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The acceleration theorem for wave packet propagation in periodic potentials disentangles the k-space dy-
namics and real space dynamics. This is well known and understood for Bloch oscillations and super Bloch
oscillations in the presence of position-independent forces. Here, we analyze the dynamics of a model system in
which the k-space dynamics and the real space dynamics are inextricably intertwined due to a position-dependent
force provided by a parabolic trap. We demonstrate that this coupling gives rise to significantly modified and rich
dynamics when the lattice is shaken by a modulated parabolic potential. The dynamics range from chirped
Bloch-harmonic oscillations to asymmetric spreading oscillations. We analyze these findings by tracing the
spatiotemporal dynamics in real space and by visualizing the relative phase in the k-space dynamics which
leads to an accurate explanation of the obtained phenomena. We also compare our numerical results to a local
acceleration model and obtain very good agreement for the case of coherent oscillations, however, deviations for
oscillations with spreading dynamics which altogether supports the interpretations of our findings.

DOLI: 10.1103/PhysRevResearch.5.043152

L. INTRODUCTION

Ultracold atomic gases in optical lattices are ideal model
systems for quantum simulations [1]. These systems allow for
flexible manipulation of the parameters, interatomic interac-
tions, and lattice defects. Improved measurement techniques
have opened doors to new interpretations, effects, and ap-
plications of varied phenomena in solid-state physics [1].
Prominent examples that are largely explored in ultracold
atomic systems are superfluidity [2], quantum magnetism [3],
topological matter [4], Anderson localization [5], and Bloch
oscillations [6-8].

In solid-state physics, the acceleration theorem is a fun-
damental concept that describes the motion of electrons in a
crystal under the influence of spatially homogeneous electric
fields. The theorem states that for an electronic wave packet
that is well localized in k space and is constrained to a sin-
gle band, the wave packet center k. evolves according to
hk.(t) = —eE(t), where —e is the electronic charge, when an
electric field E(7) is applied [9-12]. The acceleration theorem
combined with the Jones-Zener expression of group veloc-
ity [13], ve(t) = h_ldE/dk|kL(,), devises a powerful method
to describe the wave packet motion within a semiclassical
framework. Important examples where this method is proven
to be highly effective are Bloch oscillations (BOs) [14-21]
and super Bloch oscillations (SBOs) [10,22-28]. Considering
the dispersion relation of a one-dimensional single-band tight-
binding model with hopping amplitude J and lattice period d,
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E (k) = —J cos(kd), these dynamics can be summarized by
. 1 . Jd .
ke(t) = _EF(I); x(t) = r sin(k.(1)d). (1)

For F () = Fy + Fp sin(wpt ) representing the time-dependent
force exerted by the electric field, BOs with frequency wp =
Fod/h are obtained for the case Fp = 0 and SBOs appear if
Fp # 0 and the frequency of the oscillating field wp, is slightly
detuned from a rational multiple of wg [10].

The key principle behind the separable solutions in
these elementary examples is the necessity of a position-
independent force. However, in modern experiments with
ultracold atoms in optical lattices with parabolic confinement,
different situations naturally arise. Thus, position-dependent
forces can be realized, which give rise to an intricate interplay
between the k-space and real space dynamics. Considering the
parabolic confining potential V (x) = ma)fx2 /2, where w; is
the trap frequency and m is the atomic mass of the trapped
atoms, a local acceleration theorem 7ik.(t) = —ma)fxc(t) can
be defined for wave packets located around x.(), i.e., slightly
away from the center of the parabolic potential, and where
the force varies slowly between lattice wells. The resulting
dynamics are quite similar to BOs although the evolving wave
packet now dephases quite rapidly, which leads to collapse
and revivals of BOs [29-36]. These effects are beyond the
semiclassical approach; nonetheless, the frequency and ampli-
tude of BOs can be calculated quite generally. The situation
becomes even more interesting and complex when the trap
potential or the periodic lattice is modulated in time [37,38].
The latter can be utilized to achieve long-range wave packet
transport [39], however, a fully consistent analytical theory
for the wave packet dynamics in modulated parabolic lattices
is not yet available.
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In this paper, we analyze the wave packet dynamics in a
periodic potential by considering a parametrically modulated
parabolic trap. Our analysis shows that the modulation leads
to oscillatory transport on top of BOs, for which the pre-
dictions of a local acceleration theorem are fairly accurate.
These dynamics we denote as chirped Bloch-harmonic os-
cillations (CBHOs). First, we show dephased CBHOs, where
the dephasing follows a different mechanism compared to the
dephasing of BOs in static systems. Next, we demonstrate that
the dephasing of CBHOs can be suppressed by an initial phase
shift in the drive, leading to long-lived coherent CBHOs.
Conversely, at the opposite phase of the drive, we observe
an asymmetric oscillatory spreading of the wave packet. The
spreading motion reveals a new kind of mixed dynamics that
exists in the combination of standard BOs and anharmonic
BOs. Furthermore, we present an adapted solution to the local
acceleration theorem, which highlights the usefulness of the
local force assumption in the undriven system and shows good
agreement with CBHOs in the driven scenario.

The paper is organized as follows: In Sec. II, we introduce
the model and the numerical procedure and provide the pa-
rameters used in our calculations. We present, explain, and
discuss the obtained results in Sec. III and provide conclusions
in Sec. IV.

II. THE MODEL

We consider a condensate of ultracold rubidium atoms
in an axially symmetric crossed optical dipole trap, which
provides loose axial confinement as compared to tight con-
finement along the transverse plane. In the limit of strong
transverse confinement, and considering the atom-atom inter-
actions are tuned to zero by using the Feshbach resonance,
the effective potential in the axial direction is parabolic [40].
In addition, a one dimensional (1D) optical lattice is intro-
duced alongside the parabolic potential, which results in a
symmetrically curved periodic potential, see Fig. 1. We as-
sume that the dynamics starts with a rapid displacement of
the center of the parabolic potential at time ¢ = 0, which
together with its subsequent time-dependent modulation can
be realized by specialized optical modulators, such as acousto-
optic modulator, in the axial beam [41]. Thus, the parabolic
potential is modulated periodically, which means that the
overall curvature oscillates in time. In dipole and rotating
wave approximations, the dynamics of ultracold atomic con-
densates in the combined potential of a 1D optical lattice and
a modulated parabolic trap are effectively described by the
Hamiltonian

2
H = ;—m + W sin’ (%x)

1
+ Emwixz{l + a sin(wpt + ¢)}, 2

with ¢t > 0. Here, V; is the depth of the optical lattice and
d is the lattice period. Moreover, «, wp, and ¢ denote the
amplitude, frequency, and initial phase of the driving field,
i.e., the oscillatory part of the parabolic potential, respectively.

If the lattice depth is sufficiently high as compared to
the atomic recoil energy Ex = h*m?/2md?, ie., Vo > 4Eg,
and the modulation does not induce interband tunneling, one
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FIG. 1. (a) Schematic diagram showing the combined potential
of a 1D optical lattice and an additional parabolic trap. The arrow
indicates the oscillating curvature of the combined potential in the
presence of a modulation of the trap, and the inset represents a
Gaussian wave packet which we consider the starting point of the
quantum dynamics. (b) Eigenfunctions of the time-independent sys-
tem obtained via the stationary solutions of Eq. (3) with the density
of each solution placed one over the other as the integer eigennumber
is taken on the y axis, and as a function of the real space index n taken
on the x axis. The dashed lines at n = n, mark the separation between
harmonic oscillatorlike and strongly localized eigenfunctions.

can express the wave function v (x,?) as a superposition of
Wannier functions w(x) that are localized in the individual
wells at x = nd via Y (x,1) =), cu(t) wo(x — nd). In such
a single-band tight-binding description of the system, the
dynamics of the complex amplitudes c,(¢) follow from the
discrete time-dependent Schrodinger equation and read

7 de, J % 2 3

L 7—_§(Cn+l+cn—l)+ (t) n"cy, 3)
with K(t) = Ko(1 + o sin(wpt + ¢)), and the parabolicity
Ky = mw?d?/2, [29,30]. The symbol J denotes the nearest-
neighbor tunneling matrix element, which depends upon the
scaled depth of the optical lattice, s = Vy/Eg, as J/Eg ~
8 (s)ie 25/ /m [42,43].

In order to initiate the quantum dynamics, we start with a
sudden displacement of the parabolic trap center at time t = 0,
along the axis of the combined potential. The displacement
induces a shift in the mean position of the atomic cloud,
and the ensemble starts its journey over the curved periodic
wells of the parabolic lattice at xy/d = ny. For a displace-
ment above the critical index, n, = (2J/Ky)'/? the energy of
the wells is larger than the trap free bandwidth E > 2J. In
such a regime, the eigenfunctions are increasingly localized in
two separate regions of space [44,45], as shown in Fig. 1(b).
Without considering a modulation of the trap potential, the
expected dynamics would be quite similar to BOs in a locally
static force of strength F,,; ~ —2Kono/d [29,30]. We assume a
preparation of the atomic condensate in the regime of strongly
localized eigenfunctions away from the center of the parabolic
lattice and describe it by a displaced Gaussian wave packet

1 _(71—11(2;)2 )
Gt =0)=——e > e ™", )
On/T
with mean position, initial momentum, and spatial width
represented by ng, ko, and oy, respectively. To obtain the
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dynamical evolution, we solve Eq. (3) numerically by using
the fourth-order Runge-Kutta method for the initial conditions
given by Eq. (4). To trace and be able to analyze the wave
packet dynamics in k space, we evaluate the Fourier transform

() = e, () €dn, ®)

1 [o.¢]
V2r /m
with k scaled in units of kg = 27 /d and restricted to the first
Brillouin zone, i.e., —1/2 < k < 1/2.

We use values of the system’s parameters from an experi-
ment with Bose-condensed 8’Rb atoms [46], with atomic mass
m = 1.443 x 1072 kg, which are placed in an optical lattice
of period d = 397.5 nm with depth Vy = 12.77 Eg and a
parabolic trap with frequency w, = 2w x 9 Hz. These val-
ues correspond to J = 0.024 Eg, Ky = 1.52 x 1073 E, and
ne. = 56. The experimental procedure matches very closely
with our assumption of the wave packet preparation, with
the only difference that we chose a parabolic optical trap
instead of a magnetic trap, and that in our model we consider
that the trapping potential can be modulated periodically in
time. We start the dynamics from ny = 125, such that the ini-
tial Bloch frequency is given by fiwg = 2Kgng = 0.0038 Ey,
which corresponds to wp = 27w x 13.76 Hz. A rather wide
initial wave packet with a width in real space of oy = 3.16
corresponding to about 20 appreciably occupied sites and a
distance of 7.95um is considered, which is appropriate for
the weak trapping used here. The trap potential is modulated
with a strength equal to the static trap strength, i.e., « = 1, and
the modulation frequency is tuned to exactly match the initial
Bloch frequency, i.e., wp = wp. As shown below, different
dynamics are obtained when tuning the initial phase ¢ of
the time-dependent trap potential, which therefore acts as a
control parameter.

III. RESULTS AND DISCUSSION

The dynamics obtained for our spatially-inhomogeneous
and periodically driven system for ¢ = 0 is shown in Fig. 2.
As seen, the result demonstrates coupled evolution in real and
quasimomentum space, where the wave packet’s center in one
space moves in accordance with the other, and the result cor-
responds to CBHOs. A slow oscillatory transport combined
with standard BOs is observed in Fig. 2(a), which completes
its period in 6.5 Bloch periods 73 moving across more than 50
lattice sites in real space. The transport-carrying oscillation
highlights the existence of an effective relative phase between
the modulation and the BOs in the shaken periodic lattice [28],
even though here an external detuning is absent. The dynam-
ics resemble SBOs, however the corresponding evolution in
k space, shown in Fig. 2(b), reveals that the relative phase
does not sweep around the whole BZ but rather oscillates
around its center. The oscillating phase is an outcome of
coupling between coordinate position and quasimomentum
that manifests itself in the form of parametric modulation of
Bloch frequency. In more detail, the relative phase develops
from spatial variations, which increase (decrease) the Bloch
frequency for wave packet transport against (in) the direction
of force. With this, the cycle averaged momentum changes
its sign, which flips the transport direction. Accordingly,
Bloch frequency starts to decrease (increase) and the phase
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FIG. 2. Time evolution of the absolute square of the wave func-
tion in (a) real and (b) quasimomentum space exhibiting CBHOs with
some additional weak dephasing. The wave packet starts its journey
att = 0 at ny = 125 with ky = 0, and we consider a modulated trap
potential with drive phase ¢ = 0.

oscillates. Further, this mechanism repeats itself and cycles
continuously. As a result, quick oscillations are generated,
and the real space amplitude is low as compared to standard
SBOs. Hence, CBHOs can be used to generate oscillatory
transport with various amplitudes and temporal periods. Keep-
ing in view the harmonic oscillatorlike profile of oscillatory
transport, it is noted that the period of CBHOs, i.e., the chirped
Bloch-harmonic period, is independent of the wave packet’s
initial position and is given by Tcgno ~ 2w h/+/JKoor.
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FIG. 3. Width of the wave packet in real space for a drive phase
of ¢ = 0. The left inset shows a magnified image of the width
during the first five Bloch periods. The inset on the right displays
the long-time evolution of the width, which shows a decline of the
width corresponding to a complete revival.

043152-3



ALIL HOLTHAUS, AND MEIER

PHYSICAL REVIEW RESEARCH §, 043152 (2023)

140
130
120 i 3 .

. )

FIG. 4. Drive-phase-dependent dynamics. Time evolution of the
absolute square of the real space wave function for a drive phase
of (a) ¢ = —m/2 and (c) ¢ = 7 /2 exhibiting coherent CBHOs and
asymmetric spreading dynamics, respectively. The corresponding
quasimomentum evolutions are shown in (b) and (d), respectively.

The CBHOs shown above are accompanied by slow de-
phasing, which is initiated by a broadening of the wave packet
at times when the transport changes direction, as shown in
Fig. 2. Likewise, the wave packet evolution in k space also
shows broadening, although the width in k space is inverse
to the width in real space. In the presence of broadening, a
collapse of the coherent oscillations occurs, and the long time
dynamics are heavily dephased. To analyze the dephasing, we
plot the time evolution of the width in real space, i.e., the
square root of the variance, in Fig. 3. Starting with the first
chirped Bloch-harmonic period, we note that the width mainly
increases when the wave packet moves against the force and
becomes smaller during the motion in the direction of the
force. However, the initial width is never returned after the
first Bloch period (see insets in Fig. 3), and there is overall
growth every chirped Bloch-harmonic period. The width is re-
duced at the start of the second CBHO, which again increases
in addition to the growth factor from the previous oscillation.
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FIG. 5. Time dependence of the wave packet width in real space
for drive phases of ¢ = 7 /2 (blue) and ¢ = —m /2 (green).

This pattern is repeated until the width reaches a maximum
value. The oscillation of the width continues, and it saturates
until an interval of coherent dynamics reappears. The inset at
the right bottom of Fig. 2 shows that for long times, the wave
packet gets narrower, and at a time equal to 680 75 a revival
occurs.

As shown in Fig. 4(a), a dephasing of the wave packet
is not present if we drive the system with an initial phase
of ¢ = —m /2. In this case, coherent CBHOs emerge, which
remain intact even on long time scales, however, the amplitude
is reduced due to the opposite polarity of drive to BOs. The
vanishing of dephasing can be attributed to a reduction in
the amplitude and correspondingly decreased spatially vary-
ing effects. Figure 4(b) shows the same behavior in k space.
The modulation appears immediately with a relative phase
following a sine wave form, which is again confined near
the center of the BZ. Thus, the interaction between BO and
the modulation takes place at small values of quasimomen-
tum, and accordingly, the real space CBHOs are smaller in
amplitude.

At this point, we note that the amplitude of the CBHOs can
be enhanced by modulations that modify the BO dynamics at
larger absolute values of the quasi-momentum. In Fig. 4(c)
we show the real space dynamics for such a case where we
modulate the system with a phase of ¢ = /2. Clearly, we
see an increase in the amplitude of the wave packet transport,
however, we find a new kind of dynamics that corresponds
to a superposition of breathing and center-of-mass Bloch dy-
namics. In contrast to the coherent CBHOs reported above,
the wave packet distribution now spreads rapidly. The wave
packet stretches in space, and we can identify two regions
of unequal densities, where at one end, with a higher density
toward the direction of force, the wave packet performs purely
breathing dynamics, and at the other end, with a lower density,
it undergoes anharmonic breathing. Both breathing oscilla-
tions occurring at a difference of 0.575 pass on the maximum
density to a revival of the coherent BOs in just six Bloch
periods. Furthermore, we see all three types of oscillations
happening at the same time with periodic changes in density.
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FIG. 6. Group velocity as a function of time for (a) ¢ =0,
(b) ¢ = —m /2, and (c) ¢ = /2. The red line represents the result
of numerical calculations, while the dashed blue line depicts the
dependence obtained from Eq. (6). For (a) the parametric values are
AF =3.65 x 107* E and hdw = 5.43 x 10~* Ey, while in (b) and
() AF =2.13 x 107" Ey. All the other parameters are the same as
used previously.

The modulation appearing near the edges of the BZ is also
responsible for the wave packet spreading. This is evidenced
by the wave packet evolution in k space. Figure 4(d) highlights
the sustained momenta near both edges, which correspond
to real space motion in opposite directions and by which
the wave packet spreads at times when Bragg reflections
occur. One can also interpret this in terms of negligible cycle-
averaged momentum. We see that the average momentum
slowly increases due to the varying Bloch frequency, and thus
an asymmetric spreading is generated. Then again, the wave
packet gets narrower due to phase mixing and continues to
follow a combination of breathing and coherent dynamics.

Note that the spreading oscillations reported here are simi-
lar in nature to the ballistic spreading regime that appears for
the modulation of the periodic lattice with a constant force
at the drive phases ¢ = —m /2, /2 [22,23,26,27]. However,
under the driving with a position-dependent force at ¢ = 7 /2
we find an asymmetrical spreading motion that dies out in a
few Bloch periods and that, unlike ballistic spreading, gives
rise to a mix of breathing and coherent Bloch dynamics. Also,
contrastingly, we find CBHOs at a drive phase of ¢ = —m /2.

In Fig. 5 we present the width variations in real space for
wave packets evolving for opposite drive phases. These we

compare with each other and with the width dynamics of a
zero-phase drive, which we have discussed earlier. Here, the
width for a ¢ = —m /2 drive is seen to follow the oscillatory
width profile of the ¢ = 0 case. However, in this case the
width periodically returns to its initial value and there is no
overall growth. The small-width oscillations are sustained
even at longer times and we perceive the case of ¢ = —m /2
as a purely coherent regime of CBHOs. On the contrary, the
width increases sharply for the drive phase ¢ = 7 /2, reaching
a value that is much larger than the maximum width reached in
the ¢ = 0 dynamics. The width again saturates following even
larger width oscillations, but it remains far above the initial
value and we do not see a complete revival in the dynamics
for ¢ = /2.

We analyze the obtained complex dynamics further by
comparing them to the local acceleration model. Taking into
account the weak parabolic trap considered here, the local
acceleration theorem with the position- and time-dependent
force of our problem gives

fike(t) = —2K (t)n.(t)/d. (©6)

With regard to BO dynamics in the absence of trap modula-
tion, within the semiclassical approach, the spatial-variations
during BOs have negligible effect on the dynamics (see
the Appendix). Therefore, following the harmonic oscillator-
like transport during CBHOs, we approximate that the wave
packet’s center in real space moves according to n.(t) = ng +
Ansin(éwt 4 y). Thus, on solving Eq. (6) we get k.(¢), and
by the perturbation method, the group velocity is given as

Fyd
i

AFd
{cos(8wt + y)—cos(y)}
hdw

Jd . Fy,da
V(1) = ) sin| k,d — t+ o {cos(wpt + @)
D

— cos(¢)} +

AFda
h(wp + dw)

{sin((wp £ dw)t + (¢ £ y))

— sin(¢ + y)}}, @)

where AF is the change in force across spatial distance An,
and dw is the frequency of CBHOs. Equation (7) is plotted
in Fig. 6 where the analytical result is compared with the
numerically calculated dynamics of the group velocity. The
parameters An and dw are particular to the system, and we
extract these from the real space dynamics shown above.
Figure 6(a) shows that for ¢ = 0 the semiclassical and approx-
imate analytical result covers the relative phase of CBHOs
quite well. However, in this case, the spatially varying ef-
fects are quite significant and cannot be fully captured by
the approximate model, so no exact match between numerics
and Eq. (7) is obtained. For the case of ¢ = —m /2 shown in
Fig. 6(b) we achieve a very good agreement between Eq. (7)
and the numerical calculations, and the rapid oscillations of
the relative phase are also confirmed. Clearly, the insertion of
an oscillatory function put restrictions on the relative phase
such that the modulation now does not affect the entire ve-
locity values unless dw is very small. Figure 6(c) shows
the breakdown of our analytical model, which is due to the
spreading and the multimode dynamics present for ¢ = 7 /2
which are beyond the semiclassical model.
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FIG. 7. CBHO:s for different choices of initial widths of ¢ = 0.025 (a) and ¢ = 15.811 (b). Dynamics of the average position (c) and width
variance (d) for o = 0.025, 2.236, 7.071, and 15.811 represented by the blue, red, green, and purple lines, respectively. The results correspond

to the case of ¢ = 0 phase drive.

Next, we discuss the effect of different initial widths on
the CBHOs. Figure 7 shows a comparison of the dynamics
when choosing various initial widths for our Gaussian wave
packet. It is seen that the overall character of the dynamics
remains similar for significantly wider or sharply narrower
widths. As expected, a sharply localized wave packet per-
forms breathing dynamics, as shown in Fig. 7(a). However,
unlike breathing SBOs, the spreading wave packet partially
contracts, and the overall evolution is similar to the dynamics
of a sharply localized harmonic oscillator wave packet placed
on a periodic lattice. The wave packet contracts every half
chirped Bloch-harmonic period due to phase matching, which
is then followed by expansion again. This continuous and
the overall dynamics dephase in just a few chirped Bloch-
harmonic periods. Likewise, a wide wave packet, in Fig. 7(b),
is also seen to exhibit spreading chirped Bloch-harmonic mo-
tion where the dispersion takes place due to wave packet
narrowing induced by a self-phase mixing emerging from the
spatially varying force. Alongside, some weak fraction of the
wave packet is initially seen to undergo large transport, which
then interferes with the spreading wave packet and gives rise
to more complex dynamics. Figures 7(c) and 7(d) further
illustrate a qualitative resemblance in the dynamics with the
width choices discussed above, which are compared against
two other instances of chosen intermediate widths. The re-
sults for a sharply localized width (blue curves) highlight
the modulated oscillations of the mean position, and variance
sustained around a high value which confirm the harmonic
oscillatorlike spreading and the differences from breathing

SBOs. Also, for a much wider wave packet (purple curves),
the mean position oscillates with a decaying amplitude, which
is due to the spreading dynamics and the related dephasing.
The variance in this case first decreases, reaching a mini-
mum corresponding to the wave packet narrowing, and then
increases, leading to further width oscillations. In these cases,
the complex-width oscillations are attributed to the expansion
and partial contraction of the wave packet during evolution. In
the intermediate width cases, the results show large-amplitude
CBHOs of the mean position and a slow-gradual increase in
the width. We note that the slow increase in width is due to
weakly dephased dynamics at ¢ = 0 drive phase, and thus the
CBHOs are maximally coherent for a moderately wide wave
packet. Hence, the dynamics are highly sensitive to the initial
width of the wave packet and the choice of a localized wave
packet with moderate width is crucial for the application of the
presented semiclassical model. This knowledge is important
for characterizing the system’s response and designing exper-
iments or control strategies tailored to specific requirements
or desired outcomes. Further, we describe the dynamics with
a different initial position for our wave packet. Note that
for a fixed driving frequency, a shift in initial position is
equivalent to driving the system with frequencies beyond the
primary resonance, as a change in position ng redefines the
initial Bloch frequency. In Fig. 8(a) we show the dynamics
for the Gaussian wave packet placed at site ny = 150, un-
der the same driving frequency as used before, i.e., fiwp =
0.0038 Eg, which corresponds to Bloch frequency at n = 125.
It is seen that the wave packet in this case performs CBHOs
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FIG. 8. CBHOs (a) and spreading dynamics (b) for the same
parameters as in Fig. 2 but for the initial wave packet placed at
ny = 150 and ny = 100, respectively.

around the lattice position n = 125. This is due to a steady
modulation of the relative phase, even at small deviations from
the resonance condition. We found that the phase is regular
for ng — n./2 < ng < ng + n./2, which marks the regime of
CBHOs where the wave packet undergoes harmonic transport
around the position related to a primary resonance. Beyond
this regime, the dynamics change character between spreading
and complex dynamics unless a secondary resonance is trig-
gered. In Fig. 8(b) we show spreading dynamics for a wave
packet initially placed at nyp = 100. The location corresponds
to the boundary of the regime of CBHOs, where the relative
phase is seen to oscillate near the edges of the Brillouin zone,
similar to Fig. 4(d), and thus spreading dynamics are obtained.

To show dynamics arising on a secondary resonance, in-
stead of changing the initial position ny, we simply vary
the frequency of the drive. When choosing wg = wp/gq with
g € N, we obtain superharmonic modes, and at wp = rwp
with » € N subharmonic response is seen in the dynamics.
Figure 9 shows an instructive example of such scenarios. The
superharmonic modes are illustrated in Figs. 9(a) and 9(b),
where modulation appears rather quickly. The quick change
of the relative phase is visible in the k-space evolution, which
carries two distinguishable oscillatory phases on top of Bloch
oscillations. The resulting dynamics manifest a fast modula-
tion of the Bloch oscillations, which can be averaged out if

the driving frequency is too high. In our numerical simula-
tions, we have found that the dephased Bloch dynamics of the
static system remain unaffected by the drive for wp > wp/10.
In Figs. 9(c) and 9(d) subharmonic motion is shown, where
the modulation interacts with Bloch oscillations at alternate
periods. Therefore, for one Bloch period, the wave packet
performs ordinary Bloch oscillations, and in the next period,
the transport is generated. The resulting motion is similar to
CBHOs, although the dynamics here decay rather quickly and
strongly dephased dynamics are obtained. The subharmonic
response demonstrated by the model makes it appropriate for
an exploration of time crystals in cold atomic systems as a
future endeavor.

IV. CONCLUSIONS

In summary, our calculations demonstrate that a position-
and time-dependent force realized in ultracold atomic sys-
tems brings about an abundance of dynamics that are not
accessible in traditional solid-state systems. The dynamics
range from CBHOs, over collapse and revivals to asymmet-
ric spreading oscillations. These are the outcomes of phase
modulations induced by the spatial variations. The k-space
evolution of the wave packet and the predictions of an ap-
proximate semiclassical model confirm our interpretations.
Our studies provide a general protocol to analyze and pre-
dict the dynamics in more realistic material systems, where
the lattice profile can be globally or locally inhomogeneous.
Also, different frequency chirps can be induced in the driv-
ing field to artificially manipulate the transport or tailor the
dynamics with unique oscillation profiles. These findings pro-
vide exciting opportunities for experimental verification with
ultracold-atom experiments and may lead to new insights into
the properties of quantum systems in confined geometries
with potential applications in atomic diffraction, entanglement
generation, atom interferometry, and force metrology.
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APPENDIX: DYNAMICS FOR A STATIC TRAP

Here, we present our analytical approach applied to the
case of the stationary system that uses a static parabolic trap,
for which the solution to the acceleration relation follows,

2 t
kc(t)sz(O)—m;)f / x(t') dt'. (A1)
0

Considering the Bloch oscillating evolution of our wave
packet, i.e. x.(t) = x(0) + Ax cos(wpt + k.(0)d) with Ax and
wp being the amplitude and initial frequency of Bloch oscilla-
tions, respectively, the above equation simplifies as

mw%x(O)t B Ax
h dx(0)
— sin{k:(0)d}],

ke(t) = ke(0) —

[sin{wpt + k.(0)d}

(A2)
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FIG. 9. Weakly modulated Bloch oscillation (a), (b) at wg = wp/2 and dynamics similar to CBHOs (c), (d) at wg = 2wp. Other parametric

values remain the same as in Fig. 2.

which shows that the spatial variations during Bloch oscil-
lations have a negligible effect on the dynamics of k.(t),
as x(0) > Ax. The wave packet evolves with an almost
constant Bloch frequency, wp =& mw%dx(O) /h, where the os-
cillation amplitude is given by Ax = J/mw?d x(0), with J
being the tunneling matrix element between contiguous lattice
sites [29,30].

Further, it is known that for the considered system, a
regime of dipole oscillations exists for wave packets placed
near the center of the parabolic potential [29,30,44]. In such
situations, the real space evolution of the wave packet’s center

is approximated as x.(t) = x(0) cos(wgot + k.(0)d), where
wno = v Jmw?d? /1 is the frequency of the dipolar motion
across the center of the trap potential. Thus, the time evolution
of the quasimomentum follows from Eq. (A1) as

2
ke(t) = ke(0) — n;w;—zf)())[Sin{wHol + ko (0)d)
— sin{k.(0)d}], (A3)

showing that the quasimomentum oscillates around the maxi-
mum value determined by x(0).
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