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Quantum error correction under numerically exact open-quantum-system dynamics
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The known quantum error-correcting codes are typically built on approximative open-quantum-system models
such as Born-Markov master equations. However, it is an open question how such codes perform in actual
physical systems that, to some extent, necessarily exhibit phenomena beyond the limits of these models. To this
end, we employ numerically exact open-quantum-system dynamics to analyze the performance of a five-qubit
error-correction code where each qubit is coupled to its own bath. We first focus on the performance of a single
error-correction cycle covering timescales and coupling strengths beyond those of Born-Markov models. We
observe distinct power-law behavior of the error-corrected channel infidelity ∝ t2a: a � 2 in the ultrashort times
t < 3/ωc and a ≈ 1/2 in the short-time range 3/ωc < t < 30/ωc, where ωc is the cutoff angular frequency of
the bath. Furthermore, the observed scaling of the performance of error correction is found to be robust against
various imperfections in physical qubit systems, such as perturbations in qubit-qubit coupling strengths and
parametric disorder. For repeated error correction, we demonstrate the breaking of the five-qubit error-correction
code and of the Born-Markov models if the repetition rate of the error-correction cycles exceeds 2π/ω or the
coupling strength κ � ω/10, where ω is the angular frequency of the qubit. Our results provide bounds of validity
for the standard quantum error-correction codes and pave the way for applying numerically exact open-quantum-
system methods for further studies of error correction beyond simple error models and for other strongly coupled
many-body models.
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I. INTRODUCTION

One of the greatest milestones of quantum comput-
ing has been the experimental demonstration of quantum
supremacy [1–3]. The practical use cases are yet to be demon-
strated since it generally calls for higher qubit numbers and
operational fidelity. Whereas physical qubits are constantly
improving and it may be that they reach a level where cur-
rently known [4,5] or fully new algorithms yield practical
quantum advantage, it is challenging to reach the required
operational fidelity.

Quantum error correction [6–9] provides a theoretically
established [10–14] but experimentally challenging [15–31]
path to fault-tolerant and practically useful quantum compu-
tations. Notable approaches include the qubit-based repetition
codes [7], surface codes [11,13,32], and color codes [12], as
well as various bosonic codes [33,34]. Recently, experimental
tests of the scaling of logical errors with increasing the code
size have been reported [30] on the path to demonstrate major
benefits of error correction.

Importantly, there remains a profound question to be an-
swered along the path to practical error correction: Are the
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relatively simple error models used in most theoretical stud-
ies of quantum error correction adequate? Namely, the usual
local Born-Markov approach to open quantum systems [35]
motivates an error model where Poisson-distributed bit and
phase flips are applied on the individual physical qubits [36].
However, non-Markovian dynamics [37], global effects of the
environment on the system [38,39], and system-environment
correlations [40,41] are neglected in such approaches, which
raises the concern of whether these phenomena can lead to
small but significant errors in the logical qubits that need to
operate at extremely high fidelity.

To this end, we analyze the performance of quantum
error-correction codes beyond the simplified models of the
open-quantum-system dynamics, and answer the question of
what the validity limits are of quantum error correction sub-
ject to strong coupling and non-Markovian environments. We
employ a numerically exact treatment for five physical qubits,
each coupled to ohmic baths with the second-order Lorentz-
Drude cutoff at angular frequency ωc (Sec. II). Our setup is
generic, allowing various possibilities for qubit-environment
and qubit-qubit coupling beyond the approximate models.

By encoding quantum information into a five-qubit quan-
tum error-correction code [14], we first assess the channel
induced by the numerically exact model for a single error-
correction cycle (Secs. III and IV). At ultrashort times t <

3/ωc and short times 3/ωc < t < 30/ωc, we observe apparent
differences in the channel fidelity with respect to Born-
Markov dynamics. We further validate our conclusions with
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an analytic model for the short-time dynamics. Finally, in
Sec. V, we also apply repeated error correction and observe
deviations from the infidelity given by Born-Markov results.
However, when the repetition rate does not exceed 2π/ω or
the coupling strength κ < 0.1ω, the experimentally relevant
scenarios of Rabi-driven qubits, the Born-Markov approach,
and hence the usually employed error model of bit and phase
flips seem feasible to describe the quantum memory protected
by the five-qubit code.

II. NUMERICALLY EXACT QUANTUM DYNAMICS FOR
OPEN MANY-BODY SYSTEMS

We consider a system of five qubits, each coupled to its
own decay channel modeled as a bath of bosonic modes.
For generality, we also assume all-to-all hopping interaction
between the qubits. The total system-bath Hamiltonian reads
as Ĥ = ∑5

j=1(Ĥj + ĤB
j ) with the qubit parts

Ĥj/h̄ = −ω j

2
σ̂z j + Jj

∑
i, j �=i

(σ̂+ j σ̂−i + σ̂− j σ̂+i ), (1)

where ω j is the angular frequency of the qubit j, σ̂α j (α =
x, y, z) are the usual Pauli operators, and Jj determines the
strength of the hopping interactions. The qubit-environment
part is given by

ĤB
j /h̄ =

∑
k

[�k j n̂k j + gk j (b̂k j + b̂†
k j )σ̂x j], (2)

where �k j is the angular frequency of the mode k of the jth
bath, b̂k j and n̂k j = b̂†

k j b̂k j are its annihilation and number
operator, respectively, and gk j yields the coupling strength
of the qubit j to the bath mode. The effect of each lo-
cal bath can be completely described by its temperature
Tj and the spectral density [42] of the form of J j (�) =
π

∑
k g2

k jδ(� − �k j ), where δ(� − �k j ) is the Dirac’s delta
function peaked at �k j . We assume an ohmic-type distribution

J j (�) = (κ j/ω j )�/(1 + �2/ω2
c j )

2
, where κ j is the coupling

strength of the qubit j to its bath and ωc j is the bath cutoff
frequency.

The cutoff frequency is introduced to make the model
physically implementable. It is typically related to the fact that
the nature of the environments may change at high frequen-
cies. For example, in the case of superconducting qubits, the
ohmic bath with a cutoff frequency can be an accurate model
for a qubit coupled to its broadband drive line.

Typically, the Lindblad master equation method [35] is uti-
lized to simulate the system-bath dynamics (see Appendix A).
This approach is popular for its simplicity, but it is justi-
fied only for weak coupling between the qubits and their
baths, short bath correlation time which restricts the bath
temperature from below, and high-energy separation of the
qubit states as compared to the resulting level broadening.
For accurate simulations at strong coupling strengths or at
short timescales, one needs to employ numerically exact
methods [38,40,43,44]. Here, we use the stochastic Liouville
equation with dissipation (SLED) which, for our multiqubit

.......

FIG. 1. Schematic of (a) the single-cycle and (b) the repeated
error-correction processes. Here, U is the encoding process, E is the
error process, and R is the recovery process including the decoding
operation also.

system (1), takes the form [40,43]

dρ̂

dt
=

5∑
j=1

{
− i

h̄
[Ĥj, ρ̂] + iκ j[σ̂x j, {σ̂y j, ρ̂}]

− κ j

h̄ω jβ j
[σ̂x j, [σ̂x j, ρ̂]] − iξ j (t )[σ̂x j, ρ̂]

}
, (3)

where β j = 1/(kBTj ), and the colored real-valued Gaussian
noise ξ j (t ) has the correlation function

〈ξ j (t )ξ j (0)〉

= 1

π

∫ +∞

0
J j (�)

[
coth

(
h̄�β j

2

)
− 2

h̄�β j

]
cos (�t ) d�.

(4)

It is important that the full spectral density with the proper cut-
off should be considered in Eq. (4), not just its low-frequency
ohmic asymptotics. Owing to its stochastic nature and the
need to average over many noise realizations, SLED is com-
putationally quite an intensive method. By utilizing advanced
techniques used in quantum many-body dynamics, such as
Krylov subspaces and Magnus expansion, here, we go beyond
the previous single- and two-qubit simulations [38], up to five
qubits (see Appendix B for more details).

III. FIVE-QUBIT QUANTUM ERROR CORRECTION

To correct the errors caused by the local baths, we employ
the five-qubit error-correction code introduced in Ref. [14].
We choose this code since it uses the minimum number of
physical qubits to perfectly correct arbitrary single-qubit er-
rors. The code operates with choosing a single main qubit
such as j = 3 and adding four other qubits. A single error-
correction cycle is characterized by an encoding process U
at the beginning of the time evolution, the error dynamics E ,
followed by the recovery operation R, as depicted in Fig. 1(a).
Here, U , E , and R are superoperators acting on the five-qubit
system. The corresponding logical states and the Kraus map
associated with R are shown in Appendix C.

The recovery R comprises the error detection through U−1

and local measurements of the ancillae, their outcomes of
which determine a unitary operation on the main qubit [14].
The recovery process uses no extra ancillae beyond the qubits
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FIG. 2. Channel infidelity 1 − F�1 of the non-error-corrected channel (dashed lines) and the error-corrected channel (solid, dotted and
dash-dotted lines) as a function of the time interval t from the encoding to the recovery, i.e., the duration of the error process, for the qubit-
bath coupling strength κ/ω = 0.01. Here we compare the results calculated by SLED (blue), the Lindblad master equation (ME, red), and
the analytic short-time methods by Eq. (6) (ST, green). (a) All qubits are coupled to baths, κ j = κ , without internal qubit-qubit coupling,
Jj/ω = 0. (b) Only a single qubit is coupled to a bath, κ3 = κ , and all qubits are coupled to each other with internal qubit-qubit coupling
parameters, Jj = J , where J/ω = 0.01 (dotted lines) and 0.1 (dash-dotted lines). (c) All qubits are coupled to baths and the internal qubit-qubit
coupling parameters are Jj = J such that J/ω = 0 (solid lines) and 0.1 (dash-dotted lines). Note that the non-error-corrected channel fidelity
is independent of the value of J in (b) and (c). The qubits have identical frequencies, ω j = ω. The baths are also identical with temperatures
β j = 2 and cutoff frequencies ωcj/ω = 20.

j = 1, 2, 4, and 5. In realistic implementations, repeated cy-
cles of error correction are usually required; see Fig. 1(b).

The five-qubit dynamics in the presence of repeated error
correction can thus be ascribed to the quantum map �N =
(REU )N , where N is the number of error correction cycles.
Our focus here is to probe the deleterious effects on quantum
error correction in the presence of an accurate description of
open-quantum-system error dynamics E promoting versatile
decoherence, typically neglected in the simple error models,
and not to model the actual physical qubit possibly affected
by several additional error sources typically encountered in
noisy intermediate-scale quantum devices such as gate, state
preparation, and measurement errors [45]. Thus, we assume
instantaneous and perfect encoding U and recovery R here-
after.

The performance of the five-qubit code is analyzed through
the channel fidelity [46,47],

F�N = 1

8

3∑
j=0

Tr[Ŝ j�N(Ŝ j )], (5)

where the identity operator Ŝ0 = |0L〉〈0L| + |1L〉〈1L|, and the
Pauli operators Ŝ1 = |0L〉〈1L| + |1L〉〈0L|, Ŝ2 = −i|0L〉〈1L| +
i|1L〉〈0L|, and Ŝ3 = |0L〉〈0L| − |1L〉〈1L| are defined in the logi-
cal qubit subspace {|0L〉, |1L〉}. The channel fidelity effectively
quantifies the success of quantum information preservation
under the action of the process �N, so that successful error
correction should produce values close to unity.

IV. SINGLE-CYCLE QUANTUM ERROR CORRECTION

We first analyze a single error-correction cycle and com-
pute the channel fidelity with the SLED and the Lindblad
models. We first assume that all the qubits and the corre-
sponding baths are identical with no qubit-qubit couplings.
Then, in Fig. 2(a), we show the infidelity 1 − F�1 of the
quantum channel in �1 without the recovery operation R,
i.e., the error channel infidelity (dotted lines) and the full
channel that includes the recovery operation (solid lines) for
κ/ω = 0.01. The encoding and recovery process is assumed
to be instantaneous, and time t is the waiting time between the
encoding and recovery operation.

The error channel infidelity by the Lindblad model shows
a linear dependence on κt as the single-qubit error proba-
bility per error-correction cycle is proportional to κt . The
five-qubit error-correction protocol corrects all the first-order
errors, i.e., a single Pauli operator action on a qubit, and leaves
the higher-order errors uncorrected. Thus, the infidelity of
the recovered channel essentially includes those uncorrected
errors, and the recovered channel infidelity calculated with the
Lindblad model is proportional to (κt )2.

The numerically exact open-quantum-system dynamics
calculated with SLED considerably differs from the Lindblad
predictions; see Fig. 2(a). In ultrashort times ωct � 3, the
error channel infidelity is proportional to (κt )a, where a �
2, whereas in short times, 3 < ωct < 30, the error channel
infidelity is proportional to (κt )b, where b ≈ 1/2. For the
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long-time limit, ωct > 10, the error channel infidelity shows a
linear dependence on κt , same as the Lindblad results. Again
the recovery process corrects the first-order errors and leaves
the second-order errors uncorrected. Thus, recovery channel
infidelity is proportional to: (κt )2a at ultrashort times, (κt )2b

at short times, and (κt )2 at long times. In Appendix D, we
provide estimates of infidelity for the strong coupling κ/ω =
0.1. Interestingly, the exact open-quantum-system dynamics
by SLED still demonstrates the observed power-law behavior
for the ultrashort and short times for these parameters.

Deviation of the SLED results at short times is due to
the universal decoherence, where the intrinsic dynamics of
the system stays essentially frozen, and the high-frequency
reservoir modes control the system dynamics [40,44,48]. We
can obtain the resulting Liouvillian superoperator LST(ρ̂) =
dρ̂/dt of dynamics as

LST(ρ̂) =
5∑

j=1

f ′
j (t )κ j

ω jπ
(σ̂x j ρ̂σ̂x j − ρ̂ ), (6)

where f ′
j (t ) is the time derivative of the integral average func-

tion,

f j (t ) = 2ω j

κ j

∫ ∞

0
d�

J j (�)

�2
coth(h̄β j�/2) cos(�t/2). (7)

Here, we have extended the single-qubit short-time dynamics
of Refs. [40,44]; see Appendix E for more details.

In ultrashort times, t < 3/ωc, f (t ) ≈ −ω2
c t2/2 and we

can obtain the fidelity of the error channel as F�1 = [1 +
exp(−κω2

c t2/ωπ )]5/32. Thus, infidelity 1 − F�1 is propor-
tional to (kt )2 in ultrashort times. At later times, t � 30/(ωc)
infidelity shows roughly

√
κt behavior. The infidelity esti-

mates with the analytic model are represented with green lines
in Fig. 2(a). The SLED results closely follow the analytic
dynamics, although there are some deviations in ultrashort
times.

Next, we investigate the error-correction scheme in a more
generic five-qubit setup by considering the case where the
qubits are mutually interacting, that is, for J �= 0 in Eq. (1).
We begin with a simple model where only one qubit is coupled
to the bath in the presence of all-to-all qubit coupling; see
Fig. 2(b). Any error induced by the bath on a single qubit
is fully correctable using the five-qubit error-correction code.
However, due to the qubit-qubit interactions, an error event
of losing an excitation may be accompanied by a phase flip
explaining the observed (Jt )2κt dependence in the recovered
channel infidelity in the short-time regime; see Appendix F.
At ultrashort times, the recovered channel infidelity is re-
markably low, and hence contributions in this timescale can
be neglected. Thus, the interaction between the qubits only
changes the power-law behaviors at short and long timescales.

The channel infidelities for a fully generic case where all
the qubits are coupled to their baths and J �= 0 is shown in
Fig. 2(c). The recovered channel infidelity starts deviating
from the J = 0 results at short times, similar to previous re-
sults. However, these deviations are only significant for J > κ .
In addition, we also examined the recovered channel infidelity
for disorder in qubit frequencies, which also reproduces the
same observed power-law behavior (see Appendix G).

10 3 10 2 10 110 8

10 6

10 4

10 2

100

FIG. 3. Channel infidelity 1 − F�1 for the non-error-corrected
channel (dashed lines) and the error-corrected channel (solid lines) as
a function of the length of the time interval t from the encoding to the
recovery for a Drude-type cutoff at the frequency ωcj/ω = 10 (cyan),
20 (blue), and 60 (dark blue). The Lindblad master equation results
are independent of ωc. The qubits and baths are assumed identical
with ω j = ω, κ j = κ = 0.01ω, J/ω = 0, and β j = β = 2.

To understand the dependence of the channel fidelity on the
cutoff frequency, we compare the infidelities 1 − F�1 of the
non-error-corrected and error-corrected channels for Drude-
type cutoff at the frequencies ωcj/ω = 10, 20, and 60, shown
in Fig. 3. Note that here we assume all the qubits and the
corresponding baths are identical, with no qubit-qubit cou-
plings. Results indicate that the general power-law behaviors
do not vary with moderate change in the cutoff frequencies.
An increase of ωc j shortens the ultrashort time part of the
dynamics. However, the fidelity of the error channel decreases
for short and ultrashort times owing to the enhancement of
short-time decoherence.

V. REPEATED QUANTUM ERROR CORRECTION

Finally, we study what happens to the five-qubit quantum
error correction at strong coupling κ , and find whether or not
the strong environmental coupling is enough to demolish the
benefits of active error correction. To this end, our focus is on
the scheme of repeated quantum error correction, visualized
in Fig. 1(b). We fix the total time interval tmax = κ−1 and
vary the number of error-correction cycles, N , within this
interval. Here we assume identical qubits without qubit-qubit
couplings. The expectation is that for a well-functioning error-
correction process, an increase in the number of cycles, N ,
decreases the recovered channel infidelity for the final state at
tmax.

Considering the Lindbladian description, the probability
of the dominant uncorrected error per cycle is proportional
to (κt )2, yielding that the channel infidelity at κtmax = 1
scales as N−1 for N 
 1 independent on the value of κ , as
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FIG. 4. Channel infidelity of the repeated error correction 1 −
F�N as a function of the number of the error correction cycles, N ,
within a fixed total time tmaxκ = 1 for different coupling strengths
κ/ω = 0.001 (yellow), 0.01 (blue), and 0.1 (magenta). The solid
lines show the results computed by the SLED and the black dash-
dotted line represents the κ-independent infidelity arising from the
Lindblad master equation. We have ω j = ω, κ j = κ , Jj = J = 0,
β j = β = 2, and ωc j = ωc = 20ω.

shown in Fig. 4. To explore the effect of strong coupling,
we compute in Fig. 4 the final infidelity of the repeated
error-correction process using SLED at the limit of weak-,
moderate-, and strong-coupling strengths, corresponding to
κ/ω = 0.001, 0.01, and 0.1. At the weak-coupling limit, the
SLED infidelity shows only minor deviations from the scaling
behavior predicted with the Lindblad model. Unsurprisingly,
quantum error correction by the perfect five-qubit code func-
tions adequately at weak qubit-environment coupling κ/ω �
0.001. However, already at moderate values κ/ω = 0.01, the
infidelity starts to show plateauing as a function of N for
10 � N � 100. The situation is even worse by strong cou-
pling κ/ω = 0.1, showing complete plateauing for N � 100.
In both cases, the plateauing arises when the time interval
between the recovery operations, δt = tmax/N , is in the short-
time domain where the error probability scales (κt )1/2. This
result indicates that a simple distance-three error correction
cannot overcome the fast occurrence of errors with probability
(κt )1/2. When the repetition rate of error correction is very
fast, corresponding to the ultrashort-time dynamics, we ob-
serve very favorable scaling of the infidelities as a function
of N . However, the ultrashort dynamics corresponds to the
case where the repetition rate of error correction is much faster
than the qubit frequency, which contradicts the quantum speed
limit. For example, for κ/ω = 0.1, the favorable regime starts
when N > 102, which yields t < tmax/N = ω−1/10.

VI. CONCLUSIONS AND DISCUSSION

Typical quantum error-correction methods assume error
models based on Born-Markov assumptions. We subjected

these assumptions to detailed scrutiny through numerically
exact open-quantum-system error models, seeking the fun-
damental limits of the quantum error-correction processes in
qubit-environment coupling strengths and applicable error-
correction timescales.

We observed variations in the resulting quantum error-
correction fidelity from the typical power-law behavior
predicted by the Born-Markov model, specifically in the
short-time domain 3 < ωct < 30 and ultrashort times where
ωct < 3, where ωc is the cutoff frequency of the environment.
These deviations arise from short-time universal decoherence
induced by the bath modes. With a single recovery cycle of
the five-qubit code, the first-order errors are corrected, ren-
dering the second-order processes to subsequently dominate
the remaining error channel. However, in the short times 3 <

ωct < 30, the errors occur so frequently, scaling as
√

κδt , that
the recovery process of the distance d = 3 error-correction
code is not suppressing them enough, best visualized in the re-
peated error-correction protocol. We believe that in this range,
one would need at least d = 5 codes. Further inspection of
higher distance codes under the exact open-quantum-system
dynamics is left for future studies. Finally, through the re-
peated error-correction process, we demonstrate the breaking
of the Born-Markov method and associated error-correction
codes when the repetition rate exceeds 2π/ω or the coupling
strength κ � 0.1ω.

The consequences of the universal decoherence occur at
such short timescales that they are beyond the current ex-
perimental state of the art and hence do not yield no-go
results in practice for typical error-correction codes. In the
future, it will be interesting to study the combined effect of
gate errors and universal decoherence. To date, numerically
exact open-quantum-system methods have been limited to
few-qubit systems, but here we expanded them to genuine
many-body systems. These techniques may find applications
in simulations of ultra-strongly-coupled systems [49] or fu-
ture development of novel quantum error-correction codes for
other non-Markovian environments.
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APPENDIX A: FIVE-QUBIT ERROR CORRECTION
UNDER THE LINDBLAD DYNAMICS

The commonly used Born-Markov secular approximation
reduces the joint unitary evolution of the extended system
of qubits and their baths to the nonunitary evolution of the
reduced density operator ρ̂ of the five-qubit system governed
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by the Lindblad master equation [35]

dρ̂

dt
=

5∑
j=1

{
− i

h̄
[Ĥj, ρ̂] + κ j[n j (ω j ) + 1]D[σ̂− j]ρ̂

+ κ jn j (ω j )D[σ̂+ j]ρ̂

}
, (A1)

where D[Â]ρ̂ = Âρ̂Â† − Â†Âρ̂/2 − ρ̂Â†Â/2, and n j (�) =
[1 − exp(−β j h̄�)]−1 is the average thermal occupation num-
ber of the jth bath with β j = 1/(kBTj ). At low temperatures,
σ̂−

j errors dominate over σ̂+
j errors, and we may neglect the

contributions from σ̂+
j . Consequently, the Lindblad master

equation can be simply written as

dρ̂

dt
=

5∑
j=1

{
− i

h̄
[Ĥj, ρ̂] + κ jD[σ̂− j]ρ̂

}
. (A2)

APPENDIX B: NUMERICAL TIME INTEGRATION
FOR SLED

We use the stochastic Liouville equation with dissipa-
tion (SLED) to simulate numerically exact open-quantum-
system dynamics, that is, error dynamics, which takes the
form [40,43]

dρ̂

dt
=

5∑
j=1

{
− i

h̄
[Ĥj, ρ̂] + iκ j[σ̂x j, {σ̂y j, ρ̂}]

− κ j

h̄ω jβ j
[σ̂x j, [σ̂x j, ρ̂]] − iξ j (t )[σ̂x j, ρ̂]

}
, (B1)

where the colored real-valued Gaussian noise ξ j (t ) has the
correlation function

〈ξ j (t )ξ j (0)〉 = 1

π

∫ +∞

0
J j (�) cos(�t )

×
[

coth

(
h̄�β j

2

)
− 2

h̄�β j

]
d�. (B2)

The problem can be cast into the form

d

dt
v(t ) = M(t )v(t ), (B3)

where v(t ) is the unknown vector, and M(t ) is the matrix
determining the problem. In our case, v(t ) is the vectorized
form of the density operator and M(t ) is the matrix form of
the superoperator defining the SLED. If one knows the vector
v(t ) at time t , the solution after a short time step δt can be
obtained with the Magnus expansion,

v(t + δt ) = eA(t+δt )v(t ), (B4)

where the matrix A(t + δt ) can be written in terms of univari-
ate integrals [50],

A(t + δt ) = δtB0(t ) + (δt )2[B0(t ), B1(t )] + O[(δt )5],
(B5)

with help of the matrices B j (t ),

B j (t ) = 1

(δt ) j+1

∫ δt/2

−δt/2
dττ jM

(
t + δt

2
+ τ

)
. (B6)

It turns out that it is sufficient to terminate the series after the
first term and write the solution as

v(t + δt ) = eδtB0(t )v(t ). (B7)

Now, for the SLED, one requires a small time step and the
bottleneck of the above method is the calculation of the matrix
exponential. For large and sparse systems, it can be efficiently
implemented with the Krylov subspace method. For a small
time step δt , the matrix B0(t ) and the vector v(t ) can be
accurately expressed in the m-dimensional Krylov subspace,
with m � dim B0. This subspace is spanned by the vectors{

v(t ), B0(t )v(t ), B2
0(t )v(t ), . . . , Bm−1

0 (t )v(t )
}
.

Orthonormalizing this subspace results in a unitary matrix,

Km = (
u1 u2 u3 . . . um

)
, (B8)

with which one can express the original matrix B0(t ) as a m ×
m dimensional matrix,

B = K†
mB0Km, (B9)

with which one can approximately express the time evolution
as

v(t + δt ) ≈ KmeδtBK†
mv(t ), (B10)

so that now we only need to calculate the matrix exponen-
tial of a small m × m matrix, instead of the full one. The
orthogonalization of the subspace for a non-Hermitian ma-
trix can be performed with the Arnoldi iteration, where one
first constructs an (m + 1) × m upper Hessenberg matrix B̃
and d × (m + 1)-dimensional matrix Km+1, where d is the
dimension of the original matrix B0. This can be done with
the Gram-Schmidt orthogonalization,

mj+1, ju j+1 = B0u j −
j∑

i=1

mi, jui, mi j = (B0ui )
†u j,

(B11)
where mi, j are the elements of the matrix B̃. The desired
matrices can then be obtained by discarding the last row of
B̃ and the last column of Km+1.

APPENDIX C: DETAILS OF ENCODING AND RECOVERY
PROTOCOL FOR THE FIVE–QUBIT CODE

In the five-qubit code [14], the encoding U uses a sequence
of nonlocal gates to encode the state of the main qubit into the
logical subspace {|0L〉, |1L〉}, where

|0L〉 = (−|00000〉 + |00110〉 + |01001〉 + |01111〉
− |10011〉 + |10101〉 + |11010〉 + |11100〉)/

√
8,

|1L〉 = (−|11111〉 + |11001〉 + |10110〉 + |10000〉
+ |01100〉 − |01010〉 − |00101〉 − |00011〉)/

√
8.

(C1)

A single recovery stage considered in the simulations of the
main text can be written as the following Kraus map:

R(ρ̂ ) =
15∑

k=0

R̂kÛ
†ρ̂Û R̂†

k, (C2)
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where Û is the unitary operator associated to the encoding
process U yielding the codewords |0L〉 and |1L〉; see Ref. [14].
In Eq. (C2), the operators {R̂k} account for projective mea-
surements of the auxiliary qubits j = 1, 2, 4, and 5 in the
computational basis, whose outcomes drive a unitary opera-
tion to correct the state of the main qubit, j = 3. To carry on
the next recovery cycles, the auxiliary qubits are then reset
to the state |0000〉1245. Therefore, the operators {R̂k} can be
explicitly written as

R̂0 = |00〉12〈00| ⊗ Î3 ⊗ |00〉45〈00|,
R̂1 = |00〉12〈00| ⊗ σ̂z3 ⊗ |00〉45〈01|,
R̂2 = |00〉12〈00| ⊗ Î3 ⊗ |00〉45〈10|,
R̂3 = |00〉12〈00| ⊗ Î3 ⊗ |00〉45〈11|,
R̂4 = |00〉12〈01| ⊗ Î3 ⊗ |00〉45〈00|,
R̂5 = |00〉12〈01| ⊗ σ̂z3 ⊗ |00〉45〈01|,
R̂6 = |00〉12〈01| ⊗ σ̂x3 ⊗ |00〉45〈10|,
R̂7 = |00〉12〈01| ⊗ σ̂x3 ⊗ |00〉45〈11|,
R̂8 = |00〉12〈10| ⊗ Î3 ⊗ |00〉45〈00|,
R̂9 = |00〉12〈10| ⊗ σ̂x3 ⊗ |00〉45〈01|,

R̂10 = |00〉12〈10| ⊗ σ̂z3 ⊗ |00〉45〈10|,
R̂11 = |00〉12〈10| ⊗ σ̂x3 ⊗ |00〉45〈11|,
R̂12 = |00〉12〈11| ⊗ σ̂z3 ⊗ |00〉45〈00|,
R̂13 = |00〉12〈11| ⊗ σ̂x3σ̂z3 ⊗ |00〉45〈01|,
R̂14 = |00〉12〈11| ⊗ σ̂x3 ⊗ |00〉45〈10|,
R̂15 = |00〉12〈11| ⊗ σ̂z3 ⊗ |00〉45〈11|, (C3)

where Î3 is the identity operator and σ̂α3 (α = x, y, z) are the
Pauli matrices for qubit 3.

APPENDIX D: CHANNEL FIDELITY FOR A FIVE-QUBIT
SETUP WITH STRONG SYSTEM-ENVIRONMENT

COUPLING

Here, we present the infidelity estimates for relatively
strong coupling, i.e., κ/ω = 0.1. The qubits and baths are
assumed identical with ω j = ω, κ j = κ , and β j = β = 2. Fig-
ure 5 shows the infidelity estimates calculated with SLED
(blue), the Lindblad master equation (ME, red), and the an-
alytic short-time methods (ST, green). Similar to the previous
case, SLED exhibits deviations for ultrashort and short times.
However, the channel infidelity arising from this short-time
dynamics at t ≈ 1/ωc appears to be 100 times greater than
that of the case in Fig. 2(a) with κ/ω = 0.01.

APPENDIX E: ANALYTIC MODEL FOR THE SHORT-TIME
ERROR DYNAMICS

The short-time decoherence in the case of a single qubit
interacting with a bosonic bath has already been demonstrated
in Refs. [40,44]. Let us first analyze a single qubit in the
five-qubit setting and extend it to the whole system later.

100 101
ct

10 3 10 2 10 110 8

10 6

10 4

10 2

SLED
ME
ST

FIG. 5. Channel infidelity 1 − F�1 for the non-error-corrected
channel (dashed lines) and the error-corrected channel (solid lines) as
a function of the length of the time interval t from the encoding to the
recovery. Here we compare the results calculated by SLED (blue),
the Lindblad master equation (ME, red), and the analytic short-time
methods (ST, green). The qubits and baths are assumed identical with
ω j = ω, κ j = κ = 0.1ω, J/ω = 0, and β j = β = 2.

In the early-time limit, the system dynamics remains frozen
and high-frequency environmental modes control the dynam-
ics. Thus, we completely ignore the system Hamiltonian and
obtain the elements of the reduced density matrix in the eigen-
basis of the operator σ̂x j as [40,44]

〈n|ρ̂ j (t )|m〉 = 〈n|ρ̂S(0)|m〉 exp

{
κ j

2πω j
[i(n2 − m2)φ j (t )

− (n − m)2 f j (t )]

}
, (E1)

where f j (t ) and φ j (t ) are integral average functions and which
take the form of

f j (t ) = ω j

κ j

∫ ∞

0
d�

J j (�)

�2
coth

(
h̄β j�

2

)
[1 − cos(�t )],

φ j (t ) = ω j

κ j

∫ ∞

0
d�

J j (�)

�2
[�t − sin(�t )]. (E2)

Using the eigenstate expansion of σ̂x j = ∑
n n|n〉〈n|, we can

write the early-time evolution operator LST(ρ̂ j ) as

LST(ρ̂ j ) = iφ′(t )κ

2πω j
[(σ̂x j )

2, ρ̂]

+ f ′
j (t )κ j

2πω j
[2σ̂x j ρ̂

j σ̂x j − (σ̂x j )
2ρ̂ j − ρ̂ j (σ̂x j )

2],

(E3)
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where LST(ρ̂ j ) = dρ̂ j/dt . We can then write the time evolu-
tion operator for the whole system as

LST(ρ̂) =
5∑

j=1

f ′
j (t )κ j

πω j
(σ̂x j ρ̂σ̂x j − ρ̂ ). (E4)

APPENDIX F: GENERATION OF UNCORRECTABLE
ERRORS VIA QUBIT-QUBIT INTERACTIONS

Using the Lindblad master equation (A2), we can write
the approximated, time-evolved density operator in terms of
Kraus operator representation as

ρ̂(t ) ≈
∑
l=0,1

ρ̂l (t ) =
∑
l=0,1

5∑
j=0

Êl jÛHρ̂(0)Û †
HÊ†

l j, (F1)

where Êl=0,1 are the Kraus operators corresponding to zero
or one error and ÛH is the unitary operator arising from the
system Hamiltonian. We first consider the σ̂− errors due to
Kraus operator Ê1 j = √

κt σ̂− j under the weak-coupling ap-
proximation.

Let us analyze the error process for a state |ψ (0)〉 =
a0|0L〉 + a1|1L〉. Initially, the system evolves with a unitary
operator ÛH (t ), and at time t = δt , single σ̂− error occurs
on qubit k with probability κδt . We assume that the error is
instantaneous and the system continues its unitary evaluation
immediately after the error event. Thus, taking into account
just the error process, the initial state evolves to

|ψ (t )〉 = ÛH(t − δt )
√

κδt σ̂−kÛH(δt )|ψ (0)〉, (F2)

and, after phase recovery,

|ψ (t )〉 = ÛH(−t )ÛH(t − δt )
√

κδt σ̂−kÛH(δt )|ψ (0)〉
= √

κtÛH(−δt )σ̂−kÛH(δt )|ψ (0)〉
=

√
κδteiĤδt/h̄σ̂−ke−iĤδt/h̄|ψ (0)〉. (F3)

Note that |ψ (t )〉 in Eq. (F2) does not include the final state
with no error event occurring. However, this part of the final
state is irrelevant to the fidelity estimates. The exponential
part can be expanded using the Baker-Campbell-Hausdorff
formula,

eiĤδt/h̄σ̂−ke−iĤδt/h̄

= σ̂−k + iδt

h̄
[Ĥ, σ−k] − (δt )2

h̄2 [Ĥ , [Ĥ , σ−k]] + · · ·

= σ̂−k + iδtωk σ̂−k + iJkδt
∑

i

σ̂zk σ̂−i + O(δt )2

= eiωkδt

(
σ̂−k + iJkδt

∑
i

σ̂zk σ̂−i

)
+ O(δt )2, (F4)

and the state after the phase recovery is, up to the second order
in δt ,

|ψ (t )〉 ≈
√

κδteiωkδt [σ̂−k + iJkδt
∑

i

σ̂zk σ̂−i]|ψ (0)〉. (F5)

10 3 10 2 10 110 8

10 6

10 4

10 2

100

FIG. 6. Channel infidelity 1 − F�1 for the non-error-corrected
channel (dashed lines) and the error-corrected channel (solid lines)
as a function of the length of the time interval t from the encoding to
the recovery. We compare the results calculated by SLED (blue) and
the Lindblad master equation (ME, red). The qubits and baths are
assumed to be nonidentical with an average qubit angular frequency
ωavg = ω and 20% disorder, an average κavg = κ = 0.01ω and 20%
disorder, and β j = β = 2.

The approximate Kraus operator for the channel Ẽ , includ-
ing the error and phase recovery, can be written as Ẽ1 =√

κδt (σ̂−k + iJkδt
∑

i σ̂zk σ̂−i ). Therefore, the final state after
recovering the single-qubit errors is

R[Ẽ (ρ̂)] = ρ̂ + O(κδt )2 + O[(Jδt )2κδt]. (F6)

After the recovery process, the infidelity scales as (κt )2 for
J = 0, and (κt )2 + (Jt )2κt otherwise. However, if κ is greater
than J , then the (κt )2 part tends to dominate.

APPENDIX G: CHANNEL FIDELITY FOR A DISORDERED
FIVE-QUBIT SETUP

To simulate physical setups, it is essential to take into ac-
count possible disorders in the qubit parameters. To this end,
we consider a setup with variations in qubit frequencies and
coupling strengths. Specifically, we introduce a 20% variation
in each qubit frequency by keeping the average frequency of
the qubits fixed, and likewise for each κ j . Our results, shown
in Fig. 6, demonstrate that the fidelity is relatively robust
against such significant disorder.

043161-8



QUANTUM ERROR CORRECTION UNDER NUMERICALLY … PHYSICAL REVIEW RESEARCH 5, 043161 (2023)

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin et al.,
Quantum supremacy using a programmable superconducting
processor, Nature (London) 574, 505 (2019).

[2] H.-S. Zhong et al., Quantum computational advantage using
photons, Science 370, 1460 (2020).

[3] Y. Wu et al., Strong quantum computational advantage using
a superconducting quantum processor, Phys. Rev. Lett. 127,
180501 (2021).

[4] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T.
Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik,
Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys.
94, 015004 (2022).

[5] A. Montanaro, Quantum algorithms: An overview, npj
Quantum Inf. 2, 15023 (2016).

[6] A. Peres, Reversible logic and quantum computers, Phys. Rev.
A 32, 3266 (1985).

[7] P. W. Shor, Scheme for reducing decoherence in quantum com-
puter memory, Phys. Rev. A 52, R2493 (1995).

[8] E. Knill and R. Laflamme, Theory of quantum error-correcting
codes, Phys. Rev. A 55, 900 (1997).

[9] G. G. La Guardia, Quantum Error Correction (Springer, Cham,
2020).

[10] E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient
quantum computation with linear optics, Nature (London) 409,
46 (2001).

[11] A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-
threshold universal quantum computation on the surface code,
Phys. Rev. A 80, 052312 (2009).

[12] A. G. Fowler, Two-dimensional color-code quantum computa-
tion, Phys. Rev. A 83, 042310 (2011).

[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,
Surface codes: Towards practical large-scale quantum computa-
tion, Phys. Rev. A 86, 032324 (2012).

[14] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Per-
fect quantum error correcting code, Phys. Rev. Lett. 77, 198
(1996).

[15] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H.
Zurek, T. F. Havel, and S. S. Somaroo, Experimental quantum
error correction, Phys. Rev. Lett. 81, 2152 (1998).

[16] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B.
Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C.
Langer, R. Ozeri, and D. J. Wineland, Realization of quantum
error correction, Nature (London) 432, 602 (2004).

[17] P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg,
M. Chwalla, M. Hennrich, and R. Blatt, Experimental repetitive
quantum error correction, Science 332, 1059 (2011).

[18] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M.
Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau,
Repeated quantum error correction on a continuously encoded
qubit by real-time feedback, Nat. Commun. 7, 11526 (2016).

[19] D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen,
O.-P. Saira, and L. DiCarlo, Detecting bit-flip errors in a logical
qubit using stabilizer measurements, Nat. Commun. 6, 6983
(2015).

[20] J. Kelly et al., State preservation by repetitive error detection
in a superconducting quantum circuit, Nature (London) 519, 66
(2015).

[21] Z. Chen et al., Exponential suppression of bit or phase errors
with cyclic error correction, Nature (London) 595, 383 (2021).

[22] M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen, C. E.
Bradley, M. Markham, D. J. Twitchen, B. M. Terhal, and T. H.
Taminiau, Fault-tolerant operation of a logical qubit in a dia-
mond quantum processor, Nature (London) 606, 884 (2022).

[23] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu, D.
Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina, and
C. Monroe, Fault-tolerant control of an error-corrected qubit,
Nature (London) 598, 281 (2021).

[24] C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix,
G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff, Repeated
quantum error detection in a surface code, Nat. Phys. 16, 875
(2020).

[25] J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N.
Muthusubramanian, C. Zachariadis, F. Battistel, M. Beekman,
N. Haider, W. Vlothuizen, A. Bruno, B. M. Terhal, and L.
DiCarlo, Logical-qubit operations in an error-detecting surface
code, Nat. Phys. 18, 80 (2022).

[26] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin,
J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C.
Brown et al., Realization of real-time fault-tolerant quantum
error correction, Phys. Rev. X 11, 041058 (2021).

[27] S. Krinner et al., Realizing repeated quantum error correction in
a distance-three surface code, Nature (London) 605, 669 (2022).

[28] Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu, H. Guan, Q. Zhu,
Z. Wei, T. He, S. Cao et al., Realization of an error-correcting
surface code with superconducting qubits, Phys. Rev. Lett. 129,
030501 (2022).

[29] N. Sundaresan et al., Demonstrating multi-round subsystem
quantum error correction using matching and maximum like-
lihood decoders, Nat. Commun. 14, 2852 (2023).

[30] R. Acharya et al., Suppressing quantum errors by scaling a
surface code logical qubit, Nature (London) 614, 676 (2023).

[31] C. Ryan-Anderson et al., Implementing fault-tolerant en-
tangling gates on the five-qubit code and the color code,
arXiv:2208.01863.

[32] D. Gottesman, Stabilizer codes and quantum error correction,
arXiv:quant-ph/9705052.

[33] I. L. Chuang, D. W. Leung, and Y. Yamamoto, Bosonic quantum
codes for amplitude damping, Phys. Rev. A 56, 1114 (1997).

[34] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J.
Salmilehto, L. Jiang, and S. M. Girvin, New class of quantum
error-correcting codes for a bosonic mode, Phys. Rev. X 6,
031006 (2016).

[35] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007).

[36] Quantum Error Correction, edited by D. A. Lidar and T. A.
Bruns (Cambridge University Press, Cambridge, 2014).

[37] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Collo-
quium: Non-Markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[38] V. Vadimov, J. Tuorila, T. Orell, J. Stockburger, T. Ala-Nissila,
J. Ankerhold, and M. Möttönen, Validity of Born-Markov mas-
ter equations for single- and two-qubit systems, Phys. Rev. B
103, 214308 (2021).

[39] W. S. Teixeira, F. L. Semião, J. Tuorila, and M. Möttönen,
Assessment of weak-coupling approximations on a driven two-
level system under dissipation, New J. Phys. 24, 013005 (2022).

[40] J. Tuorila, J. Stockburger, T. Ala-Nissila, J. Ankerhold, and M.
Möttönen, System-environment correlations in qubit initializa-
tion and control, Phys. Rev. Res. 1, 013004 (2019).

043161-9

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1103/PhysRevA.32.3266
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1038/35051009
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.83.042310
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.1103/PhysRevLett.81.2152
https://doi.org/10.1038/nature03074
https://doi.org/10.1126/science.1203329
https://doi.org/10.1038/ncomms11526
https://doi.org/10.1038/ncomms7983
https://doi.org/10.1038/nature14270
https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1038/s41586-022-04819-6
https://doi.org/10.1038/s41586-021-03928-y
https://doi.org/10.1038/s41567-020-0920-y
https://doi.org/10.1038/s41567-021-01423-9
https://doi.org/10.1103/PhysRevX.11.041058
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.1038/s41467-023-38247-5
https://doi.org/10.1038/s41586-022-05434-1
http://arxiv.org/abs/arXiv:2208.01863
http://arxiv.org/abs/arXiv:quant-ph/9705052
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevX.6.031006
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/PhysRevB.103.214308
https://doi.org/10.1088/1367-2630/ac43ee
https://doi.org/10.1103/PhysRevResearch.1.013004


ARAVIND P. BABU et al. PHYSICAL REVIEW RESEARCH 5, 043161 (2023)

[41] S. Alipour, A. T. Rezakhani, A. P. Babu, K. Mølmer, M.
Möttönen, and T. Ala-Nissila, Correlation-picture approach
to open-quantum-system dynamics, Phys. Rev. X 10, 041024
(2020).

[42] U. Weiss, Quantum Dissipative Systems, 3rd ed. (World
Scientific, Singapore, 2008) Supplemental Material.

[43] J. T. Stockburger and C. H. Mak, Stochastic Liouvillian algo-
rithm to simulate dissipative quantum dynamics with arbitrary
precision, J. Chem. Phys. 110, 4983 (1999).

[44] A. P. Babu, J. Tuorila, and T. Ala-Nissila, State leakage during
fast decay and control of a superconducting transmon qubit, npj
Quantum Inf. 7, 30 (2021).

[45] K. Georgopoulos, C. Emary, and P. Zuliani, Modeling and
simulating the noisy behavior of near-term quantum computers,
Phys. Rev. A 104, 062432 (2021).

[46] B. Schumacher, Sending entanglement through noisy quantum
channels, Phys. Rev. A 54, 2614 (1996).

[47] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T.
Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M.
Girvin, B. M. Terhal, and L. Jiang, Performance and struc-
ture of single-mode bosonic codes, Phys. Rev. A 97, 032346
(2018).

[48] D. Braun, F. Haake, and W. T. Strunz, Universality of decoher-
ence, Phys. Rev. Lett. 86, 2913 (2001).

[49] A. F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F.
Nori, Ultrastrong coupling between light and matter, Nat. Rev.
Phys. 1, 19 (2019).

[50] C. Lubich, Integrators for Quantum Dynamics: A Numeri-
cal Analyst’s Brief Review (John von Neumann Institute for
Computing, Jülich, 2002).

043161-10

https://doi.org/10.1103/PhysRevX.10.041024
https://doi.org/10.1063/1.478396
https://doi.org/10.1038/s41534-020-00357-z
https://doi.org/10.1103/PhysRevA.104.062432
https://doi.org/10.1103/PhysRevA.54.2614
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1103/PhysRevLett.86.2913
https://doi.org/10.1038/s42254-018-0006-2

