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Nonlinear interferometers are promising tools for quantum metrology, as they are characterized by an
improved phase sensitivity scaling compared to linear interferometers operating with classical light. However, the
multimodeness of the light generated in these interferometers results in the destruction of their phase sensitivity,
requiring advanced interferometric configurations for multimode light. Moreover, in contrast to the single-mode
case, time-ordering effects play an important role for the high-gain regime in the multimode scenario and must
be taken into account for a correct estimation of the phase sensitivity. In this paper, we present a theoretical
description of spatially multimode SU(1, 1) interferometers operating at low and high parametric gains. Our
approach is based on a step-by-step solution of a system of integro-differential equations for each nonlinear
interaction region. We focus on interferometers with diffraction compensation, where focusing elements such
as a parabolic mirror are used to compensate for the divergence of the light. We investigate plane-wave and
Gaussian pumping and show that for any parametric gain, there exists a region of phases for which the phase
sensitivity surpasses the standard shot-noise scaling and discuss the regimes where it approaches the Heisenberg
scale. Finally, we arrive at insightful analytical expressions for the phase sensitivity that are valid for both low
and high parametric gain and demonstrate how it depends on the number of spatial modes of the system.
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I. INTRODUCTION

In recent years, nonlinear SU(1, 1) interferometers have
become an important subject in quantum metrology [1–6] as
they can beat the shot noise limit (SNL), which defines the
best phase sensitivity that can be achieved using classical
light [1,2]. Compared to linear interferometers, such as the
traditional Mach-Zehnder interferometer operating with co-
herent light and bounded by the SNL in estimating the phase
sensitivity, they employ nonlinear processes, namely, para-
metric down-conversion (PDC) or four-wave mixing (FWM)
to create quantum states of light that allow for achieving phase
sensitivities below the SNL [1]. Most prominently, due to this,
SU(1, 1) interferometers may be important tools for building
future gravitational wave detectors [7].

A general sketch of the SU(1, 1) interferometer with two
nonlinear crystals where the PDC process takes place is
presented in Fig. 1. Drawing an analogy with a linear interfer-
ometer, one can determine the SNL for a nonlinear SU(1, 1)
interferometer using the integral intensity of the light passing
through the phase object placed inside the interferometer [2,3]
(the light generated by the first crystal),

�φSNL = 1√〈
N̂ (1)

tot

〉 , (1.1)
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where 〈
N̂ (1)

tot

〉 = ∫ dq 〈N̂ (1)(q)〉 (1.2)

is the total number of photons generated by the first crystal
and 〈N̂ (1)(q)〉 is the corresponding photon number distribution
over the transverse momentum q. Throughout this paper, we
will use the superscript (1) to refer to quantities related to the
first crystal and, analogously, (2) for the second crystal.

Using nonlinear interferometers, it is possible to surpass
the shot-noise scaling defined by Eq. (1.1) and achieve the
Heisenberg limit or Heisenberg scaling given by [1,4,8,9]

�φH ∝ 1〈
N̂ (1)

s,tot

〉 , (1.3)

which beats the shot-noise scaling for large intensities of light
〈N̂ (1)

tot 〉 [9].
Most of the early studies focuses on the theoretical descrip-

tion of single-mode and two-mode interferometers [1,3,4]. In
the single-mode regime, the phase sensitivity of nonlinear
interferometers can be improved by increasing the paramet-
ric gain of the nonlinear processes and by unbalancing their
gains [1,5]. However, in general, PDC and FWM couple
many plane-wave modes and result in the generation of multi-
mode light [1,10,11], which requires a proper engineering of
nonlinear interferometers based on such multimode sources.
Indeed, in the multimode case, to achieve a phase sensitivity
below SNL, an appropriate dispersion compensation in the
frequency domain [6,11] or diffraction compensation in the
spatial domain [3] must be performed. At the same time, in
the multimode scenario, increasing the parametric gain brings
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FIG. 1. Simplified sketch of an SU(1, 1) interferometer consist-
ing of two crystals. The PDC radiation (signal, idler) generated in
the first crystal acquires some phase and is amplified/deamplified
in the second crystal depending on the relative phase difference
φ = φp − φs − φi of the pump, signal, and idler radiation.

time-ordering effects into play [12,13] requiring a proper the-
oretical description of nonlinear interferometers at high gain.

In this paper, we theoretically study the phase sensitivity
of spatially multimode SU(1, 1) interferometers at low and
high parametric gains. Our approach is based on the solution
of the system of integro-differential equations for the plane-
wave operators derived in Ref. [12], which we extend in this
paper to the description of entire SU(1, 1) interferometers. We
investigate the phase sensitivity of such multimode interfer-
ometers and study various interferometric configurations and
pump widths in order to show how the multimodeness of the
light affects the phase sensitivity. In addition, we establish
a connection between the transfer functions (determining the
evolution of the plane-wave operators) of the first and second
crystal and the entire interferometer, which allows us to ob-
tain compact expressions for the output intensities and phase
sensitivity for both the plane-wave and finite-width pump
case, and opens the way for future research on more complex
interferometric systems.

For the multimode scenario discussed in this paper, we
consider the phase sensitivity �φ based on the output integral
intensity of the interferometer. The phase sensitivity is usually
defined via the error propagation relation as [1,11,14]

�φ = �N̂tot∣∣ d〈N̂tot〉
dφ

∣∣ =
√∫∫

dq dq′ cov(q, q′)∣∣ d〈N̂tot〉
dφ

∣∣ , (1.4)

where 〈N̂tot〉, analogously to Eq. (1.2), is the output integral
light intensity of the interferometer and the covariance is
given by

cov(q, q′) = 〈N̂ (q)N̂ (q′)〉 − 〈N̂ (q)〉〈N̂ (q′)〉. (1.5)

In the following discussion, we will consider the phase sensi-
tivity normalized with respect to the shot noise limit,

f = �φ

�φSNL
. (1.6)

This paper is organized as follows. Section II presents our
theoretical approach for the description of high-gain SU(1, 1)
interferometers based on the integro-differential equations
and explains the concept of compensated SU(1, 1) interfer-
ometers. Throughout this paper, we will assume that the
signal and idler photons are distinguishable in some degree
of freedom. However, as is shown in Appendix A, this as-
sumption does not affect the presented results. Additional

details regarding the approach for the numerical solution of
the integro-differential equations are provided in Appendix B.
In Sec. III, we first derive analytical solutions of the integro-
differential equations in the limit of a plane-wave pump for
full SU(1, 1) interferometers. Using these equations, the be-
havior of the optimal phase sensitivity is analyzed for both
compensated and noncompensated SU(1, 1) interferometers.
This discussion is then extended in Sec. IV to a finite-width
Gaussian pump. Here, we additionally obtain intriguing con-
nections between the transfer functions describing the PDC
process in each of both crystals and the Schmidt modes of
such squeezers (see also Appendix D). These expressions
allow us to perform a deep analysis of the solution and de-
rive compact expressions for the output intensities and phase
sensitivity. In Sec. V, we then continue with a comparison of
the optimal phase sensitivities of plane-wave and finite-width
pumping with respect to the parametric gain, and investigate
the width of the phase range for which the supersensitivity is
achieved. Finally, we draw our conclusions in Sec. VI.

II. HIGH-GAIN SU(1,1) INTERFEROMETER

In the Heisenberg representation, for both low and high
parametric gain, the PDC process can be described by solv-
ing a set of coupled integro-differential equations for the
signal/idler plane-wave operators âs/âi [12]. In the case of

a Gaussian pump Ep(x, z, t ) = E0e− x2

2σ2 ei(kpz−ωpt ), these equa-
tions are given by [12]

dâs(qs, L, ωs)

dL
= �

∫
dqi e− (qs+qi )2

σ2

2

×h(qs, qi, L)â†
i (qi, L, ωp − ωs),

(2.1a)

dâ†
i (qi, L, ωp − ωs)

dL
= �

∫
dqs e− (qs+qi )2

σ2

2

×h∗(qs, qi, L)âs(qs, L, ωs), (2.1b)

where L is the integration variable, that is, the Cartesian co-
ordinate axis in the collinear (longitudinal) direction parallel
to the pump radiation. � is the theoretical gain parameter
proportional to the field amplitudes, pump width σ , and the
nonlinear susceptibility; qs/i are the transverse wave vectors of
the signal/idler photons; and h(qs, qi, L) is a function describ-
ing the phase matching of the PDC process. Note that the full
width at half maximum (FWHM) of the intensity distribution
of the Gaussian pump is given by 2

√
ln 2σ .

The plane-wave operators obey the bosonic commutation
relations

[âs(qs, L, ωs), â†
s (q′

s, L, ωs)] = δ(qs − q′
s), (2.2a)

[âi(qi, L, ωi ), â†
i (q′

i, L, ωi )] = δ(qi − q′
i ), (2.2b)

[âs(qs, L, ωs), â†
i (q′

i, L, ωi )] = 0. (2.2c)

Note that the last commutation relation implies that the sig-
nal and idler photons are distinguishable with respect to some
degree of freedom (frequency, polarization). More precisely,
we will assume that the frequencies of the signal and idler
photons are not identical but sufficiently close to each other
so that their refractive indices coincide.
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With this assumption, the solution to this set of integro-
differential equations has the form [12]

âs(qs, L, ωs) = âs(qs) +
∫

dq′
s η(qs, q′

s, L)âs(q
′
s)

+
∫

dq′
i β(qs, q′

i, L)â†
i (q′

i ), (2.3a)

â†
i (qi, L, ωi ) = â†

i (qi ) +
∫

dq′
i η

∗(qi, q′
i, L)â†

i (q′
i )

+
∫

dq′
s β∗(qi, q′

s, L)âs(q
′
s), (2.3b)

where âs(qs) and âi(qi ) are the initial signal and idler plane-
wave operators, while η and β are the complex-valued transfer
functions depending on the transverse wave vectors and the
crystal length.

Note that this form of the solution with only two transfer
functions η and β requires that the phase matching func-
tion is symmetric with respect to the wave vectors, namely,
h(qs, qi, L) = h(qi, qs, L), which is fulfilled for the type-I
PDC process considered in this paper since, as we mentioned
above, the refractive indices of the signal and idler photons
are identical. The general solution to the system of integro-
differential equations (2.1) requires four transfer functions, so
that the functions appearing in Eq. (2.3b) are no longer the
complex conjugates of the functions appearing in Eq. (2.3a)
[13,15].

Plugging the solution in the form of Eqs. (2.3a) and (2.3b)
into the integro-differential equations (2.1) yields two equiv-
alent [16] sets of coupled integro-differential equations for η,
β and their complex conjugates, one of which reads

dβ(qs, q′
i, L)

dL
= �

∫
dqi e− (qs+qi )2σ2

2

×h(qs, qi, L)η̃∗(qi, q′
i, L), (2.4a)

d η̃∗(qi, q′
i, L)

dL
= �

∫
dqs e− (qs+qi )2σ2

2

×h∗(qs, qi, L)β(qs, q′
i, L), (2.4b)

where

η̃∗(qi, q′
i, L)

def.= η∗(qi, q′
i, L) + δ(qi − q′

i ). (2.5)

This system of equations is easier to solve numerically than
the one given by Eqs. (2.1a) and (2.1b) because it is no
longer operator valued. Note that this system is also similar
to the ones already derived in Refs. [13,15] for the frequency
domain.

Using Eq. (2.3a), the mean photon number distribution
(intensity distribution) of the signal photon can be expressed
in terms of the transfer function β [12],

〈N̂s(qs)〉 =
∫

dq′
i|β(qs, q′

i, L)|2. (2.6)

Similarly, the covariance is given by

cov(qs, q′
s) =
∣∣∣∣
∫

dq′
i β(qs, q′

i, L)β∗(q′
s, q′

i, L)

∣∣∣∣2
+ δ(qs − q′

s)〈N̂s(qs)〉. (2.7)

Note that this expression does not contain a signal-idler cross-
correlation term, since we assumed that the signal and idler
photons are distinguishable, see Eq. (2.2c). The second term,
proportional to the intensity distribution, can be identified as
the shot noise term and follows from the Dirac-delta com-
mutation relation of the operators due to the light energy
quantization, while the argument of the modulus squared
corresponds to the field amplitude (first-order) correlation
function G(1)(qs, q′

s) [17].
In the completely degenerate case, where the photons of the

signal and idler beam are indistinguishable, � in the system
of the integro-differential equations (2.1) must be replaced
with 2� due to the appearance of an additional term in the
equations during the evaluation of the commutators in the
Heisenberg equations (see the derivation in Ref. [12]). How-
ever, as will be seen later, this replacement does not affect the
experimentally relevant parametric gain G defined in Secs. III
and IV. Hence, the transfer functions η̃ and β will remain
unchanged, given the same value of G.

Following from that, as shown in Appendix A, the integral
covariance is increased by a factor of 2 due to the appearance
of the cross-correlation term. Additionally, due to the photon
indistinguishability, the total intensity spectrum should be
considered instead of the signal beam intensity, which leads
to an increase in the integrated intensity by a factor of 2,
〈N̂ (q)〉 = 〈N̂s(q)〉 + 〈N̂i(q)〉 = 2〈N̂s(q)〉. Ultimately however,
the normalized phase sensitivity f will remain unchanged
because these additional factors of 2 cancel each other out,
see Eqs. (1.4) and (1.6).

To describe the entire SU(1, 1) interferometer, we solve
the systems of integro-differential equations separately for the
first and for the second crystals with functions h(1)(qs, qi, L)
and h(2)(qs, qi, L), respectively, taking into account that the
output operators of the first crystal are the input operators
for the second crystal. In both cases the system is solved for
the region L ∈ [0, L1], where L1 is the (single) crystal length.
Further details are given in Appendix B.

A. Noncompensated interferometer

An SU(1, 1) interferometer in its conventional form (with-
out any focusing optical elements) is presented in Fig. 2(a). It
consists of two PDC sections, for example nonlinear crystals,
separated by some spatial region in which the measured object
is placed and the pump signal and idler radiation acquire some
phase φ. This phase can be simply induced by an air gap
between the two crystals. However, more generally, electro-
optical modulation or any kind of linear material between the
crystals can be used to induce such a phase shift.

Moreover, in a general description, the phase φ(qs, qi )
might depend on the transverse wave vectors qs and qi [for
example, for large distances between the crystals in Fig. 2(a)].
However, for simplicity, we assume that the distance between
two crystals is small enough, so that we can restrict ourselves
to phase shifts given by an effective constant phase φ. This al-
lows us to provide a direct comparison with the compensated
interferometer and to obtain analytical expressions for the
phase sensitivity in the finite-width pump case, see Sec. IV B
and Appendix B.

043158-3



SCHARWALD, MEIER, AND SHARAPOVA PHYSICAL REVIEW RESEARCH 5, 043158 (2023)

(a)

Crystal 2Crystal 1

PDC

radiation

Pump

Detection

(b)

crystal

Single

Pump
SphericalDetection

mirror

FIG. 2. (a) Noncompensated and (b) compensated configurations of the SU(1, 1) interferometer. In the noncompensated case, the radiation
generated in the first crystal diverges, which can be considered as an internal loss mechanism since the spatial overlap of the radiation generated
in two crystals is reduced, as indicated by the black arrows. Importantly, note that even if the distance between the crystals vanishes, such an
overlap is still not perfect (the radiation also diverges inside the crystals). In the compensated case, the spherical mirror reflects the radiation
back into the crystal and compensates for the divergence.

In the multimode case, due to the divergence of the light,
the radiation generated before (in the first crystal) and after (in
the second crystal) the phase shift does not completely over-
lap, even if the distance between the crystals approaches zero,
resulting in imperfect interference, which can be regarded as
an internal loss mechanism. In the following, we will refer to
such an interferometer as a noncompensated SU(1, 1) inter-
ferometer.

For the noncompensated interferometer, the functions h
that determine the dynamics of the field operators of the first
and the second crystal are then given by

h(1)(qs, qi, L) = ei�k(qs,qi )L, (2.8a)

h(2)(qs, qi, L) = ei�k(qs,qi )[L+L1]eiφ, (2.8b)

respectively, where �k(qs, qi ) =
√

k2
p − (qs + qi )2 −√

k2
s − q2

s −
√

k2
i − q2

i is the wave vector mismatch inside the
PDC section and we suppose that the distance between the
crystals is d = 0.

B. Compensated interferometer

To compensate for this divergence, various focusing optical
elements can be used, such as a spherical mirror as shown in
Fig. 2(b) or the 4f-optical system of lenses [18]. Indeed, such
focusing optical elements change the wavefront of light and
add a quadratic phase depending on the transverse coordinate

x, namely, e−i x2

2F , where F is the focal length [18]. Therefore,
if the crystal is placed at the 2F position with respect to the
spherical mirror (or two crystals placed at the F positions
with respect to the 4f-optical system of lenses), the quadratic
phase introduced by the mirror compensates for the quadratic
phase of light, which leads to a change in the wavefront from
convex to concave. In this case, taking into account the phase
compensation and the wavefront modification, the h function
for the second crystal is given by

h(2)(qs, qi, L) = e−i�k(qs,qi )[L−L1]eiφ. (2.9)

We define this kind of SU(1, 1) interferometer with diver-
gence compensation as a compensated SU(1, 1) interferom-
eter.

In experimental setups, it is not always easy to reach
perfect compensation. In that case, an additional phase term

depending on the transverse wave vectors qs and qi must be
added to h(2) in the theoretical description, leading to a form
of the integro-differential equations similar to the noncompen-
sated case.

III. PLANE-WAVE PUMP

We start our analysis by considering the plane-wave pump
case, where analytical expressions for the output plane-wave
operators can be obtained. Formally, the transition to the
plane-wave pump case can be performed by taking the limit
σ → ∞ in the system of integro-differential equations (2.1),

�0
σ√
2π︸ ︷︷ ︸

=�

e− (qs+qi )2
σ2

2
σ→∞−−−→ �0δ(qs + qi ),

(3.1)

where �0 is the redefined theoretical gain constant in the
plane-wave pump case. The resulting delta function eliminates
the integrals in the integro-differential equations (2.1) and
allows for an analytical treatment of the problem.

More rigorously, the following set of coupled differential
equations can be obtained by repeating the derivation pre-
sented in Ref. [12] for a plane-wave pump,

dâs(qs, L, ωs)

dL
= �0h(qs, L)â†

i (−qs, L, ωp − ωs),

(3.2a)

dâ†
i (−qs, L, ωp − ωs)

dL
= �0h∗(qs, L)âs(qs, L, ωs), (3.2b)

where h(qs, L)
def.= h(qs,−qs, L). Note that in this case, each

signal transverse momentum qs is connected with only one
fixed idler transverse momentum, qi = −qs. The commu-
tation relations for the plane-wave operators are given by
Eqs. (2.2a)–(2.2c).

Similarly to the finite-width case presented in Sec. II, the
solutions to the system of differential equations (3.2) can be
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written in the form [19–22]

âs(qs, L, ωs) = η̃pw(qs, L)âs(qs)

+βpw(qs, L)â†
i (−qs), (3.3a)

â†
i (−qs, L, ωi ) = η̃∗

pw(−qs, L)â†
i (−qs)

+β∗
pw(−qs, L)âs(qs). (3.3b)

Again, this form of the solution requires h(qs,−qs) =
h(−qs, qs), or, more specifically, h(qs) = h(−qs) and leads to
two equivalent sets of differential equations for the βpw and
η̃∗

pw functions, one of which reads

dβpw(qs, L)

dL
= �0h(qs, L)η̃∗

pw(−qs, L), (3.4a)

d η̃∗
pw(−qs, L)

dL
= �0h∗(qs, L)βpw(qs, L). (3.4b)

Using Eq. (3.3a), the distribution of the mean number of signal
photons is given by

〈N̂s(qs)〉 = |βpw(qs, L)|2δ(0). (3.5)

The divergent factor δ(0) appears due to the Dirac-delta
commutation relations for the plane-wave operators and the
infinite transverse size of the system [22]. Below, to avoid
this divergence, we instead consider the density of quantities,
namely, the intensity and covariance per transverse length
of the system, which are well defined even in the limit of
Lx → ∞.

For example, the density of the intensity spectrum of the
signal radiation is given by

Ns(qs) = |βpw(qs, L)|2. (3.6)

Similarly, the covariance density of the signal radiation can
be expressed via the intensity as (see also Ref. [23])

covpw(qs, q′
s) = C(qs)δ(qs − q′

s), (3.7a)

where

C(qs) = Ns(qs)[1 + Ns(qs)]. (3.7b)

A more detailed discussion of this divergence problem and
the derivation of Eqs. (3.6), (3.7a), and (3.7b) is shown in
Appendix C.

Solving the coupled differential equations (3.4) for a single
crystal with Eq. (2.8a) and the initial conditions η̃pw(qs) = 1
and βpw(qs) = 0 yields the transfer functions connecting the
input and output operators [23],

β (1)
pw (qs, L) = 2�0

g(qs)
sinh

(
L1g(qs)

2

)
ei �k(qs )L1

2 , (3.8a)

η̃(1)
pw (qs, L) =

[
cosh

(
L1g(qs)

2

)
− i�k(qs)

g(qs)

× sinh

(
L1g(qs)

2

)]
ei �k(qs )L1

2 , (3.8b)

where

g(qs) =
√

4�2
0 − �k2(qs), (3.9)

and �k(qs)
def.= �k(qs,−qs). Note that �k(qs) = �k(−qs).

Then, the density of the intensity distribution of the signal
beam after the first crystal is given by

N (1)
s (qs) =

[
2�0

g(qs)
sinh

(
L1g(qs)

2

)]2

. (3.10)

Note that although g(qs) can take both real and purely imag-
inary values, the intensity distribution is always real and
positive due to the sinh-term. Therefore, it is not necessary
to write | · |2 on the right-hand side of Eq. (3.10). Note
that Eqs. (3.8)–(3.10) derived above coincide with the results
already found in a similar fashion in Refs. [19–21,23].

To analyze the effect of the focusing element (spherical
mirror) on the output spectra and the phase sensitivity, we first
start by extending the plane-wave-pump analytical treatment
to the SU(1, 1) interferometer without any compensation ele-
ments and then compare the noncompensated scheme with its
compensated counterpart.

In this paper, we consider an SU(1, 1) interferometer con-
sisting of BBO crystals of length L1 = 2 mm, pumped by
a laser with a wavelength of 354.6 nm. To obtain a con-
nection between the theoretical gain parameter �0 and the
experimental gain, the collinear output intensity N (1)

s (0) of a
single crystal is fitted by the function y(�0) = B sinh2(A�0).
The experimental gain G is then given by G = A�0 [12].
For plane-wave pumping and perfect phase matching in the
collinear direction [that is, �k(0) = 0], it is immediately clear
from Eq. (3.10) that A = L1 and B = 1.

For the degenerate case, as mentioned in Sec. II, an ad-
ditional factor of 2 appears on the right-hand sides of the
coupled differential equations (3.4) due to the replacement of

�0 with 2�0. The fit is then performed with respect to �′
0

def.=
2�0 and the fit function reads y(�′

0) = B′ sinh2(A′�′
0) with the

parametric gain defined as G′ = A′�′
0. Since the newly defined

argument �′
0 is just rescaled with respect to the original �0,

it is immediately clear that B = B′ and A′ = A/2. Therefore,
G = G′, meaning that the definition of the experimental gain
is independent of whether the frequency degenerate or the
nondegenerate case is considered.

A. Noncompensated scheme

In order to find a solution in the case of the non-
compensated SU(1, 1) interferometer, we analytically solve
the system of differential equations (3.2) using Eqs. (2.8a)
and (2.8b), and obtain the output plane-wave operators at
the output of the SU(1, 1) interferometer. In this case,
the form of the solution (3.3) has the following transfer
functions:

βpw(qs) = − 4�0

g2(qs)

[
�k(qs) sin

(
φ

2

)
sinh

(
L1g(qs)

2

)

− g(qs) cos

(
φ

2

)
cosh

(
L1g(qs)

2

)]

× sinh

(
L1g(qs)

2

)
ei(L1�k(qs )+ φ

2 ), (3.11a)

043158-5



SCHARWALD, MEIER, AND SHARAPOVA PHYSICAL REVIEW RESEARCH 5, 043158 (2023)

−40 −20 0 20 40
External angle θs [mrad]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

in
te

ns
it
y

[a
rb

.
un

it
s] (a) φ = 0

non-comp.
Gain G

0.01

1.25

2.5

3.75

5.0

−40 −20 0 20 40
External angle θs [mrad]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

in
te

ns
it
y

[a
rb

.
un

it
s] (b) φ = π/2

non-comp.
Gain G

0.01

1.25

2.5

3.75

5.0

−40 −20 0 20 40
External angle θs [mrad]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

in
te

ns
it
y

[a
rb

.
un

it
s] (c) φ = π

non-comp.
Gain G

0.01

1.25

2.5

3.75

5.0

−40 −20 0 20 40
External angle θs [mrad]

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
in

te
ns

it
y

[a
rb

.
un

it
s] (d) φ = π

compensated
Gain G

0.01

1.25

2.5

3.75

5.0

FIG. 3. Calculated intensity distributions for different phases between the crystals and gains in the case of plane-wave pumping.
(a)–(c) Noncompensated interferometer and (d) compensated interferometer. In the compensated case, the intensity profile is only scaled
as ∼ cos2(φ/2), see Eqs. (3.14a) and (3.14b).

η̃pw(qs) = −ei(�k(qs )L1+φ)

g2(qs)

{−2�2
0

[
cosh (L1g(qs)) − 1

]
+e−iφ

[− 2�2
0 + (2�2

0 − g2(qs)
)

cosh (L1g(qs))

+ i�k(qs)g(qs) sinh (L1g(qs))
]}

. (3.11b)

These functions allow us to calculate the density of the
output intensity distribution of the signal beam,

Ns(qs) =N (1)
s (qs)

∣∣∣∣eiφ

[
cosh

(
L1g(qs)

2

)

+ i�k(qs)

g(qs)
sinh

(
L1g(qs)

2

)]

+
[

cosh

(
L1g(qs)

2

)
− i�k(qs)

g(qs)
sinh

(
L1g(qs)

2

)]∣∣∣∣2.
(3.12)

The covariance density for the signal beam can be found by
plugging Eq. (3.12) into Eq. (3.7b) with the use of Eq. (3.7a).

Figures 3(a)–3(c) present the intensity distributions for
different gains and phases between the crystals according to
Eq. (3.12). They are plotted over the external angle θs, which,
in the case of small angles, is connected to the transverse wave
vector via θs ≈ qs/kvac

s , where kvac
s is the wave vector of the

signal photons in vacuum. Note that throughout this paper,
we will use the external angles instead of the transverse wave
vectors for all relevant plots. The values for the parametric
gain were chosen in accordance with the values commonly
used in experiments [3,12,17,24].

One can observe that the intensity profiles broaden as the
gain increases. The phase between the crystals strongly mod-
ifies the intensity profiles, leading to destructive interference
for a certain range of angles. This is due to the fact that the
radiation generated in each crystal has a quadratic phase with
respect to the angle, see Eqs. (3.11a) and (3.11b). Even if the
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FIG. 4. (a) Calculated normalized phase sensitivity f for different gains for the noncompensated setup. For each gain, the crosses mark
the points where f is minimized. The horizontal thin gray line indicates the shot noise level ( f = 1). The divergences occur at points where
the derivative of the integral intensity (density) vanishes: dNs,tot

dφ
= 0 [see Eqs. (1.4) and (C9)]. (b) Calculated normalized phase sensitivity f

for different gains for the compensated setup. Note that the entire plotted region is below the shot noise level. The inset shows the full phase
interval [0, 2π ]. As mentioned in the text, the minimal value of f is always reached at φ = π . Furthermore, f diverges for φ → 2πk, k ∈ Z,
see Eqs. (3.15a)–(3.15c). In both cases, the pump is given by a plane wave.

distance between the crystals is zero, such a quadratic phase
is present and leads to a modification of the intensity distri-
bution when various additional constant phases are applied.
The distributions of the covariance have a similar behavior
to the intensity profiles and are shown in Appendix E 1. The
normalized phase sensitivity is presented in Fig. 4(a). It can
be seen that the sensitivity is destroyed as the gain increases.
This is directly related to the fact that the quadratic phase of
the radiation entering the second crystal is not compensated,
which effectively acts as internal losses and destroys the phase
sensitivity. With increasing gain, such losses become more
pronounced. A similar behavior of the phase sensitivity of the
frequency multimode SU(1, 1) interferometer was observed
in Refs. [6,11].

B. Compensated scheme

In the case of the compensated SU(1, 1) interferometer, we
analytically solve the system of differential equations (3.2)
with the use of Eq. (2.8a) and Eq. (2.9), and find the following
transfer functions, which connect the output and the input
plane-wave operators of the entire interferometer:

βpw(qs) = �0

g(qs)

{
i�k(qs)

g(qs)
[cosh (L1g(qs)) − 1]

+ sinh(L1g(qs))

}
(1 + eiφ ), (3.13a)

η̃pw(qs) = 1 + 2�2
0

g2(qs)
{cosh[L1g(qs)] − 1}(1 + eiφ ).

(3.13b)

One can observe that in this case, both the functions βpw(qs)
and η̃pw(qs) have a simple dependence on the phase φ, which

allows the output intensity to be written in a much more
compact and simple form compared to Eq. (3.12),

Ns(qs) = 4ξpw(qs) cos2

(
φ

2

)
, (3.14a)

where

ξpw(qs) = N (1)
s (qs)

[
1 + N (1)

s (qs)
]
. (3.14b)

Note that the entire intensity spectrum now scales as
∼ cos2(φ/2) and is therefore identically zero for φ = π ,
which implies perfect destructive interference for all angles
of emission.

The normalized intensity distribution for different gains is
shown in Fig. 3(d). For the chosen interval of gains, the width
of the distribution remains almost unchanged. However, since
the distribution of a single crystal broadens with increasing
gain, then, according to Eqs. (3.14a) and (3.14b), the intensity
distribution of the entire interferometer will also be broadened
for higher values of gain.

Substituting the expression for the intensity distribution
given by Eqs. (3.14a) and (3.14b) into Eqs. (3.7a) and (3.7b),
one can calculate the covariance in the compensated case. The
plots of the covariances for different interferometric phases
and gains are presented in Appendix E 1 and show a similar
behavior to the intensity profiles.

Finally, by replacing the intensity and the covariance in
Eq. (1.4) with their densities given in Eqs. (3.14a) and (3.14b)
and Eqs. (3.7a) and (3.7b), respectively, it is possible to obtain
an analytical expression for the phase sensitivity density,

�
 =
√
Apw + 4Bpw cos2

(
φ

2

)
2Apw

∣∣sin
(

φ

2

)∣∣ , (3.15a)
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where

Apw =
∫

dqs ξpw(qs) (3.15b)

is the density of the integral intensity of the SU(1, 1) interfer-
ometer and

Bpw =
∫

dqs[ξpw(qs)]2. (3.15c)

Note that in the plane-wave pump case, the phase
sensitivity defined via the integral quantities [Eq. (1.4)]
can be obtained by dividing the phase sensitivity density
[Eq. (3.15a)] by

√
Lx, which means that the integral phase

sensitivity is length dependent. However, the SNL-normalized
phase sensitivity f , given by Eq. (1.6), no longer depends on
the considered transverse size of the system and coincides
with the normalized phase sensitivity density.

The SNL-normalized phase sensitivity f is presented in
Fig. 4(b). In this case, due to the full compensation, all spa-
tial modes are deamplified simultaneously, and therefore, the
phase sensitivity behaves similarly to the single-mode case [1]
and beats the shot noise limit. Moreover, from Fig. 4(b) it
becomes apparent that the width � of the phase range for
which the SNL is overcome ( f < 1) gradually narrows as the
parametric gain increases. Furthermore, this region is defined
for all gains, which means that for all gain values (even for
low gains), there exists some range of phases where the phase
sensitivity beats the SNL, which is similar to early studies of
the single-mode interferometer [8].

From Eqs. (3.15a)–(3.15c) it can be easily seen that the best
phase sensitivity (minimal values of �φ and f ) is achieved
for φ = π , that is, at the dark fringe of the interferome-
ter. Similarly, the optimal working point for more elaborate
models (including losses) was found to be near the dark
fringe [1,4,25]. The value of the minimal SNL-normalized
phase sensitivity is then given by

fpw,min = 1

2

√√√√ N (1)
s,tot

N (1)
s,tot + N (1)

s,2

, (3.16a)

where

N (1)
s,tot =

∫
dqs N (1)

s (qs), (3.16b)

N (1)
s,2 =

∫
dqs
[
N (1)

s (qs)
]2

. (3.16c)

Notably, the expressions derived above only depend on the
intensity spectra of the first crystal. This is due to the fact that
both crystals have the same parameters (length, gain, etc.). At
the same time, the perfect compensation induces a symmetry,
so that the parameters of the first crystal fully describe the
system.

The behavior of the optimal phase sensitivity as a function
of the parametric gain G is discussed in Sec. V where a
comparison to the finite-width pump case and the Heisenberg
scaling of the phase sensitivity is also drawn.

TABLE I. Fitting parameter A for the selected gains G.

Gain G Fit constant A�

0.01 ± 5 × 10−11 140.285 ± 6 × 10−7

1.25 ± 1.2 × 10−4 144.029 ± 0.013
2.5 ± 9 × 10−4 150.44 ± 0.06
3.75 ± 9 × 10−4 155.19 ± 0.04
5.0 ± 7 × 10−4 158.080 ± 0.021

IV. FINITE-WIDTH GAUSSIAN PUMP

In this section, we extend our studies to a more general
case by considering a pump beam with a Gaussian profile
with a FWHM of the intensity distribution of 50 µm. All other
parameters are the same as in the plane-wave case, see Sec. III.
For a finite-width pump, the output signal and idler plane-
wave operators can only be found by numerical integration of
the system of integro-differential equations (2.4), as described
in Appendix B. From there, the intensity distributions, covari-
ances, and the normalized phase sensitivities are calculated
numerically.

Analogously to the plane-wave case, the collinear inten-
sity [26] 〈N̂ (1)

s (0)〉 dq from a single crystal must be fitted
in order to obtain a connection between the theoretical gain
parameter � and the experimental gain G. However, in the
multimode regime with finite-width pumping, this procedure
is not as straightforward as for the plane-wave pump case,
especially if a large range of gain values should be considered.

As it was shown in Sec. III, for the plane-wave pump, the
collinear intensity scales as ∼ sinh2(G), where G = �L1 is
the parametric gain and L1 is the crystal length. However, in
general, for multimode light, this tendency is not preserved for
all gain intervals, namely, the fitting parameter is no longer
a constant over the full gain range. In order to obtain the
correct gain dependence, we therefore perform a series of
fits of the collinear intensities for small intervals around each
value of the theoretical gain � under consideration. From this
procedure we effectively obtain the fitting parameter A� for
different values of � and the experimental gain is given by
G = A��. We have added a subscript � to show that the fit
parameter A now depends on �. Thus, the fitting formula now
reads y(�) ∝ sinh2(A��). The values of A� corresponding
to the experimental gains used for the plots shown in the
following are given in Table I. Furthermore, we show the full
behavior of A over an entire range of gain values in Fig. 5.
It can be seen that in the limit of low-gain and high-gain
values (where the radiation tends to a single mode), the fit-
ting parameter approaches a constant value. The uncertainties
indicated for A� and G are the uncertainties introduced by the
fitting procedure. Note that since the fit parameter A� has an
uncertainty assigned, G can also be provided only within some
uncertainty.

Similarly to the plane-wave pump, � must be replaced
with 2� in the frequency degenerate case, as described in
Sec. II. However, with the same argument as shown for the
plane-wave differential equations in Sec. III, it is clear that the
definition of the parametric gain G stays unchanged, meaning
that the results shown below also apply to the frequency de-
generate case.
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FIG. 5. Values of the fitting parameter A versus the parametric
gain. The error bars correspond to the standard error of the fitting
procedure. The bars are scaled up by a factor of 200 along G and
by a factor of 20 along A for better visibility. Note that the density
of points is higher for G < 1.9 that results in decrease of the error
below G = 1.9. See also Table I for the selected values.

A. Noncompensated scheme

In the case of the noncompensated scheme, the profiles
of the intensity distribution for different phases and gains
are presented in Figs. 6(a)–6(c). One can observe that the
Gaussian pump profile modifies the intensity at the zero phase,
bringing it closer to the Gaussian shape. Overall, for different
phases, the graphs show a similar behavior to the plane-wave
pump case. However, since the number of modes is smaller
in the case of a finite-width pump compared to the case
of a plane-wave pump, the intensity distribution in the case
of finite-width pumping broadens more slowly. The plots of
the covariance are presented and discussed in Appendix E 2.
Figure 7(a) presents profiles of the SNL-normalized phase
sensitivity for different gains where no supersensitivity re-
gions are observed.

B. Compensated scheme

For the compensated configuration, similarly to the plane-
wave pump, it is possible to obtain simplified expressions for
the intensity, the covariance and the phase sensitivity. To do
this, relationships between the transfer functions of the first
and the second crystal are required. In the case of the perfect
compensation, these relations are derived in Appendix D and
are given by

η̃
(2)
φ (q, q′) = [η̃(1)(q′, q)]∗, (4.1a)

β
(2)
φ (q, q′) = eiφβ (1)(q′, q). (4.1b)

To be precise, in the above expression, the transfer functions
with the index (1) (index (2)) connect the input and the output
plane-wave operators of the first (second) crystal according to
Eqs. (2.3a) and (2.3b). The index φ indicates the dependence
on the interferometer phase for the second crystal [27].

In Appendix B, we derive expressions for the composite
transfer functions of the entire interferometer (η̃(SU) and β (SU))
in terms of the transfer functions of both separate crystals,
see Eqs. (B13a) and (B13b), which can be used to obtain a
simplified expression for the intensity spectrum of the entire
interferometer via Eq. (2.6),

〈N̂s(qs)〉 = 4 cos2

(
φ

2

)∫
dq′|ξ (qs, q′)|2, (4.2a)

where

ξ (qs, q′) =
∫

dq̄ β (1)(q̄, qs)[η̃(1)(q̄, q′)]∗. (4.2b)

Importantly, note that the function ξ (qs, q′) no longer de-
pends on φ. This implies that, as in the plane-wave pump case,
all spatial modes are amplified or deamplified simultaneously,
and the intensity distribution is identically zero for φ = π .
Furthermore, the expression for the output intensity depends
only on the transfer functions of the first crystal. This is due
to the fact that the full compensation induces a symmetry in
the system, see Appendix D.

Plots of the intensity distributions for several parametric
gain values can be found in Fig. 6(d). For the chosen gain
parameters, the width of the intensity distribution remains
almost unchanged; however, as the gain increases, its shape
becomes more Gaussian. This is associated with a decrease in
the number of modes with increasing gain.

Further simplifications are possible by considering the
Schmidt decomposition of the transfer functions. As it was
shown in Refs. [13,15], there exists a joint Schmidt decompo-
sition (Bloch-Messiah reduction) for the transfer functions β

and η̃, which read

β(q, q′) =
∑

n

√
�nun(q)ψn(q′), (4.3a)

η̃(q, q′) =
∑

n

√
�̃nun(q)ψ∗

n (q′), (4.3b)

where
√

�n and
√

�̃n are the singular values of β and
η̃, respectively, un(q) are the functions associated with the
output Schmidt operators (we denote these functions as
the output Schmidt modes) and ψn(q′) are associated with
the input Schmidt operators (the input Schmidt modes) of the
considered system. See also Appendix A 1 for further details.
Equations (4.3a) and (4.3b) extend the results for the Schmidt
decomposition already found for the frequency domain in
Refs. [13,15] to the spatial domain. Note that the eigenvalues
�n and �̃n are connected via �̃n = 1 + �n [13].

Applying Eqs. (4.3b) and (4.3a) to Eqs. (4.2a) and (4.2b),
the total intensity of the SU(1, 1) interferometer can be writ-
ten as

〈N̂s,tot〉 = 4A cos2

(
φ

2

)
, (4.4a)

where

A =
∑

n

�(1)
n

(
1 + �(1)

n

)
. (4.4b)
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FIG. 6. Calculated intensity distributions for a finite-width Gaussian pump with FWHM of 50 µm for the (a)–(c) noncompensated
interferometer and for the (d) compensated interferometer for different phases. Same as for the plane-wave pump case, varying the phase,
the intensity profiles of the compensated SU(1, 1) interferometer are only scaled as ∼ cos2(φ/2), see Eqs. (4.2a) and (4.2b), therefore, only
one plot for all φ 
= π is presented.

Similarly, the covariance can be written as

cov(qs, q′
s) = 16 cos4

(
φ

2

)∫
dq̄|ξ (qs, q̄)ξ ∗(q′

s, q̄)|2

+ δ(qs − q′
s)〈N̂s(qs)〉. (4.5)

Plots of the covariance for different gains and phases are
presented and discussed in Appendix E 2.

The integral covariance can be written in the following
form:∫∫

dqs dq′
scov(qs, q′

s) = 4 cos2

(
φ

2

)[
A + 4B cos2

(
φ

2

)]
,

(4.6a)

where

B =
∑

n

[
�(1)

n

(
1 + �(1)

n

)]2
. (4.6b)

Finally, combining the formulas for the integral intensity
and covariance presented in this section, it is possible to derive
an analytic expression for the phase sensitivity in the case of
perfect compensation and finite-width pumping,

�φ =
√
A + 4B cos2

(
φ

2

)
2A
∣∣sin
(

φ

2

)∣∣ . (4.7)

Note that the expression above has a similar form to the phase
sensitivity in terms of the density of quantities presented in
Eqs. (3.15a)–(3.15c) for the plane-wave case. Profiles of the
SNL-normalized phase sensitivity f for different gains are
shown in Fig. 7(b). One can observe that as the gain increases,
the phase supersensitivity range width � (the range of phases
for which the phase sensitivity beats the shot noise limit)
gradually decreases. However, for all presented gains, there
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FIG. 7. (a) Calculated normalized phase sensitivity f for different gains for the noncompensated setup. For each gain, the crosses mark
the points where f is minimized. The horizontal thin gray line indicates the shot noise level ( f = 1). The divergences occur at points where
d〈N̂s,tot 〉

dφ
= 0 [see Eq. (1.4)]. (b) Calculated normalized phase sensitivity f for different gains for the compensated setup. Note that the entire

plotted region is below the shot noise level. The inset shows the full phase interval [0, 2π ]. As mentioned in the text, the minimal value of f is
always reached at φ = π . Furthermore, f diverges for φ → 2πk, k ∈ Z, see Eq. (4.7). In both cases, the pump is given by a Gaussian pump
with an intensity-FWHM of 50 µm.

exists some region where the phase sensitivity beats the shot
noise level.

From Eq. (4.7) it can be seen that, similarly to the plane-
wave pump case, the best (optimal) phase sensitivity is
achieved for the optimal point φ = π , that is, at the dark fringe
of the interferometer (see also Refs. [1,4,25]). For this phase,
the SNL-normalized phase sensitivity is given by

fmin = 1

2

√〈
N̂ (1)

s,tot

〉
A . (4.8)

A more detailed analysis of the behavior of fmin and � as a
function of G is given in the next Sec. V, where we also draw a
comparison to the plane-wave pump case and the Heisenberg
scaling of the phase sensitivity.

So far, we have considered only the case of perfect com-
pensation and equal gains of the first and the second crystal.
The choice of equal gains is supported by the fact that their
unbalancing leads to a mismatch of the spatial shapes of
the Schmidt modes of each crystal. This mismatch acts as
an additional loss mechanism leading to a worsening of the
phase sensitivity. The same is valid for a partial (imperfect)
compensation due to, for example, a misalignment of the
spherical mirror. Since the system is relatively sensitive to im-
perfections in the compensation, the phase sensitivity would
be reduced in these cases.

V. COMPARISON OF THE OPTIMAL
PHASE SENSITIVITIES

In this section, to compare the plane-wave and finite-width
pumping regimes, we only consider the compensated setup,

because the noncompensated setup shows no supersensitivity
for any phase, as seen in the previous sections.

As it was discussed in Sec. III, in the plane-wave pump
case, the integral quantities depend on the transverse length Lx

of the system. Therefore, to ensure a proper comparison of the
two cases, we assume that the plane-wave pump system has
the required transverse length Lx, so that its integral number
of photons after the first crystal is equal to the integral number
of photons in the case of finite-width pumping for the same
value of the parametric gain. The dependence of Lx on the
gain is presented in Fig. 8. For more details see Appendix C.

The assumed equality of the light intensities after the first
crystal leads to the same Heisenberg limit for both cases,
which, in accordance with Eq. (1.3), we define as

�φH = 1

2
〈
N̂ (1)

s,tot

〉 = 1

2LxN (1)
s,tot

. (5.1)

Thus, the SNL-normalized Heisenberg scaling is given by

fH = 1

2
√〈

N̂ (1)
s,tot

〉 = 1

2
√

LxN (1)
s,tot

. (5.2)

To compare the optimal phase sensitivity in the plane-wave
and the finite-width cases, we show fmin for both cases over a
range of parametric gains in Fig. 8. The range of the paramet-
ric gains is sufficiently broad to cover values commonly found
in experiments [3,12,17,24], similarly to the values chosen in
Sec. III A, and even larger values. It should be noted, however,
that in experiments, it is even possible to reach much higher
parametric gains, for example up to G = 15 [28].

One can observe that, as the parametric gain increases, the
optimal phase sensitivity approaches the Heisenberg scaling
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FIG. 8. Optimal phase sensitivities fmin of the compensated
SU(1, 1) interferometer for the plane-wave pump and the finite-
width Gaussian pump with a FWHM of the intensity distribution
of 50 µm vs the parametric gain G. fH corresponds to the expected
asymptotic Heisenberg scaling normalized with respect to the SNL,
see Eq. (5.2). Lx (right-hand vertical axis) is the transverse length of
the system pumped by the plane-wave pump to reach the same output
intensity after the first crystal as in the case of the system pumped
by the finite-width pump. Note that due to the assumed equality of
intensities, the Heisenberg scalings coincide in both cases. See also
Appendix C for more details on Lx .

for both pumps. However, the phase sensitivity for the finite-
width pump slightly surpasses the phase sensitivity for the
plane-wave pump. The reason for this is the different number
of modes in two cases, namely, the number of modes in the
finite-width case is smaller compared to the plane-wave case.

To see this more clearly, we define the Schmidt number,
which is a measure of the effective number of modes, for the
first crystal in the finite-width case as [17,24,29],

K (1) =
[∑

n

(
λ(1)

n

)2]−1

, (5.3a)

where

λ(1)
n = �(1)

n∑
k �

(1)
k

(5.3b)

are the normalized eigenvalues obtained from the decompo-
sition of the transfer function β (1) of the first crystal, see
Eq. (4.3a). We can then rewrite Eq. (4.4b) as

A =
(

1 +
〈
N̂ (1)

s,tot

〉
K (1)

)〈
N̂ (1)

s,tot

〉
, (5.4)

since 〈N̂ (1)
s,tot〉 =∑k �

(1)
k . This allows us to express the optimal

phase sensitivity via the Schmidt number as

fmin = 1

2
√

1 + 〈N̂ (1)
s,tot〉

K (1)

. (5.5)

From this expression it becomes clear that the phase sensitiv-
ity is optimized for high intensities (high parametric gains)
and small effective mode numbers. In the extreme case of
a single mode (K = 1) with an eigenvalue �

(1)
0 , the optimal

FIG. 9. The Schmidt number for the plane-wave pump case
[from Eqs. (5.7a) and (5.7b)] and finite-width pump case [from
Eqs. (5.3a) and (5.3b)] for several parametric gains. Additionally,
on the right-hand vertical axis, the plane-wave Schmidt number per
length Lx (K (1)

pw /Lx) is presented. The required values of Lx are shown
in Fig. 8.

phase sensitivity is given by

fmin = 1

2
√

1 + �
(1)
0

, (5.6)

which approaches the Heisenberg limit fH for �
(1)
0 � 1.

In the plane-wave case, due to the strong correlations be-
tween the signal and idler photons, it is no longer possible
to define Schmidt modes as in the finite-width pump case.
However, by analogy, we find from Eqs. (3.16a)–(3.16c),

fpw,min = 1

2

√
1 + LxN (1)

s,tot

K (1)
pw

, (5.7a)

where

K (1)
pw = Lx

[∫
dqs N (1)

s (qs)
]2∫

dqs
[
N (1)

s (qs)
]2 (5.7b)

can be defined as the Schmidt number in the plane-wave pump
case. Alternatively, we can write it as

K (1)
pw = LxK

[
β (1)

pw (qs)
]
, (5.8a)

with the following functional defined for some function u:

K[u(qs)] =
[∫

dqs |u(qs)|2]2∫
dqs|u(qs)|4 . (5.8b)

This provides us with an expression for K (1)
pw , which has

already been found and discussed in Ref. [30] for the low-gain
regime.

Plots of the Schmidt numbers for plane-wave and finite-
width pumping are shown in Fig. 9. As expected, the Schmidt
number gradually decreases as the parametric gain increases
[12]. For G > 1, the Schmidt number for the finite-width
pump is lower than for the plane-wave pump. Therefore, as-
suming equal intensities after the first crystal in both cases, the
phase sensitivity for finite-width pumping surpasses the phase
sensitivity for plane-wave pumping as it is shown in Fig. 8.
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FIG. 10. The phase supersensitivity range width � (length of the
phase interval where f < 1) versus the parametric gain for the plane-
wave and finite-width Gaussian pump.

The phase supersensitivity range width � as the function
of parametric gain G is shown in Fig. 10 for both finite-width
pumping and plane-wave pumping. Clearly, at low gains the
width for both cases coincides. As the gain increases, plane-
wave pumping leads to a slightly narrower phase sensitivity
region. However, in both cases, � drops quickly and decreases
by about one order of magnitude with each increase of the gain
G by two.

VI. CONCLUSIONS

In this paper, we present a theoretical description of the
high-gain multimode SU(1, 1) interferometer, which, how-
ever, is also valid for the low-gain regime. Our approach is
based on the solution of the system of integro-differential
equations for the plane-wave operators and allows us to intro-
duce a set of gain-dependent Schmidt modes. We investigate
the spatial properties and phase sensitivity of multimode non-
linear interferometers in different configurations (with and
without diffraction compensation) for various pump widths.

In the case of a plane-wave pump, the system of integro-
differential equations is reduced to the set of ordinary
differential equations with an analytical solution. At finite-
width pumping, the system of integro-differential equations is
evaluated numerically to find the corresponding transfer func-
tions. In addition, the use of the derived relations between the
transfer functions of individual crystals and the entire interfer-
ometer, allows us to obtain compact expressions for the phase
sensitivity for finite-width pumping. Finally, the minimized
phase sensitivity for the plane-wave and the finite-width pump
is compared for different gains.

We demonstrate that for the noncompensated interferom-
eters, the phase sensitivity worsens as the parametric gain
increases and never surpasses the shot-noise scaling, which is
due to incomplete overlapping of the radiation of the first and
the second crystals. However, for the compensated interfer-
ometers, both finite-width and plane-wave pumping result in
a phase sensitivity that always exceeds SNL for some range

of phases, so that the optimal phase sensitivity approaches
the Heisenberg scaling for large parametric gains. However,
the phase width of the supersensitivity region becomes in-
creasingly narrow as the gain increases. To counteract this
narrowing, as well as to optimize the phase sensitivity in the
case of optical and detection losses, unbalanced SU(1, 1) in-
terferometers [1] can be considered, which may be the subject
of future research. The discussed multimode interferometers
allow the utilization of the full multimode structure of non-
classical light and replace the optical parametric oscillators
with optical parametric amplifiers, which may provide further
improvements in precision metrology, and, in particular, new
designs of gravitational wave detectors.
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APPENDIX A: INTEGRAL COVARIANCE INCLUDING
THE CROSS-CORRELATION

1. Finite-width pump

As was described in Sec. II, it is assumed throughout this
paper that the signal and idler photons are distinguishable in
some degree of freedom, which is then reflected in the fact
that the signal and idler plane-wave operators commute, see
Eq. (2.2c). In the fully degenerate regime, this commutator is
instead given by

[âs(qs, L, ωs), â†
i (q′

i, L, ωi )] = δ(qs − q′
i ). (A1)

This does not influence the intensity distributions for the sig-
nal and idler beams as Eq. (2.6) remains unchanged. However,
the nonzero commutator between the signal and idler oper-
ators will lead to an additional cross-correlation term in the
covariance, Eq. (2.7). The full expressions then reads

cov(q, q′) = auto(q, q′) + cross(q, q′), (A2a)

where

auto(q, q′) =
∣∣∣∣
∫

dq̄ β(q, q̄, L)β∗(q′, q̄, L
)∣∣∣∣2

+ δ(q − q′)〈N̂ (q)〉, (A2b)

cross(q, q′) =
∣∣∣∣
∫

dq̄ β(q, q̄, L)η̃(q′, q̄, L)

∣∣∣∣2. (A2c)

Here, we have dropped the signal and idler labels since the
photons are indistinguishable. Note that the autocorrelation
term is the expression already appearing in Eq. (2.7), while
the cross-correlation term is new.

To further evaluate the integral covariance, it is necessary
to consider the joint Schmidt decomposition of the trans-
fer functions β and η̃, which was introduced in Eqs. (4.3b)
and (4.3a). The existence of such a joint decomposition was
demonstrated in Refs. [13,15]. Utilizing the commutation
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relations for the plane-wave operators, useful relations be-
tween the transfer functions can be derived,∫

dq̄ β(q, q̄, L)β∗(q′, q̄, L) + δ(q − q′)

=
∫

dq̄ η̃(q, q̄, L)η̃∗(q′, q̄, L) (A3a)

for Eqs. (2.2a) and (2.2b) and∫
dq̄ η̃(q, q̄, L)β(q′, q̄, L) =

∫
dq̄ β(q, q̄, L)η̃(q′, q̄, L)

(A3b)
for the commutation relation

[âs(qs, L, ωs), âi(qi, L, ωi )] = 0. (A4)

These relations have already been used to obtain more com-
pact expressions for the covariance in Eqs. (2.7), (A2b),
and (A2c). Similar equations for the frequency domain have
been found in Ref. [13]. Furthermore, note that there are
two additional relationships, which can be derived by apply-
ing the commutation constraints to the inverse transform of
Eqs. (2.3a) and (2.3b), see Appendix D.

Applying the joint Schmidt decomposition from
Eqs. (4.3a) and (4.3b) to Eqs. (A2b) and (A2c), it is easy to
see that∫∫

dq dq′auto(q, q′) =
∫∫

dq dq′cross(q, q′)

=
∑

n

�n +
∑

n

�2
n. (A5)

Therefore, if the transfer functions remain unchanged, the
covariance is only increased by a factor of 2 for completely
indistinguishable signal and idler photons.

2. Plane-wave pump

In the case of a plane-wave pump, it is possible to derive
similar relations to Eqs. (A3a) and (A3b) by using the fact that
the solutions (3.3) must also fulfill the bosonic commutation
relations. This leads to the following relations between η̃pw

and βpw:

|η̃pw(qs)|2 = 1 + |βpw(qs)|2, (A6a)

η̃pw(qs)βpw(−qs) = η̃pw(−qs)βpw(qs). (A6b)

These relations have also been found in Refs. [19–23] and
have been used to obtain Eqs. (3.7a) and (3.7b) and Eqs. (C5),
(A7b), and (A7c) below.

As in the finite-width case above, the covariance for the
fully degenerate case can again be split as

covpw(q, q′) = autopw(q, q′) + crosspw(q, q′), (A7a)

where

autopw(q, q′) = δ(q − q′)Ns(q)[1 + Ns(q)], (A7b)

crosspw(q, q′) = δ(q + q′)Ns(q)[1 + |βpw(−q)|2]. (A7c)

Alternatively to Eqs. (3.4a) and (3.4b), the system
of differential equations can also be obtained in the

form
dβpw(−qs, L)

dL
= �0h(qs, L)η̃∗

pw(qs, L), (A8a)

d η̃∗
pw(qs, L)

dL
= �0h∗(qs, L)βpw(−qs, L), (A8b)

which, evidently, are equivalent to Eqs. (3.4a) and (3.4b)
except that qs ↔ −qs is swapped in the transfer functions
η̃∗

pw and βpw. Note that this system can also be obtained from
Eqs. (3.4a) and (3.4b) directly by using the fact that h is an
even function of qs.

Ultimately, this implies that the transfer functions are also
even functions with respect to the wave vector,

βpw(q, L) = βpw(−q, L), (A9a)

η̃∗
pw(q, L) = η̃∗

pw(−q, L), (A9b)

and therefore, the intensity spectrum is also the even function
with respect to the wave vector.

Combining Eqs. (A7c) and (A9a) leads to the following
expression for the cross-correlation term:

crosspw(q, q′) = δ(q + q′)Ns(q)[1 + Ns(q)]. (A10)

According to Eq. (A7b) this means that

autopw(q, q′) = crosspw(q,−q′), (A11)

and, finally,∫∫
dq dq′autopw(q, q′) =

∫∫
dq dq′crosspw(q, q′). (A12)

Therefore, similarly to the finite-width pump case [Eq. (A5)],
the integral covariance is only scaled up by a factor of 2 when
the signal and idler photons are indistinguishable.

APPENDIX B: SOLUTION OF THE
INTEGRO-DIFFERENTIAL EQUATIONS FOR

DIFFERENT INTERFEROMETER PHASES

Throughout this paper, it is often required to obtain solu-
tions for the system of integro-differential equations (2.1) or
(2.4) for many different interferometer phases φ. To simplify
this process and drastically reduce the numerical complexity,
it is possible to split the solution process into two steps.

First, the system (2.4) is solved for the first crystal of the
interferometer, yielding functions η(1) and β (1) connecting the
output plane-wave operators of the first crystal â(1,out)

s/i to the
vacuum plane-wave operators,

â(1,out)
s (qs) =

∫
dq′

s η̃(1)(qs, q′
s)âs(q

′
s)

+
∫

dq′
i β

(1)(qs, q′
i )â

†
i (q′

i ), (B1a)

[
â(1,out)

i (qi )
]† =

∫
dq′

i [η̃(1)(qi, q′
i )]

∗â†
i (q′

i )

+
∫

dq′
s [β (1)(qi, q′

s)]∗âs(q
′
s), (B1b)

where for simplicity, we have dropped the length L and the
frequency dependence ω from the arguments of the operators.
The index (1) indicates that these functions are the solutions
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for the first crystal. The initial conditions for the functions
read

β (1)(q, q′, L = 0) = 0, (B2a)

[η̃(1)(q, q′, L = 0)]∗ = δ(q − q′). (B2b)

Next, we can set up a similar set of equations for the second
crystal,

â(2,out)
s (qs) =

∫
dq′

s η̃
(2)
φ (qs, q′

s)â(2,in)
s (q′

s)

+
∫

dq′
i β

(2)
φ (qs, q′

i )
[
â(2,in)

i (q′
i )
]†

, (B3a)

[
â(2,out)

i (qi )
]† =

∫
dq′

i

[
η̃

(2)
φ (qi, q′

i )
]∗

[â(2,in)
i (q′

i )]
†

+
∫

dq′
s

[
β

(2)
φ (qi, q′

s)
]∗

â(2,in)
s (q′

s), (B3b)

which now connects the input operators of the second crystal
(not the vacuum operators) to its output operators. We have
added the index φ to emphasize that the solution of this system
depends on the interferometer phase φ via the function h(2)

describing the second crystal, see Eqs. (2.8b) and (2.9).
Plugging this back into the system of integro-differential

equations (2.1) yields, again, the same system of integro-
differential equations (2.4) with η̃ and β replaced by η̃

(2)
φ

and β
(2)
φ , respectively. This system of the integro-differential

equations is solved for L ∈ [0, L1], where L1 is the crystal
length, and has the same initial conditions as for the first
crystal,

β
(2)
φ (q, q′, L = 0) = 0, (B4a)[

η̃
(2)
φ (q, q′, L = 0)

]∗ = δ(q − q′). (B4b)

The phase matching function h(2), which describes the
second crystal can be factorized as

h(2)(qs, qi, L) = p(2)(qs, qi, L)eiφ, (B5)

where p(2) is a complex-valued function.
Plugging this form of h(2) into the system of integro-

differential equations (2.4) and defining

β (2)(q, q′) def.= β
(2)
φ (q, q′)e−iφ, (B6)

η̃(2)(q, q′) def.= η̃
(2)
φ (q, q′), (B7)

one can obtain the following system of integro-differential
equations for the second crystal:

dβ (2)(qs, q′
i, L)

dL
= �

∫
dqi e− (qs+qi )2σ2

2

× p(2)(qs, qi, L)[η̃(2)(qi, q′
i, L)]∗, (B8a)

d[η̃(2)(qi, q′
i, L)]∗

dL
= �

∫
dqs e− (qs+qi )2σ2

2 [p(2)(qs, qi, L)]∗

×β (2)(qs, q′
i, L), (B8b)

where the initial conditions for the transfer functions are given
by

β (2)(q, q′, L = 0) = 0, (B9a)

[η̃(2)(q, q′, L = 0)]∗ = δ(q − q′). (B9b)

This system, importantly, results in a solution for η̃(2) and β (2)

that is independent of φ.
The solution of the integro-differential equations for the

second crystal now reads

â(2,out)
s (qs) =

∫
dq′

s η̃(2)(qs, q′
s)â(2,in)

s (q′
s)

+ eiφ
∫

dq′
i β

(2)(qs, q′
i )
[
â(2,in)

i (q′
i )
]†

,

(B10a)[
â(2,out)

i (qi )
]† =

∫
dq′

i [η̃(2)(qi, q′
i )]

∗[â(2,in)
i (q′

i )
]†

+ e−iφ
∫

dq′
s [β (2)(qi, q′

s)]∗â(2,in)
s (q′

s).

(B10b)

The full solution for the entire SU(1, 1) interferometer
consisting of two crystals is defined via

â(SU,out)
s (qs) =

∫
dq′

s η̃(SU)(qs, q′
s)âs(q

′
s)

+
∫

dq′
i β

(SU)(qs, q′
i )â

†
i (q′

i ), (B11a)

[
â(SU,out)

i (qi )
]† =

∫
dq′

i [η̃(SU)(qi, q′
i )]

∗â†
i (q′

i )

+
∫

dq′
s [β (SU)(qi, q′

s)]∗âs(q
′
s), (B11b)

where the functions η̃(SU) and β (SU) connect the output op-
erators of the entire interferometer â(SU,out)

s/i with the vacuum
plane-wave operators. Furthermore, note that

â(2,in)
s = â(1,out)

s , (B12a)

â(2,in)
i = â(1,out)

i . (B12b)

Using this equality between the output plane-wave oper-
ators of the first crystal and the input plane-wave operators
of the second crystal to connect Eqs. (B1a) and (B1b) with
Eqs. (B3a) and (B3b), one can obtain the following connection
relations between the transfer functions of the entire interfer-
ometer and each crystal:

η̃(SU)(q, q′) =
∫

dq̄ η̃
(2)
φ (q, q̄)η̃(1)(q̄, q′)

+
∫

dq̄ β
(2)
φ (q, q̄)[β (1)(q̄, q′)]∗, (B13a)

β (SU)(q, q′) =
∫

dq̄ η̃
(2)
φ (q, q̄)β (1)(q̄, q′)

+
∫

dq̄ β
(2)
φ (q, q̄)[η̃(1)(q̄, q′)]∗. (B13b)

Alternatively, including the interferometer phase, the rela-
tions above read

η̃(SU)(q, q′) =
∫

dq̄ η̃(2)(q, q̄)η̃(1)(q̄, q′)

+eiφ
∫

dq̄ β (2)(q, q̄)[β (1)(q̄, q′)]∗, (B14a)
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β (SU)(q, q′) =
∫

dq̄ η̃(2)(q, q̄)β (1)(q̄, q′)

+eiφ
∫

dq̄ β (2)(q, q̄)[η̃(1)(q̄, q′)]∗. (B14b)

Hence, it is possible to solve the set of the integro-
differential equations independently for both crystals. Using
p(2) instead of h(2) for the second crystal makes it possible
to obtain a phase independent solution for the second crystal.
Then, the phase independent solutions of both crystals can be
combined for an arbitrary value of φ according to Eqs. (B14a)
and (B14b) without having to solve the integro-differential
equations for each value of phase.

APPENDIX C: DIVERGENCE IN THE
PLANE-WAVE PUMP CASE

After quantizing the electromagnetic field in a cavity of
length Lx in terms of the discrete plane-wave operators âq

obeying the commutation relations [14]

[âq, â†
q′ ] = δq,q′ , (C1)

it is common to take the continuous limit Lx → ∞, which
allows the transition from the discretely spaced wave
vectors with spacing �q = 2π

Lx
to a continuous spectrum

(�q → 0) [31].
Here, we have assumed a fixed frequency for the cavity

modes of interest. This is why we only consider the commu-
tator in the transverse variables, since the z components of the
wave vectors are strictly fixed by given q and the frequency.

Formally, the transition to the continuous limit is per-
formed by including the factor

√
�q in the discrete

plane-wave operators âq and introducing new operators
â(q) = âq/

√
�q.

For the PDC process, the commutation relations of the
newly defined plane-wave operators are then given by

[âs(qs, L, ωs), â†
s (q′

s, L, ωs)] = δqs,q′
s

�q
, (C2a)

[âi(qi, L, ωi ), â†
i (q′

i, L, ωi )] = δqi,q′
i

�q
, (C2b)

[âs(qs, L, ωs), â†
i (q′

i, L, ωi )] = 0. (C2c)

Note that these commutation relations are the discrete
analogues of the ones given in Eqs. (2.2a)–(2.2c). In fact,
when taking the continuous limit, the commutators from
Eqs. (C2a)–(C2c) approach Eqs. (2.2a)–(2.2c), respectively
[14,31].

As was seen in Sec. III, taking the continuous limit
for the plane-wave pump approximation results in a di-
vergence of the intensity spectrum, namely, 〈N̂s(qs)〉 =
〈0| â†

s (qs)âs(qs)|0〉 ∝ δ(0). Physically, if the quantization size
of the system becomes unbounded while the system is pumped
by a plane wave covering all of space, an infinite amount of
PDC photons is created along the transverse dimension.

To avoid this divergence and make the description more
mathematically rigorous, it is possible to repeat the derivation
for the integro-differential equations presented in Ref. [12]
with a plane-wave pump for the discrete operators. In that
case, the integrals over wave vectors have to be replaced

with the sums over wave vectors with the correspondence
dq ↔ �q. The system, which generates the PDC radia-
tion then consists of the quantization box with the periodic
boundary conditions and is again described by the system of
differential equations (3.4) with the form of the solution (3.3).

In this case, evaluating the expectation value in Eq. (3.5)
yields

〈N̂s(qs)〉 = 1

�q
|βpw(qs, L)|2. (C3)

Clearly, the quantity defined by

Ns(qs)
def.= �q 〈N̂s(qs)〉 = |βpw(qs, L)|2 (C4)

describes the intensity per length Lx
2π

of the system. The im-
portant observation is now that Ns(qs) remains unchanged and
finite when taking the continuous limit Lx → ∞ (that is, it is
independent of Lx).

Similarly, the covariance evaluated from its definition
[Eq. (1.5)] is given by

cov(qs, q′
s) = δqs,q′

s

(�q)2
Ns(qs)[1 + Ns(qs)]. (C5)

After defining

covpw(qs, q′
s)

def.= �qcov(qs, q′
s), (C6)

the continuous limit can be taken (Lx → ∞) and results in the
well-behaved quantity

covpw(qs, q′
s) = Ns(qs)[1 + Ns(qs)]δ(qs − q′

s), (C7)

which corresponds to the covariance per the transverse length
of the system.

In order to make the results for the plane-wave and the
finite-width pump comparable, we consider such a transverse
size Lx of the system in the case of plane-wave pumping,
which gives the same integral intensity after the first crystal
as in the finite-width pump case. Note that Lx is different to
the quantization length Lx. Then,

Lx = 〈N̂s,tot〉
Ns,tot

, (C8)

where 〈N̂s,tot〉 is the integral intensity in the case of the finite-
width pump and

Ns,tot =
∫

dqs Ns(qs) (C9)

is the integral photon density (integral intensity per transverse
length), analogously to Eq. (1.2).

Note that this step is not necessary for the SNL-normalized
phase sensitivity f , since according to Eqs. (1.6) and (1.4),
it does not depend on the factor Lx. Indeed, obtaining the
integral number of photons and covariance by multiplying
their densities [Eqs. (C4) and (C7)] by Lx and substituting
them into Eqs. (1.6) and (1.4) shows that the additional factors
Lx are canceled out.
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APPENDIX D: ANALYTICAL IMPLICATIONS
OF THE COMPENSATION

More explicitly, the solutions of the integro-differential
equations [Eqs. (2.3a) and (2.3b)] can be written as

âs(qs, L1) =
∫

dq′
s η̃(qs, q′

s; L1, L0)âs(q
′
s, L0)

+
∫

dq′
i β(qs, q′

i; L1, L0)â†
i (q′

i, L0), (D1a)

â†
i (qi, L1) =

∫
dq′

i η̃
∗(qi, q′

i; L1, L0)â†
i (q′

i, L0)

+
∫

dq′
s β∗(qi, q′

s; L1, L0)âs(q
′
s, L0), (D1b)

which corresponds to a more general case where the
transfer functions η̃(q, q′; L1, L0) and β(q, q′; L1, L0)
connect the plane-wave operators at L0 to the ones
at L1.

The inverse transform of the solutions (D1) is given by
[13,32,33]

âs(qs, L0) =
∫

dq′
s η̃∗(q′

s, qs; L1, L0)âs(q
′
s, L1)

−
∫

dq′
i β(q′

i, qs; L1, L0)â†
i (q′

i, L1), (D2a)

â†
i (qi, L0) =

∫
dq′

i η̃(q′
i, qi; L1, L0)â†

i (q′
i, L1)

−
∫

dq′
s β∗(q′

s, qi; L1, L0)âs(q
′
s, L1), (D2b)

which can be immediately verified by plugging the form of the
solutions (D2) into the solutions (D1) and using Eqs. (A3a)
and (A3b).

For completeness, we would like to mention that by apply-
ing the constraint that âs(qs, L0) and â†

i (qi, L0) in the solutions
(D2) have to obey the bosonic commutation relations, one can
obtain two additional relationships similar to Eqs. (A3a) and
(A3b). Using Eqs. (2.2a) and (2.2b), one can obtain∫

dq̄ β(q̄, q, L)β∗(q̄, q′, L) + δ(q − q′)

=
∫

dq̄ η̃∗(q̄, q, L)η̃(q̄, q′, L), (D3a)

and using Eq. (A4), one obtains∫
dq̄ η̃∗(q̄, q, L)β(q̄, q′, L) =

∫
dq̄ β(q̄, q, L)η̃∗(q̄, q′, L).

(D3b)
These have also been found in Ref. [13] for a more general

PDC process in the frequency domain.
For a single crystal ranging from the coordinates L0 = 0

(beginning of the crystal) and L1 (end of the crystal), the
system of the integro-differential equations for the inverse
transform [Eqs. (D2a) and (D2b)] is given by

∫ L0

L1

dL

⎧⎨
⎩

dβ (1) (q′
i,qs;L1,L)
dL = −�

∫
dqi r(qs, qi, L)ei�kLη̃(1)(q′

i, qi; L1, L)
d η̃(1)(q′

i,qi ;L1,L)
dL = −�

∫
dqs r∗(qs, qi, L)e−i�kLβ (1)(q′

i, qs; L1, L)

η̃(1)(q′
i, qi; L1, L1) = δ(qi − q′

i )

β (1)(q′
i, qs; L1, L1

) = 0.
(D4)

Here we have assumed a more general case than in the main
text, where r(qs, qi, L) contains the pump term and might
additionally depend on the integration coordinate L. Note
that the integration interval for the solution of the system
starts at the upper bound L1 of the PDC section. The initial
value conditions state that the plane-wave operators are
known at L1. After performing the integration, the obtained
functions β (1)(q′

i, qs; L1, L0) and η̃(1)(q′
i, qi; L1, L0) connect

the plane-wave operators at L1 to the ones at the beginning of
the crystal at L0.

Next, we consider the second crystal for the compensated
configuration with the same length as the first crystal ranging

from L1 to L2 = 2L1. As shown in Appendix B, it is not neces-
sary to solve the system of integro-differential equations with
the phase term eiφ included in r (2)(qs, qi, L). Instead, one can
first integrate the equations without the phase and then multi-
ply β (2) with the phase afterwards to obtain the solution for the
second crystal including the phase. Furthermore, note that we
will assume that r (2)(qs, qi, L) = r(qs, qi, L). As will be seen
below, this is a necessary requirement to obtain compensation.
The system of the integro-differential equations and the initial
value conditions for the phase independent transfer functions
of the second crystal read

∫ L2

L1

dL

⎧⎨
⎩

dβ (2) (qs,q′
i ;L,L1 )

dL = �
∫

dqi r(qs, qi, L)e−i�k(L−2L1 )[η̃(2)(qi, q′
i; L, L1)]∗

d[η̃(2) (qi,q′
i ;L,L1 )]∗

dL = �
∫

dqs r∗(qs, qi, L)ei�k(L−2L1 )β (2)(qs, q′
i; L, L1)

[η̃(2)(qi, q′
i; L1, L1)]∗ = δ(qi − q′

i )

β (2)(qs, q′
i; L1, L1

) = 0.
(D5)

Assuming that

r(qs, qi, 2L1 − L) = r(qs, qi,L), (D6)

which means that r is mirror symmetric around L1, it is possible to make the substitution L = 2L1 − L so that after redefining

η̃(2)(qi, q′
i; 2L1 − L, L1)

def.= H̃(2)(qi, q′
i;L, L1), (D7a)

β (2)(qs, q′
i; 2L1 − L, L1)

def.= B(2)(qs, q′
i;L, L1), (D7b)
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FIG. 11. The finite term C(θs ) of the plane-wave covariance given by Eq. (3.7b) for the (a)–(c) noncompensated interferometer and for the
(d)–(e) compensated interferometer for different phases. Note that for the compensated setup, the third phase we show is not φ = π since then
the covariance would be identically zero, see Eqs. (3.7a), (3.7b), (3.14a), and (3.14b).

the system above reads∫ 0

L1

dL

⎧⎨
⎩

dB(2)(qs,q′
i ;L,L1 )

dL = −�
∫

dqi r(qs, qi,L)ei�kL[H̃(2)(qi, q′
i;L, L1)]∗

d[H̃(2) (qi,q′
i ;L,L1 )]∗

dL = −�
∫

dqs r∗(qs, qi,L)e−i�kLB(2)(qs, q′
i;L, L1)

[H(2)(qi, q′
i; L1, L1)]∗ = δ(qi − q′

i )

B(2)(qs, q′
i; L1, L1

) = 0.
(D8)
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FIG. 12. Plots of the covariances cov(θs, θ
′
s ) for the finite-width pump with an intensity distribution FWHM of 50 µm, (a) for the

noncompensated setup and (b) for the compensated setup, for several gains and phases. Note that each subplot is normalized independently, so
that maxθs,θ ′

s
cov(θs, θ

′
s ) = 1. Furthermore, for the compensated setup, the third phase we show is not φ = π since then the covariance would

include only the shot noise term, see Eq. (4.5). This figure uses the “Batlow” color map [34].

Obviously, the systems of integro-differential equations
in (D4) and (D8) are equivalent. Generally, this would
not have been the case if we had assumed that the
systems are driven by different functions r (1) and
r (2).

From that, we can identify the following properties re-
lating the transfer functions of the first and the second

crystal:

[η̃(2)(q, q′; 2L1, L1)]∗ = η̃(1)(q′, q; L1, 0), (D9a)

β (2)(q, q′; 2L1, L1) = β (1)(q′, q; L1, 0). (D9b)

Note that these solutions still do not include the interfer-
ometer phase. When including it, the second relation instead

043158-19



SCHARWALD, MEIER, AND SHARAPOVA PHYSICAL REVIEW RESEARCH 5, 043158 (2023)

reads

β (2)(q, q′; 2L1, L1) = eiφβ (1)(q′, q; L1, 0). (D10)

Alternatively, to describe an SU(1, 1) interferometer,
Eqs. (B14a) and (B14b) can be used together with Eqs. (D9a)
and (D9b).

In this paper, we have assumed a perfect compensation
of the quadratic phase of the light, and therefore, we have
only considered an interferometer phase, which has no de-
pendence on the transverse signal and idler wave vectors qs

and qi. Generally, however, when the compensation is not
performed, that is, when the phase is q dependent, Eqs. (D10),
(D9a), and (D9b) do not hold. Nevertheless, in systems with
a complicated q-dependent phase, as long as it is possible to
perform the compensation using a set of lenses, mirrors or
spatial light modulators (SLMs), the necessary symmetry is
induced and, therefore, Eqs. (D10), (D9a), and (D9b) hold. In
that case, however, proper attention must be given to the losses
introduced by these additional optical components since they
reduce the phase sensitivity [1].

APPENDIX E: COVARIANCES FOR A PLANE-WAVE
AND FINITE-WIDTH PUMP

1. Plane-wave pump

Figures 11(a)–11(f) present the covariance profiles for dif-
ferent gains in the plane-wave pump case. The profiles are
described by the function C(qs) defined in Eq. (3.7b). As one
can see, the plane-wave covariance covpw(qs, q′

s) [Eq. (3.7a)]
vanishes unless qs = q′

s, therefore, the function C contains
all the information about the covariance. This is a direct
consequence of the plane-wave pumping, which results in
perfect correlations between the plane-wave modes. As was
already mentioned in the main text (Sec. III), the covariance
profiles calculated for the noncompensated setup [Figs. 11(a)–
11(c)], and for the compensated setup [Figs. 11(d)–11(f)],
have shapes similar to the intensity profiles and broaden as the
gain increases. Note that the figures are plotted in the external
angles.

2. Finite-width pump

Contrary to the plane-wave pump case, the covariance pro-
files for a finite-width pump are in general only fully described
by considering the entire range for both arguments of the
covariance function cov(qs, q′

s). The plots for the noncompen-
sated setup are shown in Fig. 12(a) and for the compensated
setup in Fig. 12(b). Since we have to show these plots as
colormesh plots, we restrict ourselves to only showing two
values for the parametric gain for each setup. Neverthe-
less, important features of the covariance functions become
apparent.

First, it should be noted that for both setups and for
the small gain G = 1.25, a sharp line can be observed
along the diagonal. This feature is the shot-noise term
δ(qs − q′

s)〈N̂s(qs)〉 appearing in Eq. (2.7). Numerically, the
Dirac delta is expressed via δ(x − y) ≡ δix,iy/�x, where ix and
iy are the indices on the numerical grid corresponding to the
points x and y, respectively, and �x is the step size of the
grid. Therefore, in the discretized case, we observe a line of
single-pixel width and finite value along the diagonal. As the
parametric gain increases, this term becomes negligible [17],
which results in the ellipse-shaped covariance for the larger-
gain value G = 3.75. However, due to the perfect destructive
interference in the compensated setup, the shot noise term
becomes visible again as φ → π . This is due to the fact that
the term resulting in the ellipse-shaped contribution scales as
∼ cos4(φ/2) with the interferometer phase φ, while the shot
noise term scales as ∼ cos2(φ/2), see Eq. (4.5) and Eqs. (4.2a)
and (4.2b), respectively.

For the noncompensated setup, the covariance ellipse nar-
rows along the diagonal as the phase increases. Then, similar
to the intensity profiles shown in Fig. 6, a splitting of the
covariance is observed as φ → π , which is caused by the
imperfect destructive interference. For the compensated setup
this is not the case. Instead, the widths of the ellipse along
the diagonal and antidiagonal stay unchanged. However, as
mentioned above, the shot noise term becomes visible for
phases close to π . Clearly, the ellipse shape is determined by
the integral term in Eq. (4.5) and is therefore independent of φ.
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