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Metallic nanostructures as electronic billiards for nonlinear terahertz photonics
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The optical properties of metallic nanoparticles are most often considered in terms of plasmons, the coupled
states of light and quasifree electrons. Confinement of electrons inside the nanostructure leads to another, very
different type of resonances. We demonstrate that these confinement-induced resonances typically join into a
single composite “super-resonance,” located at significantly lower frequencies than the plasmonic resonance.
This super-resonance influences the optical properties in the low-frequency range, in particular, producing
giant nonlinearities. We show that such nonlinearities can be used for efficient down-conversion from optical
to terahertz and midinfrared frequencies on the submicrometer propagation distances in nanocomposites. We
discuss the interaction of the quantum-confinement-induced super-resonance with the conventional plasmonic
ones, as well as the unusual quantum level statistics, adapting here the paradigms of the quantum billiard theory
and showing the possibility to control the resonance position and width using the geometry of the nanostructures.
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I. INTRODUCTION

Light propagating in the vicinity of metallic surfaces or
metallic nanostructures is strongly coupled to the “electronic
fluid” formed by quasifree electrons in the metal, resulting in
joint electron-photon excitations which are called surface or
particle plasmons, depending on the geometry. Plasmons and
the corresponding plasmonic resonance (PR) are at the very
heart of optics of nanostructures.

PRs appear by matching of the incoming light to the intra-
particle fields, leading to strong surface charges and resonance
peaks of linear and nonlinear response of metallic nanopar-
ticles at certain frequencies [1–3]. That is, PRs are defined
via the matching condition of the fields, rather than electrons
themselves, and have no direct relation to the electron confine-
ment inside the nanostructure. Plasmonic resonances are lo-
cated at quite high frequencies, commonly in the visible range.

As soon as we consider very small metallic nanoparti-
cles, quantum confinement of electrons in the finite volume
of a nanoparticle comes into play. Possible confined-based
resonances have rarely attracted attention per se, separately
from the properties of plasmons. On the other hand, any
calculation of the properties of small nanoparticles does in
principle include quantum mechanical confinement of elec-
trons as an ingredient, noticeably influencing the position and
the width of PR [2,4–7]. In the recent years, huge progress
was made in both calculations and measurements [2,7–14]
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of properties of small nanoparticles. Theoretical approaches
are used, starting from relatively simple analytical techniques
[4,15–17], through the single electron in a box [15,18], jellium
model [19], hydrodynamiclike equations [20,21], and quan-
tum hydrodynamic theory [22] towards direct ab initio density
functional theory methods fully taking into account the ionic
core structure [9,14,23–25]; for a review see [13]. Whereas
analytical and hydrodynamic approaches can address nonlin-
ear properties [16,20,21], complex ab initio methods focus
solely on the linear susceptibility, unless very small nanoclus-
ters are considered [26,27].

For very small nanoclusters and nanoparticles (a few hun-
dred atoms and below), the response is molecularlike [9,14],
typically including a cacophony of resonances replaced by
a single PR [14,28,29]. At lower frequencies, a prominent
molecularlike resonance is the highest occupied molecular
orbital–lowest occupied molecular orbital (HOMO-LUMO)
transition [14,30–32]. It describes an excitation of a single
localized electron, and depends heavily on the molecular
structure [30].

As we shift to larger nanoparticles, the HOMO-LUMO
transition effectively fades out [14] because its decay rate
grows exponentially with the size of the nanostructure [31,32].
However, the PR is not the only one which remains. Sig-
natures of a single resonance well below the plasmonic one
but above the HOMO-LUMO transition were observed ex-
perimentally [33,34] and later confirmed theoretically [8,35]
involving ab initio simulations [35]. This resonance is
however mostly overlooked since then, and there is no con-
sensus in explanations of its nature. Whereas in [8,34] the
confinement-based argument were put forward, [33,35] tries
to explain it without leaving the plasmonic framework by
introducing “restoring force on the electrons.”
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FIG. 1. A spherical gold nanostructure (left) of 2.75-nm diameter
and the band level structure (right) appearing due to the electron con-
finement (quantum billiard resonances). Fermi energy EF and work
function EW as well as exemplary virtual transitions contributing
to linear (orange arrows) and nonlinear (red arrows) properties are
indicated. One of the wave functions ψ (x, y, z) is visualized inside
the nanostructure (a sector of the sphere is cut for visualization
purposes). Even for the simplest nanoparticles, energy level structure
is quite complex.

Here we show that confinement-based resonances under
normal conditions (at least for nanostructures with regular
enough geometry) merge together and form a single broad-
band “super-resonance” located commonly in the terahertz
and midinfrared (MIR) frequency range, with both the width
and position widely controllable with the nanostructure geom-
etry. Such super-resonance must be considered as one of the
universal signatures of metallic nanostructures, yet fundamen-
tally different from the PR.

We study the statistical features of confinement-based
resonances by adapting and modifying the paradigm of
neighboring-level statistics from the field of quantum billiards
[36]. Electrons confined in a nanostructure certainly represent
a type of quantum billiard. Yet, up to now, with only very few
exceptions [37,38], nonmetallic billiards such as semiconduc-
tor quantum dots [39–45] were considered. As we show, the
metallic nature of our billiard provides a unique opportunity
to observe certain features of the level statistics directly in the
optical properties.

Furthermore, the super-resonance provides a broadband
nonlinear response, leading to giant nonlinearities. We
demonstrate how these nonlinearities can be used for an ef-
ficient optical rectification and difference-frequency mixing
in the nanocomposites, enabling broadband conversion from
optical to MIR or terahertz ranges by submicrometer devices.

II. THE MODEL

We used a simple analytical approach of a single particle
in a box [6,8,16,34] (see also more details in Appendixes A
and B) with electrons fully confined inside a nanoparticle. For
calculation of optical properties, we consider electron energy
structure characterized by Fermi energy EF and work function
of EW , as illustrated in Fig. 1 right. This approximation works
well for metals with a simple Fermi surface such as alkali
metals (Li, Na, Ca, Rb); it is an acceptable simplification

for metals with somewhat more complicated Fermi surfaces
such as Cs, Cu, Ag, or Au; and it is barely applicable at
all for other metals. The linear (χ (1)) and nonlinear (χ (3))
susceptibilities were calculated using a version of the standard
perturbative iterative approach [46] which takes into account
selection rules following from the Fermi-Dirac statistics (see
Appendixes D, F, and G). The linear and nonlinear optical
properties can be described via a sum of contributions of
virtual transitions from inside the Fermi sea to outside and
back [see orange (linear) and red (nonlinear) arrows Fig. 1].
We also assumed fast population decay time T1 = 50 fs and
dephasing time T2 = 5 fs [16].

To be more specific, in our numerical simulations we con-
sider gold since it is a very widespread material, and is suitable
for composites due to its low imaginary part of susceptibility.
Yet we note that conclusions we draw below are basically
metal independent (taking into account precautions mentioned
above). In gold, a simple ideal-metal picture discussed above
neglects several linear and nonlinear effects, such as interband
transitions, influence of finite temperature, and hot-electron
nonlinearities. However, these effects are negligible for low-
frequency response in the terahertz or MIR range driven by
femtosecond pulses, and our model remains adequate in this
regime (see Appendix F for justifications and detailed esti-
mates).

III. QUANTUM BILLIARD (CONFINEMENT-BASED)
RESONANCES

The typical level structure obtained by the above model
for an exemplary spherical gold nanoparticle of the diameter
d = 2.75 nm is shown in Fig. 1 (see examples for other
diameters in Appendix E and Fig. 5). These levels originate
from electron confinement in the nanostructure. Even in the
presented case of a very simple particle, the levels look quite
irregular. This is a familiar picture in the framework of quan-
tum billiard theory [36], where the statistical properties of the
level distribution play one of the central roles. For instance,
one can consider the neighboring level statistics (NLS), which
allows one to distinguish between integrable (regular) and
nonintegrable (chaotic) billiards. For the regular billiards,
such as spheres, the probability density P(ω) of neighboring-
level distance ω obeys Poissonian statistics: ln P(ω) ∝ −ω.
This is also true in our case: NLS corresponding to Fig. 1 is
plotted in Fig. 2(a) by yellow bars and coincides well with the
Poissonian distribution (black dashed line).

Judging from such statistics, one might expect a conglom-
erate of resonances near zero frequency, but this is not the
case. An optical response χ (1) resulting from the electron con-
finement for few exemplary nanostructures is shown in Fig. 2.
Note that, in addition to the confinement-based impact shown
in Fig. 2, the full linear response includes also the so-called
Drude part, representing the action of quasifree electrons (see
Appendix F for more details).

The clearly observed feature of the confinement-based
linear response is the presence of a single resonancelike
peak in the MIR/terahertz range at a nonzero resonance fre-
quency ωconf which quickly decreases with increasing particle
size. Such peak was observed experimentally [33,34] and
theoretically [8,35]. It is easy to see that this resonance co-
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FIG. 2. Billiard resonances and weighted level statistics for a golden sphere (a) of a few exemplary diameters d and a cylinder (b) of the
diameter d and height h. The blue and red curves in (a) and (b) show Im(χ (1) ) as the function of frequency for different sizes (see legend).
Bars of the same colors show the corresponding weighted level statistics P(ω) normalized to some P0 (P0 is not the same for different curves).
Green bars show the statistics for all allowed transitions attached, for visibility, to the upper x axis (that is, technically, 1 − P(ω)/P0 is shown;
see also larger frequency scales in Appendix G, Fig. 8). Black lines show Im(χ (1) ) for T2 increased 100 times. Yellow bars show NLS and the
dashed black line indicates the Poissonian statistics.

incides well with the minimally possible allowed transitions
close to the Fermi energy which can be, for a spherical
nanoparticle, analytically estimated as (see Appendixes C and
E for details; see also [34])

ωconf ≈ π

r

√
EF

2me
, (1)

where me is the electron mass. The frequency in Eq. (1)
decreases with increasing diameter and, for the diameters
above 5 nm, is located in the midinfrared and terahertz region.
This makes it fundamentally different from the PR, which
is located at a significantly higher frequency. Yet, why does
only a single resonance arise? Can we influence its width and
position? These and related questions will be addressed in the
following paragraphs.

Closer consideration allows us to establish that, starting
already from quite small nanosphere diameters d ≈ 2.5 nm,
the resonance near ωconf is composed of many transitions
with nearby frequencies [see Fig. 2(a)]. Existance of multi-
ple resonances is especially well observable if we consider
much larger T2 (which would correspond to low temperatures
[47]). In this case, many separated resonances are indeed
visible in the optical response, as shown in Figs. 2(a) and
2(b) by black curves. The particular structure of the transitions
depends significantly on the geometry [see Fig. 2(b) for a
cylinder]. At room temperature, these transitions merge into
one super-resonance because of the broad line widths. For
instance, the position and width of the super-resonance for a
cylinder are shifted in comparison to a sphere with the same
volume and diameter by the noticeable amount of 35 and 23%,
correspondingly. Nevertheless, Eq. (1) remains a valid, yet
rough estimation of the position of the resonance.

Both the position of the super-resonance ωconf and its struc-
ture can be analyzed using a level-distance statistics similar to
NLS. A naïve approach would be to calculate such statistics
using all dipole-allowed transitions between the confinement-
based levels, shown in downward green rectangles in Fig. 2(a),
and covering an extremely broad range around 10 eV [see
green bars in Fig. 2(a) and also Appendix G and Fig. 8].
However, it must be modified to include only transitions from

below to above EF , obviously corresponding to the Pauli
principle and absence of population above the Fermi level.
In addition, in the statistics we weight the transitions by the
square of the corresponding dipole momentum, thus taking
into account the known tendency of the transition dipole
momenta to rapidly decrease, on average, with the energy
difference. The resulting modified statistics is shown by the
red and blue bars in Fig. 2 and agrees nicely both with the
position of the super-resonance and with its width (for small
T2). Namely, in the limit of small T2 the super-resonance has a
certain “natural” width; for the case of nanospheres it can be
estimated as ωconf/4 (see Appendix G). Analysis of the posi-
tion of the super-resonance for nanospheres (see Appendix G)
indicates that the energy of the participating states is located
mostly in radial (rather than angular) motion.

IV. NONLINEARITIES

The above described low-frequency resonance is expected
to lead also to strong nonlinearities; in our case, χ (3) �= 0
as calculated using the approach described above. We note
that such approach to calculate Kerr nonlinearity was already
utilized in [16]; however, instead of the discrete spectrum,
approximation of continuous density of states was used. Nev-
ertheless, we checked that our calculations are in quantitative
agreement with [16]; they are also in agreement with experi-
mental measurements for short pulses (see [11] and references
therein). An example of χ (3)(ω; ω,ω,−ω) for the four-wave-
mixing (FWM) process ω + ω − ω = ω (corresponding to the
Kerr nonlinearity) is shown in Fig. 3(a) for several diameters.
The low-frequency resonance we observed in χ (1) is also
well visible here. Whereas in the linear response the Drude
part dominates (see Appendix F and Fig. 5), in the nonlinear
response it is fully absent.

We now try to exploit this low-frequency resonance. Moti-
vated by detection and spectroscopic applications of terahertz
and MIR radiation, we focus on the FWM providing a
signal in the terahertz and MIR range, generated from a sub-
100-fs pump pulse. Nonlinear susceptibilities χ (3)(δ; ω,ω,

−2ω + δ) and χ (3)(δ; ω,ω + δ,−2ω), leading to generation
of low-frequency signal at frequency δ as a result of a FWM
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FIG. 3. Nonlinear susceptibility for the Kerr nonlinearity (a) and
for different FWM processes leading to the optical rectification (b, c)
in dependence on the signal δ (c) and pump ω (b) frequency, shown
for the nanostructures of different diameters [as indicated by different
marker shapes, see legend in (a)].

process in a two-color pump at frequencies ω (fundamental)
and 2ω (its second harmonics), are presented in Figs. 3(b)
and 3(c). Both Kerr rectification nonlinearities presented
in Fig. 3 are several orders of magnitude higher than the
Kerr nonlinearity of the fused silica ≈2 × 10−22m2/V2. In
Fig. 3(a), where pump-frequency dependencies are shown, the
billiard super-resonance described above is very clearly visi-
ble. This is not a unique property of metallic nanostructures.
Giant nonlinearities in semiconductor nanostructures due to
billiard resonances were recently predicted in [48].

V. EFFICIENT FREQUENCY DIFFERENCE GENERATION

As an interesting application we consider the process
of optical rectification and difference frequency genera-
tion, governed by three nonlinearities χ (3)(δ; ω0, ω0,−2ω0 +
δ), χ (3)(δ; ω0 + δ, ω0,−2ω0), and χ (3)(δ; ω0, ω0 + δ,−2ω0),
with a two-color optical pump at around ω0 and 2ω0 and
signal δ � ω0 in terahertz and MIR. We solve the propagation
equations, assuming slowly varying envelope approximation
and taking into account dispersion relations, but neglecting

nonlinear effects for the pump waves because of very small
propagation distance (see Appendix I for details). Both χ

(3)
eff

and the linear susceptibility χ
(1)
eff are calculated from given

linear and nonlinear properties of the nanoparticles (χ (1)
NP , χ (3)

NP )
and host (χ (1)

h , χ (3)
h ) using the effective medium approach [49]

(see Appendix H). By calculation of the linear properties the
full linear susceptibility containing both confinement-based
and Drude parts is included. As a host material, we take fused
silica which possesses strong losses in the range between 30
and 40 THz (see Fig. 4), but otherwise is quite transparent
[50]. We consider the filling factor of f = 0.01 and neglect the
nonlinearity of the host. Resulting effective linear quantities
are shown in Fig. 4 and demonstrate the usual PR resonance at
around 2.4 eV with the width of around 30 THz. The shortest
pulses still supported by this resonance are around 30 fs in
duration.

Assuming an exemplary pulse durations of around 30 fs,
we must consider two regions for the pump where conversion
works significantly different. For the signal in the terahertz
range (δ/2π � 30 THz), the frequencies jω0 and jω0 + δ

( j = 1, 2) are both located within the spectrum of the pump.
In contrast, for the signal in MIR range δ/2π > 30 THz,
the components ω0 + δ and 2ω0 + δ are not within the pump
spectrum anymore. This leads to different treatment of these
two frequency ranges for the selected pulse duration (see
Appendix I).

The resulting field amplitude at zeroth harmonic A0 is
given in Fig. 4(b) for different parameters and for the pump
amplitudes A1 = A2 = 1010 V/m. This pump for 30-fs pulses
corresponds to a fluence around 0.3 J/cm2, which is yet below
the damage threshold of gold (around 0.5 J/cm2 [51]) and of
fused silica (around 1 J/cm2 [52]). One can see that in the
terahertz range the signal amplitude reaches 5 × 108 V/m
corresponding to efficiency of around 10−5. In the MIR range,
the amplitude can exceed 109 V/m, delivering efficiencies
above the percent level. Moreover, the maximal efficiency is
achieved at 100-nm propagation distance for the terahertz sig-
nal and 1 μm for the MIR signal. From Fig. 4(b) one can also
see that the most efficient conversion is achieved for the pump
frequency ω0 centered at the PR (solid lines in Fig. 4). In this
case, the coupling of the pump to the signal is most efficient.

VI. DISCUSSION AND CONCLUSIONS

We showed that confinement-based energy levels in metal-
lic nanostructures, representing integrable (or close to inte-
grable) quantum billiards, typically join together into a single
super-resonance, the position and width of which can be con-
trolled by the geometry of the nanostructure. Whereas we fo-
cused here on (almost) integrable quantum metallic billiards,
we anticipate richer resonance structure and control possibil-
ities if truly chaotic billiards are considered. We analyzed the
super-resonance, using the level statistics extended in compar-
ison to that typically used in quantum chaos theory. In the lin-
ear regime the ballistic super-resonance is “hidden” behind the
much stronger Drude response, yet it manifests itself strongly
in a giant nonlinearity. This nonlinearity can be in addition
enhanced by interaction with plasmons and effectively used to
down-convert light to the terahertz and MIR range with high
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FIG. 4. Efficient generation of terahertz and MIR light in a composite of gold spheres with two-color pump. (a) Effective refractive index
neff and effective losses αeff in dependence on frequency ω for a gold nanostructure with r = 10 nm immersed into fused silica ( f = 0.01).
Vertical lines show two variants of the two-color pump at ω0 = 1.55 eV (λ0 = 530 nm, dashed line) and ω0 = 2.4 eV (λ0 = 530 nm, solid
line). The horizontal lines connect the spectral components of the two-color pump. (b) The generated field amplitude for different propagation
distances L and nanostructure diameter d (see legend) and the pump as described in text. The solid vertical line in (b) separates the terahertz
from the MIR band.

efficiency already after 100-nm distances, despite huge lin-
ear and nonlinear losses. Our confinement-based framework
might also be helpful in a deeper understanding of the recent
experimental work on efficient terahertz generation in nanos-
tructures [53,54] and paves a way to extend newly proposed
electronic metadevices [55] into the nonlinear regime.
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APPENDIX A: SIMPLIFIED HAMILTONIAN AND WAVE
FUNCTIONS FOR THE CASE OF SPHERICAL PARTICLES

To approach the problem analytically, we consider a spher-
ical metallic particle of the radius a (diameter d = 2a). Since
we are interested in low frequencies, we neglect the interband

FIG. 5. (a, b) Linear susceptibility due to confinement-based resonances only, in dependence on frequency for spherical nanoparticles of
different diameters. (c, d) The Drude contribution as well as the full linear susceptibility (Drude plus confinement) for a few selected diameters.
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transitions. We neglect the temperature effects assuming that
N electrons in the conduction band occupy all levels below
Fermi energy EF (see Fig. 1). The energy structure is calcu-
lated assuming one-electron approximation and corresponds
to that of a single free electron in an infinite-strength spher-
ical potential of the radius a. To take into account finiteness
of the potential, the levels above the work function EW are
disregarded. The validity of these approximations is justified
below.

The corresponding single-particle eigenproblem can be
then formulated as Ĥ0ψ = Eψ , with H0 = −h̄2/2me	 +
V (r), V (r) = 0 for r � a and V (r) = ∞ for r > a (me is the
electron mass). With the approximations above, we neglect
various effects of electron-electron and electron-ion interac-
tion such as interband transitions, electron heating, the change
of the eigenstates due to the finite height of the potential, and
other effects, which play only a minor role at low frequencies
and ultrashort sub-100-fs pulse durations. The validity of this
approximation is discussed in Appendix F below. As it will
be shown there, our simple model is rather adequate for the
parameters we consider, despite its simplicity. The advantage
of this approach is the possibility to determine the energy
structure analytically. The corresponding eigenfunctions are
combinations of spherical harmonics. The energies are de-
fined as

Enl = E0α
2
nl (A1)

where n and l are quantum numbers,

E0 = h̄2

2mea2
, (A2)

and αnl is the nth zero of the Bessel function of order l . In
contrast to the Coulomb potential, there is no degeneracy in l .

The eigenfunctions of the problem described in the main
paper are

ψnlm(r, θ, φ) = Rnl (r)Y m
l (θ, φ), (A3)

where n, m, and l are quantum numbers, Rnl (r) =√
2 jl (αnl r/a)√
a3 jl+1(αnl )

, Y m
l are spherical functions (−l � m � l),

jl is the spherical Bessel function of order l , and αnl is its lth
zero.

The radial part of the matrix element is, for the allowed
transitions l ′ − l = ±1,

μnl,n′l ′ = 4aeE0
√
EnlEn′l ′

(En′l ′ − Enl )2
, (A4)

and zero in other cases (here e is the electron charge).

APPENDIX B: CYLINDRICAL GEOMETRY

In this section we determine the eigenvalues for the cylin-
drical geometry. We assume here that the main axis of the
cylinder oriented along the z direction, and the light is as-
sumed to be linearly polarized also in the z direction. Note the
difference in the denotations with the part where propagation
is considered: there, the z direction is the direction of the light
propagation.

The eigenfunctions in (r, θ, z) coordinates are [56]

ψnlm(r, θ, z) = CnlmJm(rα̃lm/a) cos(mθ ) cos(πnz/h), (B1)

where Cnlm is the normalization factor, h is the height of
the cylinder, and α̃lm is the lth zero of the Bessel function
Jm(x) of order m. These eigenfunctions are described by three
integer quantum numbers: n describes the localization in the
z direction, and m and l describe that along the orthogonal
directions.

The energies of these eigenstates are given by the expres-
sion

Enlm = h̄2

2me

(
α̃2

lm

a2
+ 4π2n2

h2

)
. (B2)

Because the light is assumed to be linearly polarized in the z
direction, only z components of the dipole moments

μnlm,n′l ′m′ = 〈ψnlm|z|ψn′l ′m′ 〉 (B3)

play a role, and they can be calculated as

μnlm,n′l ′m′ ∝ 2nn′[(−1)n+n′ − 1]

(n − n′)2(n + n′)2
δll ′δmm′ , (B4)

where we omitted for simplicity a prefactor which comes from
the normalization of the wave functions.

APPENDIX C: DERIVATION OF EQ. (1)

As we see in the main paper (see also below), the main
role in the super-resonance is played by the transitions close
to the Fermi energy EF . For not very small nanostructures,
this corresponds to relatively large l and n. For large n and l
an analytical estimation

αnl ≈ (2n + l )π/2 (C1)

is possible. Based on this, the energy difference between the
allowed transitions 	l = ±1 near the energy E is

	E = π
√
EE0. (C2)

Near the Fermi energy E ≈ EF , substituting Eq. (A2), we
obtain Eq. (1), with h̄ωconf identical to 	E .

We note that Eq. (C1) is valid for n � l . In contrast, for
n ≈ 1 we have αnl ≈ (2n + l ), that is, the positions of the
resonances would be shifted in this latter case by the factor
≈ π/2 to the lower frequencies. The resonances shown in
Fig. 2 and Fig. 5 in Appendixes coincide well with Eq. (C1),
indicating that large n are involved (see also Appendix G).

In addition to the derivation of the position of the super-
resonance, we are able to approximately deduce its natural
shape and width. For this, see Appendix G below.

APPENDIX D: LINEAR AND NONLINEAR
SUSCEPTIBILITIES OF A SINGLE NANOSTRUCTURE

The corresponding expressions for χ (1) and χ (3) are ob-
tained by the method of iterations [46]: The evolution of the
density matrix ρ in the presence of damping can be, under
suitable approximations, written as

ρ̇ = − i

h̄
[Ĥ, ρ] − 
(ρ − ρ (eq) ), (D1)
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where Ĥ is the full Hamiltonian, ρ (eq) is the equilibrium value
for ρ, and 
 describes the decay. The Hamiltonian consists of
the action of the potential well H0 (see the main paper) as well
as the action of the field V = erE (in dipole approximation).
In terms of the eigenfrequencies of Ĥ0, ωmn = (Em − En)/h̄,
Eq. (D1) can be rewritten in terms of perturbations as

ρ̇mn = −iωmnρmn − i

h̄
[V, ρ] − γmn

(
ρmn − ρ (eq)

mn

)
, (D2)

where ρmn = 〈m|ρ|n〉, ρ
(eq)
mn = 〈m|ρ (eq)|n〉, γmn = 〈m|
|n〉,

and |m〉 and |n〉 are eigenstates of Ĥ0 corresponding to eigen-
values Em and En (note that here, in contrast to previous
sections, we denote by n and m the “multi-indices,” fully
describing the eigenstate). One can obtain ρ iteratively, in
the form of ρ = ρ (0) + θρ (1) + θ2ρ (2) + . . ., where θ is a

formal small parameter, assuming thereby that V is a small
perturbation of order θ . As an initial approximation we obtain

ρ (0) = ρ (eq), (D3)

and ρ (n) is related to ρ (n−1) as

ρ̇ (n)
mn = −(iωmn + γmn)ρ (n)

mn − i

h̄
[V, ρ (n−1)]. (D4)

The nonlinear polarization of nth order is defined via
P(n)

i = ε0
∑

j,k,... χ
(n)
i; jk...

EjEk . . ., where P(n)
i and Ei are the

components of the vectors P(n) and E, respectively. P(n) is
given in terms of ρ (n) as P(n) = −eN tr(ρ (n)r), where N is
concentration of the particles. The expression for χ (n) is ob-
tained by comparing the two expressions for P(n) above. For
the first-order susceptibility χ

(1)
i j (ωp) we thus obtain

χ
(1)
i j (ωp) = χ

(1)
D + N

ε0h̄

∑
n

[
μi

anμ
j
na

(ωna − ωp) − iγna
+ μi

anμ
j
na

(ωna + ωp) + iγna

]
. (D5)

We note once more that a and n are multi-indices, that is, every one of them describes a particular set of quantum numbers
n, l, and m fully characterizing the system; ωmn = Emn/h̄, γmn = δmnγ (δmn is a Kronecker symbol), γ = 1/T2; T2 and T1 are
given in the main paper. For the isotropic case we consider here, the indices i and j in Eq. (D5) are disregarded. According to
Eq. (D3), ρ

(0)
ll describes the unperturbed populations (see more details below). The first term in Eq. (D5) describes the Drude

dispersion. It must be introduced into Eq. (D5) as an additional phenomenological term since its proper first-principle treatment
is possible only if electron-phonon interactions [57] are taken into account, which is not the case in our approach:

χ
(1)
D = χ∞ − ω2

pl

ω(ω + iγD)
, (D6)

with ωpl = Ne2/(ε0me) and the effective phenomenological quantities are taken as χ∞ = 8.84, γD = 0.067 eV, and N = 5.9 ×
1028 m−3 as given in [58].

For the third-order susceptibility we have

χ
(3)
k jih(ωp + ωq + ωr ; ωr, ωq, ωp) = N

ε0 h̄3 PI

∑
νnml

ρ
(0)
ll

×
{

μk
lνμ

j
νnμ

i
nmμh

ml

[(ωνl − ωp − ωq − ωr ) − iγνl ][(ωnl − ωp − ωq) − iγnl ][(ωml − ωp) − iγml ]

+ μh
lνμ

k
νnμ

j
nmμi

ml

[(ωnν − ωp − ωq − ωr ) − iγnν][(ωmν − ωp − ωq) − iγmν][(ωνl + ωp) + iγνl ]

+ μi
lνμ

k
νnμ

j
nmμh

ml

[(ωnν − ωp − ωq − ωr ) − iγnν][(ωνm + ωp + ωq) + iγνm][(ωml − ωp) − iγml ]

+ μh
lνμ

i
νnμ

k
nmμ

j
ml

[(ωmn − ωp − ωq − ωr ) − iγmn][(ωnl + ωp + ωq) + iγnl ][(ωνl + ωp) + iγνl ]

+ μ
j
lνμ

k
νnμ

i
nmμh

ml

[(ωνn + ωp + ωq + ωr ) + iγνn][(ωnl − ωp − ωq) − iγnl ][(ωml − ωp) − iγml ]

+ μh
lνμ

j
νnμ

k
nmμi

ml

[(ωnm + ωp + ωq + ωr ) + iγnm][(ωmν − ωp − ωq) − iγmν][(ωνl + ωp) + iγνl ]

+ μi
lνμ

j
νnμ

k
nmμh

ml

[(ωnm + ωp + ωq + ωr ) + iγnm][(ωνm + ωp + ωq) + iγνm][(ωml − ωp) − iγml ]

+ μh
lνμ

i
νnμ

j
nmμk

ml

[(ωml + ωp + ωq + ωr ) + iγml ][(ωnl + ωp + ωq) + iγnl ][(ωνl + ωp) + iγνl ]

}
, (D7)

where PI denotes permutations of the frequencies ωp, ωq, and ωr with the Cartesian indices h, i, and k permuted simultaneously.
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As it was mentioned in the main paper, every term in the expressions for χ (1) and χ (3) can be seen as a sum over all transitions
through the intermediate virtual states [46], with the initial and final state being the same. Since we do not consider effects of
finite temperatures here, the initial populations are taken in the form

ρ
(0)
ll =

{
1, if E � EF ;
0, if E > EF . (D8)

Moreover, in Eq. (D7), due to the Pauli principle, we keep
only the transitions over the intermediate virtual levels which
are outside of the “Fermi sea,” that is, with E > EF + E0,
where E0 is the ground state. In Eq. (D5), in contrast to
Eq. (D7), this preselection happens automatically. To take
into account the finite depth of our potential, we also do
not consider levels with E > EW + EF + E0, where EW is the
work function. For this paper, we have taken EW = 5.1 eV,
EF = 5.53 eV.

For practical computations, in Eqs. (D5) and (D7) we use
the radial parts of the dipole moments given by Eq.(A4), and
average over angular parts [16]. This is possible if assuming
that only the transitions with l � 1 are relevant, which is in-
deed the case even for smallest diameters we consider, as one
can see in Fig. 1. In this situation, averaging over the angular
dependencies for −l � m � l gives [16] the constant factor
A = 1/3 for the linear susceptibility χ (1) and A′ = 2/15 for
third-order susceptibility χ (3). Furthermore, when calculating
χ (3), we take into account a population-induced correction
factor T1/T2 (see [16]). As a result, the susceptibilities ob-
tained in Eqs. (D5) and (D7) are corrected as

χ (1) → Aχ (1), χ (3) → T1

T2
A′χ (3). (D9)

APPENDIX E: LINEAR SUSCEPTIBILITY FOR
DIFFERENT DIAMETERS

Whereas in Fig. 1(a) only two particular examples of the
linear susceptibility for spherical nanoparticles are shown, in
Figs. 5(a) and 5(b) more examples are given, to illustrate
further the dependence of the super-resonance position on the
particle size.

APPENDIX F: INFLUENCE OF OTHER MECHANISMS

Although the approach presented in our paper is rather
universal and largely material independent, in the main pa-
per we, to be specific, considered the parameters of gold
as our basic case since gold has the most practical impor-
tance. However, gold is quite a “complicated” metal in the
sense that many other mechanisms contribute to nonlinearity.
Besides, in all metals, in addition to quantum confinement
(billiard part) the Drude part of χ (1) is contributing. In this
section we will clarify in more detail the question of how
other mechanisms influence the overall nonlinear and linear
response.

1. Drude part of χ(1)

In Fig. 2 we show the linear response without the in-
fluence of the Drude part of χ (1) [the first part in the left
side of Eq. (D5) above, also described by Eq. (D6) above].

The influence of the Drude part is much larger than the
confinement-based part, especially at small frequencies in the
MIR and terahertz range. In particular, Figs. 5(c) and 5(d)
show the Drude part alone and together with the quantum
confinement part of the linear susceptibility for few par-
ticular diameters. One can clearly see that the Drude part
absolutely dominates in the linear response at low frequen-
cies. However, this does not mean that the confinement-based
super-resonance considered in this paper “disappears” as we
take into account Drude. It can be still deconvoluted and
separated from the Drude part [34]. Besides, at it was shown
in the main text, it is directly visible when considering the
nonlinear optical properties such as Kerr effect.

2. Effect of interband transitions on the nonlinear response

In the main paper, we considered a rather simplified band
gap consisting only of one band. Whereas such approxima-
tion is very well suitable for some materials such as alkali
metals, for other materials such as gold it could be claimed
to be a rather bad approximation. However, at least in the
particular case of gold, as soon as we consider low-frequency
response, it can be shown that the nonlinearity due to in-
terband transitions is much smaller than the one due to the
billiard resonances.

In the case of gold [59], there is a strong resonance in the
optical response around 2.4 eV, responsible for the transitions
from the 5d valence band to the 6sp conduction band, as
well as a number of less pronounced resonances in the range
between around 2 and 10 eV. That is, the effects of the inter-
band transitions might be pronounced for the photon energies
above 1 eV. Even at the frequency resonant with the interband
transition the impact of confinement-based resonances to the
rectification-like FWM processes we consider is one or two
orders of magnitude larger than the effect of the interband
transitions, as we will see in the next paragraphs.

Let us first consider the Kerr nonlinearity. Experimentally
measured Kerr susceptibility for the photon energy around
2.3 eV, that is, close to resonance of the above mentioned tran-
sition, is (for short, 100-fs-scale pulses) χ (3)(ω; ω,ω,−ω) ≈
10−18 m2/V2 (see for instance [11]; note that in many
other references long, picosecond pulses are considered,
demonstrating higher nonlinearity as discussed in the sub-
section below). These measurements, of course, include all
effects simultaneously, in particular intraband transitions and
confinement-induced effects. We see that our calculations
give the same order of magnitude of susceptibility for this
frequency [see Fig. 3(a)] with only the confinement-based
nonlinearity included. This means that the interband transi-
tions do not dominate the intraband even at the interband
resonance frequency; the impact of confinement-based reso-
nances is of the same order of magnitude or higher.
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FIG. 6. Real (a, c, e) and imaginary (b, d, f) part of the nonlinear susceptibility χ (3)(δ; ω,ω,−2ω + δ) for different diameters (see legend),
corresponding to Fig. 3(b), effectively taking into account (orange curves) and without taking account (blue lines) the interband transitions as
introduced by Eq. (F1). The latter correspond to Fig. 3(b).

On the other hand, as we decrease the frequency from
the interband resonance towards terahertz range, the influence
of the interband resonance quickly decreases whereas the
influence of the confinement-based resonance increases [see
Fig. 3(a)]. Therefore, we come to the conclusion that in the ter-
ahertz range the Kerr nonlinearity χ (3)(ω; ω,ω,−ω) is indeed
dominated by the confinement-based (intraband) transitions.

The same is also true for the FWM processes responsible
for rectificationlike effects considered in the main paper: the
influence of the interband transitions must be significantly
smaller than the intraband (confinement-based) ones. In order
to make our estimation more quantitative at this point, we
use the estimation technique described in [60]. We start from
the Kerr process χ (3)(ω; ω,ω,−ω) assuming it to be fully
resonant to the interband transition (“worst-case scenario,”
where the interband action is maximal). We consider then the
processes χ (3)(δ; ω + δ, ω,−2ω) and χ (3)(δ; ω,ω,−2ω + δ).
Because of the missing resonant terms in Eq. (D7) (which
gives a factor ∼ω2 in comparison to the interband resonant
case) and also because of smaller population of the virtual
levels (factor ∼T 2

2 ), the nonlinear susceptibility is reduced by
a factor (ωT2)2 ≈ 102 comparing to the Kerr susceptibility at
the interband resonance. Since, as it was established before,
even at the interband resonance the confinement-based Kerr
nonlinearity is at least of the same order of magnitude as the
interband-induced Kerr nonlinearity, we therefore conclude
that for the FWM processes the intraband (confinement-
based) resonances are at least by the factor of 100 larger than
the interband ones. Based on our calculations of the intraband
nonlinearities [see Fig. 3(b)], we can estimate the interband

effect to the nonlinear susceptibility for the considered FWM
processes as 10−20–10−21 m2/V2 for ω at the interband res-
onance (and even lower away from that resonance). This is
much less than the confinement-based impact as shown in
Fig. 3.

As an alternative and fully independent method to estimate
the impact of the interband transitions we introduce a gap
directly into our numerical model. That is, we modify our
single-band structure as the following:

Enl =
{
E0α

2
nl , if |αnl | � 2π

�
,

E0α
2
nl + Eg, if |αnl | > 2π

�
,

(F1)

where � is the lattice constant (for gold � ≈ 4 Å), Eg ≈
2.4 eV. This modification mimics the band gap which opens
near the edges of the Brillouin zone. The comparison of two
calculations, that is, using the single band Eq. (A1) model
and two band model Eq. (F1), is shown in Fig. 6 for dif-
ferent exemplary diameters. One can see that, whereas the
interband transition does provide some limited modification
to the confinement-based dynamics for very small nanoparti-
cles d � 3 nm, this influence quickly decreases and becomes
negligible for larger diameters.

3. Thermal, hot-electron, and related effects

Taking into account temperature introduces several effects,
which were neglected in the main paper. First of all, it leads to
an additional hot-electron contribution into nonlinearly [11],
which can overcome, by several orders of magnitude, the
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FIG. 7. Real (a, c) and imaginary (b, d) part of the linear (a, b) and nonlinear (Kerr) (b, c) susceptibility for the structure d = 2.75 nm
assuming sharp drop of the conducting electron density at the energy E = EF (blue lines), corresponding to T = 0 K, and taking into account
more smooth Fermi-Dirac distribution for T = 300 K (orange lines).

nonlinearities considered in this paper up to now. The hot elec-
tron mechanism involves laser-induced intraband excitation in
the conduction band, followed by the energy dissipation of
the excited electrons. This process leads to a modification of
Fermi-Dirac distribution which depends on the frequency and
intensity of the pump, leading thereby to frequency-dependent
nonlinearity [61–63]. The key role in the quick thermalization
is played by the electron-electron and electron-phonon inter-
actions.

This nonlinearity has relatively slow, subpicosecond-scale,
turn-on time [64], and therefore its influence quickly de-
creases with decreasing of the pulse duration [11]. For the
pulses considered here (10–30 fs) this nonlinearity plays a
negligible role. Indeed, the experimentally measured Kerr
nonlinearity for gold nanospheres [11,65] for the pulses
of 100-fs duration corresponds, by the order of magnitude
(≈10−18m2/V2, see also discussion in the previous subsec-
tion), to our calculations at around the same frequency [see
Fig. 3(a)]. Since in our calculations we do not take into
account the hot electron nonlinearities, we come to the con-
clusion that for short pulses such nonlinearities are pretty
much negligible in comparison to the confinement-based res-
onances, or at least do not play a dominant role. This is
even more true if we consider lower frequencies towards the
terahertz range, since the confinement-based nonlinearity has
a resonance at low frequencies, whereas the thermal nonlin-
earity is not expected to demonstrate a resonant behavior.

A part of the above-described thermalization process is the
electron-electron interaction. Fast thermalization, indeed, is
the primary consequence of the electron-electron interactions
[63,66]. Electron-electron interactions are trackable in the
linear properties of the nanostructure (see for instance [61]);

however, the corresponding modification is rather minor and
even this small modification starts to be visible at the time
scale of a few tens of femtoseconds.

Another thermal effect is the overall nonrectangular shape
of the electron distribution near the Fermi zone edge as soon
as the temperature is nonzero (in our calculations in the main
paper we assumed zero temperature). The effect of nonzero
temperature in the vicinity of the Fermi level is shown in Fig. 7
for an exemplary diameter d = 2.75 nm and temperature T =
300 K. It is obtained by modifying ρ

(0)
ll from Eq. (D8) to the

Fermi-Dirac distribution for the finite temperature. One can
see that this modifies only slightly the linear response. The
nonlinear response is also modified quite moderately.

APPENDIX G: LEVEL STATISTICS DETAILS

1. General definitions

In this section we describe different variants of the level
statistics, extending the discussion related to Fig. 2. To un-
derstand the mechanisms governing the formation of one
single super-resonance it is very constructive to consider the
level statistics, varying the selection rules included into that
statistics. Commonly in the quantum billiard and quantum
chaos theory [36] one considers the so-called neighboring
level statistics. That is, we consider the difference between
the neighboring levels δωi = ωi+1 − ωi, where the eigenfre-
quencies ωi are obtained by ordering of the eigenfrequencies
in the increasing order, that is, we order them in such a
way that ω j � ωi for j < i. In the case of nanospheres the
corresponding eigenvalues are h̄ωnl = Enl [see Eq. (A1)],
rearranged accordingly. Note that i and j here are single
indices (and not multi-indices as in Appendix D). Then, the
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FIG. 8. Different variants of level statistics for the sphere of d = 7 nm diameter [cf. Fig. 1(a)]. (a) P(ωi j ) weighted as given by Eq. (G1)
with 	i j = 1, that is not taking into account Fermi sea condition Eq. (G2) (delivering thereby the statistics for dielectrics). Inset to (a):
Repetition of the level statistics given by the red bars in Fig. 1(a) Fig. 1 on the larger energy scale, that is, P(ωi j ) weighted as given by Eq. (G1)
with 	i j given by Eq. (G2). (b) The same as in (a) but assuming in addition μ ji = 1. (c) The same as in (b) but assuming w ji = 0 if μi j = 0
and wi j = 1 otherwise. (d) The same as in (c) but taking into account the Fermi sea restriction Eq. (G2).

probability P(ω)dω that δωi is located in the range between
ω and ω + dω is calculated. The easiest way to visualize such
statistics is to use the histogram technique. For nanospheres
this traditional neighboring level statistics is presented in
Fig. 2(a) (yellow bars).

The neighboring level statistics do allow us to determine
the universality classes of different billiards. It, however, does
not take into account the properties of eigenfunctions and of
the transition rules, so it seems to be of little use for the optical
properties. In order to improve usability for optics, we extend
the statistics to take into account all transitions, not only
neighboring, and impose additional selection rules. That is,
we consider the statistics of energy differences ωi j = ωi − ω j

for i > j (assuming the ordering of ω j as discussed above).
In addition, when constructing the probability density P(ω) of
ωi j being in the interval [ω,ω + dω], we take into account the
“strength” of the transition by weighting P(ωi j ) with a weight

wi j = 	i j |μi j |2, (G1)

where μi j is the dipole momentum of the corresponding tran-
sition i → j, and 	i j is defined as

	i j =
{

1, if h̄ωi � EF and h̄ω j > EF

0, otherwise, (G2)

that is, takes into account the Fermi-Dirac distribution
Eq. (D8) (we call it below “the Fermi sea condition”). The

resulting statistics is shown in Fig. 2 (red and blue bars)
and repeated for convenience as the inset in Fig. 8(a) for the
larger frequency range. We note that the traditional statistics
discussed in the previous paragraph is a partial case of this
more general approach; namely, we obtain the traditional
neighboring level statistics assuming wi j = δi, j=i+1.

2. Natural shape and width of the super-resonance
for nanospheres

To find out the natural width of the super-resonance for
the case of nanostructures, we use a more precise version of
Eq. (C1):

αnl = (2n + l + snl )π/2, (G3)

which includes corrections snl to the values of the roots.
All transitions contributing to the super-resonance are char-
acterized by the same value of 2n + l before and after the
transition, that is, 2n′ + l ′ = 2n + l + 1. However, values of
n and l can be different. Therefore the energy difference
between the eigenfunctions |ψnl〉 and |ψn′l ′ 〉 will be modified
as follows:

	E = π2E0

4
[(2n′ + l ′ + sn′l ′ )

2 − (2n + l + snl )
2]

� π2E0

2
(2n + l )(1 + sn′l ′ − snl ). (G4)
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For the typical range of n and l actual for our partic-
ular situation, we approximate snl as being distributed in
the range [−0.25, 0]. For the probability distribution of the
difference snl − sn′l ′ , given by P(sn′l ′ − snl ) ∼ ∫

P(s)P(s +
sn′l ′ − snl )ds, we obtain a triangular symmetric shape with
the maximum at zero and full width of 1/2, that is, we
have a constant full width at half maximum of 1/4 of the
distribution of the difference snl − sn′l ′ . Using Eq. (C2) we
obtain that this translates to the width ≈ ωconf/4 in frequency,
where ωconf is the position of the super-resonance as defined
in Eq. (1). If we consider the dipole-momentum-weighted
statistics as described below, this simplified conclusion will
be modified by the fact that the dipole momentum depends
on the energy level difference. Such dependence will result
in a sharper lower-frequency shoulder of the statistics and
smoother higher-frequency shoulder. Both such shape and the
width of the peak in the statistics are in a surprisingly good
agreement with the findings shown in Fig. 2 (for the case
of large T2). Of course, reducing the T2 to room-temperature
values additionally increases the width of the super-resonance
beyond the natural width of ≈ ωconf/4.

3. Influence of different mechanisms on the statistics

Varying the selection rules incorporated into the weighting
Eq. (G1), we can study how these rules influence the statistics.
Different variants of statistics are shown in Fig. 8. In partic-
ular, in Fig. 8(a) we consider P(ωi j ) weighted by Eq. (G1)
with 	i j = 1, that is not taking into account the Fermi sea
condition; i.e., all transitions, not only the transitions from
below to above the Fermi sea level, are allowed. This situation
describes dielectrics rather than metals, and should be con-
trasted to the “metallic case,” that is, the situation where also
the Fermi sea condition is satisfied [inset to Fig. 8(a) as well
as Fig. 2(a)]. One can see that in the former case the resonance
is much more broad and, in addition, noticeably shifted to the
lower frequencies.

On the other hand, if we remove all restrictions at all,
that is, consider wi j = 1 for all i and j, we will see very
broad distribution over the scale of many eV [Fig. 8(b)].
The statistics changes not too significantly if we take into
account only allowed transitions (but not yet distinguishing
between the strengths of the transitions, that is, assuming
w ji = 0 if μi j = 0 and wi j = 1 otherwise, and also not taking
into account the Fermi sea condition). Yet, in this case the
peak, corresponding to the low-frequency super-resonance (at
around 0.5 eV), does already appear [see Fig. 8(c)]. This peak
becomes even sharper if we in addition take into account the
Fermi sea condition as shown in Fig. 8(d). But, in addition to
this low-frequency peak, in Fig. 8(d) we see also many other
peaks at higher frequency. These many peaks disappear as we
take into account the “strengths” of the transitions [μ2 weight-
ing as given by Eq. (G1); see inset to Fig. 8(a) and Fig. 2(a)].

Therefore, we conclude that there are, in general, many
possible confinement-based transitions at low and high
frequencies. The key role in the formation of a single super-
resonance is played by the dipole moments, that is, by the
symmetry and composition of the wave functions, and only
to a lesser extent by the Fermi sea condition. As we take
them into account, we are left with a single bunch of closely

spaced resonances, which, taking into account that each of
these resonances is broadband, merge into a super-resonance.
Whereas the consideration here was focused on the case of
nanospheres, we remark that, most probably, this particular
situation is quite geometry independent, at least for regular
billiards. Indeed, in this case we expect that distantly spaced
eigenfunctions have very different numbers of oscillations in
every spatial direction, making μi j small. This, however, is not
necessarily the case for the irregular, chaotic billiards which
have also rather chaotic eigenfunctions. Finally, as Fig. 2(b)
shows, we can tune the positions of the resonances in such a
way that the resulting super-resonance is broadened.

APPENDIX H: EFFECTIVE PROPERTIES OF THE
NANOCOMPOSITE

The effective linear properties of the nanocomposite for ar-
bitrary frequency ω are calculated using the effective medium
approach [49] using the linear properties of the host εh(ω)
(in our case SiO2), and nanostructure εNP(ω) [which is given
by εNP(ω) = 1 + χ (1), where χ (1) is calculated according to
Eq. (D5)], as

εeff (ω) = εh(ω) + f x(ω)[εNP(ω) − εh(ω)] (H1)

where f is the filling factor and x(ω) is defined as

x(ω) = 3εh(ω)

εNP(ω) + 2εh(ω)
. (H2)

We note that at Mie resonance |x| is especially large. Finally,
the effective nonlinear susceptibility χ

(3)
eff for every process

is calculated for given linear and nonlinear properties of the
nanostructures and host as follows:

χ
(3)
eff = f χ (3)

NP x(ω0)x(ω1)2x(ω2), (H3)

where χ
(3)
NP is the nonlinear susceptibility given by Eq. (D5)

or Eq. (6), with χ (3) in those expressions calculated using
Eq. (D7).

APPENDIX I: PROPAGATION EQUATIONS

Assuming slowly varying envelope approximation and ne-
glecting nonlinear effects for the pump waves, the governing
equations are

∂A0

∂z
= − 1

2cε0

∂P

∂t
= − iδχ (3)

eff (δ)

2c
A2

1(z)A∗
2(z) − α0A0, (I1)

∂zAn = iknAn − αnAn, n = 1, 2, (I2)

where c is the speed of light in vacuum, ε0 is vacuum permit-
tivity, and Ai, αi ki, i = 0, 1, 2 are correspondingly the slow
(complex) amplitudes, linear losses, and wave vectors for the
nth harmonic (here the signal is assumed to be the zeroth
harmonic), and χ

(3)
eff (δ) is the effective nonlinear susceptibility

for the corresponding process. Equations (I1) and (I2) allow
an analytical solution, given by

A0 = −iAe−α0L(eκL − 1)/κ, (I3)

where A = δχ
(3)
eff A2

1(0)A∗
2(0)/2c, L is the propagation distance,

and κ = i(k0 + 2k1 − k2) − 2α1 − α2 + α0.
Assuming pulse durations of around 30 fs, we must con-

sider two regions for the pump where conversion works
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significantly differently. For the signal in the terahertz range
(δ/2π � 30 THz), the frequencies jω0 and jω0 + δ ( j = 1, 2)
are both located within the spectrum of the pump. The non-
linearity in this case is driven by three contribution types
mentioned above, and must be considered as the following
sum:

χ
(3)
NP (δ) ≈ χ (3)(δ; ω0, ω0,−2ω0 + δ) + χ (3)(δ; ω0 + δ, ω0,

− 2ω0) + χ (3)(δ; ω0, ω0 + δ,−2ω0). (I4)

In contrast, for the signal in MIR range δ/2π > 30 THz,
the components ω0 + δ and 2ω0 + δ are not within the pump
spectrum anymore. In this case, in order to make the con-
version efficient, we must, for instance, shift the second
harmonic: 2ω0 → 2ω0 + δ. The only effective nonlinear pro-
cess in this case is

χ
(3)
NP (δ) = χ (3)(δ; ω0, ω0,−2ω0 + δ). (I5)
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