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Experimental optimal discrimination of N states of a qubit with fixed rates of inconclusive outcomes
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In a general optimized measurement scheme for discriminating between nonorthogonal quantum states, the
error rate is minimized under the constraint of a fixed rate of inconclusive outcomes (FRIO). This so-called op-
timal FRIO measurement encompasses the standard and well-known minimum-error and optimal unambiguous
(or maximum-confidence) discrimination strategies as particular cases. Here, we experimentally demonstrate the
optimal FRIO discrimination between N = 2, 3, 5, and 7 equally likely symmetric states of a qubit encoded in
photonic path modes. Our implementation consists of applying a probabilistic quantum map which increases
the distinguishability between the inputs in a controlled way, followed by a minimum-error measurement
on the successfully transformed outputs. The results obtained corroborate this two-step approach and, in our
experimental scheme, can be straightforwardly extended to higher dimensions. The optimized measurement
demonstrated here will be useful for quantum communication scenarios where the error rate and inconclusive
rate must be kept below the levels provided by the respective standard strategies.
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I. INTRODUCTION

The problem of quantum state discrimination was in-
troduced in the late 1960s and consists of designing a
measurement strategy to optimally determine in which state
a quantum system was prepared, given a set {ρ̂ j} of possi-
ble states with associated a priori probabilities {η j} [1–3].
If formulated in terms of a sender that transmits a message
built from the “alphabet” {ρ̂ j} to a receiver that extracts
it through measurements, we see that this problem is the
essence of quantum communication [4,5]. Furthermore, as it
encompasses the measurement process in quantum theory, it
naturally underlies many applications in quantum information
processing and quantum foundations [6,7].

When the quantum states are not mutually orthogo-
nal, quantum theory forbids perfect discrimination between
them. In this case, any discrimination strategy will have
a nonzero probability of erroneous or inconclusive results
[6–9]. In the pioneering minimum-error (ME) measurement,
each outcome is used to infer the received state and the
overall error probability is minimized [10–12]. On the other
hand, the optimal unambiguous discrimination (UD) strategy
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enables error-free identifications of linearly independent
states, with inconclusive results in a minimum fraction of
trials [13–16]. More recently, a strategy analogous to UD was
conceived to discriminate linearly dependent states. In the
optimal maximum-confidence (MC) measurement [17], one
maximizes the probability P(ρ̂ j | j), taken as our confidence in
associating outcome j to state ρ̂ j , and minimizes the rate of
inconclusive results.

These state discrimination strategies were shown to be
extreme and particular cases of a more general optimized mea-
surement scheme in which the error rate is minimized under
the constraint of a fixed rate of inconclusive outcomes (FRIO).
The optimal FRIO strategy was proposed in Refs. [18,19]
and shown to be a scheme that interpolates between ME
and optimal UD measurements. Thereafter, recent works also
show that it interpolates between ME and optimal MC mea-
surements when the MCs are the same for all states in the set
[20,21].

In addition to generalizing fundamental discrimination
strategies, the optimal FRIO measurement is useful in prac-
tical situations. For instance, in a quantum communication
scenario where the error rate and the inconclusive rate must
be kept below the levels provided by the ME and optimal
UD/MC strategies, respectively, there will be a family of
optimal FRIO measurements that accomplishes those require-
ments. Examples of the application of FRIO in this context
were given for protocols like quantum teleportation [22] and
dense coding [23] with nonmaximally entangled states.

Considering two-dimensional spaces, all extreme strategies
have been demonstrated experimentally. Implementations of
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the ME measurement for sets of two [24], three, and four [25]
states, optimal UD for sets of two states [26,27], and optimal
MC for sets of three states [28] were provided. There are also
demonstrations in high-dimensional discrete spaces for ME
[29] and optimal UD [30–32] measurements. Only recently,
the optimal FRIO strategy was implemented for discriminat-
ing two nonorthogonal pure states of a polarization-encoded
qubit prepared with arbitrary a priori probabilities [33].

In this paper, we also address the optimal FRIO mea-
surement for a qubit, but now designed to experimentally
discriminate between N states prepared with equal a priori
probabilities. The strategy is demonstrated for N = 2, 3, 5,
and 7 states of a qubit encoded in photonic path modes.
Our implementation is divided into two steps: First, using a
programmable spatial light modulator (SLM), we carry out
an optimal quantum state separation, a probabilistic quantum
map which increases the distinguishability between the inputs
in a controlled way [34]; then, the successfully transformed
output states are discriminated with the ME measurement
devised in Ref. [29]. This approach is corroborated by the ex-
perimental results obtained, where the ME rates are achieved
for fixed rates of inconclusive outcomes, encompassing the
extreme strategies as particular cases. The experimental
scheme presented here can also be straightforwardly extended
for the optimal FRIO discrimination of nonorthogonal qudit
states, thus consisting of a useful platform for further research
on this topic and potential applications in related quantum
information protocols in two- or higher dimensional spaces.

II. AN OVERVIEW OF STATE DISCRIMINATION
AND ITS OPTIMAL STRATEGIES

Consider a quantum system randomly prepared in one of
N states {ρ̂ j}N−1

j=0 with a priori probabilities {η j} (
∑

j η j =
1). Suppose we are given this system and asked what its
quantum state is. To answer the question, we implement a
measurement on the system and use its outcome as a guide.
In general, there are two classes of outcomes: conclusive and
inconclusive. The former allows us to identify the state, and
this identification may be correct or not. The latter does not
allow us to identify any state. This scenario can be properly
described by an (N + 1)-outcome POVM {�̂0, . . . �̂N−1, �̂?}
(with

∑
j �̂ j + �̂? = Î), where each element �̂ j is associated

with a conclusive identification of the state as ρ̂ j , while �̂?

is associated with an inconclusive answer. The process is
characterized by the average probabilities of erroneous (Pe),
correct (Pc), and inconclusive (Q) results, which are given by

Pe =
N−1∑
j,k=0
j �=k

η jTr(ρ̂ j�̂k ), (1a)

Pc =
N−1∑
j=0

η jTr(ρ̂ j�̂ j ), (1b)

Q =
N−1∑
j=0

η jTr(ρ̂ j�̂?), (1c)

and satisfy Pe + Pc + Q = 1. Clearly, Pe and Pc are both re-
lated to the conclusive events.

The goal now is to find the POVM that optimizes these
probabilities according to some pre-established criterion,
which will define a different measurement strategy. For
instance, in the optimal FRIO measurement, the error prob-
ability Pe must be minimized under the constraint that the
rate of inconclusive results Q has a fixed value in the range
0 � Q � Qcr, yielding Pmin

e (Q). Here, Qcr denotes a critical
value of Q, above which the minimum relative error rate1

Pmin
e (Q)/(1 − Q) becomes a constant [20,21].

The ME and optimal UD strategies are extreme and par-
ticular cases of the optimal FRIO measurement. In ME,
where inconclusive results are not allowed, Pe is minimized
subject to Q = 0 (and hence �̂? = 0̂). In optimal UD, the
measurement must provide the minimum rate of inconclusive
outcomes Q = Qcr ≡ QUD subject to Pmin

e (QUD) = 0.2 The
optimal MC measurement is also an extreme case of the
optimal FRIO for Q = Qcr ≡ QMC, but only when the MC
Cj ≡ max�̂ j

[P(ρ̂ j | j)] is the same for each of the N states [21],
as will be the case in this paper. When these states are linearly
independent, we will have Cj = 1 ∀ j, and the optimal MC
measurement coincides with the optimal UD measurement.

Clearly, the optimal FRIO strategy interpolates between the
two extremes ME and optimal UD (or MC). Its figure of merit,
Pmin

e (Q), is a nonincreasing convex function [20], so the error
rate cannot increase with Q. Intuitively, we can expect that
FRIO will reduce the optimal error rate in comparison with
ME by allowing a nonzero rate of inconclusive outcomes.
Similarly, it will reduce this rate in comparison with the opti-
mal UD (or MC) measurement at the expense of a higher error
rate in the discrimination.

The optimal strategies outlined above provide useful in-
formation with probability 1 − Q. In this sense, ME is a
deterministic strategy, whereas those with Q > 0 are prob-
abilistic. Yet there is an intrinsic connection between them:
the probabilistic strategies can be decomposed into a discrim-
ination between conclusive and inconclusive events, followed
by a ME measurement for the conclusive ones [34–37]. We
shall explore this point in more detail in both the theoretical
description and experimental implementation of the optimal
FRIO discrimination in the next sections.

III. OPTIMAL FRIO DISCRIMINATION OF N
SYMMETRIC STATES OF A QUBIT

Deriving analytical solutions of the optimization problem
posed by state discrimination is, in general, a difficult task.
In particular, a set of N symmetric d-dimensional pure states
prepared with equal a priori probabilities (i.e., η j = 1/N ∀ j)
belongs to a class of analytically solvable cases. For these
states, that will be defined below for a qubit (d = 2), the
optimal measurement is known for ME [38], optimal UD
[39], MC [36], and FRIO [20,21] strategies, which have im-
portant implications in quantum communications (e.g., see
Refs. [23,40–44]). In this section, we describe the optimal

1This is the minimum error probability conditioned on obtaining a
conclusive result for a fixed value of Q.

2Note that it is also possible to have a suboptimal UD measurement
where Pmin

e (Q) = 0 for QUD < Q < 1.
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FIG. 1. Symmetric states of a qubit on the Bloch sphere for
N = 3 (first row) and N = 4 (second row). (a) Input states [Eq. (3)];
(b) output states separated by θ < θ ′ < π/4 [Eq. (4)]; (c) output
states maximally separated [Eq. (5)]. To simplify this illustration, we
assumed ϕ = 0 in Eq. (3).

FRIO measurement and obtain Pmin
e (Q) for N equally likely

symmetric states of a qubit, focusing on its physical imple-
mentation as the two-step process mentioned above and that
will be adopted in our experiment.

A. Symmetric pure states of a qubit

Let a pure state of a qubit be written as

|α0(θ )〉 = cos θ |0〉 + eiϕ sin θ |1〉, (2)

where 0 � θ � π/4, 0 � ϕ < 2π , and {|0〉, |1〉} is the compu-
tational basis for its Hilbert space H. Now, consider a unitary
operation, acting on H, given by V̂ = |0〉〈0| + ω|1〉〈1|, where
ω = exp(2π i/N ), for some integer N � 2. Taking Eq. (2) as
a fiducial state, we can generate a set of N states {|α j (θ )〉}N−1

j=0
by applying the above unitary as follows:

|α j (θ )〉 = V̂ j |α0(θ )〉
= cos θ |0〉 + eiϕω j sin θ |1〉. (3)

Under the action of V̂ j , the fiducial state is rotated around
the z axis of the Bloch sphere by an azimuthal angle 2π j/N
while keeping its polar angle 2θ . The N states generated in this
way are symmetrically distributed on the parallel of latitude
π/2 − 2θ north of the Bloch sphere equator, as sketched in
Fig. 1(a) for N = 3 (first row) and N = 4 (second row). They
are called symmetric states with respect to V̂ [38,39]; note that
V̂ N = Î , where Î is the identity on the qubit space.

B. Optimal separation of symmetric qubit states

Given an input set of symmetric states {|α j (θ )〉}N−1
j=0 as

defined in Eq. (3), consider, for all j, the transformation
|α j (θ )〉 → |β j (θ ′)〉, where

|β j (θ
′)〉 = cos θ ′|0〉 + ω j sin θ ′|1〉 (4)

and θ � θ ′ � π/4. This transformation removes the phase3

eiϕ and, more importantly, increases the polar angle of the
inputs, generating a new set of symmetric states on a parallel
of the Bloch sphere closer to the equator than before, as can
be seen in Fig. 1(b). As a consequence, |〈βi(θ ′)|β j (θ ′)〉| �
|〈αi(θ )|α j (θ )〉| ∀ i �= j, i.e., the transformation reduces the
overlaps, making the output states more distinguishable than
the input ones. For this reason, it was named state separation
[34]. In particular, when θ ′ = π/4, the separation is maximal
and the output states become uniform:

|β j (π/4)〉 ≡ |u j〉 = 1√
2

(|0〉 + ω j |1〉). (5)

These states are located on the equator of Bloch sphere, as
shown in Fig. 1(c), and they are the maximally distinguishable
symmetric states (e.g., for N = 2, they are orthogonal).

State separation is clearly a probabilistic transformation,
otherwise one could apply it to render nonorthogonal states
into perfectly distinguishable orthogonal ones in a determin-
istic way, thus contradicting the rules of quantum theory. It
is characterized by two possible outcomes, success or fail-
ure: the former leads to the desired separation whereas the
latter leads to output states less distinguishable than the in-
puts. These outcomes occur with probabilities ps and p f ,
respectively, and the optimal transformation is the one that
maximizes ps (or, equivalently, minimizes p f ) for a prescribed
separation. For N equally likely symmetric states of arbitrary
dimension, the maximal success probability was found in
Ref. [22]; in the case of a qubit, it is given by

ps(θ
′) =

(
sin θ

sin θ ′

)2

= 1 − p f (θ ′). (6)

The corresponding measurement operators associated with
these optimal probabilities were also derived in Ref. [22].
Here, we describe their physical implementation which com-
plies with our experimental realization. For this, consider an
auxiliary qubit in the pure state |v〉, which is an element of
the computational basis {|h〉 = (1, 0)T, |v〉 = (0, 1)T} for its
Hilbert space Ha. The ancilla is attached to the main qubit in
a given state |α j (θ )〉 via tensor product, so the input two-qubit
state becomes |α j (θ )〉 ⊗ |v〉. Now, consider the following uni-
tary operation acting on H ⊗ Ha:

Û (θ ′) = eiϕ |0〉〈0| ⊗
[

ξ (θ ′) τ (θ ′)
−τ (θ ′) ξ (θ ′)

]
a

+ |1〉〈1| ⊗ Îa, (7)

where ξ (θ ′) = tan θ cot θ ′ =
√

1 − τ 2(θ ′) and Îa is the iden-
tity on the ancilla space. By applying this operation on the
input state and using Eqs. (3), (4), and (6), it is straightforward
to show that

Û (θ ′)|α j (θ )〉|v〉 =
√

ps(θ ′)|β j (θ
′)〉|v〉 + √

p f (θ ′)|0〉|h〉.
(8)

3Removing this phase is not a requirement; the desired effect of
the transformation would be the same whether we kept it or not.
However, we choose to remove it at this point, so the theoretical
description presented in this section fits our experimental implemen-
tation described in Sec. IV.
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After the unitary system-ancilla coupling, the protocol is
concluded by a projective measurement on the ancilla’s com-
putational basis: it is projected either onto |v〉 with the
maximal success probability, thus accomplishing the state
separation, or onto |h〉, rendering the failure outputs com-
pletely indistinguishable.

C. Discriminating the separated states with minimum error

The qubit states generated by successful transformations,
namely, {|β j (θ ′)〉}N−1

j=0 given by Eq. (4), also form a set of
N equally likely symmetric states. Assume that one wants to
discriminate them with a ME strategy. The optimized mea-
surement for this task is an N-outcome POVM {�̂ME

k }N−1
k=0

given by [36,38]

�̂ME
k = 2

N
|uk〉〈uk|, (9)

where {|uk〉}N−1
k=0 are the uniform symmetric states given by

Eq. (5). Denoting the average probability of error for discrim-
inating the separated states as pβ

e (θ ′), its minimum value will
be

pβ
e (θ ′) = 1 − 1

N

N−1∑
j=0

〈β j (θ
′)|�̂ME

j |β j (θ
′)〉

= 1 − 1

N
(1 + sin 2θ ′). (10)

D. Optimal FRIO discrimination of symmetric states
as a two-step process

The optimal FRIO discrimination of the N symmetric
states will be decomposed into the two steps outlined above:
an optimal state separation followed by a ME measurement
on the successfully separated inputs. To see this, we rep-
resent this two-step process as an (N + 1)-outcome POVM
{�̂0, . . . , �̂N−1, �̂?}, with the corresponding detection oper-
ators given by Â j = (�̂ME

j )1/2〈v|Û (θ ′)|v〉, Â? = 〈h|Û (θ ′)|v〉,
for j = 0, . . . , N − 1, so �̂ j = Â†

j Â j and �̂? = Â†
?Â?. It is

easy to verify that all the elements are positive semidefinite
and satisfy

∑
j �̂ j + �̂? = Î . Using this POVM and Eqs. (4),

(8), and (9), we obtain the average probabilities of Eqs. (1) as
functions of θ ′, the polar angle after separation,

Pe(θ ′) = ps(θ
′)pβ

e (θ ′), (11a)

Pc(θ ′) = ps(θ
′)
[
1 − pβ

e (θ ′)
]
, (11b)

Q(θ ′) = p f (θ ′), (11c)

where ps, f (θ ′) and pβ
e (θ ′) are given by Eqs. (6) and (10),

respectively. Equations (11) make explicit the connection be-
tween the two steps and the optimal FRIO discrimination. As
we saw earlier, when the separation fails every input state
is transformed as |α j (θ )〉 → |0〉. In this case, an attempt to
discriminate the inputs will lead to an inconclusive answer
and, thereby, the rate of inconclusive results equals the failure
probability in the separation. On the other hand, a successful
separation will lead to a conclusive outcome for the discrim-
ination attempt, and indeed we see that Pe(θ ′) + Pc(θ ′) =
ps(θ ′). The fixed value of Q in the range 0 � Q � QMC is
settled in the state separation stage by setting the angle θ ′ in

the range θ � θ ′ � π/4. From Eqs. (6) and (11c), we have
Q(θ ) = 0 and

QMC = Q(π/4) = cos 2θ, (12)

which is the minimum rate of inconclusive results for the opti-
mal MC (or UD) discrimination of N equally likely symmetric
states of a qubit [17,36,39].

Finally, using Eqs. (6), (10), (11), (12), and doing some
algebra, we obtain the ME rate as a function of the FRIO,

Pmin
e (Q) = 1

N
[(N − 1)Q̄ −

√
Q̄2 − (Q − QMC)2], (13)

where Q̄ = 1 − Q. This expression is in agreement with pre-
vious results in the literature [20,21,34] and we can use it
to check that the ME and optimal MC strategies emerge as
particular cases of the optimal FRIO for Q = 0 and Q = QMC,
respectively. In the first case, we have Pmin

e (0) = 1 − 1
N (1 +

sin 2θ ), which is the ME bound for the input symmetric
states {|α j (θ )〉} [see Eq. (10) for θ ′ = θ ]. In the second case,
Pmin

e (QMC) = (1 − QMC)(1 − C), where C = 2/N is the MC
achieved for each of the N symmetric states [36]; for N = 2
(optimal UD strategy), we have Pmin

e (QUD) = 0. It is interest-
ing to see that when the number of states to be discriminated
increases, the chance of getting correct results decreases; in
the limit limN→∞ Pmin

e (Q) = 1 − Q, so only erroneous or in-
conclusive answers can be obtained.

IV. EXPERIMENT

The experimental setup to demonstrate the optimal FRIO
measurement is illustrated in Fig. 2(a). Next, we describe each
section of our optical implementation, namely, state prepara-
tion, separation and discrimination. It is important to stress
that, like most optical tests of quantum state discrimination
[24–31], our implementation explores the isomorphism be-
tween the state of an optical field generated by a laser source
and a quantum state, as explained below.4

A. Source and state preparation

Our light source consisted of a 687nm single-mode diode
laser. The beam is initially sent through a spatial filter that
cleans, expands and collimates its spatial profile, generating
an approximate plane wave field. Then it passes through a
half-wave plate (HWP) followed by a polarizer: the former
acts as a variable attenuator and the latter provides a clean
vertical polarization for the field.

The incoming beam produced at the source is driven to a
normal incidence at a reflective liquid crystal display (LCD,
Holoeye PLUTO) working as a programmable phase-only
SLM. This device is addressed with a computer-generated
mask given by an array of two blazed diffraction gratings
[a typical mask is shown at the computer screen in the state
preparation stage of Fig. 2(a)]. For a display with pixels 8 µm

4As discussed in previous works [29,31], our implementation could
be made truly quantum only by replacing the laser source by a single
photon source and the cameras by detector arrays with single photon
counting capability.
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FIG. 2. (a) Experimental setup (see text for details). HWP: Half-wave plate. BS: Beam splitter. LCD: Liquid crystal display. PBS:
Polarizing beam splitter. L1–L3: Spherical lenses with focal length f = 30 cm. The dashed box highlights the spatial light modulator (SLM)
that performs the operation ESLM described in the text. (b) Computer-generated masks addressed to the transmissive LCD to assist the state
separation |α j (θ )〉 → |β j (θ ′

t )〉, where θ = 19.5◦ and {θ ′
t }7

t=1 are given in Table I. (c) Arrangement for state separation: the SLM couples the
path modes with the polarization, which is then measured in the {|h〉, |v〉} by the PBS; the separation succeeds (fails) with the projection onto
|v〉 (|h〉). (d) ME measurement to discriminate N symmetric states of path encoded qubits [see Eq. (15)]: an array of N pointlike detectors,
at the focal plane of a lens, is distributed along the transverse positions {xk}N−1

k=0 given by Eq. (17); the panel shows these positions in our
experiment.

wide, the gratings have period, width and center-to-center
separation of 12, 18, and 36 pixels, respectively. The SLM im-
prints the mask information into the phase profile of the beam;
the modulated beam is then transmitted through the spherical
lens L1, and a slit diaphragm at its focal plane filters the first
diffraction order. The filtered beam is given by a coherent
superposition of two nonoverlapping path modes generated
by the gratings. These modes, represented by |0〉 and |1〉, are

modulated by complex coefficients with magnitude and phase
defined by the phase depth and lateral displacement of the
gratings, respectively (see Refs. [45,46]). The state of the field
emerging from this process is equivalent to a stream of single
photons prepared in a given pure state on a two-dimensional
space spanned by the two path modes. In particular, we use
this method to prepare the symmetric qubit states |α j (θ )〉
given by Eq. (3).
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B. State separation

For the state separation |α j (θ )〉 → |β j (θ ′)〉, we use the
light polarization as an ancilla qubit. As both path modes in
the preparation stage are vertically polarized, the input state is
given by |α j (θ )〉|v〉. Thus, to implement the controlled unitary
given by Eq. (7), we must have the path-encoded qubit acting
as the control for a transformation on the polarization one: if
the path mode is |0〉, a phase ϕ is added and the polarization is
rotated as |v〉 → |p(θ ′)〉 =

√
1 − ξ 2(θ ′)|h〉 + ξ (θ ′)|v〉; other-

wise, it is left unchanged.
The transformation on the ancilla, denoted by ESLM, is

performed by a programmable SLM composed of a trans-
missive LCD (Holoeye LC 2012) sandwiched between two
HWPs with fixed orientations, as shown in the dashed box of
Fig. 2(a) (see Appendix A for a brief description of the SLM
characterization). This device modulates the polarization and
phase of the incoming light as a function of the gray level
(gl = 0, . . . , 255) displayed onto each pixel of the LCD [47].
Given a vertically polarized input beam, for gl = 0, it acts as
an identity operation. On the other hand, for gl > 0, its action
imprints a phase shift and approaches the desired polarization
rotation.5 Now, to make this a controlled operation, each path
mode is imaged onto one of the halves of the LCD screen by a
4 f optical system formed by the lenses L1 and L2, as shown in
Fig. 2(a) (the polarizer before the SLM is used only to ensure a
pure vertical polarization for each mode). The mode |0〉 (|1〉)
goes through the left (right) half which is addressed with a
homogeneous computer-generated mask with gl > 0 (gl = 0)
[a typical mask is shown at the corresponding computer screen
of Fig. 2(a)]. In this way, the SLM will only act in the path
mode |0〉. The relationship between the gray level at the LCD
with the target separation angles and the phase shifts for
the input symmetric states are discussed in the Appendix B.
The values of these parameters used in our experiment are
specified in Table I; the corresponding masks to implement
the intended transformations are shown in Fig. 2(b).

To conclude this stage, a polarization projection, π̂pol, is
performed on the basis {|h〉, |v〉} with a polarizing beam split-
ter (PBS). The vertically polarized component of the state
is reflected by the PBS, resulting in a successful separation,
while the horizontal component, associated with a failure, is
transmitted by the PBS, as sketched in Fig. 2(c).

C. Minimum-error measurement

The separated states {|β j (θ ′)〉} from the previous step must
now be discriminated with a ME measurement given by
the N-outcome POVM of Eq. (9). From Naimark theorem,
this POVM can be extended to a projective measurement
on a larger Hilbert space [48]. To see this, let {|k〉}N−1

k=0
be an orthonormal basis spanning an N-dimensional space
HN . By applying the quantum Fourier transform F̂N =

1√
N

∑N−1
m,n=0 ωmn|m〉〈n|, we generate a conjugate orthonormal

5Unwanted effects present in the SLM, such as depolarization,
prevents it from working exactly as the required unitary polarization
rotation. A full characterization of these effects demands a process
tomography of the device, which is beyond the scope of the present
paper. We shall present this study elsewhere.

TABLE I. Starting with a set of N symmetric states characterized
by θ = 19.5◦ (this choice is explained in Appendix B), the target sep-
aration angles in our experiment are specified in the second column.
The third column shows the required gray level at the left half of the
LCD screen to implement the intended separation; the fourth column
shows the phase shifts introduced by the SLM with the addressed
gray level.

Separation angle Gray level Phase shift
t {θ ′

t } {glt } {ϕt }
1 19.5◦ 0 0
2 22.6◦ 142 0.23π

3 25.5◦ 163 0.32π

4 29.5◦ 180 0.40π

5 34.2◦ 195 0.48π

6 40.0◦ 214 0.56π

7 45.0◦ 255 0.61π

basis that can be written as

|μk〉 = F̂N |k〉

=
√

2

N
|uk〉 + 1√

N

N−1∑
m=2

ωmk|m〉, (14)

where |uk〉 is given by Eq. (5). From Eqs. (4) and (9),
it is straightforward to show that 〈β j (θ ′)|�̂ME

k |β j (θ ′)〉 =
|〈μk|β j (θ ′)〉|2. Therefore, the projective measurement

π̂ME
k = |μk〉〈μk| = F̂N |k〉〈k|F̂−1

N (15)

in the larger space HN , implements, in the qubit space H, the
POVM of Eq. (9) for the required ME discrimination.

Here, this projective measurement is performed by an array
of N pointlike detectors at the focal plane of a spherical lens,
as sketched in Fig. 2(d). The lens performs an optical Fourier
transform, and the kth detector in the array, located at the
transverse position xk , postselects the state [29]

|μ(xk )〉 = 1√
N

N−1∑
l=0

ωxkNl/λ f |l〉, (16)

where  is the distance between the path modes, λ is the light
wavelength, and f the lens focal length. Thus, the ME mea-
surement is implemented by distributing the detectors along
the transverse positions

xk = −λ f mk

N
⇒ |μ(xk )〉〈μ(xk )| = π̂ME

k , (17)

where k = 0, . . . , N − 1 and mk = k if k � N/2 or mk = k −
N , otherwise. The panel in Fig. 2(d) shows these positions for
N = 2, 3, 5, 7 symmetric states, obtained with our experimen-
tal parameters λ = 687 nm, f = 30 cm and  = 288 µm.

We use CMOS cameras (Thorlabs DCC1545M) at the focal
plane of lens L3 at both outputs of the PBS, as shown in
Fig. 2(a). From each camera, we select N pixels (for a pixel
size of 5.2 µm) located at the positions shown in Fig. 2(d).
With the detections at the reflected arm, we obtain the error
rates in the discrimination of the successfully separated states;
with the detection at both arms, we obtain the rate of incon-
clusive outcomes, as explained next.
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FIG. 3. Characterization of the state separation process for N = 2, 3, 5, and 7 symmetric states (rows) with the target separation angles
{θ ′

t }7
t=1 (columns) given in Table I. The black circles represent the parallels of the Bloch sphere of radius sin 2θ ′

t . The colored straight lines
represent the target output symmetric states, where |β0(θ ′

t )〉 is the red line (positive y axis) and {|β j (θ ′
t )〉}N−1

j=1 are the remaining lines along the
clockwise direction. The separated states, characterized experimentally, are shown as squares with the same colors of the target states.

V. EXPERIMENTAL RESULTS

To carry out the experiment, we first define the number of
states to be discriminated, N , and the fixed rate of inconclu-
sive results, Q(θ ′), which is settled by the target separation
angle θ ′

t . For a given N and θ ′
t , the input states, given by

Eq. (3), are prepared with θ = 19.5◦ (see Appendix B) and
a relative phase ϕ = ϕ(θ ′

t ) ≡ ϕt shown in Table I. The inputs
are prepared one at a time, each one with its correspond-
ing mask displayed at the reflective LCD. All of them are
subjected to the same operation by the SLM, defined by a
fixed mask addressed to the transmissive LCD, according to
θ ′

t [see Fig. 2(b)]. Finally, the cameras at both outputs of
the PBS (success and failure, � = s, f ) record the intensity
distributions, I�

j (x, y), for each input state j. For each distribu-
tion, we subtract the background noise and integrate over the
transverse direction y, obtaining I�

j (x), which will be used to
characterize the state separation and estimate the probabilities
in the discrimination process, as described next.

A. Characterizing the separated states

First, we use the intensity distribution of a successfully sep-
arated state, Is

j (x), to characterize this state and the separation
process itself. The measured Is

j (x) consists of an interference

pattern between the two path modes. By applying a least-
squares fitting to the data, we obtain the visibility, Vj , and
phase shift, φ j , of this pattern. With these parameters, we write
the experimentally separated state for a given angle θ ′

t , as the
following density matrix (see Appendix C):

ρ̂ j (θ
′
t ) = 1

2

[
2 cos2 θ ′

t e−iφ jVj

eiφ jVj 2 sin2 θ ′
t

]
. (18)

In a perfect separation, the output state would be given by
Eq. (4), for which φ j = 2π j/N and Vj = sin 2θ ′

t ∀ j. The
target separation angle θ ′

t sets the parallel of the Bloch sphere
of radius sin 2θ ′

t [see Fig. 1(b)]. Thus, by replacing θ ′
t and the

corresponding measured parameters φ j and Vj in Eq. (18),
we obtain the location of ρ̂ j (θ ′

t ) in the plane containing the
parallel, which can be compared with the location of |β j (θ ′

t )〉.
Figure 3 shows the results obtained from this analysis for

N = 2, 3, 5, and 7 symmetric states, and the separation angles
{θ ′

t }7
t=1 given in Table I, arranged in the rows and columns,

respectively. The black circles represent the parallels of the
Bloch sphere set by θ ′

t . The colored straight lines locate the
target output symmetric states, where |β0(θ ′

t )〉 is the red line
(positive y axis) and {|β j (θ ′

t )〉}N−1
j=1 are the remaining lines

along the clockwise direction. The states ρ̂ j (θ ′
t ) are shown as

square markers with the same colors of the target states.
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FIG. 4. Experimental results: Average probabilities of successful state separation (black squares) and correct discrimination of the sepa-
rated states (red triangles). The solid curves correspond to the optimal theoretical expectations ps(θ ′) = 1 − pf (θ ′) and pβ

c (θ ′) = 1 − pβ
e (θ ′),

given by Eqs. (6) and (10), respectively. The insets show the number of states, N . In both cases, the standard deviations are of the order of
10−3. Thus, the error bars were smaller than the size of the data points and were not shown.

With respect to the azimuthal angles 2π j/N that character-
ize the symmetric states, there is excellent agreement between
theory and experiment for N = 2 and 3. This agreement gets
a little worse for N = 5 and 7, although it is still good. As
N increases, the adjacent states of a parallel become closer,
which means that their relative phases are also closer and thus
more susceptible to errors due to the finite phase resolution of
the LCDs in both the preparation and separation stages. The
radial location of ρ̂ j (θ ′

t ) is determined by the measured visi-
bility Vj . For a given θ ′

t , a visibility Vj < sin 2θ ′
t indicates loss

of purity of the path-encoded states. In our experiment, this is
observed more significantly for θ ′

6 and, specially, θ ′
7, as seen

in Fig. 3. The main cause for this is the depolarization of the
ancilla induced by the transmissive LCD (see Appendix B),
which is more detrimental for the gray levels associated with
these separation angles. As an effect, the error rate in the
discrimination increases since the ME measurement relies on
the interference of the path modes.6 On the other hand, in
a few cases we also obtained a slight deviation Vj > sin 2θ ′

t
(e.g., N = 2 and θ ′

1), which we attribute to inaccuracies in the
preparation of the input states.7 In this case, the consequence
is the decreasing of the expected error rate.

Despite experimental imperfections, the state separation
increased the distinguishability of the input states in all in-
stances θ = θ ′

1 → θ ′
t for t = 2, . . . , 7. The gradual increasing

of the distinguishability, accounted by the measured visibil-
ities, was also observed from one step to another, i.e., θ ′

t →
θ ′

t+1, with the exception of θ ′
6 → θ ′

7, for which there is a slight
decreasing in the visibilities for the reasons discussed above.

B. The probabilities in FRIO discrimination

The experimental success probability in the state sepa-
ration, [ps]expt, is obtained from the intensity distributions
at both outputs of the PBS. First, we integrate them over
x, I�

j = ∑
x I�

j (x), and then, for each input j, we compute

ps j = Is
j /(Is

j + I f
j ). Finally, we average this over all the inputs,

6Note that the error probability in Eq. (10) can be written as 1 −
(1 + Vj )/N .

7As θ ′
1 = θ , the SLM does not change the ancilla state for a zero

gray level.

obtaining [ps]expt = ∑
j ps j/N . Figure 4 shows the success

probability as a function of the separation angles for each N .
There is a good agreement between the experimental results
(black squares) and the optimal theoretical expectations (black
curves) given by Eq. (6).

The experimental probabilities of correctly identifying the
separated states, [pβ

c ]expt, are computed from the intensity
distributions Is

j (x) as follows. First, the fits used to charac-
terize state separation are also used to determine offsets to
correct the x axis, thus ensuring greater accuracy in locat-
ing the single-pixel detectors (see Appendix C). Then, for a
given input state j, we collect the intensities at the N pixels
located in the positions given by Eq. (17) and apply a small
compensation for the detection efficiency due to diffraction,
yielding {Is

j (xk )}N−1
k=0 .8 From these intensities, we obtain p jk =

Is
j (xk )/

∑N−1
l=0 Is

j (xl ), namely, the conditional probabilities of
correct ( j = k) or erroneous ( j �= k) identifications of the
separated states. Finally, the experimental average rate of cor-
rect discrimination will be given by [pβ

c ]expt = ∑N−1
j=0 p j j/N .

These results are shown in Fig. 4 (red triangles) as a function
of the separation angles for each N ; the red curves correspond
to the optimal theoretical predictions, pβ

c (θ ′) = 1 − pβ
e (θ ′),

given by Eq. (10). In general, there is good agreement be-
tween theory and experiment; the observed discrepancies are
mainly due to the issues pointed out in the state separation
stage, as discussed in the previous subsection. Despite them,
one clearly observes that the rate of correct results for the
separated states increases with θ ′, reflecting the increase in
their distinguishability.

From these data, we can calculate the FRIO figure of merit
using Eqs. (11). The experimental error rates and fixed rates of
inconclusive results will be given, respectively, by [Pe]expt =
[ps]expt (1 − [pβ

c ]expt ) and Qexpt = 1 − [ps]expt. In Fig. 5, we
plot the former as a function of the latter (markers) for each N
indicated in the insets. The curves of same color as the mark-
ers correspond to the optimal theoretical prediction, Pmin

e (Q),

8The compensated intensity is given by Is
j (xk ) = Is

j (xk )/χk , where
the compensation factor χk = sinc2(π�xk/λ f ) depends only on the
detector position [29]; here � = 144 µm is the width of the path
mode.
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FIG. 5. Average error probability, Pmin
e , as a function of the

fixed rate of inconclusive outcomes, Q. The markers represent the
experimental results and the solid curves the optimal theoretical ex-
pectations given by Eq. (13). The insets show the number of states, N .
Again, the error bars were not shown for the same reasons described
in Fig. 4.

given by Eq. (13), and show good agreement with the data.
It can be seen that this agreement becomes better as the
number of input states increases. As discussed in Sec. III D,
this occurs because as N increases, the errors and inconclusive
results are predominant in the discrimination process. In this
way, experimental imperfections independent of N become
less noticeable. Still, we can see from Fig. 5 that our FRIO
measurement scheme for discriminating between N equally
likely symmetric states closely reaches the ME rate for a fixed
value of Q, and interpolates between the ME discrimination
(Q = 0) and optimal UD (for N = 2) or MC (for N > 2)
strategies (Q = 0.7771).

VI. DISCUSSION AND CONCLUSION

The decomposition of the optimal FRIO measurement as
a two-step process gives a clearer and more instructive view
on how the probabilistic discrimination strategies work in
practice. In the first step, a quantum map is applied to increase
the distinguishability between the input states with a mini-
mum probability of failure. The increase in distinguishability
depends on the desired level of confidence in the discrimina-
tion that follows, and by fixing this increase, we are fixing
the rate of inconclusive results. Then, in the second step,
the successfully transformed states are discriminated with a
ME measurement. When the increase in distinguishability is
zero, we have a ME measurement and when it is maximal we
have an optimal UD (for linearly independent states) or an
optimal MC (for linearly dependent states) strategy, showing
in a simple way how the optimal FRIO interpolates between
those extreme strategies.

Here, we adopted this two-step approach and demon-
strated, both theoretically and experimentally, the optimal
FRIO discrimination between N equally symmetric pure
states of a qubit. Although our experiment has been carried
out with a classical laser source, the results would not differ
were it done with a true single photon source and a detector

array with single photon counting capability, as extensively
discussed in previous works [29,31].

Our implementation employed two path modes of light to
encode the symmetric states; the light polarization was used as
an ancilla system to perform state separation, which control-
lably increased the distinguishability between the symmetric
states. This transformation was implemented through a pro-
grammable spatial modulator, which gave us a fine control for
the transition between ME measurement and optimal UD (or
MC) measurements. In addition to showing the optimal FRIO
measurement for N states of a qubit, rather than only two, our
setup has an advantage over a previous FRIO implementation
[33] that used polarization-encoded qubits: it can be straight-
forwardly extended to high-dimensional qudits. We have all
the ingredients for that: the qudit states can be encoded in
d path modes produced by an array of d blazed diffraction
gratings at the SLM [45] [similarly to the two-dimensional
case shown in the computer screen of Fig. 2(a)]. In addition,
both extreme strategies, ME and UD, have been demonstrated
for discriminating path-encoded symmetric states of qudits
[29,31]. The FRIO measurement in this case requires the para-
metric state separation in the first step, a protocol introduced
in Ref. [22]. This protocol also uses a two-dimensional ancilla
and can be performed in a similar way to what we did here,
using an SLM (the optimal UD [31], in particular, employed
this transformation to implement the maximum separation).
After that, we just implement the ME measurement on the
successfully separated states following the method shown in
Ref. [29]. Therefore, our encoding enables a single setup
where one can implement the most fundamental state dis-
crimination strategies in dimensions much larger than two.
The switching between these strategies is controlled just by
tuning the transformation carried out by the SLM, which
means to change the computer-generated mask addressed to
a programmable LCD.

In conclusion, we have demonstrated an experimental
implementation of the optimal FRIO measurement for dis-
criminating between N = 2, 3, 5, and 7 nonorthogonal states
of a qubit. Our results clearly showed the gradual decreasing
of the error rate with the increasing of the FRIO, encompass-
ing the extreme cases of ME and UD (or MC) measurements.
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APPENDIX A: CALIBRATION AND CONFIGURATION
OF THE SLM FOR STATE SEPARATION

To characterize the optical modulation properties of the
transmissive LCD used in the state separation stage, we re-
sort to the standard approach developed by Moreno et al.
[47]. First, to characterize the polarization modulation, the
LCD is sandwiched by a polarization state generator (PG)
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and polarization analyzer (PA), the former composed of a
linear polarizer followed by a quarter-wave plate (QWP) and
the later of a QWP followed by a linear polarizer. With this
arrangement, we measure the light intensities as a function
of the gray level addressed to the display by preparing and
analyzing the polarization in the bases {h, v}, {±45◦} and
{R, L}, which generates 36 measurements, each one for gl =
0, . . . , 255. Second, to characterize the phase modulation, we
remove both PG and PA and illuminate each half of the LCD
with a small vertically polarized beam generated by a double
pinhole. This double beam is made to interfere at the focal
plane of a spherical lens at the vertical output of a PBS,
where the intensity pattern is recorded by a CMOS camera. By
keeping the gray level at the left half of the LCD equal to zero
while changing it at the right half, we record 256 interference
patterns.

The SLM is built by sandwiching the LCD between a
HWP+QWP (before) and QWP+HWP (after) with fixed ori-
entations. With the data set from the LCD characterization
outlined above, we can predict the configurations of the wave
plates to obtain the desired light modulation. In our case,
the imposed constraints were twofold: First, a vertically po-
larized light passing through the SLM must not suffer any
net rotation for gl = 0 at the LCD and its intensity must
decrease monotonically as gl increases; second, the phase shift
introduced by the SLM as a function of gl must be equal at
both outputs of a PBS. We made a numerical search for the
configuration of the wave plates satisfying these constraints
and found that only the HWPs were required before and after
the LCD [see Fig. 2(a)] oriented at 28◦ and 29◦ from the
vertical axis, respectively. The resulting modulation properties
of this configuration are described in Appendix B.

APPENDIX B: TARGET SEPARATION ANGLE AND PHASE
SHIFT AS A FUNCTION OF THE GRAY

LEVEL AT THE LCD

In Sec. IV B, it was shown that to perform the optimal
state separation on the path-encoded symmetric states, the
programmable SLM must, for a given gray level at the LCD,
add a phase shift ϕ in the mode |0〉 and rotate its polarization
according to

|v〉 → |p(θ ′)〉 =
√

1 − ξ 2(θ ′)|h〉 + ξ (θ ′)|v〉. (B1)

The parameter ξ (θ ′) = tan θ cot θ ′ [see Eq. (7)] sets the re-
lationship between the input and output separation angles
(θ and θ ′, respectively) with the required rotation of the
ancilla to achieve that separation. Based on this, we can ob-
tain the target output separation angles as a function of the
gray level, namely, θ ′(gl). From Eq. (B1), we have ξ 2(θ ′) =
|〈v|p(θ ′)〉|2 ≡ Pv, which is the probability of projecting the
rotated ancilla onto the vertical polarization. The SLM is con-
figured to implement this transformation as close as possible:
unwanted effects such as depolarization [49] prevent it from
working exactly as we wish. In a simple model, this means
that an input vertically polarized beam is actually transformed
as

|v〉 → ρ̂(gl) = (1 − ε(gl))|p(θ ′)〉〈p(θ ′)| + ε(gl)
Î

2
, (B2)

FIG. 6. (a) Target separation angle and (b) phase shift as a func-
tion of the gray level addressed to the LCD. In (a), each curve
corresponds to a given input angle θ = θ ′(0), which sets the range
of accessible θ ′’s (see text for details). The red markers × indicate
the values of θ ′

t and ϕt used in our experiment (they are also specified
in Table I).

with a desirable ε(gl) → 0 for gl = 0, . . . , 255. With this
configuration, we can extract Pv(gl) = 〈v|ρ̂(gl)|v〉 (see the
Appendix of Ref. [31]) and, assuming that the SLM imple-
ments the exact rotation, we obtain

θ ′(gl) = arctan

[
tan θ√
Pv(gl)

]
. (B3)

In Fig. 6(a), we plot θ ′(gl) for different values of the input
angle, θ = θ ′(0). For θ < 19.5◦ (red dash-dotted curves), the
accessible θ ′’s get below 45◦, which makes it impossible
to achieve maximum state separation. In this case, although
FRIO could be implemented, we would not reach the MC
measurement. On the other hand, for θ > 19.5◦ (black dashed
curves), although θ ′ reaches 45◦, the accessible angles vary
within decreasing ranges. The best scenario to overcome
these issues is provided by the input θ = 19.5◦, shown in
the black solid curve, where the red markers × indicate the
target separation angles {θ ′

t }7
t=1 (note that θ ′

1 = θ ). For this
reason, we have implemented the optimal FRIO measurement
starting with symmetric states with θ = 19.5◦. Figure 6(b)
shows the phase shift imprinted by the SLM as a function of
the gray level at the LCD, obtained through interferometric
measurements [47]. The red markers × indicate the phases
{ϕt }7

t=1 corresponding to the gray levels used to achieve the
target separation angles. The values of θ ′

t and ϕt used in our
experiment are also given in Table I.

APPENDIX C: CHARACTERIZING THE STATE
SEPARATION OF PATH-ENCODED QUBITS

BY INTERFERENCE MEASUREMENTS

For a path-encoded qubit, the probability amplitude of a
path mode |m〉 (m = 0, 1) at the focal plane of a lens is written,
in position space, as [50]

〈x|m〉 ∝ exp(−iκ (1 − 2m)x) sinc(κ�x), (C1)

where κ = π/λ f , with λ denoting the light wavelength and
f the lens focal length;  is the distance between the modes
and � is their width. (The values of these parameters in our
experiment were provided in the main text.) Hence, for a qubit
in the symmetric state |β j (θ ′)〉 defined in Eq. (4), the detection
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probability density at the focal plane will be given by

I j (x) = |〈x|β j (θ
′)〉|2

∝ sinc2(κ�x)[1 + V (θ ′) cos(2κx + arg ω j )], (C2)

where V (θ ′) = sin 2θ ′. This expression represents an inter-
ference pattern modulated by the envelope sinc2(•); V (θ ′) ∈
[sin 2θ, 1] is the visibility of this pattern whose fringes are
displaced by arg ω j = 2π j/N . From this result, the density
matrix of the symmetric state can be written as

|β j (θ
′)〉〈β j (θ

′)| = 1

2

[
2 cos2 θ ′ ω− jV (θ ′)
ω jV (θ ′) 2 sin2 θ ′

]
. (C3)

Therefore, it can be seen that by measuring the interference
pattern I j (x) and determining its visibility and phase shift, we
obtain the off-diagonal terms of the density matrix; the terms
in the diagonal are obtained by measuring the path-mode
amplitudes.

The separation angle, θ ′, sets the parallel of radius V (θ ′)
on the Bloch sphere, and the azimuthal angle arg ω j locates
|β j (θ ′)〉 on this parallel, as seen in Fig. 1(b). For a given θ ′
and an azimuthal angle φ j , a path-encoded qubit state ρ̂ j (θ ′)
inside the parallel is mixed and its radial location is defined
by the visibility of its interference pattern, Vj ∈ [0, sin 2θ ′].

Thus, this state can be written as

ρ̂ j (θ
′) = 1

2

[
2 cos2 θ ′ e−iφ jVj

eiφ jVj 2 sin2 θ ′

]
, (C4)

in accordance with Eq. (18).
The state separation process is characterized by measuring

the intensity distribution of each successfully separated state,
Is

j (x). For a given N and a target separation angle θ ′
t , we

apply a least-squares fitting to each measured Is
j (x) using the

function

Fj (x) = Imax
j sinc2(κ�x)[1 + Vj cos(2κx + φ′

j )], (C5)

where Imax
j is a global proportionality constant for each dis-

tribution, Vj is the visibility, and φ′
j a phase shift. These

are the parameters we obtain from the fitting. The visibility
gives us the magnitude of the off-diagonal terms in Eq. (C4).
From the parameters {φ′

j}N−1
j=0 , we compute a correction term

φcorr = π (N − 1)/N − ∑N−1
l=0 φ′

l/N used to determine offsets
to correct the x axis as xcorr = x − φcorr/2κ. As described in
Sec. V B, this ensures greater accuracy in locating the single-
pixel detectors which will implement the ME measurement. In
addition, we also obtain the phases of the off-diagonal terms in
Eq. (C4) as φ j = φ′

j + φcorr, concluding the characterization
of the separated states.
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