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Field-induced Berry connection and anomalous planar Hall effect in tilted Weyl semimetals
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We propose the linear and nonlinear anomalous planar Hall effect (APHE) in tilted Weyl semimetals in the
presence of an in-plane magnetic and electric field, where the field-induced Berry connection plays a key role.
The conductivity of linear APHE is ascribed to the quantum metric and is antisymmetric in nature, distinct from
the well-known chiral anomaly induced PHE arising from the Berry curvature. Using a tilting vector to describe
the model, we demonstrate the constrains on the linear and nonlinear APHE by the tilting directions. The linear
APHE is intrinsic that is determined by the topological properties of energy bands, whereas the nonlinear APHE
is extrinsic. The predicted linear and nonlinear APHE are inherently different from others and may shed light on
a deeper understanding on transport nature of the tilted Weyl semimetals.
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I. INTRODUCTION

Three-dimensional topological Weyl semimetals (WSMs),
a new state of quantum matter with gapless spectrum at bulk
nodal points and spin nondegenerate open Fermi arc states on
the surface, has attracted much recent interest [1–8]. The Weyl
monopoles hosted by topological semimetals, as sources or
sinks of the Berry curvature may lead to a number of non-
trivial transport effects, including the anomalous Hall effect
[1,9–12], in which a transverse charge current proportional to
the Berry curvature is generated in response to a longitudi-
nal electric field without external magnetic fields, the “chiral
anomaly” [13–16] that breaks the chiral symmetry leading
to the nonconservation of chiral charges, etc. Until now, the
negative longitudinal magnetoresistance and the planar Hall
effect (PHE) are the most remarkable phenomena induced
by the chiral anomaly [17–22]. For the PHE, a net charge
current J ∝ (E · B)B [23–26] can be induced due to chiral
anomaly and nonconservation of density of electrons at an
individual node when the magnetic field and the electric field
are nonorthogonal (i.e., E · B �= 0) [13]. Notably, the conduc-
tivity tensor for the PHE is symmetric in nature, and it does
not contribute to the genuine (dissipationless) Hall conductiv-
ity which is required to be antisymmetric with σ

yx
H = −σ

xy
H

[27,28].
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The Berry curvature can be recognized as the imaginary
part of a quantum geometric tensor [29,30], whereas the real
part of this tensor is another important geometric quantity
called quantum metric [31], which allows us to measure the
distance between quantum states. The concept of the quan-
tum metric was well applied in quantum information theory
[32–36], and it begins to attract attention in condensed-matter
physics [37–41]. Recently, the quantum metric is found to
have relationship with field-induced Berry connection (FBC)
[42,43] by invoking a generalized semiclassical theory. There-
fore, it is quite imperative to know whether a measurable
effect can exist to reflect the character of the quantum metric.

Different to the ohmic PHE from chiral anomaly, re-
cently it has been proposed that a genuine Hall effect with
antisymmetric conductivity tensor is generated via the spin-
Zeeman coupling, known as anomalous planar Hall effect
(APHE) [27], or alternatively, referred as “in-plane Hall ef-
fect” [44,45]. In this paper, we propose an intrinsic linear
and extrinsic nonlinear APHE inherent to the quantum metric
linked via FBC. This may provide a direct method unveiling
the profound connection between transport in condensed mat-
ters and the quantum metric. Since the linear effect should be
dominant in the transport when the linear and nonlinear effects
occur simultaneously, the proposed intrinsic linear APHE is
crucial. Remarkably, we find that in a two-band tilted WSM
model, the APHE is generated via the magnetic-field-induced
Berry connection (B-FBC) that results in an antisymmetric
Hall current [46], in contrast with the symmetric Hall (ohmic)
current such as transverse Drude current and the PHE induced
by chiral anomaly. The nonlinear APHE proposed here is
extrinsic that differs from others. It is found that both of
E-FBC and B-FBC contribute to the nonlinear APHE, with the
B-FBC (E-FBC) conductivity being an antisymmetric (asym-
metric) third-rank tensor. Moreover, we point out the case
in which the linear APHE disappears whereas the nonlinear
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APHE is dominant, which is also enlightening to topological
nonlinearity.

II. FIELD-INDUCED BERRY CONNECTION
AND THE CORRESPONDING CURRENT

We start from the Berry curvature of the nth band, which is
defined by

�n(k) = ∇k × An(k), (1)

where An(k) = i〈unk|∇k|unk〉 is the intraband Berry connec-
tion with |unk〉 being the periodic part of the nth Bloch state.
In the presence of electric field E and magnetic field B, the
Berry connection acquires a gauge-invariant correction be-
sides An(k), which is written as

A′
n = A′

n(E ) + A′
n(B). (2)

As a result, the Berry curvature is extended to �̃n = �n + �′
n

with �′
n = ∇ × A′

n. The E-FBC can be written as A′
n(E ) =←→

G nE, where the double arrow indicates the second-rank
tensor, which is given by [42,47,48]

(
←→
G n)αβ = Gαβ

n = 2
∑
m �=n

Re
[
Aα

nmAβ
mn

]
εn − εm

, (3)

where Anm = i〈unk|∇k|umk〉 is the interband Berry connec-
tion, and εn is the unperturbed band energy where for
simplicity the modification caused by the orbital magnetic
moment is not considered. The magnetic-field counterpart is
A′

n(B) = ←→
F nB [42,47] with

Fαβ
n = Im

∑
m,p�=n

Aα
nmεβγ δ

[
(εp − εm)Aγ

mp + ivγ
n δmp

]
Aδ

pn

εn − εm
,

(4)
in which vn = (1/h̄)∂εn/∂k is the group velocity. Note that
the Berry connection involves a sum over all pairs of bands
with gαβ

nm = Re[Aα
nmAβ

mn], which is recognized as the quantum
metric for two-band systems [49,50].

The semiclassical equations of motion read [51,52] (for
brevity the sum of the band index is implied)

D(B, �̃)ṙ =
[
vk + e

h̄
E × �̃k + e

h̄
(vk · �̃k)B

]
, (5)

D(B, �̃)k̇ =
[
− e

h̄
E − e

h̄
vk × B − e2

h̄2 (E · B)�̃k

]
, (6)

where D(B, �̃) = (1 + eB · �̃/h̄) is the phase volume factor
[51,53] revealed in the presence of nonzero Berry curvature
�̃ and magnetic field B, which is written as D in the follow-
ing for a shorthand notation. e is the (positive) elementary
charge. The anomalous velocity includes a magnetic-field-
dependent term, which indicates that the electrons move along
the magnetic-field direction for one Weyl cone and along the
opposite direction for the cone with the opposite chirality.
Noting that in Eqs. (5) and (6), the correction of the orbital
magnetic moment (OMM) to the band energy is included,
which is written as ε̃k = εk − mk · B with the OMM given by

mk = −i
e

2h̄
〈∇kuk| × (Ĥ − εk)|∇kuk〉. (7)

In the semiclassical framework, the total current response
for a uniform system can be expressed as

J = −e
∫

[dk]Dṙ f (ε̃k), (8)

where [dk] is a shorthand notation for dk/(2π )d , f (ε̃k) is
the single-particle distribution function. To calculate the cur-
rent density, we use the homogeneous steady-state Boltzmann
equation within the relaxation-time approximation to solve the
distribution function:

k̇ · ∇k f = f0 − f

τ
, (9)

where f0 is the equilibrium Fermi-Dirac distribution, and τ

is the transport relaxation time. To obtain the general expres-
sions for the nonlinear currents, Eq. (9) is solved by expanding
the distribution function up to the second order in E as
f = f0 + f1 + f2, where

f1 = τ

D

[
eE · vk + e2

h̄
(E · B)(�k · vk )

]
∂ f0

∂εk
, (10)

f2 = τ

D

[
eE · vk + e2

h̄
(E · B)(�k · vk )

]
∂ f1

∂εk

+ τ

D

[
e2

h̄
(E · B)(∇ × (

←→
G E ) · vk )

]
∂ f0

∂εk
. (11)

III. THE INTRINSIC LINEAR APHE DUE TO FBC

First, we focus on the in-plane (the magnetic field, electric
field, and the current coplanar) linear current scales with the
order of O(EB). Noting that OMM contributes to the cur-
rent in order of O(EB), which is given as J (1)

OMM = e2

h̄ E ×∫
[dk]�k(mk · B) ∂ f0

∂εk
[54]. In the following, we show that

J (1)
OMM will not contribute to the in-plane current in WSMs

when B lies in the transport plane, so we ignore it in the study
of the in-plane current.

Substituting the first-order distribution function Eq. (10)
into Eq. (8), the linear in-plane current up to the order O(EB)
in the presence of external fields is obtained as

J (1) = J (1)
AB + J (1)

CA + J (1)
FBC. (12)

The first term is attributed to the anomalous velocity due to
magnetic field (the meaning of index “AB”), which is given
by

J (1)
AB = −e3τ

h̄

∫
[dk]

∂ f0

∂εk
(vk · �k)(E · vk)B. (13)

This term is generally nonzero for a single cone. When the two
cones are tilted in opposite directions, the distributions in two
cones shift along the opposite directions due to the modified
vk , resulting in a finite J (1)

AB [55].
The second term in Eq. (12) stems from the effective chiral

chemical potential [the third term in Eq. (6)] due to the chiral
anomaly (for the index “CA”), which is

J (1)
CA = −e3τ

h̄

∫
[dk]

∂ f0

∂εk
(E · B)(�k · vk )vk. (14)

In the absence of the tilting, for the two-cone model of the
WSMs with time-reversal symmetry, the contribution of this
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term is zero [20,55]. J (1)
AB and J (1)

CA are all responsible for the
planar Hall effect, where the Hall current, the electric and
magnetic fields are all coplanar.

With considering the FBC effect, we find a different kind
of APHE, which is given as

J (1)
FBC = − e2

h̄

∫
[dk] f0{vk · [∇ × (

←→
G E )]B

+ E[∇ × (
←→
F B)]}. (15)

Here the first term is the E-FBC component and the sec-
ond term is the B-FBC component. The corresponding linear
anomalous planar Hall conductivity (APHC) is given by the
sum σ

αβ

FBC = σ
αβ

E-FBC + σ
αβ

B-FBC.
We first investigate the E-FBC component, which is given

by

σ
αβ

E-FBC = −e2

h̄

∑
n

∫
[dk] f n

0 vγ
n εγ δζ ∂ζ Gδβ

n Bα, (16)

where the sum over the repeated Greek indices is implicit.
When f0 attains a superscript of n, it means the equilibrium
Fermi-Dirac distribution for the nth band. From Eq. (16), it
is straightforward to see that the conductivity tensor of the
E-FBC contribution is asymmetric by exchanging the indices
α and β. According to Ref. [46], it can be separated into a
symmetric (ohmic) component and an antisymmetric (genuine
Hall) component.

The B-FBC contribution can be obtained by

σ
αβ

B-FBC = −e2

h̄

∑
n

∫
[dk] f n

0 εβγαεδζγ ∂δF ζη
n Bη. (17)

Noting that σ
αβ

B-FBC = −σ
βα

B-FBC, it manifests as a genuine Hall
current. A few general remarks on the FBC-induced linear
APHE are in order. First, σ

αβ

FBC is allowed by time-reversal
symmetry. For linear APHE, the whole set of the external
field EB, as well as the current, is odd for both of T and P
symmetry, so nonzero response is allowed in either WSMs
with T symmetry or P symmetry. The T (P) symmetry leads
to Anm(k) = Amn(−k) [Anm(k) = Amn(−k)], and it can be
verified that Gαβ

n (k) = Gαβ
n (−k) and Fαβ

n (k) = −Fαβ
n (−k)

for either T or P symmetry. Thus, σ
αβ

FBC is even for either
T or P symmetry. However, considering that both of JAB

and JCA are proportional to τEB that is T even, it results in
vanishing of JAB and JCA in T -symmetric systems leaving
the JFBC as the dominant contribution irrespective of the tilt-
ing direction. Second, J (1)

FBC is independent of the relaxation
time τ , manifesting it as an intrinsic effect determined solely
by the band structure of the materials. Third, for σ xx

B-FBC the
longitudinal component is forbidden, leaving it as a pure Hall
current. While for σ

αβ

E-FBC both of the longitudinal and Hall
components are allowed.

IV. FBC-INDUCED LINEAR APHE IN WSMS

With the help of the general expressions of the APHE
arising from FBC in Eqs. (16) and (17), we are now in the
position to investigate the APHE with FBC in WSMs. The
low-energy effective Hamiltonian describing the WSMs can

be written as [8]

H = vF(sk · σ + Rs · kσ0), (18)

where s = ±1 specify the chiralities of the Weyl nodes, σ0

is the 2 × 2 identity matrix, σ = (σ x, σ y, σ z ) are the Pauli
matrices, vF is the Fermi velocity and Rs = (Rx

s , Ry
s , Rz

s ) is the
tilting vector of the Weyl cone. The WSM Hamiltonian (with-
out tilting) can be realized by either breaking time-reversal
symmetry T or inversion symmetry P . Note that the tilting
term breaks T symmetry by itself.1 For a specific tilting when
the pair of Weyl cones are tilted in same direction, it also
breaks the P symmetry. As a consequence, the Weyl nodes
of Hamiltonian Eq. (18) can be obtained by breaking either
T or P symmetry. With the Hamiltonian Eq. (18), the energy
dispersion for a Weyl cone of chirality s is derived as

εs,± = vF(Rs · k ± k), (19)

where the + (−) sign corresponds to the conduction (va-
lence) band and k = |k|. The group velocity is vs = vF ( kx

k +
Rx

s ,
ky

k + Ry
s ,

kz

k + Rz
s ).

Before proceeding further, we introduce the quantum met-
ric which is closely related to the FBC in WSMs. The proper
distance between quantum states can be defined as dr2 =
Qαβkαkβ , where Qαβ = 〈∂αψ |∂βψ〉 − 〈∂αψ |ψ〉〈ψ |∂βψ〉 is
the quantum geometric tensor [31,49,56–58]. Its imaginary
part, Im[Qαβ] = εαβγ �γ , is the antisymmetric tensor Berry
curvature, and its real part is the Fubini-Study quantum metric
gαβ , Re[Qαβ] = gαβ , which is the symmetric tensor. Specially,
for the two band Hamiltonian, the products of Berry connec-
tions can be rewritten by the quantum metric. For example,
the quantum metric tensor for the Weyl cone with chirality s
of the valence band is written as gαβ

s− = Re[Aα
s−+A

β
s+−], and

we obtain

Gαβ
s− = 2gαβ

s−/(εs− − εs+). (20)

One observes that the quantum metric is directly related to
the FBC. The Berry curvature and the OMM are given by
�s

k = −s(±k/|k|3), ms
k = −sevF (±k/|k|3). It is seen that the

Berry curvature and OMM are in parallel. As they are in the
z direction, J (1)

OMM is zero for when B is in the transport plane.
When they are also lying in the plane as B, J (1)

OMM will not
contribute to in-plane current.

To get analytical results, we restrict our discussion within
the type-I WSMs, where we can only consider the conduction
band when the chemical potential lies above the Weyl nodes,
and we drop the band indices in the following.

Let us consider the situation that a pair of Weyl cones are
tilted in the same direction, in which J (1)

AB and J (1)
CA vanish,

and J (1)
FBC is dominated in the linear PHE. We suppose that

the electric field is directed along the x axis, E = Ex̂, and the
magnetic field lies in the x − y plane with an angle from the
x axis is θ , i.e., B = B cos θ x̂ + B sin θ ŷ. For the same tilting
direction, Rs = R, and the APHC induced by the E-FBC is

1When we refer to the T -breaking tilted WSM, we mean that it is
T breaking even at zero tilt.
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FIG. 1. (a) The integrand �yz for σ
yx
E-FBC. (b) The equilibrium

state distribution f0. (c) The integrand F yxy for σ
yx
B-FBC. For panels

(a)–(c) the momentum plane is kx = 1. (d) σ
yx
B-FBC versus chemical

potential μ for different values of Ry, Rx is set to zero and Rz is set
to 0.5. In the calculation, we take kBT = 20 meV. (e) Diagrammatic
sketch for the tilting vector R. (f) σ

yx
B-FBC as a function of tilting angle

α for different values of the magnitude of R.

obtained as (see Appendix A)

σ
yx
E-FBC = −e2

h̄

∫
[dk] f0�

yzvFB sin θ, (21)

where �yz = 4
k5 (Rzky − Rykz ). One may observe that there is

an antisymmetry mirror line with the slope ky/kz = Ry/Rz

for �yx in the ky − kz plane, as shown in Fig. 1(a), with
the tilting parameters Ry = 0.25 and Rz = 0.5. However, the
equilibrium distribution function f0 is symmetric with respect
to the mirror line, which is depicted in Fig. 1(b). Combining
f0 and �yz, it renders the cancellation of the integration in
momentum space, leaving σ

yx
E-FBC vanishes and thus we have

σ
yx
FBC = σ

yx
B-FBC.

Now we investigate the linear APHE induced by the B-
FBC. According to Eq. (15) and making use of the two-band
nature of the WSMs Hamiltonian, the complex expression of
the B-FBC equation (4) reduces to a simple form

Fαβ
s− = Re

εβγ δv
γ
s−Aα

s−+Aδ
s+−

εs− − εs+
= εβγ δv

γ
s−gαβ

s−
εs− − εs+

. (22)

When both Weyl cones are tilted in the same direction, the
linear APHE induced by B-FBC reads (see Appendix A)

σ
yx
B-FBC = e2

h̄

∫
[dk] f0(F yxy sin θ + F yxx cos θ )vFB, (23)

where Fαβγ
s = ∂αFβγ

s − ∂βFαγ
s and we have

F yxy = ky(2kz + kRz )

2k6
, F yxx = kx(2kz + kRz )

2k6
. (24)

A particular case is that Rz is zero. We thus notice that F yxy

and F yxx are odd with respect to kz; whereas f0 is even, it
leads to a vanishing σ

yx
B-FBC. In this case, the APHCs induced

by E-FBC and B-FBC are both zero. Therefore a finite Rz

is required for a nonvanishing σ
yx
B-FBC, namely, a perpendic-

ular component of the tilting vector is required. Furthermore,
σ

yx
B-FBC vanishes if Ry = Rx = 0. This is because F yxy (F yxx)

is odd with respect to ky (kx), as shown in Fig. 1(c) (where
the contour plot of F yxy in the ky − kz plane is shown). Ry

(Rx) breaks the reflection symmetry about the ky (kx) axis for
f0, leading to a finite σ

yx
B-FBC. In Fig. 1(d) we plot σ

yx
B-FBC as a

function of the chemical potential μ for different values of
Ry (Rx is set to zero). One observes that the magnitude of
σ

yx
B-FBC decreases for smaller Ry, as expected from symmetry

analysis. It is worth noting that the dependence on the tilting
directions for the APHE induced by FBC is very different
from the chiral anomaly counterpart [on the order O(EB)],
which vanishes when the nodes tilt along the same direction
[55]. As a consequence, when the tilting of the two nodes
is noncollinear, the two APHEs coexist (for more details see
Appendix B). Noting that the APHE induced by FBC is an-
tisymmetric with σ

yx
FBC = −σ

xy
FBC, while the PHE induced by

chiral anomaly is symmetric with σ
yx
CA = σ

xy
CA. It serves as a

character to distinguish these two PHEs in experiments.
To conclude, when both Weyl cones are tilted in the same

direction, the APHE arising from FBC is finite if the angle α is
not zero, nor π/2, as schematically illustrated in Fig. 1(e), and
the dependence of the tilting angle α for σ

yx
B-FBC is shown in

Fig. 1(f). It differs significantly from the linear PHE induced
by the chiral anomaly where the Weyl nodes tilt along oppo-
site directions. Recently, an unconventional planar Hall effect
was reported in the Weyl semimetal material ZrTe5 [59] for
which a remarkable discovery is the nonzero Hall conductivity
when the in-plane magnetic field is parallel or perpendicular to
the current, which is not included in previous theoretical and
experimental studies (where such a conductivity disappears
for the parallel case) but consistent with the planar Hall effect
we propose here. We anticipate that this different kind of
linear APHE can be observed in type-I WSMs such as TaAs
[2,60] with strain-controlled tilting.

V. FBC-INDUCED NONLINEAR APHE IN WSMS

We already know that when the tilting vector lies along the
normal to the transport plane, the linear FBC-induced APHE
vanishes and the second-order response dominates. The non-
linear Hall effect in WSMs induced by the chiral anomaly as
well as the Berry curvature dipole has been investigated in
Refs. [61–65]. Here we show that the FBC can also induce
a nonlinear APHE. Recently, an intrinsic nonlinear APHE
has been proposed [66], where the effect of magnetic field
plays a role via a magnetic-field-induced correction to the
electric-field-induced correction of the Berry connection. For
a comparison, we treat the effects of electric field and mag-
netic field on the same footing so that the proposed linear
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TABLE I. List of constraints on the linear and second-order APHCs by the tilting directions of the Weyl nodes. The allowed (forbidden)
APHCs are indicated by � (×).

Rx = Ry = Rz = 0 Rz = 0, Rx or Ry �= 0 Rz �= 0, Rx = Ry = 0 Rz �= 0, Rx or Ry �= 0

1st order × × × �
2nd order × × � �

and nonlinear APHE are completely different from that in
Ref. [66].

Combining Eqs. (10), (11), and (5), the second-order elec-
tric current induced by FBC is obtained as

J (2)
FBC = −e3τ

h̄

∫
[dk]{[∇ × (

←→
G E )] × (B × vk)(E · vk)

+(E · B)vk[∇ × (
←→
G E )] · vk

+E × [∇ × (
←→
F B)]E · vk}∂ f0

∂εk
, (25)

where the first two terms are contributed from the E-FBC,
with a defined second-order APHC σ

αβγ

E-FBC:

σ
αβγ

E-FBC = − e3τ

h̄

∑
n

∫
[dk]

∂ f0

∂εk
εμνδ∂μ

× Gνγ
n (εδζαεικζvκvβBι + vαvδBβ ). (26)

It is seen that σ
αβγ

E-FBC is a asymmetric three-rank tensor, and
it can be separated into a symmetric and an antisymmetric
component. The third term is the B-FBC contribution σ

αβγ

B-FBC:

σ
αβγ

B-FBC = − e3τ

h̄

∑
n

∫
[dk]

∂ f0

∂εk
εβδαεμνδBζvγ ∂μF νζ

n .

(27)
One observes that σ

αβγ

B-FBC is antisymmetric by exchanging
first two indices, and it can be recognized as a genuine Hall
current. The total second-order FBC-induced APHC is then
σ

yxx
FBC = σ

yxx
E-FBC + σ

yxx
B-FBC. For the nonlinear APHE, the factor

τE2B is even for both T and P symmetry, requiring the
WSM Hamiltonian to break both T and P symmetry, which
is ensured by Eq. (18). Considering the nonlinear APHE
is extrinsic, the dependencies on the intranodes and intern-
odes scattering affect the APHE in different ways [67]. It is
seen that the nonlinear APHE is mainly dominated by the
anisotropy of the distribution function within each valley,
which is characterized by the intranode scattering τ . It has
been proposed that the chiral anomaly induces nonlinear PHE
[61,68,69], in which the current is limited by the internode
scattering τinter, where the quasiparticles scatter across the
nodes and switch their chirality. It is therefore implied that
the nonlinear APHE manifests in WSMs in the limit when
τ 
 τinter, where the short-range interaction or short-range
scattering dominates over the long-range one [68].

We then solve the second-order APHC tensors induced by
E-FBC and B-FBC, which are given by (see Appendix C)

σ
yxx
E-FBC = −e3τ

h̄

∑
s

∫
[dk]

∂ f0

∂εk

1

2vF k5

[
vF kyRz

sv
y
s Bx

−vF kzRy
sv

y
s Bx + kyvz

sv
x
s By

]
, (28)

σ
yxx
B-FBC = −e3τ

h̄

∑
s

∫
[dk]

∂ f0

∂εk

vx

2k6

[
ky(2kz + kRz

s )By

+ kx(2kz + kRz
s )Bx

]
. (29)

We consider that a pair of Weyl cones are tilted in the same
direction with Rs = R. One observes that a finite value of
the first term in σ

yxx
E-FBC requires a nonzero Rz. For the second

term in σ
yxx
E-FBC, it is proportional to kz(ky/k + Ry

s ) that takes a
finite value if the tilting vector has both nonzero components
along the y and z axes. Similarly, the third term in σ

yxx
E-FBC

takes a finite value if the x, y, and z components of the tilt-
ing are nonzero simultaneously. Similar deduction applies to
σ

yxx
B-FBC. Recall that a nonvanishing linear FBC-induced APHE

requires that the angle (α) between the tilt and the normal
of transport plane is not zero, nor π/2. Thus, when Rz is
finite and Rx = Ry = 0, the linear APHE vanishes and the
second-order APHE dominates, with a second-order APHC
(see Appendix C)

σ
yxx
E-FBC = −e3τ

h̄
vF

∫
[dk]

∂ f0

∂εk

(ky)2

k6
RzBx, (30)

σ
yxx
B-FBC = −e3τ

h̄
vF

∫
[dk]

∂ f0

∂εk

(kx )2

k6
RzBx. (31)

The constraints on the linear and second-order APHCs from
the tilting directions are summarized in Table I.

After some algebra, the analytical expressions of Eqs. (30)
and (31) are found as (for more details see Appendix D)

σ
yxx
E-FBC = σ

yxx
B-FBC = −e3τv3

Fπ

30h̄μ2

[5 + (Rz )2]Rz√
1 − (Rz )2

Bx. (32)

As seen in Eq. (32) the nonlinear APHC scales with μ−2,
which indicates that the nonlinear APHC increases rapidly
when the Fermi level approaches the Weyl nodes. This char-
acteristic is due to the singularity of the quantum metric at
the nodes. The FBC-induced nonlinear APHE predicted here
vanishes (survives) when the tiling vector lies in (perpendic-
ular to) the transport plane, while the chiral-anomaly induced
nonlinear PHE survives (vanishes) [61,65].

VI. CONCLUSIONS AND DISCUSSIONS

In this work we propose a type of APHE originating from
the field-induced Berry connection in tilted WSMs, which is
closely associated with the quantum metric. As a transport
phenomenon, it is distinct from the most remarkable trans-
port phenomena for the WSMs, e.g., the negative longitudinal
magnetoresistance and the extrinsic planar Hall effect, which
are induced by the chiral anomaly. Due to the intrinsic nature,
the APHE proposed here reflects the microscopic geomet-
ric properties of Bloch electrons, which could be useful for
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band-structure engineering to the observation of the quantum
metric by ab initio calculations. The FBC-induced nonlinear
APHE is also studied. The conditions for the existence of the
linear and nonlinear APHE are discussed, revealing that it is
possible to distinguish them in experiments.

Note added. Recently, we came across an independent
work [70] with a very similar calculation that predicts pla-
nar Hall effect related to the field-induced Berry connection.
However, their expressions of the planar Hall conductivities
are different from ours given in Eqs. (16) and (17). Despite
that, it is also found in Ref. [70] that a nonzero requires the
tilting is not parallel or perpendicular to the transport plane,
as a distinguishable feature of the intrinsic planar Hall effect.
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APPENDIX A: DERIVATION OF EQS. (21) AND (23)

We can employ spherical coordinates and parametrize the
vector k = k(sin θ cos φ, sin θ sin φ, cos θ ). With the nota-
tion s = 1 and s̄ = −1, the eigenstates are

|s−〉 =
(

sin (θ/2)e−iφ

− cos (θ/2)

)
, |s+〉 =

(
cos (θ/2)e−iφ

sin (θ/2)

)
. (A1)

Making use of the identity vα
nm = −iεmnAα

nm, the intraband
Berry connection becomes Aα

nm = i〈n|∂αH |m〉/(εm − εn). By
inserting the Hamilton (18) into Eqs. (A2) and (A3), the off-
diagonal elements of the quantum metric tensors for the Weyl
node with chirality s of the valence band are obtained as

gxy
s− =Re

[
Ax

s−+A
y
s+−

] = Re[〈s − |σx|s+〉〈s + |σy|s−〉]n
(εs− − εs+)2

= − sin2 (θ/2) cos2 (θ/2) sin (2φ)

2k2
= −kxky

4k4
. (A2)

And for the conduction band it follows the analogous calcu-
lation. It is easy to verity that gαβ

s− = gβα
s−, which testifies the

symmetric nature of the quantum metric tensor. The diagonal
parts are given by

gxx
s−

= Re
[
Ax

s−+Ax
s+−

] = Re[〈s−|σx|s+〉〈s+|σx|s−〉]n
(εs− − εs+)2

= sin4 (θ/2) + cos4 (θ/2) − sin2 (θ/2) cos2 (θ/2) cos (2φ)

4k2

= k2
y + k2

z

4k4
. (A3)

With the substitution k → −k, we found that gxy
s− = gxy

s̄−.
Therefore, one observes that the two cones preserve the same
quantum metric, which is distinct from the Berry curvature,
since the Berry curvature is opposite for the two cones. Ac-
cording to Eq. (3) in the main text, the E-FBC are given in
form of the quantum metric as

Gαβ
s− = 2gαβ

s−
εs− − εs+

. (A4)

Making use of the identity εs− − εs+ = −2vF k, it is found
that the E-FBC is independent of the chirality and we drop
the chiral indices for the E-FBCs in the following. Combining
Eqs. (A2), (A3), and (3), the E-FBCs are found as

Gαβ
− = kαkβ

4vFk5
, Gαα

− = −k2 − (kα )2

4vFk5
. (A5)

For convenience, we introduce the definition

Gαβγ = ∂αGβγ − ∂βGαγ . (A6)

By use of Eq. (A6), σ
yx
E-FBC is found as

σ
yx
E-FBC = − e2

h̄

∑
s

∫
[dk]

(
vx

sGyzx + vy
sGzxx + vz

sGxyx
)

× f0B sin θ. (A7)

By placing Eq. (A4) into Eq. (A6), one observes that

Gyzx = ∂zGyx − ∂yGzx = 0,

Gzxx = −2
kz

k5
, Gxyx = 2

ky

k5
. (A8)

By the use of Eqs. (A5) and (A7), the APHC induced by the
E-FBC is obtained as

σ
yx
E-FBC = −e2

h̄

∫
[dk] feq�

yzB sin θ. (A9)

The B-FBC-induced APHC can be obtained similarly. Par-
allel to Eq. (A6), we introduce the definition

Fαβγ
s = ∂αFβγ

s − ∂βFαγ
s . (A10)

Plugging Eqs. (A5) and (A10) into Eq. (15), when the pair of
Weyl cones are tilted in the same direction the linear APHC
induced by the B-FBC is obtained as

σ
yx
B-FBC = e2

h̄

∫
[dk] f0(F yxy sin θ + F yxx cos θ )B, (A11)

with

F yxy = ky(2kz + kRz )

2k6
, F yxx = kx(2kz + kRz )

2k6
. (A12)

APPENDIX B: COMPARISON WITH PLANAR HALL
EFFECT INDUCED BY CHIRAL ANOMALY

The chiral-anomaly-induced planar Hall conductivity on
the order of O(EB) is given as

σ
yx
CA = −e3τ

h̄

∫
[dk]B

(
v

y
k cos θ + vx

k sin θ
)
(vk · �k). (B1)

As demonstrated in the main text, σ
yx
CA vanishes when the

nodes tilt along the opposite directions, while σ
yx
B-FBC is finite if
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FIG. 2. Planar Hall conductivities induced by the chiral anomaly
and the FBC as a function of the chemical potential. The parameters
Rz

s = Rz
s̄ = 0.25, Ry

s = −Ry
s̄ = 0.25, vF = 2 eV Å, B = 0.5 T, kBT =

10 meV, τ = 10−13 s.

the nodes tilt along the same direction. As a consequence, the
PHE induced by the chiral anomaly and the APHE induced by
the FBC coexist with a noncollinear tilting. In Fig. 2 we show
the comparison between the PHE induced by chiral anomaly
and the APHE induced by FBC as a function of the chemical
potential, where the tilting of the two nodes is noncollinear.
Assuming the relaxation time τ = 10−13 s [61], it can be seen
that σ

yx
B-FBC is on the same order of magnitude of σ

yx
CA, along

with a different peak position versus the chemical potential.

APPENDIX C: DERIVATION OF THE EXPRESSIONS
OF THE FBC-INDUCED NONLINEAR APHC

IN WEYL SEMIMETALS

From Eq. (25), the second-order APHC tensors induced by
E-FBC and B-FBC are obtained as

σ
yxx
E-FBC = e3τ

h̄

∫
[dk][(∂yGxx − ∂xGyx )(Byvz − Bzvy)vx

− (∂zGyx − ∂yGzx )(Bxvy − Byvx )vx

+ (∂xGzx − ∂zGxx )v2
y Bx + (∂yGxx − ∂xGyx )vyvzBx

+ (∂zGyx − ∂yGzx )vyvxBx]
∂ f0

∂εk
, (C1)

σ
yxx
B-FBC = − e3τ

h̄

∫
[dk]

∂ f0

∂εk
[∂y(F xxBx + F xyBy)vx

− ∂x(F yxBx + F yyBy)vx]. (C2)

Making use of Eqs. (A6) and (A10), they can be rewritten as

σ
yxx
E-FBC = e3τ

h̄

∫
[dk][Gyxx(Byvz − Bzvy)vx

− Gzyx(Bxvy − Byvx )vx + Gxzx(vy)2Bx + GyxxvyvzBx

+ GzyxvyvxBx]
∂ f0

∂εk
, (C3)

σ
yxx
B-FBC = − e3τ

h̄

∫
[dk]

∂ f0

∂εk
[(F yxyBx + F yxxBy)vx

− ∂x(F yxBx + F yyBy)vx]. (C4)

Combining with Eqs. (A6) and (A10), we obtain

σ
yxx
E-FBC = −e3τ

h̄

∑
s

∫
[dk]

∂ f0

∂εk

1

2vF k5

× [
vF kyRz

sv
yBx − vF kzRy

sv
yBx + kyvz

sv
x
s By

]
, (C5)

σ
yxx
B-FBC = −e3τ

h̄

∑
s

∫
[dk]

∂ f0

∂εk

vx

2k6

× [
ky(2kz + kRz

s )By + kx(2kz + kRz
s )Bx

]
. (C6)

When the pair of Weyl cones are tilted in the same direction,
we set Rz finite and Rx and Ry to zero, and the second-order
APHC contributed by the E-FBC can be simplified as

σ
yxx
E-FBC = −e3τ

h̄

∫
[dk]

∂ f0

∂εk
vF

(ky)2

k6
RzBx. (C7)

In Eq. (C6) the terms proportional to ky are nonzero when the
tilting vector has both nonzero components along the y and
the z axes. The terms proportional to kx are nonzero when the
tilting vector has both nonzero components along the x and
the z axes. When Rz is finite and both of Rx and Ry are zero,
σ

yxx
B-FBC is written as

σ
yxx
B-FBC = −e3τ

h̄

∫
[dk]

∂ f0

∂εk
vF

(kx )2

k6
RzBx. (C8)

APPENDIX D: DERIVATION OF THE ANALYTICAL FORM
OF SECOND-ORDER APHC

To obtain the analytic formulas of the nonlinear APHC ten-
sors, one needs to deal with the integrals in Eqs. (30) and (31)
in the main text. According to Eq. (30), the E-FBC-induced
second-order magnetoconductivity is written as

σ
yxx
E-FBC = −e3τ

h̄
vF

∫
[dk]

∂ f 0

∂εk

(ky)2

2k6
RzBx. (D1)

Let us suppose that the Fermi energy lies above the Weyl
points, namely, μ > 0, so that only the conduction band is
considered. To derive an analytical expression, we consider
the zero-temperature limit, so that the partial derivative of the
Fermi-Dirac distribution is a δ function, ∂ f0/∂ε = δ(ε − μ).
Owing to the tilting, the equi-energy surfaces are ellipsoid in

k space. Making use of the coordinates transformations:

kx′ = kx, ky′ = ky, kz′ =
√

1 − (Rz )2

(
kz + ε

vF

Rz

1 − (Rz )2

)
, (D2)
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where k′ = [(kx′)2 + (ky′)2 + (kz′)2]1/2, and the integral element is changed as
∫

[dk] → ∫
[dk′][1 − (Rz )2]−1/2. The partial

derivative becomes ∂ f /∂ε = δ(μ − vF k′[1 − (Rz )2]1/2):

σ
yxx
E-FBC = − e3τ

h̄
vF

∫
[dk′]

Rz√
1 − (Rz )2

(ky′)2

2
[√

1 − (Rz )2k′ − Rz
(

1√
1−(Rz )2

kz′ − ε
vF

Rz

1−(Rz )2

)]6 δ(μ − vF k′√1 − (Rz )2)Bx

= − e3τ

h̄
vF

∫ 2π

0
dφ

∫ π

0
dθ

Rz√
1 − (Rz )2

(√
1 − (Rz )2

Rzk′

)6
k′4 sin θ3 cos φ2(

1
Rz − cos θ

)6 δ(μ − vF k′√1 − (Rz )2)Bx

= − e3τv3
Fπ

30h̄μ2

[5 + (Rz )2]Rz√
1 − (Rz )2

Bx, (D3)

where the integral is calculated in spherical coordinates with

k′
x = k′ sin θ cos φ, k′

y = k′ sin θ sin φ, k′
z = k′ cos θ. (D4)

In a similar manner, the B-FBC contribution to the nonlinear APHE is obtained as

σ
yxx
B-FBC = − e3τv3

Fπ

30h̄μ2

[5 + (Rz )2]Rz√
1 − (Rz )2

Bx, (D5)
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[35] K. Życzkowski and H.-J. Sommers, Average fidelity be-
tween random quantum states, Phys. Rev. A 71, 032313
(2005).

[36] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J.
Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband
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