1t3|2 sin2 2φ1 sin2 2φ3|2. It can be found that in comparison
with φ1 and φ3, φ2 plays its dominant role in governing the
conductance components, especially the LAR conductance.
Following this fact, we would like to pay attention to the
case of φ1 = φ3. In this case the QD-MZM couplings
are λ1 = |λ1|ei(2φ1+φ2 ), λ2 = |λ2|eiφ2 , λ3 = |λ2|e−iφ2 , and
λ4 = |λ4|e−i(2φ1+φ2 ). So, conductance at the zero-bias limit
can be rewritten as

GET
eVb=0 = e2

h

4�L�R|t1t2t3|2 sin4 2φ1 sin2 2φ2

�2
,

GLAR
eVb=0 = e2

h

�2
L�2

R|t2|4 sin4 2φ2

�2
, [N = 4]. (D5)

043162-12



SPECIAL ODD-EVEN EFFECTS OF ELECTRON … PHYSICAL REVIEW RESEARCH 5, 043162 (2023)

�2 = |�L�R|t2|2 sin2 2φ2 + 4|t1t3|2 sin4 2φ1|2. It is not diffi-
cult to find that the conductances are effected by the phase
factors. When the parameters satisfy t j = t and �L = �R =
�, the conductances at the zero-bias limit can be simplified
as

GET
eVb=0 = e2

h

4�4 sin4 2φ1 sin2 2φ2

(�2 sin2 2φ2 + 4t2 sin4 2φ1)2
,

GLAR
eVb=0 = e2

h

�4 sin4 2φ2

(�2 sin2 2φ2 + 4t2 sin4 2φ1)2
, [N = 4].

(D6)

Analogous to the case of N = 3, in this case we have taken
two configurations. For the first case of λ1 = λ4 = λ0eiθ/2

and λ2 = λ∗
3 = λ0eiθ/6, it can be experimentally achieved by

taking φ1 = φ2 = φ3 = θ
6 . For the other case where λ1(2) =

λ0eiθ/2 = λ∗
3(4), the magnetic fluxes should obey the relation-

ship of φ1 = φ3 = 0 and φ2 = θ
2 . Under this condition there

will be GLAR
Vb=0 = e2

h and GET
Vb=0 = 0. It can found that regard-

less of the different phase factors, the odd-even effect of the
conductance is always notable. One can further understand
the changes of the conductance magnitudes following the
variation of relevant parameters.
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